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a b s t r a c t

This work deals with the modeling of drop break-up in an inhomogeneous turbulent flow that develops
downstream of a concentric restriction in a pipe. The proposed approach consists in coupling
Euler–Lagrange simulations of the drop motion to an interface deformation model. First the turbulent
flow downstream of the restriction is solved by means of direct numerical simulation. Single drop trajec-
tories are then calculated from the instantaneous force balance acting on the drop within the turbulent
field (one-way coupling). Concurrently, the interface deformation is computed assuming the drop to
behave as a Rayleigh–Lamb type oscillator forced by the turbulent stress along its trajectory. Criterion
for break-up is based upon a critical value of drop deformation.

This model has been tested against experimental data. The flow conditions and fluids properties have
been chosen to match those experimental investigations. Both turbulent flow statistics and break-up
probability calculations are in good agreement with experimental data, strengthening the relevance of
this approach for modeling break-up in complex unsteady flow.

1. Introduction

Predicting drop or bubble break-up in complex flows (i.e.
unsteady, heterogeneous, high concentration) is a major issue in
many industrial applications such as crude oil transport,
liquid–liquid extraction, and bubble columns. Modeling break-up
means answering two basic questions: the occurrence of break-
up and the resulting distribution of fragments. These two problems
are generally addressed through a Weber number, ratio between
the statistically averaged pressure force at the scale of the drop
(or bubble) that tends to deform it, and the surface tension force
that tends to restore the particle shape to the spherical form. In
average, the greater the mechanical energy input, the greater the
break-up rate and the finer the size distribution (see for instance
Galinat et al., 2005). Modeling based on average turbulent intensity
proved to be efficient when the turbulence is intense enough to in-
duce a large break-up rate (Martínez-Bazán et al., 1999; Lasheras
et al., 2002). However, since this approach ignores the dynamic re-
sponse of the drop (or bubble) to a local instant forcing of the flow,
it cannot properly describe the break-up mechanisms when the
residence time of the drop before break-up is not short compared

to the time scale of the interface deformation (Risso and Fabre,
1998). This limits the range of validity of break-up models based
on an average critical Weber number in time-dependent, non
deterministic and inhomogeneous flows.

The development of breakage scaling laws in turbulent flows
thus also requires the coupling between the drop deformation
dynamics with those of the local flow stress. This type of approach
has been successfully applied to predict bubble deformation statis-
tics in a homogeneous turbulence (Risso and Fabre, 1998) and drop
break-up probability in an inhomogeneous turbulent flow (Galinat
et al., 2007a). In the limit of weak deformations, the drop is consid-
ered as a linear damped oscillator forced by the external pressure
field at the scale of the drop. In this framework, the criterion for
break-up is based upon maximum amplitude of the drop deforma-
tion instead of a maximum of the instantaneous external forcing
(or critical Weber number). In order to use this model, the charac-
teristic time scales of the drop (oscillation proper frequency and
damping rate) and the local instantaneous stress field in the flow
must be known. The two first parameters can be obtained for bub-
bles from potential flow theory (Lamb, 1932) and for drops in liq-
uids from linearized Navier–Stokes equations approximation
(Miller and Scriven, 1968; Prosperetti, 1980). Note that the pres-
ence of surfactants may drastically change these two time scales
(Lu and Apfel, 1991; Abi Chebel, 2009). The external stress seen
by the drop can be either deduced from flow measurements
(Galinat et al., 2007b) or calculated by numerical simulations.
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This work is based on this approach. We present a numerical
study of break-up probability of oil drops in an inhomogeneous
turbulent flow of an aqueous phase. The flow configuration consid-
ered here is the same as that experimentally studied by Galinat
et al. (2007b). It is a flow downstream of a concentric orifice in a
vertical pipe. In the range of Reynolds numbers studied, the flow
is turbulent and spatially inhomogeneous downstream of the ori-
fice. Drops are injected upstream of the orifice and their probability
of break-up is measured in a finite pipe volume above the orifice.
The flow field is calculated via direct numerical simulation (DNS)
and the drop motion is calculated from a Lagrangian tracking
method (one-way coupling). Following the drop trajectory, drop
deformation is calculated by solving a forced dynamic oscillator
the response of which provides a criterion for break-up occurrence.
Statistical averaging of break-up events leads to a break-up proba-
bility. Numerical results are discussed and compared to experi-
mental data.

2. Flow configuration and breakup modeling

The flow test section investigated by Galinat et al. (2007b) is a
vertical pipe of internal diameter D = 0.03 m equipped with a con-
centric orifice of diameter Do = 0.015 m (b = Do/D = 1/2). This
restriction generates an upward turbulent jet flow which develops
downstream over few pipe diameters (Fig. 1). The two-liquid phase
system consists of an aqueous solution of glycerin as the carrying
phase and colored n-heptane as the drop phase. Densities of drop
and continuous phases, qd and qc, as well as viscosities, ld and
lc, and interfacial tension r are provided in Table 1.

