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⋆ SONDRA, CentraleSupélec, Université Paris-Saclay, 91192 Gif-sur-Yvette, France
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ABSTRACT

In this paper we provide an exhaustive statistical compar-
ison between Complex-Valued MultiLayer Perceptron (CV-
MLP) and Real-Valued MultiLayer Perceptron (RV-MLP) on
Oberpfaffenhofen Polarimetric and Interferometric Synthetic
Aperture Radar (PolInSAR) database. In order to compare
both networks in a fair manner, the need to define the equiv-
alence between the models arises. A novel definition for an
equivalent Real-Valued Neural Network (RVNN) is proposed
in terms of its real-valued trainable parameters that main-
tain the aspect ratio and analyze its dynamics. We show that
CV-MLP gets a slightly better statistical performance for clas-
sification on the PolInSAR image than a capacity equivalent
RV-MLP.

Index Terms— Complex-Valued Neural Network, Real-
Valued Neural Network, Polarimetric and Interferometric
Synthetic Aperture Radar.

1. INTRODUCTION

Real-Valued Neural Network (RVNN) are widely used in
the literature for Polarimetric Synthetic Aperture Radar (Pol-
SAR) applications [1–3]. However, these networks are fed
with the amplitude information of the PolSAR image while
neglecting the phase data. In contrast, the signal processing
community has a greater interest in developing techniques
that can deal with complex-valued data [4], which is the prin-
cipal characteristic of signals encountered in most radar appli-
cations, such as our case of study, PolSAR images. CVNNs
appear as a natural choice to process and to learn from these
complex-valued features since the operation performed at
each layer of CVNNs can be interpreted as complex filtering.
Notably, CVNNs are more adapted to extract phase informa-
tion [5], which could be helpful, e.g., for retrieving Doppler
frequency in radar signals, classifying Polarimetric Synthetic
Aperture Radar (PolSAR) data [6, 7], radio frequency signal
processing in wireless communications, etc [4].
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Applications of Complex-Valued Neural Network (CVNN)
on PolSAR images are recent [8]. Furthermore, limited re-
search has been done to compare Complex-Valued Multi-
Layer Perceptron (CV-MLP) with Real-Valued MultiLayer
Perceptron (RV-MLP) on PolSAR applications. In refer-
ences [9] and [10], the authors tested CV-MLP on a PolSAR
database but did not provide a comparison with RV-MLP.
In [6], a comparison was performed for both types of net-
works but did not offer a confidence interval and used a dif-
ferent input representation for each model. Although, in [11],
the same authors suggested giving the same amount of input
representation to get a more precise comparison between the
models.

A criterion to create Complex-Valued Neural Network
(CVNN) and Real-Valued Neural Network (RVNN) with
equivalent capacities remains missing. This results in an
unbalanced comparison, as will be discussed in Section 2.
Although [12] added some neurons to the RV-MLP compared
to the CV-MLP which made it an acceptable comparison,
they do not specify the criteria used and it was not yet enough
to make it equivalent to the complex network by neither of
the two criteria to be analyzed in Section 2, which are the
equal number of real-valued trainable parameters (tp) or
real-valued neurons parameters (np). In [12], even though
CV-MLP performed better than RV-MLP, confidence in-
tervals intersect, leaving room for doubt about CV-MLP
outperformance.

Works using complex Convolutional Neural Network
(CNN) have been published for PolSAR applications. Ref.
[13] compares a CV-CNN with the real-valued equivalent but
lacking confidence intervals. Other recent works [7, 14, 15]
use a CV-CNN for PolSAR applications but without compar-
ing its result with a real-valued model.

The paper’s first contribution is to give a new definition
of an equivalent-RVNN with respect to any given CVNN ar-
chitecture (Section 2), in order to get equitable comparisons
between networks. Second, a thorough analysis is performed,
involving at least one hundred independent trials for each net-
work, in order to infer appropriate errors and statistics. Fur-
thermore, we will test on several MLP model architectures to
assert that there is a global trend for the difference between



the network’s performance and that it is no dependant on a
specific model. In Section 3, discussions on the database and
model architecture choices are detailed. Finally, results are
analyzed in Section 4.

The real equivalent definition proposed in Section 2 is al-
ready added as a feature to the open-source Python library
[16] that enables CVNN implementations.

2. REAL EQUIVALENT NETWORK

To assess whether a Complex-Valued Neural Network (CVNN)
is actually of interest, it is necessary to compare it with a
Real-Valued equivalent network. However, the equivalence
between both networks is not straightforward. Considering
that complex plane C is isomorphic to R2, one complex pa-
rameter (pC) is equivalent to two real parameters (pR) so
that pC = 2pR. The superscript C and R indicate whether it
corresponds to the CVNN or RVNN respectively.

