The fauna of the Tanki flip site-Aruba...
Grouard Sandrine

To cite this version:

HAL Id: hal-03529918
https://hal.science/hal-03529918
Submitted on 18 Feb 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
It is evident that there is no 1:1 relationship between the material that was pre-

sent and the counts of species and genera. The absence of some elements (e.g., shellfish) in the faunal remains suggests that they were not represented in the coastal zone. The preservation of the bone in Tanki Flip is generally poor due to the soil and subsoil conditions of the site (sand covering diorite, and infiltration and circulation of water during and after (the sometimes heavy and intensive) rainfall). Therefore, the bones were fragmented and, sometimes, the identification could not go beyond the Family level.

MATERIALS AND METHODS

Two collecting methods were employed. The first consisted of the features being cross-sectioned and being sifted in the field through a 2.8 mm screen. The bones were sorted from the screen in the field. The second one consisted (for the hearths, some burials and some selected other features) of sampling, weighing and water screening through 2.0 mm and 1.0 mm (over 1 mm screen was sifted to compare the results to 2 mm sifting procedures). It was abandoned when it turned out that no more results were obtained than by 2 mm sifters), mm sifters. The samples were dried, weighed and sorted with the aid of a (20x) microscope in the Archaeological Museum Aruba. The samples from the 1.0 mm screen showed the same results when they were compared to the 2.0 mm screen samples. Each structure yielded two different sets of samples: the 2.8 mm from all features inside and around the structure and the 2.0 mm ones from 20 features within 13 of the 15 Tanki Flip structures (no samples from features belonging the structures 9 and 11 were sifted over 2.0 mm screen).

The quantification measurements were obtained with standard zooarchaeological methods. The Number of Remains (NR), Number of Identified Specimens (NISP) and the Minimum Number of Individuals (MNI) (as calculated by the method taught to me by F. Poplin), were used for each feature and each sample. Twenty features were screened over 2.0 mm sifters and analyzed for the Number of Remains, Number of Identified Specimens, and Minimum Number of Individuals.

Both counting methods NISP and MNI were used, because the Number of Identified Specimens showed a low representation of the Mammals, Birds and Reptiles, and a high representation of the Fishes (because of the larger quantity of bones within fish). It turned out to be a good method, however, to see the importance of fragmentation and preservation of the bones. The calculations of Minimum Number of Individuals showed the importance of each Taxon without this over-representation of skeleton parts, but it can not show the bias of bone fragmentation.

The Number of Remains (NR), Number of Identified Specimens (NISP) and Minimum Number of Individuals (MNI) of every structure (Table 3) and for the complete site were calculated, to have an idea of the importance of each species in the absolute and the highest theoretic Minimum Number of Individuals (these large tables are on file in the Archaeological Museum Aruba. They can be obtained from this Museum or from the author).

The features which did not belong to structures were counted and calculated separately, by areas between structures. These «Empty Areas» samples were added to have the «No-Str» sample. The Number of Remains, Number of Identified Specimen and Minimum Number of Individuals of each «Empty Area» were calculated. The different formation and post-depositional processes of postholes are explained by Schinkel (1992: 167–168). It «is evident that there is no 1:1 relationship between the material that was present on the house-floor around the post during habitation and material excavated from the fill», nevertheless, it is clear that there is some relationship. The counting methods, discussed above, were applied to features of the 15 TF structures.

The relationships between Number of Identified Specimens (NISP) and Minimum Number of Individuals (MNI) or between Number of Species (NS) and Minimum Number of Individuals
The faunal remains were identified to the lowest possible taxon. Identified bones were sorted by skeletal elements. Identifications were made using the comparative collection at the Florida Museum of Natural History in Gainesville with the help of Dr. E.S. Wing and her colleagues.

The number of identified vertebrae of Fishes (Osteichthyes) was counted in the Number of Identified Specimens, because they were identified to the lowest possible taxon. The spines of Osteichthytes were excluded because their identification was too time-consuming.

Fragments of Birds (Passer), Squirrel fishes (Holocentridae) or Crab were counted up to the level of Family, but not up to the level of Species, for the same reason. The lowest taxon of identification for Birds was «Passer-Colombidae», «Passer-Colombidae-Zeinadura macroura», «Passer-Small Bird» and «Passer-Large Bird». The «Small Bird» corresponds to the Family of «Passeriformes» and to all Birds which have a smaller size than the «Colombidae». «Passer-Large Birds» are larger than «Colombidae» and most of them correspond to the Family of «Pelecaniformes» and «Charadriiformes»; they were designated «Sea-Birds» in Tables 2 and 9.

Sometimes, inside a structure, a bone was identified up to the taxon of Species (for example: Epinephelus morio), but another bone was identified up to the taxon of Family (here: Serranidae) with the certainty that it was not an Epinephelus morio. Then, this second bone was counted as a new species, a new specimen, with his own Minimum Number of Individuals. All the taxa from Family to Species are exclusive categories. Yet, when a bone from one Class (for example: Perciformes) could be from one of the identified Family in the same feature (for example: Serranidae, Carangidae, Lutjanidae, Haemulidae,...), it was not counted as a new species, neither as a specimen. The bones counted in the «Osteichthytes» taxa were not counted as new species, nor as new specimens.

The Number of Remains, Number of Identified Specimens and Minimum Number of Individuals (with the percentages) of each Order (Vertebrates, Mammals, Birds, Reptiles, Batrachians, Fishes and Invertebrates) were counted to compare the oval and the round structures as two groups. The same procedure was used for each Family, within each Order.

A 2 test was used to compare the Tanki Flip round and oval structures. This is a non-parametric method, which shows the differences between two qualitative variables. The statistical approach of M. Fletcher and G. R. Lock (1994) was used in this study.

The structures were sectioned, first in 4 quadrants of 900 (N, E, S, and W). Subsequently, 4 additional 900 quadrants were added, partially intersecting the latter (NE, SE, SW, and NW). The Number of Remains of each of the 8 quadrants was counted to discover the highest concentrations of bone remains inside each structure. The number of features with bone remains, the Number of Remains of each of the 8 quadrants was counted to discover the highest concentrations of bone remains inside each structure. The number of features with bone remains, the Number of Remains of each feature and the species present in them were listed. Comparisons of the percentages of the round and oval structures could be made. The statistical method of 2 was used to check the results.

A study was conducted on the habitat of Tanki Flip species and Families which were hunted or fished. This study allows an estimation of the utilization of the environment. It allows also an understanding of the different biotopes, ecosystems and ecological areas, exploited by the Tanki Flip inhabitants. The selection of the habitats made by these people or preferences can be seen.

The 2 method again was used to check this. Contact with mainland or other islands could be detected. Another study was conducted on the different hunting and fishing techniques.

RESULTS

Bones of 102 taxa were identified among the faunal remains excavated from the Tanki Flip site (Table 1). Fourteen thousand two hundred and ten bones or bone fragments were collected and 4,922 were identified (Table 1). The hypothetical absolute Minimum Number of Individuals of the excavated area is 318. The sea provided the greatest variety of animal species. The Fish bones are the most frequent in the site, in term of Number of Remains, Number of Identified Specimens, Minimal Number of Individuals and Number of Taxa (Table 2). Sea-turtles are also very well represented. Some terrestrial species from the interior of the island and from the mainland are also present.

The people of the Caribbean area (even of the islands) have access to a relatively high diversity of species. This study has also shown that some relatively rare species were not present in the samples in recognizable form: there is a large number of unidentifiable bones (65 %). The size of the samples is not large enough to off-set this effect. The percentage of unidentifiable remains found by Wing and Brown (1979: 120) for Caribbean sites is 23, ranging from 3 to 51 %. This can be explained by the size of the sieves used (mostly 6 mm) in the Caribbean. The Tanki Flip 2.8 mm samples (45 %) remain within this range.

The 2.0 mm ones, however, with 76.5 % of unidentifiable remains, yielded an extremely high percentage of unidentifiable bones. The explanation is that the major part of the unidentifiable bones is heavily fragmented. These are more numerous in the 2.0 mm screen samples than in the 2.8 mm ones. Except the finer sifter, the finer laboratory procedures by wet sifting and sorting by microscope (20 x magnification) are the background of the differences.