Individual drops of 2–3 mm diameter are injected in the flow a
few pipe diameters upstream of the orifice (where the flow is lam-
inar and the drop is weakly deformed). Drop trajectories have been
recorded with the help of a high-speed camera at 500 fps. Drop
break-up locations in the flow field downstream of the orifice have
been recorded at different flow rates and drop diameters. A typical
map of break-up locations is reported in Fig. 4 (white crosses).
Video recordings showed that, for the case studied (Uo = 0.6 m s�1

and d = 2.4 mm), break-up occurrence was limited to a flow region
bounded by x/D = 1 and x/D = 2 (x = 0 corresponds to the orifice
plane in Fig. 1).

Galinat et al. (2007b) have measured the velocity field of the
continuous phase using high-speed PIV in a median plane of the

pipe, for two mean velocities Uo through the orifice, 0.6 and
0.9 m/s, with uniform spatial and time resolutions of 0.55 mm
and 0.5 m s respectively. The investigated flow region extends
from the orifice to 0.06 m downstream (x/D = 2). Averages have
been computed assuming the flow to be axisymmetric. Radial
profiles of mean and fluctuating axial velocity at different distances
from the orifice are illustrated in Figs. 2 and 3. The flow field pro-
duced downstream of the orifice is highly heterogeneous: it con-
sists of a central jet with a flat velocity profile and strong
recirculation patterns around it, which develops as the distance
from the orifice is increased. The numerical investigation (pre-
sented in Section 3) is restricted to the case Uo = 0.6 m s�1

(U = 0.15 m s�1), corresponding to Reo = qcUoDo/lc = 2100 (Re =
qcUD/lc = 1050).

A global estimation of the dissipation rate produced by the ori-
fice in the whole test section can be obtained from the pressure dif-
ference between the orifice and two diameters downstream,
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Fig. 1. Scheme of the flow test section and simulation domain (x/D = �2.5 up to x/
D = 10). Locations of monitor points 1, 2, 3 and 4 are respectively: r/D = 0.25 and x/
D = 0.82, 1.09, 1.36 and 1.68.

Table 1
Fluids properties at 20 �C.

Liquid phase q (kg m�3) l (Pa s) r (N m�1)

Water–glycerin (cont.) 1100 4.7 � 10�3 23.6 � 10�3

Colored heptane (disp.) 683.7 4.5 � 10�4

Fig. 2. Radial velocity profiles downstream of the orifice of mean axial velocity Ux:
h (x/D = 1/3), e (x/D = 2/3), � (x/D = 1), � (x/D = 4/3), s (x/D = 5/3). Left: experi-
ments; right: simulations.

Fig. 3. Profiles of axial velocity fluctuations r.m.s. downstream of the orifice. h (x/
D = 1/3), e (x/D = 2/3), � (x/D = 1), � (x/D = 4/3), s (x/D = 5/3). Left: experiments;
right: simulations.



where b = Do/D = 1/2 is the orifice ratio and the discharge coefficient
Cdo is about 0.85 in that range of Reynolds number (Galinat et al.,
2005). Also, from Figs. 2 and 3, a global value of the velocity fluctu-
ation over the whole flow can be reasonably estimated to

u0 ¼ h
ffiffiffiffiffi
u2

x

q
i � 0:5U; ð2Þ

(ux being the instant velocity fluctuation in x direction, brackets’
symbol indicating the spatial average in a pipe volume of 2D length
and over bar symbol time average). Assuming the dissipation rate
downstream of the orifice is due to turbulence, the integral length
scale corresponding to an isotropic turbulent field would be

K ffi D
ð3=2Þ3=2ðu0=UÞ34C2

do

ð1� C2
doÞð1� b2Þð1=b4 � 1Þ

ffi 0:2D ¼ 0:4Do ¼ 6 mm: ð3Þ

In the same way, Taylor micro-scale k and Kolmogorov scale g
can be derived from r.m.s. velocity and dissipation rate down-
stream of the orifice: k ffi 2:5 Dffiffiffiffi

Re
p ffi 2:3 mm and g ffi DRe�3=4 ffi

0:16 mm at Re = 1050, which leads to

Rek ffi 40and
d
g
> 10; ð4Þ

for drop diameters larger then 2 mm.
These estimated turbulent length scales indicate that the con-

sidered drop diameter lies in the inertial subrange of turbulence,
the spectral width of which being limited due to the rather low
value of Rek.

