
HAL Id: hal-03529614
https://hal.science/hal-03529614

Preprint submitted on 17 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the central limit theorem for stationary random
fields under L 1 -projective condition
Han-Mai Lin, Florence Merlevède, Dalibor Volný

To cite this version:
Han-Mai Lin, Florence Merlevède, Dalibor Volný. On the central limit theorem for stationary random
fields under L 1 -projective condition. 2022. �hal-03529614�

https://hal.science/hal-03529614
https://hal.archives-ouvertes.fr


On the central limit theorem for stationary random fields under

L1-projective condition
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Abstract

The first aim of this paper is to wonder to what extent we can generalize the central
limit theorem of Gordin [5] under the so-called L1-projective criteria to ergodic stationary
random fields when completely commuting filtrations are considered. Surprisingly it
appears that this result cannot be extended to its full generality and that an additional
condition is needed.
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ary decomposition; projective criteria.

MSC2020: 60F05; 60G60.

1 Introduction and main results

Let (Ω,A,P) be a probability space, and T : Ω 7→ Ω be an ergodic bijective bimeasurable
transformation preserving the probability P. Let F0 be a sub-σ-algebra of A satisfying
F0 ⊆ T−1(F0) and f be a L1(P) real-valued centered random variable adapted to F0.
By U we denote the operator U : f 7→ f ◦ T . The notation I will denote the identity
operator. Define then the stationary sequence (fi)i∈Z by fi = f ◦T i = U if , its associated

stationary filtration (Fi)i∈Z by Fi = F0 ◦ T−i and let Sn(f) =
∑n−1
i=0 U

if .
The following theorem is essentially due to Gordin [5] and gives sufficient conditions

for (U if)i∈Z to satisfy the central limit theorem.

Theorem 1 (Gordin) Assume that the series∑
i≥0

E(U if |F0) converges in L1(P) (1)

and

lim inf
n→∞

E(|Sn(f)|)√
n

<∞ . (2)

Then n−1/2Sn(f) converges in distribution to a centered normal variable (that can be
degenerate).

∗Université Gustave Eiffel, LAMA and CNRS UMR 8050. Email: han-mai.lin@univ-eiffel.fr
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The proof of this result is based on the following coboundary martingale decomposition
(see [10] for more details concerning necessary and sufficient conditions for the existence
of such a decomposition): Under (1),

f = m+ (I − U)g (3)

where m and g are in L1(P) and (U im)i≥0 is a stationary sequence of martingale differ-
ences, and on the following theorem whose complete proof can be found in Esseen and
Janson [6].

Theorem 2 (Esseen-Janson) If (U im)i≥0 is a stationary and ergodic sequence of mar-
tingale differences in L1(P) satisfying

lim inf
n→∞

E(|
∑n−1
i=0 U

im|)√
n

<∞ , (4)

then m ∈ L2(P).

Clearly, using the coboundary martingale decomposition (3), (2) implies (4).
The aim of this paper is to prove that Theorem 1 can be extended to random fields

when the underlying filtrations are completely commuting. To fix the idea, let us first
state the result in case of multidimensional index of dimension d = 2 (the general case
will be stated in Section 4). Then, in complement to the previous notation, let S be
an ergodic bimeasurable and measure preserving bijection of Ω. By V we denote the
operator V : f 7→ f ◦ S.

In what follows we shall assume that the ergodic transformations T and S are commut-
ing. Note that Ti,j = T iSj is an ergodic Z2 action on (Ω,A,P). Let F0,0 be a sub-sigma
field of A and for all (i, j) ∈ Z2 define

Fi,j = T−iS−j(F0,0) .

Suppose that the filtration (Fi,j)(i,j∈Z2 is increasing in i for every j fixed and increasing
in j for every i fixed, and is completely commuting in the sense that, for any integrable f ,

E(E(f |Fi,j)|Fu,v) = E(f |Fi∧u,j∧v) .