Few complete long bones of large species were found in the Tanki Flip site. In the case of sea-turtles, few bones were recovered more or less complete. One was located in Str 5, in a small pottery cache, that probably should be interpreted as a pottery/sea-turtle cache.

The Adequacy of the Samples

They show that the samples are representative for the site, in spite of the fact that we would need more samples for a more complete representation of the rare animal species (Table 4 and 5). Samples screened with 2.0 mm have higher Number of Remains (NR) percentages, but smaller Minimum Number of Individuals (MNI) and Number of Identified Specimens (NISP) percentages. The size of the 2.8 mm screened bones influences the results because the importance of some rare species is inflated. The 2.0 mm screen samples are important because the smallest species and some juvenile specimens only could be identified in them. The TF bone fragmentation is high as discussed before (see «Osteichthytes» taxon in Table 2) and the Number of Identified Specimens (NISP) and the Minimum Number of Individuals (MNI) yield slightly biased results.

The relationships between the Minimum Number of Individuals (MNI) and the Number of Identified Specimens (NISP) (Tables 4 and 5) do show a straight line on the index of the NISP.
Table 7 shows the Number of Identified Specimens (NISP) frequency of each Fish Family. The most common families are the Jacks (Carangidae) (16.7 %), Bonefishes (Albulidae) (13.7 %), Leather jacket (Balistidae) (11.2 %), Grunts (Haemulidae) (10.3 %), Seabass (Serranidae) (9.1 %), Needlefish (Belonidae) (8.2 %), and Tarpon (Elopidae) (5.1 %), which live in the coastal-to deeper shallow-waters all around the island, particularly in lagoons and near coral reefs (FAO Sheets, 1978). The Fish Order shows small variations between the different parts of the site, it is still predominant. The representation of Fishes is similar in the round and the oval structures.

The Mammals are not very abundant. Small species of Rodents, like Rice Rat (Oryzomysini) were found everywhere in the site. They represent 31.2 % of the Mammal remains. Moreover, 29.6 % of the remains are Microfauna (unidentified small species) and 25.4 % are unidentified Mammals.

A foot bone (astragalus) of Deer (Odocoles sp.) was found in a special open area in the NE part of the site. This empty area is located between the oval structures 1 and 3 (see other Tanki Flip papers in the Proceedings of the XVIth I.C.C.A.). Bones of Cat (Felis pardalis) were recovered near Str. 11 and between Structures 8 and 7a. Remains of sheep or goat (Caprini) and pig (Suidae) were found in the N part of the site, near a Colonial period water reservoir and other Colonial period finds (see other Tanki Flip papers in the Proceedings of the XVIth I.C.C.A.). The oval structures yielded somewhat less Mammal remains (3.4 %) than the round structures (3.6 %).

Within the Order of Birds, 61 % of the remains are large Sea Birds, 25 % are small birds (Passeriformes) and 12.4 % are Pigeons (Colombidae) (Table 9). The round structures yielded more remains of Birds than the oval structures: 5.8 % and 4.4 % respectively.

Within the Order of Reptiles, Sea Turtles (Cheloniidae), Lizards (Polychiroidae) and Iguanas (Iguanidae) are predominant (63.4 %, 18 % and 8.7 %) (Table 10). Bones of Freshwater Turtle (Testudinidae) were recovered in the west part of the structure 3. The oval structures gave more remains of Reptiles than the round structures: 12.1 % against 7.1 %.

Within the Order of Invertebrates, the unidentified crab remains are the most important (49.3 %). One crab species, Conocephala cephalus, is more represented (30 %) than an other, Calinectes sp. (15 %), or than the land crab (2.1 %) (Table 11). The urchin (Echinoid Family) is poorly represented (3.6 %). The remains of Invertebrates are more frequent in the round structures (11.3 %) than the oval ones (7.2 %).

The Order of Vertebrates, including all the unidentified Mammals and Reptiles, have a high Number of Remains (NR) and Number of Identified Specimens (NISP), but no MNI-calculation was done because of the problem of «double-MNI».

The frequency of each Order is different in the round and the oval structures (Table 8). The spectrum of species within each Family is different. The number of remains (percentages) of each species is different too. Moreover, the oval structures have higher Number of Remains and Number of Identified Specimens than the round structures (8,148 Number of Remains and 2,452 Number of Identified Specimens for the oval against 2,945 Number of Remains and 1,026 Number of Identified Specimens for the round). The structures located outside the identified structures (counted like «No-Str») represent 21.9 % of the absolute Number of Remains (that implies that ca 78.1 % of the bones came from within the 15 structures. For the 2.8 mm samples it is 57.6 %). 29.3 % of the absolute Number of Identified Specimens and 40.3 % of the hypothetical absolute Minimum Number of Individuals of the excavated area (Table 1).

A 2 test was necessary to evaluate the apparent differences in the composition of each cate-

gory of the bone remains. The Total Field sample was compared to the oval and round samples, because of the importance of the «No-Str» samples.

Even if the Orders' percentages for each samples (Round, Oval and Total Field) seem differ-

tent, the 2 tests indicate that the samples are not significantly different by their representation of Orders. In spite of the fact that we see differences between oval and round structures, the 2 tests show that they are basically similar. This implies that there are no significant differences in the bone collections of oval, round structures and the total site. (The number resulting from the Chi-

square test of the Round, Oval and Total Field samples is high (107.25), which indicates a large differ-

ence between the observed and the expected frequencies, and so there would be significant evidence of asso-

ciation». The result of the Chi-square test between Round and Oval structures samples is 107.25. Between Round and Total Field samples the result is 61.12, and between Oval and Total Field samples, the result is 30.23. The table of percentages points of the Chi-square distribution gives 22.5 with 0.01 % value for 6 degrees of freedom. The conclusion is that the table of percentage points of the Chi-square distribution shows that the three samples, Round, Oval, and Total Field are not significantly different, with a 0.01 % value for 6 degrees of freedom. Only the Oval and Total Field samples have a small association, but they are not significantly different. The distribution number should be higher than the results of the Chi-square tests in order to prove that the samples are significantly different.)

The number of taxa, Minimum Number of Individuals, Number of Remains and Number of Identified Specimens for the 2.0 mm samples are higher in Tanki Flip than for the 2.8 mm samples. This shows clearly the importance of the 2.0 mm screen procedure in order not to lose essential information.

There is a clear over-representation of the large bones in the 2.8 mm screen samples. The dif-

ferent procedures in sifting and sorting between 2.8 mm and 2.0 mm samples explains this pheno-

menon. Large bones are easier to sort with the eyes in the 2.8 mm screen than small bones. Small frag-

ments of small bones are seen and collected by the 2.0 mm screen sifting and by the binocular sorting procedures, thus increasing the percentages of unidentifiable bones. Bones of Reptiles, Mammals and Vertebrates are over-represented, and bones of Fishes, Batrachians and Invertebrates are under-represented in the 2.8 mm in comparison with the 2.0 mm samples. Passer and Columbidae (the largest Birds’ bones) have a higher percentage in the 2.8 than in the 2.0 mm samples, and Small Birds have a lower percentage in the 2.8 than the 2.0 mm.

In the round structures, samples Str11 and Str7 have the highest Number of Remains, Number of Identified Specimens, number of taxa, and Minimum Number of Individuals (Table 3). In the 2.0 mm samples, the Str7-2mm and Str13-2mm have the highest Number of Remains, Number of Identified Specimens, number of taxa and Minimum Number of Individuals. In the 2.0 mm samples, the Str14-2mm has the highest Number of Remains, Number of Identified Specimens, number of taxa and Minimum Number of Individuals. In any case, the number of features here is not high. In the round structures, Str2 and Str12 have the lowest Number of Remains, Number of Identified Specimens, number of taxa and Minimum Number of Individuals. In the 2.0 mm samples, the Str7-2mm and the Str6-2mm are the poorest. In the oval structures, the Str7a and Str4 have the poorest Number of Remains, Number of Identified Specimens, number of taxa and Minimum Number of Individuals. In the 2.0 mm samples, the Str3-2mm and the Str4-2mm are the poorest. In every case, the number of features is small.