Due to the inhomogeneous nature of the turbulent jet flow
downstream of the orifice, several contributions to the external
forcing applied to a traveling drop needs to be evaluated. Following
Kolmogorov–Hinze theory (Kolmogorov, 1949, Hinze, 1955), the
time average turbulent Weber number is defined at any position
vector x as

We ¼ qcdu2ðx;dÞd
r

; ð5Þ

where du2ðx;dÞ is the mean square of the flow velocity fluctuation
difference over a distance equal to the drop diameter d (overbar
denotes time averaging). It is also the trace of the 2nd order struc-
ture function of the Reynolds stress tensor at a distance equal to the
drop diameter d, which in the case of isotropic turbulence, is simply
proportional to the longitudinal structure function of the velocity
(see Monin and Yaglom, 1975). At each location x of the flow down-
stream of the orifice, the Eulerian quantity du2ðx;dÞ has been calcu-
lated as follows

du2ðx;daÞ¼max
a

uxðxþda=2Þ�uxðx�da=2Þ½ �2þ urðxþd=2Þ�urðx�da=2Þ½ �2
n o

;

ð6Þ

where vector da (of norm d) is oriented according four different
angular position a with respect to Ox axis (0�, 45�, 90�, �45�), ux

and ur being respectively the velocity fluctuations in axial and radial
directions. The Weber number considered in (5) is computed from
the maximum value of the structure function among these four dif-
ferent orientations.

Another inertial contribution is provided by the mean flow
deceleration in the flow direction due to the restriction, oUx/ ox.
The Weber number associated with this inertial stress reads

WeU ¼ qc
@Ux

@x

� �2 d3

4r : ð7Þ

The relative velocity between the drop and the fluid, Ut = |v � u|, is
an additional source of inertial contribution to the drop deforma-

tion. For a 2.4 mm diameter drop, Ut is about 8.7 cm/s (Ret ¼ qcUt d
lc

� 50) and the corresponding Weber number Wet ¼ qcU2
t d

r is about
0.8.

The jet flow through the orifice leads to the development of
strong mean velocity gradients in the transverse plane (see
Fig. 2). Those involve a viscous stress the contribution of which
can be expressed via the Capillary number

Ca ¼ lc
@Ux

@r
d

2r
: ð8Þ

The turbulent Weber number (Eqs. (5) and (6), Fig. 4), the
Weber number associated with the inertial stress (Eq. (7), Fig. 5)
and the capillary number (Eq. (8), Fig. 6), have been calculated
from both PIV measurements and simulation data for a drop of
2.4 mm diameter. The agreement is correct, both qualitatively
and quantitatively. Note that some discrepancies on the spatial
distribution of the Weber number associated with inertial stress
(Fig. 5) might be due to the lack of convergence of experimental

Fig. 4. Spatial distribution of the average turbulent Weber number. White crosses
correspond to locations where drop break-up occurs. Left: turbulent Weber number
evaluated from experimental data and Eq. (5) – center: turbulent Weber number
evaluated from numerical data and Eq. (5) – right: turbulent Weber number
evaluated from numerical data and Eq. (15).

Fig. 5. Spatial distribution of the Weber number associated with average flow
acceleration (Eq. (7)). Left: experiments; right: simulation.



averages. These results show that for the flow case studied, the
contribution of turbulence to the deformation (Eq. (5), Fig. 4) is
about 2 orders of magnitude larger than that of the mean flow
(Eq. (7), Fig. 5 and Eq. (8), Fig. 6) and an order of magnitude larger
than the contribution of mean slip velocity Wet ¼ qcU2

t d=r � 0:8.
Note however that drop axial acceleration in the entry section
due to the restriction is not considered in the inertial Weber num-
ber calculated in the downstream field (Eq. (7)). It can be estimated
considering that the entering flow upstream of the orifice is accel-
erated from U (mean velocity in the pipe) to Uo (mean velocity in
the orifice) over a distance equal to the orifice diameter Do

@Ux

@x

� �
x¼0
ffi Uo � U

Do
¼ Uo

Do
ð1� b2Þ ¼ 0:75

Uo

Do
¼ 30 s�1: ð9Þ

The corresponding Weber number (Eq. (7)) equals 0.14 and can be
also neglected compared to the turbulent stress Weber number (Eq.
(5)).