A natural way to keep the same amount of hidden repre-
sentation consists of doubling the size of each hidden layer of
the RV-MLP with respect to CV-MLP so that both models will
have an equivalent number of real-valued neurons parame-
ters (np) per layer [9, 17, 18]. However, this definition leads
to a higher number of real-valued trainable parameters (tp)
for the RVNN, as it has been pointed out in reference [19].
Indeed, an example of a CVNN with two consecutive hid-
den layers of size 10 each will result in 100 (10x10) complex
weights for connecting them without bias which is equivalent
to a total of tpC ≜ 200. The above approach will propose an
equivalent RVNN with two consecutive hidden layers of size
20 each, needing a total of 400 weights to connect them and,
therefore, tpR ≜ 400. So, the RVNN has a higher value of
tp, and thus the latter has potentially a higher capacity if this
method is followed.

For a general CV-MLP and RV-MLP with K hidden lay-
ers, the global numbers of tp are given by the formula [19]:
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where Ni is the number of neurons for layer i ∈ 1, ...,K. N0

corresponds to the number of features or input size and NL to
the output size.

Note that the input and output sizes of the real network are
directly defined by the task to solve so that N0 = N

R
0 = 2NC

0

and

NL = NR
L = {

2NC
L , regression task

NC
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. (2)

Reference [19] argue that a real-valued equivalent model
must have the same tp capacity as the complex one: tpC =

tpR = tp. To accomplish this, they propose to alternate
between doubling or not the number of neurons of the real-
valued model hidden layers with respect to the complex-
valued model. This method, however, only works when there
is an even number of hidden layers for classification tasks
and an odd number of hidden layers for regressions tasks. To
solve this issue, we propose to select one hidden layer to be:

NR
i = 2

NC
i−1 +N

C
i+1

NR
i−1 +N

R
i+1

NC
i . (3)

Nevertheless, this solution will not maintain the same aspect
ratio for both models. For example, performing classification
with a CV-MLP with 2 hidden layers of sizes 100 and 50 will
be converted to a RV-MLP where both hidden layer sizes are
100. This means to change a network where the first hidden
layer doubles the size of the second, to one where both hidden
layers are the same size. Another proposition in [19] is to
make all layers the same size but the issue of the aspect ratio
remains.

We propose to maintain the same aspect ratio and there-
fore to satisfy the following equation:

NR
i = rNC

i , ∀i ∈ 1, ...,K (4)

where r is a positive constant real value. Replacing (4) in (1)
we obtain the following second-order polynomial equation in
the variable r:
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Since r should be positive as well as all parameters tp, NR
i ,

NL andN0, the only possible solution to our problem is there-
fore:

r =
−b +

√
b2 − 4a (−tp)

2a
, (6)

where a = ∑K−1
i=1 NC
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C
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C
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k NL.
In conclusion, there are two possible definitions for an

equivalent-RVNN. Either by setting the same real-valued
trainable parameters (tp) or by its real-valued neurons pa-
rameters (np) per hidden layer. The former can be done by
creating a RVNN where each hidden layer size is given by
equation (4) with r being defined by (6); this will result in
an equivalent-RVNN in terms of the real-valued training pa-
rameters that maintain the same aspect ratio that the CVNN
hidden layers.

To give an interval for r, we first assume r < 1,

a r2 + b r − tp = 0 < r a + r b − tp,

⇒ 0 < r a + r b − 2a − β ≤ a (r − 2) + b (r − 1), (7)

where tp = 2a + β with b ≤ β = 2NC
0 N

C
1 + 2NC

k N
C
L < 2b

(equation (1)). As both a and b are positive, equation 7 is ab-
surd, which is expected as it implies that real-valued models



will never have fewer neurons than the complex-valued mod-
els. On the other hand, for r ≥ 1:

a r2 + b r − tp = 0 ≥ r a + r b − tp,

⇒ 0 ≥ a (r − 2) + b r − β > a (r − 2) + b (r − 2) . (8)

Again, as a and b are positive, equation (8) is absurd if r ≥ 2.
Because of inequalities (7) and (8) we conclude that 1 ≤ r < 2,
meaning that the equivalent-RVNN should have at least the
same dimension than CVNN and at most double. In particu-
lar, r = 2 corresponds to the case for the same value of np.
This proves that it is not possible to reach both conditions at
the same time and one must choose between setting an equal
value for np or tp.