The Minimum Number of Individuals (MNI) shows the same variations between the samples as Number of Identified Specimens, but the fragmentation's biases are smaller (Table 3).
Minimum Number of Individuals of 2.0 mm are higher than 2.8 mm samples. The biases linked to the differences in the procedures of sampling and screening (over-fragmentation and over-representation of small taxa in 2.0 mm, or under-representation of rare species in 2.8 mm) are less important. Even if the Minimum Number of Individuals preserve the differences between 2.0 and 2.8 mm samples when the Number of Remains is too small, Minimum Number of Individuals is a good tool for understanding whether the content of each sample is more or less the same as the others, or not.

In fact, the oval structures yielded the highest number of animal bones (Str14, Str1, Str10, Str5, Str7A and Str3). Only Str4 is relatively poor. Yet, two round structures yielded a relatively high Number of Remains: Str 11 and 7. The round structures Str 2, 6, 8, and 12 are the poorest.

On the overall distribution of bones in the structures, we can remark that the oval structures have more bones than the round ones (Table 3). Burned bones are predominantly in 13 features (that means, contain more than 10 burnt bones. Especially the features 94 and 3068 with an ashy content and many burned bones probably were hearths. See other Tanki Flip papers in the XVIIth I.C.C.A. for more information): 6 are hearths and 7 are other features (possibly hearths that were not recognized as such during the field work).

The structures were sectioned in eight 90° quadrants: NW, NE, SE, SW, N, E, S and W. The Number of Remains (NR) were counted for each quadrant. The highest percentages of the richest and poorest quadrants of each structure are shown in Table 12 (See map of the structures in other Tanki Flip papers in the XVIIth I.C.C.A.).

Some structures appear to have opposite richest quadrants; they are «facing» each other: Str5, Str6 and Str7A. Another group is Str8, Str9, and 12. Str3 and 14 have this to a lesser degree.

For example, the richer sector of Str1 is the South, the richer sector of Str12 is the North-West, and the richer sector of the Str9 is the North-East. These three rich sectors are located in front of each other. Could activity areas be common between two or three houses? Could these linked houses be round and oval at the same period?

Habitat Assignment

The different species found in the site belong to four ecological areas: shallow waters, coral reefs, and the interior of Aruba. The interior of Aruba, and that of the mainland (the mainland opposite Aruba has different climatic zones and vegetation types).

A xerophytic vegetation was present over most of Aruba and all around the village of Tanki Flip (Cf.: Versteeg & Ruiz, 1995). The majority of Rodents, Batrachians and small Reptiles (Gekko gekko, Ameiva sp., Iguana iguana, Lizard undetermined) are endemic and live in cactus shrubs, arid vegetation at the present time, but were also living in the xerophytic forest of the interior of Aruba. They are attracted by water, habitats, and trees near open areas (Conant & Collins, 1991: 84, 95). The Tanki Flip village and its neighborhood offered all these conditions (see Chapter 2). They may have been hunted by the inhabitants of the village or by children training for hunting (Versteeg, Pers. Comm.).

The majority of the pigeons and doves belonging to the Family Columbidae of this island (Zenaida macroura and Zenaida auriculata). «Inhabit acacia and cactus scrub and other arid vegetation (...).» According to Voous (1983: 142-143) Particularly during long dry periods (they) approach human habitations and then feed on farm yards and in gardens (...). They are endemic to the island. They could be hunted near the village, where the vegetation is very similar to this habitat assignment. The taxon «Small Birds» includes endemic and migrant species.

We can not give a specific habitat assignment for such a large taxon. The taxon «Large Birds» includes a majority of Sea Birds, which are present all around the island.

In the Shallow water category, different ecosystems which are located near the island exist. Included in this category are: continental coastal sea, beaches, passes between islands, shallow bays, estuaries, mangroves and lagoons. Twenty-two families of fish were identified in the samples that inhabit these shallow waters. They can be caught near the island, for example Jacks (Carangidae), Snappers (Lutjanidae) or Trigger fishes (Balistidae). Most of these families can be caught in the surface waters, in surf line or in the intertidal region.

Some sharks, like Bull sharks (Carcharhinus leucas), Tiger shark (Galeocerdo cuvieri), Scalloped Hammerhead (Sphyrna lewini), and Southern Stingray (Dasyatis americana) often approach close inshore and enter in closed bays and estuaries. Bones of sharks and rays are relatively frequent in Tanki Flip. In fact, these animals provide a high quantity of fat. Their skin is also very strong and could be used for utilitarian purposes, or as a grater. A beaded made of a shark vertebra (Sphyrna lewini) was found in Tanki Flip.

Some sharks, like Tiger shark (Galeocerdo cuvieri) and fishes (like Snappers) (Lutjanus sp) are active at night, which may indicate that the inhabitants were (also) fishing at night using traps or lines. Sea-turtles come back to their birth beach in order to lay their eggs. At this period of the year, it is easy to catch them near or on the beach. Because of their heavy weight, they were probably butchered on the beach and brought in parts to the village.

Invertebrates (like Sea-Crabs and Urchins) can be caught on the beaches or in the shallow waters. Land crabs can be found far inland. Coral reefs, which are present along the south coast of the island, provided an important number of Fish, like Squirrel fishes (Holocentridae), Tile fishes (Malacanthidae), Grunts (Haemulidae) or Parrot fishes (Scaridae). Some Coral Reef fishes are active at night (some Drums) (Equesis sp.), which is another indication for possible fishing at night.

Colonial imported species: Sheep and goat and Pig (Caprini and Suidae) were identified in features where colonial glass and ceramics were found. These species were introduced by Europeans.

Tropical forest and rivers are absent on the island. Deer (Cervidae), Cat (Felidae) and Freshwater Turtle (Testudinidae) were probably imported from tropical forest areas of mainland. D. A. Hooijer remarks that remains of deer (Odocoileus gnomus subsp.) were found in prehistoric archaeological contexts in the Santa Cruz and Savaneta sites on Aruba. They do not belong to the extant fauna of Aruba (Hooijer, 1960:134). So, the present finds of bones of this mainland species in a Dabajaurid context is not the only one. Even the small-scale excavations of the Sixties resulted in the find of these bones.

Deer, Cat and Freshwater Turtle were caught or imported by the Amerindians of Tanki Flip. A hunting group may have traveled to the mainland to hunt, but they could also have imported them by the mainland population. Our data are not conclusive on the organizational aspects of trade, but we can express 3 hypotheses:

- The mainland groups brought these animals to Aruba and traded with the Tanki Flip groups.
- Inhabitants of Tanki Flip came to the mainland and traded with local groups. In order to verify these two hypotheses, investigations at mainland Dabajaurid sites have to be done.
- Tanki Flip groups went to the mainland forest to hunt and brought the game back to Aruba.

At Tanki Flip, only pieces of the bodies of Cat, Deer and Freshwater Turtle were found. The opened area of the excavation is very large, but just few features yielded these taxa.

The supposition that this game was butchered on the mainland and that only parts of the animals (or only the bones) were brought to the site is probable.
At least, we can notify the presence of the Deer, Cat and Freshwater Turtle (Cervidae, Felidae and Testudiniidae) in particular areas of the site. None of the bones of these «exotic» species were found inside structures, but either in the eastern outer circle or in open areas.

Bones of Freshwater Turtle (Testudiniidae) were recovered in the western part of the structure 3 close to a special open area located in the north-eastern part of the site, where a foot bone (Astragalus) of Deer (Odocoileus sp.) was found. This «empty area» is located between the oval structures 1 and 3, did not contain any other bone remains. Bones of Cat (Felis pardalis) were recovered near Str11, and between structures 8 and 7a. The first and last areas are not the richest of the excavated area, but Str11 yielded the highest number of shells and bones. The Special Open Area located between the two structures of this area could be a «ceremonial area» (see other Tanki Flips papers in the XVIth I.C.C.A.).