In view of giving an extension of Theorem 3 for random fields indexed by the lattice
Z2, the first tool is a suitable coboundary orthomartingale decomposition: Let f be a
F0,0-measurable centered L1(P) function. According to Volný [9], the condition:

the series
∑
i,j≥0

E(U iV jf |F0,0) converges in L1(P) (5)

implies the existence of the following decomposition:

f = m+ (I − U)g1 + (I − V )g2 + (I − U)(I − V )g3 , (6)

where m, g1, g2, g3 ∈ L1(P), (U iV jm) is a stationary field of orthomartingale differences,
(V jg1)j is a stationary martingale differences sequence with respect to the filtration
(F∞,j)j , and (U ig2)i is a stationary martingale differences sequence with respect to the
filtration (Fi,∞)i. To fix the ideas, setting Ea,b(·) = E(·|Fa,b), we have

m =
∑
i,j≥0

(
E0,0(U iV jf)− E−1,0(U iV jf)− E0,−1(U iV jf) + E−1,−1(U iV jf)

)
,
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g1 =
∑
i,j≥0

(
E−1,0(U iV jf)−E−1,−1(U iV jf)

)
, g2 =

∑
i,j≥0

(
E0,−1(U iV jf)−E−1,−1(U iV jf)

)
,

and g3 =
∑
i,j≥0 E−1,−1(U iV jf). Recall also that (U iV jm) is said to be a orthomartin-

gale differences field w.r.t. (Fi,j) if

Ei−1,j(U iV jm) = Ei,j−1(U iV jm) = Ei−1,j−1(U iV jm) = 0 a.s.

Note that if f is additionally assumed to be regular in the sense that f is F∞,∞-measurable
and E(f |F0,−∞) = E(f |F−∞,0) = 0 then, it is proved in Volný [9] that the converse is true,
meaning that if f satisfies the decomposition (6) then (5) holds. We also refer to [3] where
the existence of the decomposition (6) is proved under a reinforcement of (5) (they assume
that the series of the L1-norm is convergent). We also mention [4, Theorem 2.2] where
a necessary and sufficient condition for an orthomartingale-coboundary decomposition is
established when all the underlying random elements are square integrable.

Our first result is the following:

Theorem 3 Let f be a F0,0-measurable centered L1(P) random variable. Let Sn1,n2(f) =∑n1

i=0

∑n2

j=0 U
iV jf . Assume that condition (5) is satisfied and that

lim inf
n→∞

1√
n

∥∥∥ n−1∑
i=0

U if
∥∥∥
1
<∞ , lim inf

N→∞

1√
N

∥∥∥N−1∑
j=0

V jf
∥∥∥
1
<∞ (7)

and

lim inf
n1→∞

lim inf
n2→∞

E(|Sn1,n2
(f)|)

√
n1n2

<∞ , lim inf
n2→∞

lim inf
n1→∞

E(|Sn1,n2
(f)|)

√
n1n2

<∞ . (8)

Then the random variables m, (I − U)g1 and (I − V )g2 defined in (6) are in L2(P).

Compared to the case of random sequences a natural question is then to wonder if
condition (5) together with conditions (7) and (8) are sufficient to ensure that, when
min(n1, n2) → ∞, the limiting distribution behavior of (n1n2)−1/2Sn1,n2

(f) is the same
as that of the orthomartingale part (n1n2)−1/2Sn1,n2

(m). In other terms one can won-
der if assuming the conditions of Theorem 3 is enough to ensure that the coboundaries’
behavior, i.e. (n1n2)−1/2(Sn1,n2(f)− Sn1,n2(m)) is negligible for the convergence in dis-
tribution. Surprisingly the answer to this question is negative as shown by the next
counterexample.

Theorem 4 There exist a probability space (Ω,A, µ), a function g ∈ L1(µ), measurable
with respect to a σ-algebra F0,0 ⊂ A and bijective bimeasurable ergodic transformations T
and S such that f = (I−U)g is in L2(µ), satisfies the conditions (5), (7) and (8) but such
that (n1n2)−1/2Sn1,n2(f) does not converge in distribution to zero as min(n1, n2)→∞.

This result proves a drastically different behavior for the case of random fields with di-
mension d ≥ 2 compared to the case of random sequences d = 1 for which the coboundary
is negligible for the convergence in distribution as soon as (1) is assumed.