As a consequence, in the whole domain downstream of the ori-
fice, the external forcing responsible of drop deformation along its
trajectory (Eq. (12)) can be scaled using an instantaneous Weber
number

WeðxðtÞ; dÞ ¼ qcdu2ðXðtÞ;dÞd
r

; ð10Þ

where u is the instantaneous flow velocity fluctuation seen by the
drop along its trajectory and X(t) is the position vector of the drop
center of mass at current time t and

du2ðXðtÞ;daÞ ¼ max
a

uxðXðtÞ þ da=2Þ � uxðXðtÞ � da=2Þ½ �2
n

þ urðXðtÞ þ d=2Þ � urðXðtÞ � da=2Þ½ �2
o
: ð11Þ

The shape of a drop can be described as the sum of the n first spher-
ical harmonics (see examples in Risso, 2000). Each of them is asso-
ciated to a dynamical mode with its own eigenfrequency fn and
damping rate bn. Provided that the Weber number is not too large,
Risso and Fabre (1998) showed that large-amplitude deformations
leading to breakup in a turbulent flow essentially involve axisym-
metric spherical harmonics of mode 2, which correspond to a
lengthening or flattening of the drop shape. Using the drop diame-
ter d as length scale and 1/2pf2 as time scale, this model reads in
dimensionless form

d2eA2

d~t2
þ 2n

deA2

d~t
þ eA2 ¼ K

qcdu2d
r

¼ KWeðXð~tÞ; dÞ: ð12Þ

The drop deformation can thus be characterized by the ampli-
tude A2 of mode 2 and calculated as a function of time (i.e. follow-
ing the drop trajectory) by computing the dynamic response of a
linear oscillator to the instantaneous turbulent forcing. It is as-
sumed here is that Eq. (12) describes the energy transfer from tur-
bulence to mode 2. Other modes are also excited but their
contribution to the large-scale deformation of the drop is lower
for two reasons: first, the turbulence spectrum contains less energy
at the characteristic length and time scales of higher order modes.
Second, since those involve smaller wavelengths, these modes in-
duce deformation at smaller scales. This assumption of the pre-
dominance of mode 2 is consistent with the original assumption
by Kolmogorov and Hinze that the breakup of a drop is dominated
by the turbulent scales at the size of the drop. This is supported by
the observations made by Risso and Fabre (1998) and Galinat et al.
(2007a,b). In Eq. (12), the tilde symbol denotes non-dimensional
variables and n = b2/(2pf2) is the damping rate coefficient. The
left-hand side of Eq. (12) describes the dynamics response of the
drop shape amplitude to the turbulent forcing (right-hand side).
The frequency f2 and the damping rate b2 for any arbitrary
Reynolds numbers were first derived by Miller and Scriven
(1968) and by Prosperetti (1980). Here, we use the asymptotic
expressions proposed by Lu and Apfel (1991) for low-viscosity
fluids and valid in the present case. Those give f2 = 43 Hz and
b2 = 32 s�1.

The model proposed in Eq. (12) accounts for the spatial struc-
ture of the turbulence at the scale of the drop, suggesting that
the scaling coefficient K should not depend strongly on the nature
of the flow. However this is still an open question that should be
solved by investigating different types of flow. Is worth recalling
that the original Kolmogorov–Hinze idea was to consider average
pressure fluctuations at the drop scale and was restricted to isotro-
pic turbulence. There is no straightforward method to adapt this
concept to non-isotropic turbulence and instantaneous fluctua-
tions. Here we decided to use the maximum of the square velocity
difference over eight directions in the radial–axial plane to allow
quantitative comparisons with the experimental study of Galinat
et al. (2007a,b). However, considering the maximum over a larger
number of directions or accounting for the azimuthal velocity com-
ponent will have only changed slightly the value of K, which can
be, in all cases, identified knowing one value of A2 at a given time
during deformation and break-up process.

3. Numerical simulation of the carrying flow and turbulence
description

3.1. Description of simulation parameters

The flow of the continuous phase has been simulated by direct
numerical simulation (DNS) of the unsteady three-dimensional
Navier–Stokes equations in the same flow geometry and at the same
flow rate as in the experiments (U = 0.15 m s�1 or Uo = 0.6 m s�1).
The DNS technique is based on the solution of Navier–Stokes
equations without any statistical modeling of turbulence. All the
length and time scales of the turbulent flow are resolved by tempo-
ral integration and mesh refinement. The fluid is considered as New-
tonian and incompressible with constant physical properties
(fluid density and dynamic viscosity). The unsteady three-
dimensional Navier–Stokes equations are solved in cylindrical
coordinates. These equations are solved using a conservative
finite-volume method. Primitive variables (velocity u and pressure
P) are located on a staggered non-uniform Cartesian grid. Spatial
derivatives are computed with second-order accuracy. Temporal

Fig. 6. Spatial distribution of the capillary number (Eq. (8)). Left: experiments;
right: simulation.



integration is achieved through a third-order Runge–Kutta scheme
and a semi-implicit Crank–Nicholson scheme for the viscous terms.
Flow incompressibility is met by using an auxiliary potential for the
projection method leading to a Poisson equation for the pressure
correction. The corresponding simulation code has been widely used
and validated under laminar and turbulent flow regimes using
either direct numerical simulations or large eddy simulations for
higher Reynolds turbulence (e.g. Merle et al., 2005, and references
therein). In the present study no sub-grid modeling has been used
while all the turbulence features are fully resolved (mesh stretching
is used close to the orifice to capture strong velocity gradients). On
the pipe and orifice walls, no-slip boundary conditions are imposed.
The flow is driven by constant pressure drop along the pipe while an
outlet boundary condition is applied at the pipe exit.