Tables 17, 18 and 19 show that 65% of the remains of the oval structures belong to species that live in shallow waters, estuaries and lagoons, against 42% in round structures. Twenty two % of the remains from the oval structures belong to coral reefs and rocky bottoms, against 38.1% in round structures. Twelve percent of the remains from oval structures belong to cactus shrubs and arid vegetation against 19.7% in round structures. These apparent differences were analyzed with 2 tests (The Chi-square tests of the Round, Oval and Total Field samples result in a high number, «which indicates a large difference between the observed and the expected frequencies, and so there would be significant evidence of association». The result of the Chi-square test between Round and Oval structures samples is 87.54. Between Round and Total Field samples the result is 34.68, and between Oval and Total Field samples, the result is 24.70. The table of percentages points of the Chi-square distribution gives 18.5 with 0.01% value for 4 degrees of freedom. The table of percentage points of the Chi-square distribution shows that the three samples, Round, Oval, and Total Field are not significantly different, with a 0.01% value for 6 degrees of freedom. Only the Oval and Total Field samples have a small association, but they are not significantly different. The distribution number should be higher than the results of the Chi-square tests in order to prove that the samples are significantly different. Even if the Habitat assignment percentages for each samples (Round, Oval and Total Field) seems different, the Chi-square tests indicate that the samples are not significantly different by their representation of Habitat assignment.

The results show that there is not a significant difference between those three sets of samples. The hunting and fishing locations are similar in round, oval structures and in the total site, but mark the specific find-locations of the exotic bones!

Fishing and hunting techniques

Different fishing strategies can be used to catch the fish species present in the Tanki Flip site:
- Nets, Lines, Traps and Spears.
- Nets: this category includes the bottom nets, gillnets, seines and trammel nets, beachnets and castnets.
- Lines: this category includes longlines, hook and lines, handlines and casting.
- Traps: we did not make any sub-category in this category.
- Spears: this category includes underwater catching and spears.

Most of the species present in the Tanki Flip site can be caught by nets, lines and traps. Net and line fishing techniques can be used from boats as well as by wading. All species of fish present in the site can be caught near the coast. All categories discussed above under «Line» and «Net» can have been used.

Different hunting strategies were used to catch the Mammals, Birds and Reptiles: Hunting, Trapping and Trade.

Most of the Reptiles, Birds and small Mammals can be caught by Hunting and Trapping. Turtles (Cheloniiidae and Testudiniidae) and large Mammals (Cervidae and Felidae) can be hunted, or trapped. An ambush technique to catch sea-turtles on the beach could yield eggs and female adult specimens in a relatively easy way to catch these large animals. The Colonial species, most Rodents and Lizards are classified as Intrusive; they are considered «village visitors» that died or were killed in the settlement.

These studies about habitat assignment and fishing techniques prove the importance of the coastal sea in the subsistence economy of the Tanki Flip population. This population exploited the environment near the site to a maximum extent: they did not need the off-shore area, and the limited number of juvenile specimens (we do not have measurements or counts for the Tanki Flip collection) suggests that the juvenile versus adult individuals. However, during the taxonomic identification it became evident that the percentage of juvenile specimens is limited in the site do not suggest any over-exploitation of any ecosystem used.

Modified bone

Four bones were modified by man: three polished points made with the inflated spines of Jacks (Carangidae), and one bead made in a perforated vertebra of shark (Shyra lewini). The polishing of these points that can be seen by eyes (parallel grooves oriented in different directions) reduced the thickness of the spine. Two of these points were broken in their central part; but one was fossilized with this brake, because the patina in everywhere the same. The other one was freshly broken. The length of the complete spine is about 55.3 mm and their diameters are around 6 mm with an average of 4.3 to 8.5 mm. One of the broken ones has traces of resin. These tools could be hafted and used as points on longer tools. They can be used on soft materials, as meat, skin or plants. They could also have been used as ornaments.

The central part of the vertebra was perforated with a pointed tool, which gave a regular shape of the hole in both frontal and caudal view. Slight traces of this rotation can be seen with a microscope. A patina covers all the faces of the vertebra and the hole. The diameter of the vertebra is small (5.0 mm) and this could be a juvenile shark. This vertebra could be used as ornament or pendant.

As the «exotic» bones, the vertebra was found in a open area, between the Str- 14, -13, -11 and -3.

CONCLUSIONS

The Tanki Flip 14.210 bones taught us that the fish remains were the most frequent within this site. The Sea-Turtles were also well represented and caches were found. In spite of these two frequent taxa, the faunal remains show a high diversity in the selection of the species (102 taxa). The shallow waters and the coral reefs provided the most abundant species. Some mainland species were also brought to this site.

The Tanki Flip faunal studies suggest that Dabajuroid farmers developed appropriate strategies to exploit the animal resources of this island. The role of marine resources in diet patterns has been shown by the importance of Fish remains compared to the Reptiles, Birds and Mammals.

The study of the samples of Tanki Flip showed that in order to obtain more insight into the diet of the inhabitants of the site more information is needed. One of the most important dietary remains which could provide additional information is the shell assemblage.

The study of differences between faunal samples from round versus oval structures yiel-
ded as result that there are no significant differences between these two groups. The study of the richest/poorest quadrants of each structure (Number of Remains) gave significant results: they are never the same, but, some structures have their richer quadrant opposite other. The round and oval structures can not be opposed to each other in this study. The kitchen, eating and dumping activities (= food preparation, consumption and deposition of the remains) could be common for two or three houses, which would mean that some round and some oval structures were occupied at the same period. This result can not prove the second hypothesis, because the evolution of the constructions cannot be seen.

It appears that two or more periods of habitations have been at this site, because of overlapping house structures, but on the basis of the analysis of the bones remains, we can not reconstruct these periods.

Interesting patterns were found to exist in the 64 features that contained sea-turtle bones. This has to be studied more in detail, by statistical methods.

Some imported Mammal and Reptile remains were found in the site. Deer, Cat and Freshwater turtles were caught on the mainland or imported to Aruba. They too, were found in site locations that suggest cache-activities by the inhabitants, as opposed to dumping activities.

REFERENCES CITED

Bond, J.

Brongersma, L.D.

Casteel, R.W.

Chaplin, R.E.

Compano, L.J.V.

Compano, L.J.V.

Conant Wood, R.

Conant, R. and J.T. Collins

Fischer, W. (editor)

Fletcher, M. and G.R. Lock

Gilbert, B.M, L.D. Martin, and H.G. Savage

Grayson, D.K.

Gregory, W.K.

Haviser, J.B.

Haviser, J.B.

Hoedeman, J.J.

Holthuis, L.B.
1958 *West Indian crabs of the genus Calappa. Studies on the Fauna of Curacao and other Caribbean Islands* VIII (30-34), Edited by the Hague/Martinus Nijhoff.

Hoogerwerf, A.

Shockey, B. J. n.d. Triggerfish associated with Caribbean Archaeological sites. (manuscript), 16 p.

Historical Foundation 2, Publication of Foundation for Scientific Research in the Caribbean Region 131.

Versteeg, A. H., J. Tacoma, and P. Van de Velde (editors)

Vouous, K.H.

Vouous, K. H.

Wagenaar Hummelinck, P.

Wagenaar Hummelinck, P.

Wagenaar Hummelinck, P.
1940 *Studies on the fauna of Curacao, Aruba, Bonaire and the Venezuelan Islands* II. The Hague, Martinus Nijhoff, December 1940, (Photomechanical reprint july 1940).

Westermann, J.H.

Wheeler, A. and A.K.G. Jones

Wing, E.S. and A.B. Brown

Ziegler, A.C.

Table 1. An overview of the Tanki Flip bone remains (NR = Number of Remains; NISP = Number of Identified Specimens; MNI = Minimum Number of Individuals).

Table 2. NISP and percentages of the 102 taxa in the Tanki Flip site.

Table 3. The Number of Remains (NR), Number of Identified Specimens (NISP), Minimum Number of Individuals (MNI) and Number of Taxa distributions of the bones over the 15 Tanki Flip structures.

Table 4. Relationship between the Minimum Number of Individuals (MNI) and the Number of Identified Specimens (NISP) in 2.8 mm and 2.0 mm samples of the Tanki Flip site. Each black diamond is one sample.

Table 5. Relationship between the Minimum Number of Individuals (MNI) and the Number of Specimens in 2.8 mm and 2.0 mm samples of the Tanki Flip site. Each black diamond is one sample.

Table 6. Percentages of frequency of each Order in the Tanki Flip site (%NISP).

