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ABSTRACT

To prevent work-related musculoskeletal disorders (WMSD)
the ergonomists apply manual heuristic methods to determine
when the worker is exposed to risk factors. However, these
methods require an observer and the results can be subjec-
tive. This paper proposes a method to automatically evaluate
the ergonomic risk factors when performing a set of postures
from the ergonomic assessment worksheet (EAWS). Joint an-
gle motion data have been recorded with a full-body motion
capture system. These data modeled the motion patterns of
four different risk factors, with the use of hidden Markov
models (HMMs). Based on the EAWS, automated scores
were assigned by the HMMs and were compared to the scores
calculated manually. Because the method proposed here is
intrusive and requires expensive equipment, kinematic data
from a reduced set of two sensors was also evaluated.

Index Terms— Hidden Markov Models, risk factors,
wearables, gesture recognition, work-related musculoskeletal
disorders

1. INTRODUCTION

The work-related musculoskeletal disorders (WMSD) in the
industry are becoming increasingly common. These disor-
ders are caused by the execution of repetitive activities, the
exertion of high forces, or the assumption of awkward pos-
tures [1]. Treatment and recovery of WMSDs are often un-
satisfactory, resulting in a temporary or permanent disability,
affecting the industrial worker’s quality of life and increas-
ing company costs. Experts have developed ergonomic as-
sessment methods to prevent WMSD-related hazards. These
methods are based on theoretical knowledge of human physi-
cal limitations and abilities [2] and define accepted standards
(e.g., ISO 11226:2000 and EN 1005-4). Some of the most
used methods in industry are the Rapid Upper Limb Assess-
ment (RULA) [3], Ovako Working Posture Analysing System
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(OWAS) [4], and the European Assembly Worksheet (EAWS)
[5]. These methods consist of four sections for the evalua-
tion: working postures, action forces, manual materials han-
dling, and repetitive loads of the upper limbs. To assess with
these methods, the ergonomist must manually fill their re-
spective worksheet. This worksheet evaluates the exposure
of the worker to ergonomic risk factors. These factors are
mainly related to the working posture, action forces of the
whole body, manual material handling, and task repetitive-
ness. However, the results of current ergonomic assessments
are subjective since they rely on the ergonomist perception
and experience. Moreover, the frequency of evaluation and
monitoring of WMSD risk factors is limited since the evalu-
ations are time-consuming and need to be applied by an er-
gonomist. To overcome some of these limitations, motion
capture technology is used for a more objective ergonomic
evaluation. Yan et al. [6] used inertial measurement units
(IMU) to measure torso inclination for a monitoring system
for construction workers” WMSD prevention. Busch et al. [7]
used optical markers to track the upper body segments (head,
hands, elbows, torso, and waist) and automatically fill the
REBA ergonomic assessment worksheet. Such approaches
still present issues that made them impractical to implement
in industry. Only a few postural risk factors are screened ac-
curately, and vision approaches are costly and face occlusions
issues. In this paper, a pipeline for automatic recognition of
four postural risk factors and the computation of ergonomic
score is proposed based on the evaluation protocol of EAWS,
where the first risk factor is the posture of the legs (F1) with
three possible motion patterns: standing, seating, and kneel-
ing. The second factor focuses on the torso inclination (F2)
with two patterns: bending forward or not. The third risk
factor is the lateral bending and torso rotation (F3). Finally,
the fourth one is the elevation of the arms (F4). Depending
on which factor is present during the performance, an auto-
matic EAWS-related score is assigned on a scale from 0.5 to
26.5, with the larger values assigned to the more dangerous
postures.

Motion capture (MoCap) from an IMU suit was used to
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record the postures this paperwork examined. For the risk
factors modeling, Hidden Markov Models (HMM) were used
for automatic recognition. However, to implement the pro-
posed system in an industrial environment, it is necessary to
use less intrusive technologies and to minimize the number
of sensors placed on the human body. To address this limita-
tion, this paper also evaluates the pipeline’s performance with
only two IMU sensors. The results indicate that it is possible
to monitor the exposure to ergonomic risk factors using two
accelerometers, potentially from a smartphone and a smart-
watch, which is a more realistic attempt for wide industrial
implementation.

2. PIPELINE

2.1. Generation of the data set

Ten healthy subjects were recorded performing 28 gestures,
with three repetitions, six seconds each. During these ges-
tures, the subject could be exposed to any combination of risk
factors. The motion capture technology (MoCap) used was an
IMU full-body suit (NANSENSE-BioMed Bundle, Baranger
Studios, Los Angeles, CA, USA). The output was joint an-
gles of the full body as a BVH file. For data processing, only
a low-pass Butterworth filter was applied to remove noise in
the MoCap data.