For single hidden layer models, a = 0 and therefore, r will
be:

r =
β

b
= 2

NC
0 +NC

L

N0 +NL
. (9)

As it can be derived from (9), r = 1 for regressions tasks while
for classifications tasks, 1 < r < 2 depending on the relation-
ship between N0 and NL. Finally, as the number of hidden
neurons gets bigger with respect to the input and output, or in
other words, a >> b, it will tend r →

√
2.

Note that, the extra terms 2∑K
i=1N

C
i and∑K

i=1N
R
i should

be added to equation (1) in order to take into account the bias.
This extra term will lead to a slight variation of r by changing
the value of b but does not change its boundary 1 ≤ r < 2.

3. EXPERIMENTAL SETUP

3.1. PolInSAR image

Polarimetric and Interferometric Synthetic Aperture Radar
(PolInSAR) classification algorithms generally make use of
signal coherence (or equivalently phase and local phase vari-
ance) existing on any two co-registered single look complex
data channels S1 and S2 measured in the horizontal (H) and
vertical (V) transmit/receive polarimetric channels:

S(i) = (S
(i)
HH ,

√
2S
(i)
HV , S

(i)
V V )

T
i ∈ [1,2] . (10)

For each pixel of the Synthetic Aperture Radar (SAR) image,
these two backscattering vectors are usually expressed in the
Pauli basis and are vectorized onto one single complex vector
k = [k(1)T ,k(2)T ]T ∈ C6 where

k(i) =
1

√
2
(S
(i)
HH + S

(i)
V V , S

(i)
HH − S

(i)
V V ,2S

(i)
HV )

T
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The Hermitian coherency matrix is then formally built ac-

cording to T =
1

n

n

∑
j

kj k
H
j , where the operator H stands for

complex conjugate operation and where n is the number of
pixels chosen in a boxcar located in each local area of the
SAR image.

(a) Visualization of data (b) Ground Truth

Fig. 1. PolInSAR data of Oberpfaffenhofen, Germany.
A Built-up Area; B Woodland; C Open Area.

The experiments were run over the well-known Oberp-
faffenhofen database that can be downloaded from the Euro-
pean Space Agency (ESA) website. The coherency matrix is
provided as data. Because the diagonal is real-valued, it was
treated as a complex-valued number with the imaginary part
equal to zero. Since matrix T is Hermitian, the lower triangle
of the matrix, excluding the diagonal, was discarded as it pro-
vided no additional information; this led to a 21 complex in-
put vector for CV-MLP. For the real model, two methods were
tested, either by using the real and imaginary parts (conven-
tional RV-MLP) or by using the amplitude and phase as input
(polar-RV-MLP). It can be seen in Fig. 1-b the ground truth
for 3 different classes (built-up areas, woodland and open ar-
eas). These labels were obtained from [13].

All unlabeled pixels were removed and the remaining pix-
els were randomly shuffled. As the image is very large, pre-
vious works used a small percentage of pixels for training to
speed up training and validation results. References [6] and
[9] used about 2% of the image pixels for training whereas [2]
and [20] used 5%. In [21], the authors adopted 10%. Finally,
reference [13] tested different sampling rates and proposed,
based on the results, to use 10% sampling rate for both train
and validation set together. Therefore, we have chosen to use
8% as training set and only 2% as validation set which corre-
sponds to 104928 and 26232 pixels respectively. The remain-
ing 90% was used for the test set. Both train and validation
sets had the same amount of examples per class as, regardless
of the class occurrences, the application does not prioritize
one class over another. This may result in different accura-
cies for validation and test sets.

3.2. Model Architecture

Most of the model architecture hyper-parameters were chosen
based on reference [22] findings and results.

Categorical cross-entropy loss function was used for both
complex and real-valued models. Uniform Glorot [23] weight



initialization was used and the bias was initialized as zero
since those are Tensorflow’s current (v2.4) default initializa-
tion methods for dense layers. The adaptation for complex-
valued weights initialization is described in [24, p. 6].

The network shape was determined heuristically. A two
hidden layers architecture was chosen for the CV-MLP with
100 complex-valued neurons for the first layer and 50 for the
second layer. The RV-MLP and polar-RV-MLP shape was
dimensioned to have the same amount of tp as explained in
Section 2. Dropout at 50% rate was used to prevent overfitting
and it was verified that training accuracy falls but validation
accuracy was higher than when not dropout was used.

Two cases of hidden layer activation functions were
tested. Rectified Linear Unit (ReLU) and hyperbolic tan-
gent (tanh). For the complex-valued model, these activation
functions are separately applied to both real and imaginary
parts as in [22, 25] and the output layer activation function
being a softmax [26] that is directly applied to the absolute
value.

Stochastic Gradient Descent (SGD) [27] was used as the
optimizer with a learning rate of 0.01 and without momentum
as they are Tensorflow’s v2.4 default values.