Table 7. Frequencies of the Fish Families of the Tanki Flip site (%NISP) (Total NISP of Fish Family Taxon = 1836).

Table 8. Frequency of each Order in the Tanki Flip structures (NISP).

Table9. Frequencies of the Bird Families in the Tanki Flip site (%NISP).

Table 10. Frequencies of the Reptile Families in the Tanki Flip site (%NISP).

Table 11. Frequencies of the Invertebrate Families in the Tanki Flip site (%NISP).

Table 12. Number of Remains and percentages of each quadrant of the Tanki Flip structures.

Table 13. Frequencies of the different habitats of the Tanki Flip archaeological species (%NISP).

LIST OF THE TABLES
Table 1. An overview of the Tanki Flip bone remains (NR = Number of Remains; NISP = Number of Identified Specimens; MNI = Minimum Number of Individuals).

<table>
<thead>
<tr>
<th>2.0 mm SAMPLES</th>
<th>2.0 mm NO-Str</th>
<th>2.8 mm SAMPLES</th>
<th>2.8 mm NO-Str</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>8025</td>
<td>3068</td>
<td>859</td>
<td>2258</td>
</tr>
<tr>
<td>NISP</td>
<td>1944</td>
<td>1354</td>
<td>291</td>
<td>1153</td>
</tr>
<tr>
<td>HYPOTHETIC MNI</td>
<td>127</td>
<td>129</td>
<td>35</td>
<td>106</td>
</tr>
<tr>
<td>NUMBER OF TAXA</td>
<td>56</td>
<td>84</td>
<td>25</td>
<td>78</td>
</tr>
</tbody>
</table>

Table 2. NISP and percentages of the 102 taxa in the Tanki Flip site.

<table>
<thead>
<tr>
<th>FAMILY</th>
<th>SPECIES</th>
<th>NISP%</th>
<th>NISP</th>
</tr>
</thead>
<tbody>
<tr>
<td>VERTEBRATES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAMMALS</td>
<td>indet.</td>
<td>367</td>
<td>7.5%</td>
</tr>
<tr>
<td>HYPOTHETIC MNI</td>
<td>127</td>
<td>2.0%</td>
<td></td>
</tr>
<tr>
<td>SMALL MAMMAL</td>
<td>56</td>
<td>1.1%</td>
<td></td>
</tr>
<tr>
<td>MICROFAUNA</td>
<td>59</td>
<td>1.2%</td>
<td></td>
</tr>
<tr>
<td>BIRDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PASSER</td>
<td>Sea Bird</td>
<td>148</td>
<td>3.0%</td>
</tr>
<tr>
<td>PASSER</td>
<td>Small bird</td>
<td>65</td>
<td>1.3%</td>
</tr>
<tr>
<td>COLOMBIDAE</td>
<td>5</td>
<td>0.1%</td>
<td></td>
</tr>
<tr>
<td>COLOMBIDAE</td>
<td>25</td>
<td>0.5%</td>
<td></td>
</tr>
<tr>
<td>REPTILES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHelonIDAE</td>
<td>Small turtle</td>
<td>1</td>
<td>0.0%</td>
</tr>
<tr>
<td>TENTU DINIDAE</td>
<td>Freshwater Turtle</td>
<td>4</td>
<td>0.1%</td>
</tr>
<tr>
<td>GERKIDAE</td>
<td>Giraffke gecko</td>
<td>9</td>
<td>0.2%</td>
</tr>
<tr>
<td>TEIIDAE</td>
<td>Anura sp.</td>
<td>37</td>
<td>0.8%</td>
</tr>
<tr>
<td>IGUANIDAE</td>
<td>iguana iguana</td>
<td>49</td>
<td>1.0%</td>
</tr>
<tr>
<td>BATEACHIANS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baticharina</td>
<td>17</td>
<td>0.3%</td>
<td></td>
</tr>
<tr>
<td>FISHES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSTECHTHYSES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARACARIHADIDAE</td>
<td>1546</td>
<td>31.6%</td>
<td></td>
</tr>
<tr>
<td>NORMER</td>
<td>7</td>
<td>0.1%</td>
<td></td>
</tr>
<tr>
<td>CARACARIHADIDAE</td>
<td>21</td>
<td>0.4%</td>
<td></td>
</tr>
<tr>
<td>CARACARIHADIDAE</td>
<td>10</td>
<td>0.2%</td>
<td></td>
</tr>
<tr>
<td>SEDAE</td>
<td>Caranx acutus</td>
<td>2</td>
<td>0.0%</td>
</tr>
<tr>
<td>CARACARIHADIDAE</td>
<td>6</td>
<td>0.1%</td>
<td></td>
</tr>
<tr>
<td>CARACARIHADIDAE</td>
<td>2</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>CARACARIHADIDAE</td>
<td>7</td>
<td>0.1%</td>
<td></td>
</tr>
<tr>
<td>PTERIODAE</td>
<td>2</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>DASYATIDAE</td>
<td>10</td>
<td>0.2%</td>
<td></td>
</tr>
<tr>
<td>MYLLODIDAE</td>
<td>10</td>
<td>0.2%</td>
<td></td>
</tr>
<tr>
<td>EUPLOIDAE</td>
<td>85</td>
<td>1.7%</td>
<td></td>
</tr>
<tr>
<td>MEGALODON</td>
<td>2</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>APOCIDA</td>
<td>225</td>
<td>4.6%</td>
<td></td>
</tr>
<tr>
<td>CLUPEIDAE</td>
<td>15</td>
<td>0.3%</td>
<td></td>
</tr>
<tr>
<td>BELONIDAE</td>
<td>3</td>
<td>0.1%</td>
<td></td>
</tr>
<tr>
<td>BERTHINIDAE</td>
<td>33</td>
<td>0.7%</td>
<td></td>
</tr>
<tr>
<td>BERTHINIDAE</td>
<td>3</td>
<td>0.1%</td>
<td></td>
</tr>
<tr>
<td>BERTHINIDAE</td>
<td>8</td>
<td>0.2%</td>
<td></td>
</tr>
<tr>
<td>BERTHINIDAE</td>
<td>87</td>
<td>1.8%</td>
<td></td>
</tr>
<tr>
<td>HEPATOPHYSIDAE</td>
<td>24</td>
<td>0.5%</td>
<td></td>
</tr>
<tr>
<td>HEPATOPHYSIDAE</td>
<td>5</td>
<td>0.1%</td>
<td></td>
</tr>
<tr>
<td>HEPATOPHYSIDAE</td>
<td>3</td>
<td>0.1%</td>
<td></td>
</tr>
<tr>
<td>PERCICHIDAE</td>
<td>220</td>
<td>4.5%</td>
<td></td>
</tr>
<tr>
<td>SERRANIDAE</td>
<td>45</td>
<td>1.1%</td>
<td></td>
</tr>
<tr>
<td>SERRANIDAE</td>
<td>73</td>
<td>1.5%</td>
<td></td>
</tr>
<tr>
<td>INVERTEBRATES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRAB</td>
<td>Corneria japonica</td>
<td>19</td>
<td>0.4%</td>
</tr>
<tr>
<td>CRAB</td>
<td>Calcinus sp.</td>
<td>21</td>
<td>0.4%</td>
</tr>
<tr>
<td>CRAB</td>
<td>Lanzil crabs</td>
<td>3</td>
<td>0.1%</td>
</tr>
<tr>
<td>ECHINOCOD</td>
<td>5</td>
<td>0.1%</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>4922</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. The Number of Remains (NR), Number of Identified Specimens (NISP), Minimum Number of Individuals (MNI) and Number of Taxa distributions of the bones over the 15 Tanki Flip structures.