At the beginning of recordings with a new subject, the
IMU full-body suit was calibrated to correctly align the sen-
sors axis to the anatomical axis of the body segment recorded.
The calibration procedure mainly consists of asking the sub-
jects to execute different postures, e.g., I-pose or T-pose,
for a certain period to establish a benchmark signal reading.
Through the inverse kinematics solver provided by Nansense
Studio, the whole body joint angles (Euler angles) on three
axes X, Y, and Z were computed. In Fig. 1, it is shown
three examples of recorded gestures, each one exposing to a
different combination of risk factors.

2.2. Recognition of risk factors on awkward gestures by
using Hidden Markov Models

For the recognition of the postural risk factors, four sets of
Hidden Markov Models (HMM) were used, one for each
factor. HMMs were used because they have proved to be a
prominent tool for gesture recognition [8,9]. In Fig. 2 it is
shown the scheme for the recognition of the four factors.

For the recognition of F1, three HMMs were trained using
only the joint angles from the lower body. Each HMM mod-
eled one of the three possible postures of the legs (standing,
sitting, and kneeling). The HMM that provided the maximum
probability indicated the posture recognized. E.g., if HMM
F1.1 has the highest probability, then the posture recognized
is standing. Two HMMs were trained for the recognition of
F2, using only the data from sensors located on the spine. One
HMM modeled the gestures where the subjects were upright
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Fig. 1: Example of three different awkward gestures. (a)
Standing while bending forward and rotating the torso; (b)
Sitting while rising arms above shoulder level; (c) Kneeling
while bending forward.

and the other where they were bending forward. Another two
HMM were trained for the recognition of F3, using the data
from the spine and arms; hence subjects moved both body re-
gions to execute the gestures involving the risk factor F3. One
HMM corresponded to the gestures where the subjects were
rotating and lateral bending their torso and the other where
they were not. The recognition of F4 was done with another
two HMM trained with the data from the arms and shoulders.
One HMM modeled the gestures where the subjects raised
their arms above shoulder level and the other gestures where
they kept their arms low.

Ergodic HMM learned the hidden states given the obser-
vation sequence (joint angles) of each gesture using the Baum
Welch algorithm. The ergodic models were selected since,
for all gestures, the subjects returned to the initial posture.
The gestures were discretized using K-means clustering. The
number of states for each model and the number of clusters
for discretization were chosen by applying a stratified 10-fold
cross-validation. The centroids that produced the best results
were retained to quantize new test gestures. For every new
test gesture, the L2-norm was computed with each centroid
and the cluster that had the minimum distance was the one
where the gesture was assigned. HMMs with two states were
used for the recognition of F1 and with three states for the
other factors.

To evaluate the possibility to implement the proposed
pipeline with IMUs from smartphones and smartwatches, a
configuration of two sensors from the IMU full-body suit
was also evaluated. The sensors used for this configuration
were the sensor located at the right forearm, representing the
IMU of a smartwatch, and the sensor located on the hips,
representing the IMU from a smartphone. The right forearm
was chosen since most of the subjects are right-handed, and
the sensor of the hips because the origin of the movement for
bending forward and rotating the torso starts from the hips.
Both sensors provided the joint angles of the right forearm
and the hips, which were used to recognize the risk factors
related to the posture of the arm and torso. Also, the data
(joint angles) from the sensor placed on the hips was used for
the recognition of F1.
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Fig. 2: Pipeline of the modeling of the risk factors using motion data and the computation of the EAWS-related score.

2.3. Automatic computation of an EAWS-related er-
gonomic score

For the computation of the automatic EAWS-related score,
four equations were designed based on the tables provided by
the EAWS worksheet in the working posture assessment sec-
tion [5]. Note that the numbers used for awkward postures
that are assumed for a lapse around six seconds. The auto-
matic EAWS-related score defined as S € [0.5, 26.5] , is the
sum of the scores Si, Sa, S3, and Sy as shown in (1).

ey

S1 was computed by using (4):

1.5
0.5
7

Si=Ly, L= @)

where M1 was used as index of vector L, which consists of
the initial scores defined by EAWS for standing, sitting, and
kneeling respectively. For example, 0.5 a low risk value is
assigned when the subject is sitting and a seven a higher risk
value, when the subject is kneeling. The second score Sy was
computed with the following equation:

7
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where M2 is two if the subjects are bending and one if not;
B is the scores for bending forward, depending if the subjects
are standing, sitting or kneeling, which is indicated by M1.
In this case, if the subjects are bending forward, (M2 — 1)
will be one and a score from the vector B will be obtained. If
the subject is upright, the subtraction (M2 — 1) will be equal

to zero as So. The next score .S3 was computed as:
S3=75(M3—-1) )

where M3 is two if the subjects are rotating their torso and
one if they are not. If the subjects are rotating their torso then

S3 will be equal to 7.5, if not is equal to zero. Finally, S; was
computed using (5) and (6).