The combination of two possible activation functions and
three types of input format leads to a total of 6 different ex-
periment setups. Each experiment was evaluated over 100
Monte-Carlo trials for all CV-MLP, RV-MLP and polar-RV-
MLP. Each trial had 300 epochs and a batch size of 100.

4. EXPERIMENTAL RESULTS

Statistical indicators of the classification accuracy are sum-
marized in Table 1 for the 6 experimental combinations. The
median error was computed as in [28,29]; if median intervals
do not overlap, there is a 95% confidence that their values
differ. The confidence interval of the mean is calculated for
a confidence level of 99%. For all cases, RV-MLP obtained
better performance than polar-RV-MLP; therefore, all discus-
sions will be done with the former case to favor the best-case
scenario for RV-MLP.

From Table 1, the use of ReLU hidden activation function
led to the higher accuracy of all models. CV-MLP outper-
formed RV-MLP by an accuracy difference of ∼ 0.5%. Al-
though this differences may be considered small, CV-MLP
out-performance is statistically justified as the confidence in-
tervals remain very far apart. Even the maximum registered
accuracy of RV-MLP is under CV-MLP median. The use of
tanh activation function led to similar conclusions but with
lower accuracy for all models and a higher difference be-
tween them (around 1%). Furthermore, RV-MLP maximum
accuracy lies more than 0.5% below CV-MLP lower quar-
tile, meaning that more than 75% of CV-MLP models out-
performed the best of the 100 RV-MLP trained models.

Fig. 2 helps to visualize Table 1 results, showing clearly
that the minimum RV-MLP result was actually an outlier. It

ReLU CV-MLP RV-MLP polar-RV-MLP

median 90.00 ± 0.07 89.45 ± 0.06 84.93 ± 0.04
mean 89.92 ± 0.09 89.40 ± 0.13 84.93 ± 0.04
IQR 89.73 − 90.17 89.30 − 89.45 84.93 − 85.03

range 88.87 − 90.52 85.32 − 89.94 84.50 − 85.32

tanh CV-MLP RV-MLP polar-RV-MLP

median 87.93 ± 0.08 86.43 ± 0.07 81.41 ± 0.05
mean 87.88 ± 0.10 86.38 ± 0.10 81.30 ± 0.13
IQR 87.65 − 88.16 86.18 − 86.60 78.99 − 82.07

range 86.84 − 88.56 85.47 − 87.07 78.99 − 82.07

Table 1. Validation accuracy results (%)
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Fig. 2. Box Plot comparison between activation functions on
the Oberpfaffenhofen dataset

also helps appreciate that CV-MLP merits are statistically jus-
tified.

Fig. 3 plots the overall accuracy and the loss of CV-MLP
and RV-MLP on validation set with respect to epochs. As we
can see, CV-MLP maintained a higher performance during
the ensemble of the training phase. The accuracy and loss
seem stabilized on average after 200 epochs and it is logical
to assume that this behavior will be maintained regardless of
the number of epochs.

Table 2 highlights the accuracy for each class showing
that built-up areas were the hardest to classify, whereas open
areas could be easily classified in comparison. The distinc-
tion between open areas and wood land was highly accurate
for both models with a confusion under 1%. CV-MLP outper-
formed RV-MLP for every class.

Figure 4 shows a randomly selected predicted image from
both CV-MLP and RV-MLP. Contrary to the balanced val-
idation dataset, the majority of the test dataset pixels are la-
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(a) Complex prediction (b) Real prediction
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Fig. 4. Comparison between CV-MLP and RV-MLP predic-
tions
A Built-up Area; B Wood Land; C Open Area.

CV-MLP RV-MLP
A B C A B C

A 81.25 8.62 10.13 81.01 9.19 9.80

B 6.86 92.83 0.30 7.33 92.39 0.28

C 4.11 0.21 95.67 4.97 0.24 94.79

Table 2. Confusion matrix of mean accuracy (%) for ReLU
activation function

beled as open areas, which presented higher accuracy than the
other classes (see Table 2). This meant that the test accuracy
was higher for both networks being 91.63% for CV-MLP and
90.91% for RV-MLP.

5. CONCLUSIONS

We proposed a novel definition of an equivalent-RVNN with
respect to the CVNN to provide an equitable comparison be-
tween them. Despite this equivalence, the classification per-
formance on Oberpfaffenhofen PolInSAR database statisti-
cally indicates a slight superiority of CV-MLP over RV-MLP.
This merits can be explained by the complex structure of the
PolInSAR data in which the phase information matter to en-
hance the classification accuracy.
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