<table>
<thead>
<tr>
<th>FAMILY</th>
<th>SPECIES</th>
<th>NR</th>
<th>NISP</th>
<th>MNI</th>
<th>NUMBER OF TAXA</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAMMALS</td>
<td>Carassius</td>
<td>8025</td>
<td>3068</td>
<td>859</td>
<td>2258</td>
</tr>
<tr>
<td>MAMMAL</td>
<td>indet.</td>
<td>1944</td>
<td>1354</td>
<td>291</td>
<td>1153</td>
</tr>
<tr>
<td>MAMMAL</td>
<td>127</td>
<td>2.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMALL MAMMAL</td>
<td>56</td>
<td>1.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICROFAUNA</td>
<td>59</td>
<td>1.2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIRDS</td>
<td>Sea Bird</td>
<td>148</td>
<td>3.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIRDS</td>
<td>Small bird</td>
<td>65</td>
<td>1.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLOMBIDAE</td>
<td>5</td>
<td>0.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLOMBIDAE</td>
<td>25</td>
<td>0.5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REPTILES</td>
<td>Small turtle</td>
<td>1</td>
<td>0.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REPTILES</td>
<td>Freshwater Turtle</td>
<td>4</td>
<td>0.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GERKIDAE</td>
<td>Giraffke gecko</td>
<td>9</td>
<td>0.2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEIIDAE</td>
<td>Anura sp.</td>
<td>37</td>
<td>0.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGUANIDAE</td>
<td>iguana iguana</td>
<td>49</td>
<td>1.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BATEACHIANS</td>
<td>17</td>
<td>0.3%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FISHES</td>
<td>Osteichthyes</td>
<td>1546</td>
<td>31.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSTEOARCHACEAE</td>
<td>7</td>
<td>0.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARACARIHADIDAE</td>
<td>21</td>
<td>0.4%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARACARIHADIDAE</td>
<td>10</td>
<td>0.2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEDAE</td>
<td>Caranx acutus</td>
<td>2</td>
<td>0.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARACARIHADIDAE</td>
<td>6</td>
<td>0.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARACARIHADIDAE</td>
<td>2</td>
<td>0.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTERIODAE</td>
<td>7</td>
<td>0.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DASYATIDAE</td>
<td>2</td>
<td>0.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DASYATIDAE</td>
<td>10</td>
<td>0.2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MYLLODIDAE</td>
<td>10</td>
<td>0.2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EUPLOIDAE</td>
<td>85</td>
<td>1.7%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEGALODON</td>
<td>2</td>
<td>0.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APOCIDA</td>
<td>225</td>
<td>4.6%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLUPEIDAE</td>
<td>15</td>
<td>0.3%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BELONIDAE</td>
<td>3</td>
<td>0.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BERTHINIDAE</td>
<td>33</td>
<td>0.7%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BERTHINIDAE</td>
<td>3</td>
<td>0.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BERTHINIDAE</td>
<td>8</td>
<td>0.2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BERTHINIDAE</td>
<td>87</td>
<td>1.8%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEPATOPHYSIDAE</td>
<td>24</td>
<td>0.5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEPATOPHYSIDAE</td>
<td>5</td>
<td>0.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEPATOPHYSIDAE</td>
<td>3</td>
<td>0.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PERCICHIDAE</td>
<td>220</td>
<td>4.5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SERRANIDAE</td>
<td>45</td>
<td>1.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SERRANIDAE</td>
<td>73</td>
<td>1.5%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4. Relationship between the Minimum Number of Individuals (MNI) and the Number of Identified Specimens (NISP) in 2.8 mm and 2.0 mm samples of the Tanki Flip site. Each black diamond is one sample.

Table 5. Relationship between the Minimum Number of Individuals (MNI) and the Number of Specimens in 2.8 mm and 2.0 mm samples of the Tanki Flip site. Each black diamond is one sample.
Table 6. Percentages of frequency of each Order in the Tanki Flip site (%NISP).

Table 7. Frequencies of the Fish Families of the Tanki Flip site (%NISP) (Total NISP of Fish Family Taxon = 1836).
Table 8. Frequency of each Order in the Tanki Flip structures (NISP).

<table>
<thead>
<tr>
<th>Order</th>
<th>NISP</th>
<th>NISP %</th>
<th>OISP</th>
<th>OISP %</th>
<th>NISP</th>
<th>NISP %</th>
<th>OISP</th>
<th>OISP %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passeriformes</td>
<td>60,9%</td>
<td>26,7%</td>
<td>2,1%</td>
<td>10,3%</td>
<td>63,4%</td>
<td>27,0%</td>
<td>18,0%</td>
<td>7,0%</td>
</tr>
<tr>
<td>Gymnophiona</td>
<td>10,3%</td>
<td>4,5%</td>
<td>0,3%</td>
<td>0,1%</td>
<td>0,7%</td>
<td>0,3%</td>
<td>0,2%</td>
<td>0,1%</td>
</tr>
<tr>
<td>Lepidosauria</td>
<td>8,7%</td>
<td>3,5%</td>
<td>0,1%</td>
<td>0,0%</td>
<td>0,1%</td>
<td>0,1%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Squamata</td>
<td>6,6%</td>
<td>2,7%</td>
<td>0,1%</td>
<td>0,0%</td>
<td>0,1%</td>
<td>0,1%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
</tbody>
</table>

Table 9. Frequencies of the Bird Families in the Tanki Flip site (%NISP).

<table>
<thead>
<tr>
<th>Family</th>
<th>NISP</th>
<th>NISP %</th>
<th>OISP</th>
<th>OISP %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passeriformes</td>
<td>60,9%</td>
<td>26,7%</td>
<td>2,1%</td>
<td>10,3%</td>
</tr>
<tr>
<td>Pigeon & Doves</td>
<td>26,7%</td>
<td>11,1%</td>
<td>0,5%</td>
<td>0,2%</td>
</tr>
<tr>
<td>Small bird</td>
<td>2,1%</td>
<td>0,9%</td>
<td>0,1%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Sea Bird</td>
<td>10,3%</td>
<td>4,5%</td>
<td>0,3%</td>
<td>0,1%</td>
</tr>
</tbody>
</table>

Table 10. Frequencies of the Reptile Families in the Tanki Flip site (%NISP).

<table>
<thead>
<tr>
<th>Family</th>
<th>NISP</th>
<th>NISP %</th>
<th>OISP</th>
<th>OISP %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turtles</td>
<td>63,4%</td>
<td>27,0%</td>
<td>18,0%</td>
<td>7,0%</td>
</tr>
<tr>
<td>Freshwater turtle</td>
<td>0,7%</td>
<td>0,3%</td>
<td>0,2%</td>
<td>0,1%</td>
</tr>
<tr>
<td>Lizard unident.</td>
<td>8,7%</td>
<td>3,5%</td>
<td>0,1%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Iguana</td>
<td>6,6%</td>
<td>2,7%</td>
<td>0,1%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Sea turtles</td>
<td>18,0%</td>
<td>7,0%</td>
<td>0,3%</td>
<td>0,1%</td>
</tr>
</tbody>
</table>

Table 8. Frequency of each Order in the Tanki Flip structures (NISP).

Table 9. Frequencies of the Bird Families in the Tanki Flip site (%NISP).

Table 10. Frequencies of the Reptile Families in the Tanki Flip site (%NISP).
Table 12. Number of Remains and percentages of each quadrant of the Tanki Flip structures.

<table>
<thead>
<tr>
<th>Quadrant</th>
<th>CRAB</th>
<th>ECHINOID</th>
</tr>
</thead>
<tbody>
<tr>
<td>East</td>
<td>30.0%</td>
<td>15.0%</td>
</tr>
<tr>
<td>West</td>
<td>43.3%</td>
<td>5.6%</td>
</tr>
<tr>
<td>South</td>
<td>21.0%</td>
<td></td>
</tr>
<tr>
<td>North</td>
<td>4.5%</td>
<td>0.5%</td>
</tr>
</tbody>
</table>

Table 11. Frequencies of the Invertebrate Families in the Tanki Flip site (%NISP).