The simulation domain, which extends towards x/D = 10, has
been meshed in cylindrical coordinates, with 120 nodes in axial
direction x, 80 in radial direction r and 32 in angular direction h.
The grid is equally spaced in the angular direction while it has been
stretched in radial and axial directions near the circular orifice, to
resolve regions of high shear and the downstream turbulent struc-
tures. At the inlet x/D = �2.5, a Poiseuille velocity profile is im-
posed assuming the flow to be laminar while the outlet is
modeled by a numerical condition of free fluid exit. The inflow pipe
Reynolds number is equal to 1050 (based on pipe diameter, mean
flow rate and fluid viscosity). Upstream of the orifice, the flow is
purely streamwise but the presence of a sudden reduction of sec-
tion induces radial components of the velocity field yielding closed
streamlines. The flow accelerates when crossing the orifice section
and leads to the formation of a jet confined by the pipe walls. A
long recirculation zone follows the orifice, increasing with
Reynolds number (Morrison et al., 1993). The flow remains steady
for low to moderate Reynolds number, and the spatial extension of
the toroidal vortex obtained in the simulations has been compared
to experiments (Macagno and Hung, 1967) with good agreement.
The pressure drop has been compared to classic empirical correla-
tions as well. Beyond Reo = 1600, the flow becomes unsteady (large
scale periodic oscillations characterized by a Strouhal number
roughly constant and equal to 0.5, in good agreement with Becker
and Massaro, 1968). When the flow is unsteady, the recirculation

zone shrinks drastically and eventually increases again in the range
Reo = 2100. The central jet generated through the orifice becomes
gradually turbulent while large scale structures are controlled by
the oscillation of the recirculation zone. The simulation domain
has been chosen long enough to capture all these features.

3.2. Flow simulation results

Simulation results have been compared to PIV measurements
(see in Fig. 1 the window of experimental measurements). In
Fig. 2, experimental and numerical profiles of the average axial
velocity Ux at several locations downstream of the orifice are dis-
played. Both results are scaled by the pipe cross-sectional velocity
U. These profiles show the gradual spreading of the jet and the
existence of a recirculation zone. One can observe a significant
overestimation of the calculated mean axial velocity profiles in
the core of the jet, which results from an underestimation of the
backflow in the region comprised between the orifice and the pipe
wall. Based on a simple mass balance consideration, it can be
shown that an underestimation of the backflow equal to 5% of
the velocity in the orifice Uo, induces an overestimation of 21% of
Uo in the jet core.

Profiles of the r.m.s. of axial velocity fluctuations are compared
in Fig. 3. Here again, significant differences between experimental
and numerical data are observed. Those are directly related to the
presence of low frequency oscillations of the jet (that can be

Fig. 8. Power spectral density of the axial velocity: simulations (thin line) and
experiments (thick line). (a) point 1; (b) point 2 (see Fig. 1 for location of points 1
and 2).

Fig. 7. Spatial distribution of axial velocity fluctuations r.m.s. Left: experiments;
right: simulation.



detected in the power spectral density graph of Fig. 8a). These
oscillations can’t be present numerically since upstream of the ori-
fice, the flow is laminar and does not contain any excitation modes
of such oscillations. A simulation test have been carried out by
superimposing small amplitude random noise (<0.5% U) to the up-
stream flow, resulting in a dramatic increase of turbulence and
recirculation downstream of the orifice, which did not compare
favorably with the experimental data. This test has shown the ex-
treme sensitivity of the flow pattern downstream of the orifice to
the inlet conditions and the probable role of self-sustained oscilla-
tions. Such large scale instability of the flow has been characterized
experimentally (Furuichi et al., 2003). A steady symmetry breaking
bifurcation in the flow through a 1:2 sudden axisymmetric expan-
sion (Mullin et al., 2009) has been observed for Reynolds numbers
ranging from 1150 to 1500. Further increase of the Reynolds leads
to intermittent bursts which eventually results in flapping oscilla-
tions of the reattachment shear layer. These low frequency fluctu-
ations are responsible for the high fluctuation level observed in the
experiments at distances smaller than x/D = 1 and possibly act as
promoters of turbulence which develops more rapidly (i.e. at a
smaller distance from the orifice), in the experiments than in the
numerical simulations. As a result, below one diameter
downstream of the orifice, the fluctuation level in the experiments
is larger than in the simulations whereas above x/D = 1, the trend is
reversed. Temporal energy spectra of the axial velocity (Fig. 8a–b)
shed some light on this feature. The energy spectra of the axial
velocity have been scaled by the square of the average axial veloc-
ity. The experimental spectra extracted from PIV measurements
have been smoothed by applying the Welch windowing method.
The experimental spectrum at point 1 has a clear bump around
f = 4 Hz which disappears downstream (point 2). Due to the exact
steady Poiseuille flow inlet condition, such a large-scale oscillation
of the jet does not arise from the simulations. This has an impact
on the velocity fluctuations close to the orifice and as a conse-
quence, the profile of the average velocity is stiffer in the experi-
ments than in the simulation. Finally, this phenomenon is
damped and a good agreement is achieved beyond x/D = 1.