Remark 5 Modifying the selection of the sequences (nk) and (mk) used in the construc-
tion of the counterexample of Theorem 4, we infer that one can construct the function
g in such a way that not only it satisfies the conditions and the conclusion of The-
orem 4 but also the following conditions: for p ∈ [1, 2), g ∈ Lp(µ) and the series∑
i,j≥0 E(U iV jf |F0,0) converges in Lp(µ) (it suffices to take for instance nk = [2k/2]

and mk ∼ (nk/k)p/(2−p)).

However, reinforcing the conditions of Theorem 3, we can prove the following CLT.

3



Theorem 6 In addition to the conditions of Theorem 3, assume that

lim
min(n1,n2)→∞

E(|Sn1,n2
(f)|)

√
n1n2

exists. (9)

Then, as min(n1, n2) → ∞, (n1n2)−1/2Sn1,n2
(f) converges in distribution to a centered

normal variable (that can be degenerate).

Remark 7 Assume that f satisfies the coboundary orthomartingale decomposition (5)
with the following additional conditions: (U iV jm) is a stationary field of L2(P) or-
thomartingale differences, (V j(I − U)g1)j is a L2(P) stationary martingale differences
sequence with respect to the filtration (F∞,j)j, and (U i(I − V )g2)i is a L2(P) stationary
martingale differences sequence with respect to the filtration (Fi,∞)i (Theorem 3 gives
sufficient conditions ensuring such a decomposition). Then, from the proof of Theorem
6, we infer that condition (9) is equivalent to the two following conditions:

lim sup
n→∞

lim sup
k→∞

1√
nk
‖Sn,k(f)‖1 ≤ lim

n→∞

1

n
‖Sn,n(f)‖1,

lim sup
k→∞

lim sup
n→∞

1√
nk
‖Sn,k(f)‖1 ≤ lim

n→∞

1

n
‖Sn,n(f)‖1.

Note that the existence of the limit limn→∞
1
n‖Sn,n(f)‖1 has been mentioned in the proof

of Theorem 6.

It is noteworthy to indicate that f does not need to be in L2 but only in L1 to apply
Theorem 6 (see Example 2.1 given below). Theorem 6 then gives alternative projective
conditions compared to those required in [11, Th. 5.1] or in [7, Th. 1] for the central
limit theorem under the normalization

√
n1n2 to hold. Note that the proofs of the two

above mentioned results are also based on an orthomartingale approximation. We refer
also to [12] where the notion of orthomartingales and completely commuting filtrations
have been previously used in the particular case of functions of iid random fields. Let
us also indicate that when filtrations in the lexicographic order rather than completely
commuting filtrations are considered, [2, Th. 1] provides a projective type condition in
the spirit of the L1-projective condition (5) (but still requiring f to be in L2) for the
normalized partial sums associated with a stationary random field to satisfy the central
limit theorem. His proof is based on the so-called Lindeberg method.

2 Examples

2.1 An example of application when f is in L1 but not in L2

For k ∈ N∗ and i, j ∈ Z, let ek,i,j be mutually independent zero mean random variables
with Uek,i,j = ek,i+1,j , V ek,i,j = ek,i,j+1. Let Fa,b = σ(ek,i,j , k ∈ Z, i ≤ a, j ≤ b). We
denote ek = ek,0,0. Assume that for any i, j ∈ Z2, L(ek,i,j) = L(ek) and that ek takes
value vk with probability pk, −vk with probability pk and 0 with probability 1− 2pk. It
follows that

‖ek‖1 = 2vkpk and ‖ek‖22 = 2v2kpk .

We choose (vk)k≥1 and (pk)k≥1 as follows

vk = k2(log(k + 1))2 and pk =
1

2k2(log(k + 1))4
.
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For any k ≥ 1 and i ≥ 0, let ak,i =
1

(k + i)2
, and define

g1 =
∑
k≥1

∑
i≥0

ak,iU
−k−iek, g2 =

∑
k≥1

∑
j≥0

ak,jV
−k−jek, g3 =

∞∑
k=1

1

k
ek,

m =

∞∑
k=1

1

k2
U−kV −kek and f = m+ (I − U)g1 + (I − V )g2 + (I − U)(I − V )g3.

It follows that

‖g1‖1 ≤
∑
k≥1

∑
i≥k

1

i2
‖ek‖1 ≤ 2

∑
k≥1

1

k
‖ek‖1 ≤

∞∑
k≥1

2

k(log(k + 1))2
<∞ .