<table>
<thead>
<tr>
<th>Family</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRAB</td>
<td>30.0%</td>
</tr>
<tr>
<td>ECHINOID</td>
<td>3.6%</td>
</tr>
</tbody>
</table>
Résumé
Tortola est la plus grande île des îles Vierges Anglaises, situées à la jonction des petites et grandes Antilles. En 1994, un inventaire en commun fut entrepris par la société historique des Îles Vierges et l’Université College de Londres. L’inventaire enregistre trois sites préhistoriques et un site étudié à Paraquita Bay. L’inventaire situait cinq grandes (sûrement permanents ou semi-permanents) stations associées à des petites stations ou campements. La Plupart des sites contenaient de la poterie de la tradition tardive Ostionoid (après 900 A.D.) alors que trois sites produisaient des matériaux plus récents. Vingt sondages de 1 m. x 1 m. furent pratiqués sur le petit site de Paraquita Bay. Les matériaux de l’occupation préhistorique comprenant la poterie, des restes de coquillages, des arêtes de poissons et du charbon y furent retrouvés. La poterie consistait principalement en des bols fabriqués localement de l’ostionoid finale. Les premières analyses de ces dépôts d’os indiquent une prédominance de poissons de coraux, surtout des poissons perroquets, mais les arêtes de cdolobodon, un grand rongeur, et d’Emydidae, une tortue, sont particulièrement intéressantes.

Abstract
Tortola is the major island of the British Virgin Islands, situated at the junction of the Lesser and Greater Antilles. In 1994 a joint survey was undertaken by the Virgin Islands Historical Society and University College London. The survey recorded thirty three prehistoric sites and testpitted one at Paraquita Bay. The survey located five major, probably long-lived and permanent or semi-permanent, settlements together with minor settlement or camp sites. Most sites had pottery of the Later Ostionoid tradition (post c. 900 A.D.) while three sites produced earlier material. Twenty two 1 m. x 1 m. test pits were excavated at the small site in Paraquita Bay. Prehistoric occupation material comprising potter, shell refuse, fish bones and charcoal was recovered. The pottery consisted mainly of locally-made plain bowls of the final Ostionoid. Preliminary analysis of the bone assemblage indicates a predominance of reef fishes, especially parrot-fishes, but bones of cdolobodon, a large rodent, and Emydidae, a slider turtle, are of particular interest.

Resumen
Tórtola, la mayor de las Islas Virgenes Británicas, está ubicada justamente entre las Antillas Menores y las Mayores. En la prospección realizada conjuntamente por Historical Society de las Islas Virgenes y el University College London en 1994, se ubicaron 33 sitios prehistóricos, y se practicaron sondeos estratigráficos solamente en Bahía Paraquita. Se identificaron cinco grandes asentamientos de ocupación permanente o semi-permanente junto con otros sitios de menor tamaño o de campamento. La mayoría de los sitios contienen cerámica afiliada al ostionoide tardío (post900 d.C.) mientras que tres sitios presentan materiales más tempranos. Un total de 22 sondeos (1x 1 m.) fueron excavadas en Bahía Paraquita. En este asentamiento el material está caracterizado por restos de cerámica, caracoles marinos, huesos de pez y fragmentos de carbón. En la cerámica predominan los cuencos de manufactura local, sin decoración, del final del ostionoide. Un análisis preliminar de los restos de fauna indica una preponderancia de peces de arrecife. Entre los ejemplares de interés, hay también restos de cdolobodon (butta) y de Emydidae (tortuga marina).
ACTES DU XVI° CONGRES INTERNATIONAL D’ARCHEOLOGIE DE LA CARAÏBE

PROCEEDING OF THE XVIth INTERNATIONAL CONGRESS FOR CARIBBEAN ARCHAEOLOGY

ACTA DEL XVI° CONGRESO INTERNACIONAL DE ARQUEOLOGÍA DEL CARIBE

Conseil Régional de la Guadeloupe et Auditorium de la Ville de Basse Terre
24 au 28 juillet 1995

BASSE TERRE, 1995
TABLE DES MATIERES

SYMPOSIUM IV - RAPPORTS ET ETUDES DE SITES ARCHEOLOGIQUES DANS LES CARAIBES . REPORTS AND STUDIES OF ARCHEOLOGICAL SITES IN THE CARIBBEAN . INFORMES Y ESTUDIOS DE SITIOS ARQUEOLOGICOS EN EL CARIBE.

Le site précolombien de la plage DIZAC au Diamant (Martinique)... p 7
* Nathalie VIDAL

La lapidaria de Sorce, Vieques, y Tecla, Guayanilla, Puerto Rico.. p 17
* Yvonne NARGANES STORDE

Trants Montserrat: The 1995 field season.. p 27
* David WATTERS & James PETERSEN

Pyroelastic, storm surge, and saladoïd villager deposits: the archaeologycal and geological stratigraphy of the Trants site, Montserrat... p 40
* James PETERSEN & Robert BARTONE, David WATTERS

Mangroves and root crops: The archaeobotanical record from En Bas Saline, Haïti......................... p 52
* Lee NEWSOME

1994 Excavations at the Aklis site Sandy point National wildlife refuge-Ste Croix......................... p 67
* Michael CINQUINO, Ph.D., Michele H. HAYWARD, Ph.D., and Inez REED HOFFMAN

Mammal remains from the late prehistoric sites on los Roques, Venezuela.. p 83
* Andrzej ANTczAK

Insights on the prehistoric Anthropomorphic figurines of los Roques, Venezuela.............................. p 100
* Magdalena ANTczAK

Archéologie de sauvetage en Guyane française- Programme de Petit seau................................. pp 105 - 125
* Présentation générale et phase de terrain........p 105
* Stéphane VACHER

Premiers résultats de l’étude céramologique...... p 115
* Jérôme BRIAND
Petrographic analysis of lithic material recovered from Hope Estate, St Martin and the potential for indications of regional contact...p 251

Van TOOREN & Dr. Jay B. HAVISER

The provenance of flint in the Leeward Region, West Indies.................................p 261

Sebastiaan KNIPPENBERG

Utilitarian sculpture : pictorial kinesics and dualism Dominican Republic Chican Ostionoid pottery...p 272

Peter G. ROE

Reassessing chronology : a ceramic analysis on Bequia...p 292

Margaret BRADFORD

Lucayan ceramic design elements..p 300

John H. WINTER

Saladoïd occupation at hillcrest, Bathseba, Barbados..p 301

Mary Hill HARRIS and Peter DREWETT

The Indian creek period: a late saladoïd manifestation on the island of Antigua........p 312

Birgit Faber MORSE and Irving ROUSE

The Mill reef period: a local development on the island of Antigua............................p 322

Irving ROUSE and Birgit Faber MORSE

Les caractéristiques de la ceramique du site de Hope Estate, Ile de Saint Martin........p 333

Dominique BONNISSENT

Ethnotypologie: the basis for a new classification of carribean pottery..................p 345

Peter O'B. HARRIS

Marine mammals and amerindian cultures of the lesser Antilles : An analysis of interaction and customs..p 367

Lesley SUTTY

SYMPOSIUM V - APPROCHES DES TECHNOLOGIES PREHISTORIQUES DANS LES CARAIBES. APPROACHES TO PREHISTORIC TECHNOLOGIES IN THE CARIBBEAN. ENFOQUES HACIA LAS TECHNOLOGIAS PREHISTORICAS EN EL CARIBE.

The Caraiaucou hypothesis: bottomless stacked pots, a study in amerindian fresh water procurement..p 217

Christopher SCHULTZ

Strombus Gigas : parts and their utilization for atefacts manufactur : a case study from the Tanky Flip site, Aruba..p 229

Nathalie SERRAND

The stone material of Tanki Flip, Aruba..p 241

Stephen ROSTAIN
Le site de la plage de Dizac au Diamant est exceptionnel non seulement par l’abondance de ses vestiges découverts, mais aussi par leur qualité de conservation. Découvert en 1962, il a fait l’objet de nombreuses interventions archéologiques antérieures, non seulement des sondages mais aussi des fouilles.

Deux études céramologiques et pétrographiques sont venues compléter ces premières recherches; la première en 1974 effectuée par Mme J. Gautier, a permis entre autre de vérifier la technique de fabrication des vases par montage au colombin, la seconde, plus récente, effectuée en 1988 par Mme V. Walter, a permis de confirmer leur origine locale.

La problématique des recherches était de replacer ce site au sein des cultures amérindiennes ayant peuplé l’île de la Martinique et la région des Petites Antilles, et de tenter de déceler une ou plusieurs discontinuités chronologiques révélant deux voire trois établissements successifs.