Although the turbulence is inhomogeneous and anisotropic, the
energy spectra from PIV measurements exhibit a clear inertial sub-
range characterized by the classical �5/3 power law. The power
law of the inertial subrange in the energy spectrum is also con-
firmed in simulations up to the frequency 2 � 102 Hz. For higher
frequencies an increase of the slope is observed and may be related
to the progressive coarsening of the grid, which filters the smallest
scales. In the region of interest where we intend to compare exper-
iments and numerical prediction of drop break-up, the spatial and
temporal resolutions seem to be adequate to capture the turbulent
scales responsible for it. Overall the mean and fluctuating flow field
structure are similar, except for the flow region comprised
between x/D = 0 and x/D = 1.

3.3. Velocity structure function

As mentioned in Section 2, drop deformation results from
spatial stress distribution at a scale comparable to its diameter
(Eq. (6)). The goal here is to verify that the spatial structure of
the turbulence seen by the drop is well reproduced by the simula-
tions. Therefore, the evaluation and comparison with experiments
of spatial correlations of velocity fluctuations at the drop scale, is
an important step regarding DNS validation.

The drop diameter considered in the simulations equals
2.4 mm. At monitor point 2 (x/D = 0.82), the average axial velocity
is Ux = 0.25 m s�1 and the frequency corresponding to the drop
scale, Ux/d � 102 Hz, lies in the inertial subrange, which is accu-
rately solved by the simulation. Further downstream, the grid
has been progressively coarsened in the axial direction. In order

to check that accurate statistics of velocity fluctuations at the drop
scale are obtained, the structure function of axial velocity fluctua-
tion in the axial direction has been computed at the four locations
xi of the monitor points (cf. Fig. 1) and compared to experimental
data. It is defined as

du2
x ðxi; dxÞ ¼ ½uxðxi þ dxÞ � uxðxiÞ�2; ð13Þ

where dx is a positive increment in x direction. In the case of locally
isotropic turbulence, this quantity scales as dx2/3 in the inertial
range (Obukhov and Yaglom, 1953). This quantity is represented
as a function of dx/d in Fig. 9 and it can be concluded that the drop
does experience velocity fluctuations within the inertial subrange.
This is verified for all locations investigated (from point 1 to point
4). Although the pipe restriction produces a strongly inhomoge-
neous flow at large scale, the structure function follows the 2/3
power law as a function of separation distance dx. Simulation re-
sults closely follow experimental data at point 1 whereas the 2/3
power law scaling is preserved at point 4, located at 0.05 m from
the orifice. The slight discrepancy observed at this point is related
to the local mesh width, which is of the order of the drop diameter.
At point 1, the ratio between the width of the mesh cell and the
drop diameter is 0.7 whereas it increases to 1.4 at point 4.

In Fig. 4, we also compared numerical and experimental spatial
distributions of the average turbulent Weber number based on
du2ðx; dÞ, (Eq. (5)). The agreement is good both qualitatively and
quantitatively when x/D > 1. The Weber number is continuously
increasing downstream of the orifice section and reaches its max-
imum at x/D = 1.5. In the experimental data, the presence of mod-
erate We numbers close to the orifice is due to large scale
oscillations of the jet (see comments on Fig. 8 above).

The underlying assumption of Kolmogorov–Hinze theory of
break-up in the inertial subrange is that the gradient of pressure
fluctuation responsible for drop deformation is balanced by the
local fluctuating acceleration at the scale of the drop. In homoge-
neous isotropic turbulence, it can be shown (Obukhov and Yaglom,
1953; Monin and Yaglom, 1975) that the quantity du2ðx; dÞ would
be equal to the square root of the pressure structure function
multiplied by a factor 3

qcdu2ðx; dÞHIT ¼ qc

X3

i¼1

du2
i ðx; dÞ ffi 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dP02ðx;dÞHIT

q
: ð14Þ

Fig. 9. Normalized structure function du2ðdx=dÞ. o: PIV experiments; x: numerical
results. Left: point 1; right: point 4.