Sy = (M4—-1)(2—- M2)Apn +5(M4—-1)(M2-1) (5)

7
6.5
9

where M4 is two if the subjects are rising their arms and one
if they are not, if they are not (M4 — 1) will be zero as Sy. If
the subjects are rising their arms, then the score of Sy would
depend if the subjects are bending forward too and if they
are standing, sitting or kneeling. For example, if the subjects
are not bending, a score for having the arms raised will be ob-
tained from the vector A, this score will depend if the subjects
are standing, sitting or kneeling, which is indicated by M 1. If
the subjects is bending forward too (indicated by M2), Sy
will be equal to five.

A= (6)

3. RESULTS

For the evaluation, a stratified cross-validation (CV) proce-
dure with ten iterations was followed. The data set was ran-
domly partitioned in ten parts of equal size. Then nine of them
were used for training of the models and the remaining was
used for testing. The process was repeated for all ten parts.
Since the data set had a less number of gestures where the
subject was kneeling or rising his arms, a stratified CV was
chosen to keep the same proportion of gestures with different
factors for each iteration. Therefore, only 180 gestures for
each class were used for F1 (standing, sitting, and kneeling),
90 per class for F2 (upright and bending), 90 per class for
F3 (no rotating the torso and rotating torso), and 90 per class
for F4 (arms low and arm raised). Table 1 illustrate the re-
sulting confusion matrices after the ten iterations. From these
confusion matrices the F1-score was computed by using the
following equation:

precision - recall
Flscore =2

)

precision + recall



The set composed of all joint angles achieved an F1-score
of 0.9505 for F1, 0.9461 for F2, 0.9159 for F3, and 0.9283
for F4, thus an overall Fl-score of 0.9345. These recognition
performances are compared with the ones achieved with the
minimum set of sensors in Table 2.

The proposed minimum set achieved an Fl-score of
0.8811. Hence by using all joint angles, there is an improve-
ment of only 0.0534 over the minimum set of two sensors.
The factor that was the most challenging for the minimum set
was F1. Because there is only one sensor on the hips, there
is not enough data to discriminate between the three different
posture of the legs. Therefore, the minimum set proposed is
recommended for upper body ergonomics monitoring. For
the three out of four risk factors, satisfying recognition results
are achieved when using only two sensors (F1-Score > 85%).
These results are promising and open perspectives for the
use of this pipeline in industrial environments by using less
invasive technologies such as smartphones and smartwatches.

The absolute difference between the computed automatic
EAWS-related score and the manually assigned EAWS score
was calculated per each EAWS-related score prediction in the
10-fold cross-validation. After the cross-validation, the mean
of all absolute differences was computed; this corresponds to
the mean absolute error (MAE). The MAE of each configu-
ration of sensors and the standard deviation of the absolute
differences are shown in Table 3.

Table 1: Confusion matrices for the recognition of F1, F2,
F3, and F4, using all joint angles. Note that U: Upright; B:
Bending forward; NTR: No rotating the torso; TR: Rotating
the torso; AL: Arms low; AR: Arms raised

Motion data
HMM Standing | Seated | Kneeling
Fl1.1 60 0 0
F1 | F1.2 0 47 6
F1.3 0 2 53
Motion data
HMM U B
F2.1 73 9
B2 w0 %6
Motion data
HMM NTR TR
F3.1 69 12
F3 F3.2 2 85
Motion data
HMM AL AR
F4.1 73 12
F4 F4.2 0 83

Table 2: Overall recognition performance with each config-
uration of sensors for F1, F2, F3, and F4. Note that ALL:
Configuration with all the sensors; H and RF: Configuration
with two sensors

Risk factor | Sensors | F1-scores
Fl ALL 0.9505
H 0.7927
ALL 0.9461
F2 H 0.8593
M ALL 0.9159
H and RF 0.9272
P4 ALL 0.9283
H and RF 0.9451

Table 3: Mean absolute errors and the absolute error standard
deviation with each configuration of sensors. Note that ALL:
Configuration with all the sensors; H and RF: Configuration
with two sensors

Sensors MEA Std
ALL 1.5206 | 0.6337
Hand RF | 1.9496 | 0.4005

4. CONCLUSION

In this paper, a methodology for recognizing postural risk fac-
tors on ergonomically hazardous gestures is proposed. Wear-
able IMUs were used for the data collection, where ten sub-
jects executed 28 gestures, with different levels of ergonomic
risk according to the EAWS. From the data, joint angles were
obtained, from which motion patterns were successfully rec-
ognized using models based on HMMs. By using only two
sensors placed on the right forearm and the hips and follow-
ing the pipeline proposed, it was possible to compute the auto-
matic EAWS-related score with an MAE of 1.9496 and small
standard distribution of the error. These results indicate that it
is possible to use a minimum set of sensors for the automatic
computation of the EAWS-related score. This can potentially
allow the use of smartwatches and smartphones for ergonomic
assessment for the industry on a day-to-day basis. Wearables
measuring working postures have the potential to reduce the
prevalence of WMSD. High frequency and easily-accessible
monitoring technology can help give real-time feedback to
workers. Therefore, for future research, the recognition al-
gorithm presented in this paper will be tested with data from
less specialized technologies to design a module for real-time
ergonomic feedback.
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