But, by independence of the r.v.’s ek,i,j ,

‖g1‖22 =
∑
k≥1

∑
i≥0

a2k,i‖ek‖22 =
∑
k≥1

∑
i≥k

1

i4
‖ek‖22 ≥

∑
k≥1

1

3k
=∞ .

Similarly ‖g2‖1 + ‖g3‖1 < ∞, ‖g2‖2 = ∞ and ‖g3‖2 = ∞. On another hand, for any
positive integer `,

(I − U `)g1 = −
∑
k≥1

`−1∑
i=0

ak,iU
−k−i+`ek +

∞∑
k=1

∑
i≥0

(ak,i − ak,i+`)U−k−iek .

Hence, by independence of the r.v.’s ek,i,j ,

‖(I − U `)g1‖22 =
∑
k≥1

`−1∑
i=0

a2k,i‖ek‖22 +

∞∑
k=1

∑
i≥0

(ak,i − ak,i+`)2‖ek‖22

=
∑
k≥1

k2
`−1∑
i=0

a2k,i +

∞∑
k=1

k2
∑
i≥0

(ak,i − ak,i+`)2 .

By simple algebra, we derive that there exists a positive constant C such that for any
positive integer `,

‖(I − U `)g1‖22 ≤ C log(`+ 1) . (10)

In particular, we get ‖(I − U)g1‖2 < ∞. Similarly, we have ‖(I − V )g2‖2 < ∞. To
summarize, we have g1, g2, g3, (I − U)(I − V )g3, f ∈ L1 \ L2, (I − U)g1, (I − V )g2 ∈ L2.
On another hand (V j

[
(I−U)g1

]
)j are martingale differences as well as (U i

[
(I−V )g2

]
)i.

For f , we clearly get
∑
i,j≥0 ‖E(U iV jf |F0,0)‖1 <∞. In addition

‖
∑n−1
i=0

∑N−1
j=0 U iV j(I − U)g1‖22

nN
=
‖(I − Un)g1‖22

n
.

Taking into account (10), it follows that

lim
n→∞

‖
∑n−1
i=0

∑N−1
j=0 U iV j(I − U)g1‖22

nN
= 0 .
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Similarly

lim
N→∞

‖
∑n−1
i=0

∑N−1
j=0 U iV j(I − V )g2‖22

nN
= 0 .

Moreover, as max(n,N)→∞, the coboundary is negligible in L1, i.e.

lim
max(n,N)→∞

‖
∑n−1
i=0

∑N−1
j=0 U iV j(I − U)(I − V )g3‖1√

nN
= 0 .

It follows that

lim
min(n,N)→∞

‖
∑n−1
i=0

∑N−1
j=0 U iV j(f −m)‖1√

nN
= 0 .

Since, limmin(n,N)→∞
‖
∑n−1
i=0

∑N−1
j=0 UiV jm‖1√
nN

exists (it is equal to
√

2
π‖m‖2), we can de-

duce that limmin(n,N)→∞
‖
∑n−1
i=0

∑N−1
j=0 UiV jf‖1√
nN

exists. It follows that, all the conditions

of Theorem 6 are satisfied, and consequently, as min(n1, n2) → ∞, (n1n2)−1/2Sn1,n2(f)
converges in distribution to a centered normal variable.

2.2 An example where f does not satisfy Hannan’s L2-condition

We exhibit an example where f satisfies all the conditions of Theorem 6 but not the
Hannan’s L2-condition required in [11, Th. 5.1].

We consider the random field (ek,i,j)k,i,j of mutually independent random variables
as in Example 2.1 with the following choices of (vk)k≥1 and (pk)k≥1. Let α > 4. Then
for any k ≥ 1, define

vk = kα and pk =
1

2k5 log(k + 1)2
.

Therefore

‖ek‖1 =
kα−5

log(k + 1)2
and ‖ek‖22 =

k2α−5

log(k + 1)2
.

For any k ≥ 1 and i, j ≥ 0, let

ak,i,j =
1

(k + i+ j)α
.

Then, define

f =
∑
k≥1

∑
u,v≥0

ak,u,vU
−uV −vek .