Note that this equation is verified when the Rek is large enough
(typically > 200). For lower values of Rek, the proportionality factor
of Eq. (14) is expected to be larger (see Antonia et al., 1999). The
right hand side term of Eq. (14) is most of the time not available
experimentally. In return, it can be computed from the simula-
tions. A Weber number based on the pressure structure function
can therefore be computed according to

WeP ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dP02ðx; dÞ

q
d

r
: ð15Þ

Due to the absence of the third velocity component in the calcula-
tion of du2ðx;dÞ, a factor 2 here replaces the factor 3 of Eq. (14).
The field of Wep is reported in Fig. 4 (right picture). A good qualita-
tive agreement with the turbulent Weber number calculated from
Eq. (5) (middle picture) can be observed. However, the two fields
are not identical, Wep being smaller than We and a slight vertical
shift between the two fields can be observed. The smaller value of
Wep is consistent with the low value of Rek estimated in Eq. (4),
but no quantitative scaling can be drawn between both quantities
since the turbulent flow field is highly inhomogeneous. Neverthe-
less, we will see in next section that, for the purpose of predicting
drop break-up, the turbulent contribution to the external forcing
experienced from a drop can be evaluated from velocity
fluctuations.

4. Simulation of drop deformation and breakup statistics

Individual drop trajectories downstream of the orifice have
been simulated in a Lagrangian framework by solving the force bal-
ance (Eq. (16)) acting on an isolated drop:

dX
dt
¼ v; qd

pd3

6
dv
dt
¼ F; ð16aÞ

F ¼ ðqp � qcÞ
pd3

6
g þ qcV

Du
Dt
� qc

pd2

8
CDjv � ujðv � uÞ

þ qc
pd3

6
CM

Du
Dt
� dv

dt

� �
� qc

pd3

6
CLðv � uÞxðrxuÞ: ð16bÞ

In Eqs. (16), qd, d, X and v are respectively the drop density, diam-
eter, position and velocity vectors. d/dt and D/Dt are the material
derivatives following the drop and the fluid respectively. F is the
sum of buoyancy, drag, dynamic pressure gradient (also called
Tchen force), added-mass and lift forces, while Basset contribution
has been disregarded. Assuming that drops have a spherical shape,
CM is equal to 1/2 (Magnaudet et al., 1995). The drag coefficient is
assumed to follow the classic Schiller and Naumann correlation.
For high particulate Reynolds numbers (based on the slip velocity),
the mechanisms that control lift effects are essentially of inviscid
nature, so that the inviscid result CL = 1/2 is appropriate. At lower
Reynolds number, it was shown that CL is a function of both the
Reynolds number and the shear rate. In contrast, for Reynolds num-
bers typically less than unity, the situation becomes much more
complex. This is why no general expression of the lift force applica-
ble to an arbitrary linear flow field is available to date in this re-
gime. We use the correlation proposed by Magnaudet and
Legendre (1998). In the simulation of drop trajectories, the modula-
tion of the flow field by the drop was neglected (dilute flow), and
drops are considered as material points. The instantaneous velocity
u and the velocity gradients involved in the force balance are pro-
vided through a local interpolation of the DNS flow field at the drop
location. The system of ODEs (Eqs. (16)) has been efficiently solved
with a four steps forward Runge–Kutta scheme. Examples of calcu-
lated trajectories are illustrated in Figs. 1 and 10.

The Weber number is computed by DNS from the velocity fluc-
tuation at the scale of the drop, which has been shown to be accu-
rate from the examination of the structure functions (Fig. 8). It is a
Lagrangian quantity since it is evaluated at the location X where
the drop is at instant ~t. In order to compute it, the flow field is
interpolated according to the drop position and the maximum va-
lue of du2(X(t),d) along four distinct directions is calculated, follow-
ing Eq. (11) (for the sake of consistency with experiments, only the
axial and radial components of the velocity have been accounted
for in the computation of du2(X(t),d).

As aforementioned in Section 2, K is an unknown prefactor that
is introduced to couple the dynamics of the drop shape with the
turbulent forcing. Because Eq. (12) is linear, the value of K can be
set arbitrarily to unity without loss of generality (A2 is simply re-
placed by A2/K). Eq. (12) has been solved numerically using a
four-step forward Runge–Kutta scheme and considering that each
drop was initially spherical and at rest (eA2 ¼ 0 and d~A2

d~t
¼ 0).