En effet, la première chronologie ainsi que les différentes étapes culturelles avaient été définies par J. Petitjean-Roger en 1968 dans deux articles présentés à l’occasion du Second Congrès International d’Etudes des Civilisations Précolombiennes des Petites Antilles. Elles étaient l’aboutissement des premières fouilles stratigraphiques effectuées par l’auteur sur le site du Diamant selon la technique des niveaux artificiels ainsi que de l’étude typologique du matériel céramique. Le site du Diamant comprendrait deux voire trois niveaux d’occupations:

- Niveau III période caraïbe
- Niveau II période arawak
- Niveau I ? période proto-arawak ?

Ainsi, la plupart des chercheurs se sont accordés sur plusieurs points, notamment que l’on trouvait plusieurs séquences d’occupations et plus particulièrement deux périodes d’occupation distinctes, très visibles car très fortement représentées par les vestiges anthropiques, bien que la lecture de la stratigraphie soit relativement complexe et que les différences typologiques entre ces deux occupations restent très difficiles à déterminer sur le site du Diamant.

C’est pour lever un doute encore bien présent que nous avons essayé, par nos travaux, de répondre à certaines questions concernant ce site: à savoir, existe-t-il et peut-on définir dans ce contexte archéologique précis une évolution diachronique entre une culture amérindienne ancienne de type Arawak subdivisée en trois étapes, le saladoïde ancien, moyen et récent, suivie d’une seconde installation de culture Caraïbe plus récente et bien déterminée par ses caractéristiques typologiques céramique (chronologie qui avait été principalement définie à partir de documents historiques, notamment des Chroniques historiques), ou bien, existe-t-il sur le site du Diamant, un groupe d’homme dont l’évolution de la culture matérielle est continue ?
ACTES DU XVIe CONGRES INTERNATIONAL D'ARCHEOLOGIE DE LA CARAÏBE
*
PROCEEDINGS OF THE XVIth INTERNATIONAL CONGRESS FOR CARIBBEAN ARCHAEOLOGY
*
ACTAS DEL XVI° CONGRESO INTERNACIONAL DE ARQUEOLOGIA DEL CARIBE

Conseil Régional de la Guadeloupe et Auditorium de la Ville de Basse Terre
24 au 28 juillet 1995

BASSE TERRE, 1995
L’édition des actes du XVI° Congrès d’Archéologie de la caraïbe était un événement très attendu par l’ensemble de la communauté des historiens et des archéologues.

Cette publication, en deux volumes, témoigne de la richesse du congrès qui s’est déroulé à Basse Terre en juillet 1995.

La qualité, la variété et le nombre des communications des chercheurs caractérisent cette publication ou chacun découvrira les toutes dernières découvertes archéologiques réalisées dans la caraïbe.

Mais au-delà de son aspect purement scientifique, cet ouvrage est un signe de reconnaissance des peuples aujourd’hui disparus qui ont été les premiers occupants de l’arc antillais.

Après avoir inauguré, il y a près de 15 ans, le musée Edgar Clerc, il m’est particulièrement agréable de publier ces actes du XVI° Congrès International d’Archéologie de la Caraïbe.

Lucette Michaux Chevry
Sénateur- Maire de la Ville de Basse Terre
Président du Conseil Régional de la Guadeloupe
TABLE DES MATIERES

<table>
<thead>
<tr>
<th>DEDICACE</th>
<th>p 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>p 11</td>
</tr>
</tbody>
</table>

Gérard RICHARD, Président du XVIe Congrès AIAC

DISCOURS D’OUVERTURE

M. Michel DIEFENBACHER, Préfet de la Région GUADELOUPE.

Mme Lucette MICHAUX CHEVRY, Présidente du Conseil Régional de la GUADELOUPE, Sénateur Maire de la Ville de BASSE TERRE.

Melle Alissandra CUMMINS, Président de l’Association Internationale d’Archéologie de la Caraïbe.

SYMPOSIUM I - LE CONTEXTE THÉORIQUE DE LA RECHERCHE ARCHÉOLOGIQUE DANS LES CARAÏBES.

THEOREICAL CONTEXT OF ARCHAEOLOGY RESEARCH IN THE CARIBBEAN.

EL CONTEXTO TEORICO DE LA INVESTIGACION ARQUEOLOGICA EN EL CARIBE

 André DELPUECH
- La carte archéologique de la Guadeloupe ... p 33
 Eric GASSIES et Xavier ROLISSEAU
- La collection d’archéologie du Père PINCHON: l’oeuvre d’un précurseur .. p 42
 Line Rose BEUZE
- La recherche archéologique en Martinique, état de la question et perspectives p 45
 Jean Pierre GIRAUD
- A critical look at prehistoric settlement pattern distribution in the US Virgin Island p 52
 Elisabeth RIGHTER
- The rifle wreck of Grenada .. p 65
 Thomas BANKS
- The forest north site and post salaodid settlement in Anguilla .. p 74
 John CROCK
The coralie site (GT 3): Preliminary excavations at an Ostionan Ostionoid site on Grand Turk & Caicos. ... p 88

Betsy CARLSON
Recent climatic and sea level fluctuations in relation to West Indian Prehistory. .. p 95

William KEEGAN
Land crab remains in Caribbean sites .. p 105

Elisabeth S. WING
Inform preliminar del proyecto Arqueologico de Tibes. .. p 113

Luis Antonio CURET & Luis Antonio RODRIGUEZ GARCIA
Archaeological investigations at Tanki Flip (Aruba) a review .. p 127

Aad H. VERSTEEG
A prehistoric longhouse structure (Fal 7) in Matica Valley, Western Venezuela .. p 134

Dr José OLIVER

SYMPOSIUM II - ETUDES ETHNOPREHISTORIQUES ET HISTORIQUES DE L’ARCHEOLOGIE DANS LES CARAIBES.
ETHNOPREHISTORICAL AND HISTORICAL ARCHAEOLOGY STUDIES IN THE CARIBBEAN.

ETHNOPREHISTORIA Y ARQUEOLOGIA HISTORICA EN EL CARIBE
Les calebasses peintes, la poterie et l’arc en ciel chez les caraïbes insulaires ... p 159

Henry PETITJEAN ROGET
Spanish and Venezuelan mortuary practices during the 18th & 19th centuries .. p 176

Alberta ZUCCHI
Du site de Kormontibo au site côtier de la Pointe Brigandin à Sinnamary : approche ethno-historique de l’archéologie en Guyane Française .. p 187

Hugues PETITJEAN ROGET
Military life at Castillo de San Felipe del Morro Puerto Rico during the spanishcolonial period p 208
An archaic occupation at Norman Estate St Martin...p 333
Mark NOCKERT & Alex BROKKE, Sebastiaan KNIPPENBERG, Tom HAMBURG

A late saladoïd occupation at Anse des Péres St Martin..p 352
Sebastiaan KNIPPENBERG & Mark NOCKERT, Alex BROKKE, & Tom HAMBURG

SYMPOSIUM VII - PETROGLYPHES ET ART RUPESTRE.
PETROGLYPHS AND ROCK ART.
PETROGLIFOS Y ARTE RUPESTRE.

Les roches gravées amérindiennes de Guyane, nouvelles données...p 373
Guy et Marlène MAZIERE

Rock art in Puerto Rico: a survey...p 399
C.N DUBELAAR

Recent advances in recording, dating, and interpreting Puerto Rican Petroglyphs.......................p 444
Peter ROE et José RIVERA

Investigacion sobre el arte rupestre en dos cuevas en el interior de la Isla Cayey
Puerto Rico..p 462
José RIVERA MELENDEZ & Lydia ORTIZ

LA VIE DU XVIe CONGRES INTERNATIONAL D’ARCHEOLOGIE..P 477
(liste des participants - composition du nouveau bureau - règlement des communications)

DEDICACE

Le XVIe Congrès International d’Archéologie à été tout spécialement dédié au Docteur Irving ROUSE et à Jacques PETITJEAN ROGET, fondateurs de l’Association Internationale d’Archéologie de la Caraïbe, en reconnaissance de leur contribution au développement de la recherche archéologique dans la Caraïbe.

Melle Alissandra CUMMINS Présidente de l’AIAC, Jacques PETITJEAN ROGET, et le Docteur Irving ROUSE, hôtes d’honneur du XVIe Congrès International d’Archéologie
(Photo G.RICHARD)