Fig. 10 illustrates an example of simulation: the radial drop
location r, the computed deformation A2/K and the corresponding
turbulent forcing We are plotted versus the axial location x/D. It
is worth pointing out the differences between the turbulent forcing
and the deformation which results from it: the evolution of A2 is
smoother than that of We, which indicates that the shape dynamics
preferentially responds to frequencies close to f2 and filters out
higher turbulent frequencies. Moreover, local minima or maxima
of A2 do not coincide with those of We. As already observed by
Galinat et al. (2007b), a break-up criterion based upon a threshold
Weber number value is therefore not relevant. Following their
observations, it will be assumed that breakup occurs when the
computed deformation A2 exceeds a critical value A2cr. It is impor-
tant to note that A2cr is the only adjustable parameter of the model.

Trajectories and deformations of 450 drops have been simu-
lated. Calculated breakup locations have been reported in Fig. 7
and show a good qualitative agreement with experimental data.
In order to compare break-up statistics, cumulative distribution
function P(x/D) has been calculated from the simulations (proba-
bility that a drop breaks in the spatial domain [0, x/D]. P(x/D) in-
creases from zero at the orifice (x/D = 0) to a maximum value,
which characterizes the break-up probability of a drop of this
diameter after passing through the orifice.

Fig. 11 displays axial evolutions of P(x/D) computed with four
different critical deformations: A2cr/K = 14, 15, 16 and 17. The
experimental curve (thick line) nicely lies in between the cases
corresponding to A2cr/K = 15 and 16. Regarding the moderate

Fig. 10. Simulated drop trajectory (top figure), normalized amplitude of drop
oscillation eA2 (middle figure) and instantaneous turbulent Weber number (bottom
figure).



number of samples considered in the experiments (70), this agree-
ment is remarkable and tends to prove that the present dynamical
model of drop deformation accounts for the right physical mecha-
nism: the drop shape responds as an oscillator defined by its
frequency and its damping rate. This dynamics also explains the
occurrence of some break-up events located in regions of weak tur-
bulence, as observed in Fig. 4.

P(x/D) has also been calculated using a fragmentation criterion
based on a critical value of the instantaneous Weber number (Wec).
In Fig. 11, the corresponding curves have been also reported. The
best fit of the maximum value is observed for Wec values ranging
between 40 and 50. However, these curves drastically overesti-
mate experimental results in the interval 0.5 < x/D < 1.5, confirm-
ing that the drop deformation does not follow instantaneous
turbulent fluctuations. It is also worth to notice that the order of
magnitude of these critical values of the instantaneous Weber
number is much larger that of the global Weber number based
on an averaged dissipation rate (Eq. (1))

We ¼ qcð1:4ðedÞ
1
3Þ2d

r
¼ 2

d
D

� �2
3 qcU2d

r
� 0:9: ð17Þ

Such a difference validates the coupling between the local turbulent
forcing and the drop deformation dynamics to correctly describe
the physics of fragmentation.

From video analysis of the experimental drop shape at the in-
stant of breakup, Galinat et al. (2007a) estimated that the critical
deformation A2cr was approximately unity. Best agreement
between experiments and present simulations is obtained for
A2cr/K = 16, leading to K = 0.06. This estimation is close to the value
K = 0.04 obtained by Galinat et al. (2007a) by solving Eq. (12) using
a forcing term We(t) obtained from PIV measurements in a single
radial plane and by computing drop motions assuming a constant
drift velocity relative to the liquid.

5. Conclusion

Drop breakup in the turbulent inhomogeneous flow that devel-
ops downstream of an orifice has been numerically modeled by cou-
pling DNS simulations of the continuous phase, Lagrangian droplet
tracking, a dynamic model of drop deformation and a break-up cri-
terion based on a maximal deformation. The dynamical model is
adapted from the Kolmogorov–Hinze theory of turbulent break-up
to the Rayleigh–Lamb theory of drop oscillations as already

proposed by Risso and Fabre (1998). Compared to PIV measure-
ments, DNS results have demonstrated to provide a reliable predic-
tion of the turbulent flow field and its statistics at the drop size scale.
Experimental break-up locations have been correctly predicted by
adjusting only one single parameter in the numerical model: the
critical deformation eA2cr for breakup. The ability of the forced oscil-
lator to predict turbulent drop break-up in a non-homogeneous tur-
bulent flow field has been tested and discussed. The model involves
a prefactor K that has not been derived from theoretical consider-
ation so far. However, once K has been fixed empirically by compar-
ison with experiments, the proposed model can be tested for the
prediction of local breakup probability in an inhomogeneous un-
steady flow. These simulations can also be used to study the re-
sponse of different drop diameters and different liquid/liquid
systems as well, i.e. with different damping rates and frequencies.
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