(U iV jf)i,j is usually called a super linear random field. Let Fa,b = σ(ek,i,j , k ∈ Z, i ≤
a, j ≤ b). Note that f is a F0,0-measurable centered and L2(P) random variable. In
addition ∑

k≥1

∑
i,j≥0

∑
u≥i+1

∑
v≥j+1

|ak,u,v|‖ek‖1 ≤ C
∑
k≥1

1

k log(k + 1)2
<∞ .

Therefore condition (5) is satisfied. So, the orthomartingale coboundary decomposition
(6) holds with

m =
∑
k≥1

∑
i,j≥0

ak,i,jek ,

g1 =
∑
k≥1

∑
i,j≥0

∑
u≥i+1

ak,u,jU
i−uek , g2 =

∑
k≥1

∑
i,j≥0

∑
v≥j+1

ak,i,vV
j−vek ,
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and
g3 =

∑
k≥1

∑
i,j≥0

∑
u≥i+1

∑
v≥j+1

ak,u,vU
i−uV j−vek .

One can easily check that m ∈ L2(P). Next, for any positive integer `, note that

(I − U `)g1 = −
∑
k≥1

∑
i,j≥0

`+1∑
u=1

ak,u+i,jU
−uek +

∑
k≥1

∑
i,j≥0

∑
u≥1

(ak,u+i,j − ak,u+i+`,j)U−uek .

By independence of the r.v.’s ek,i,j , it follows that

‖(I − U `)g1‖22 ≤ 2
∑
k≥1

`+1∑
u=1

( ∑
i,j≥0

ak,u+i,j

)2
‖ek‖22

+ 2
∑
k≥1

∑
u≥1

( ∑
i,j≥0

(ak,u+i,j − ak,u+i+`,j)
)2
‖ek‖22 .

Therefore, there exists a positive constant K1 (depending on α) such that

‖(I − U `)g1‖22

≤ K
(∑
k≥1

`+1∑
u=1

1

(k + u)2(α−2)
‖ek‖22 + `2

∑
k≥1

∑
u≥1

1

(k + u+ `)2(k + u)2(α−2)
‖ek‖22

)
.

By simple algebra, we then derive that there exists a positive constant K2 (depending on
α) such that such that for any positive integer `,

‖(I − U `)g1‖22 ≤ K2
`

log(`+ 1)
. (11)

Similarly, we get that there exists a positive constant K3 (depending on α) such that
such that for any positive integer `,

‖(I − V `)g2‖22 ≤ K3
`

log(`+ 1)
. (12)

From (11) and (12), it follows that

lim
n→∞

‖(I − Un)g1‖22 + ‖(I − V n)g2‖22
n

= 0 . (13)

Taking into account (13) together with the fact that m ∈ L2(P) and proceeding as in
Example 2.1, one can verify that conditions (7), (8) and (9) are satisfied. Hence, Theorem
6 applies. Then, as min(n1, n2)→∞, (n1n2)−1/2Sn1,n2

(f) converges in distribution to a
centered normal variable.

On another hand, defining

P0,0(·) = E0,0(·)− E−1,0(·)− E0,−1(·) + E−1,−1(·) ,

we get, for any i, j ≥ 0, P0,0(U iV jf) =
∑
k≥1 ak,i,jek. Hence, for any i, j ≥ 0,

‖P0,0(U iV jf)‖22 =
∑
k≥1

a2k,i,j‖ek‖22 ≥
∑

k≥i+j+1

k2α−5

(k + i+ j)2α(log(k + 1))2
,

7



implying that

‖P0,0(U iV jf)‖22 ≥
C

(i+ j + 1)4(log(i+ j + 2))2
.

It follows that the series
∑
i,j ‖P0,0(U iV jf)‖2 diverges and then the Hannan’s L2-condition

in the random fields setting does not hold, and [11, Th. 5.1] does not apply. Note also
that for this example, [2, Th. 1] that involves filtrations in the lexicographic order, cannot
be applied.

3 Proofs

3.1 Proof of Theorem 3

Recall the decomposition (6) and let

m′ = m+ (I − V )g2 . (14)

It follows that (U im′)i is a stationary sequence of L1(P) martingale differences with
respect to (Fi,∞)i. Since T is ergodic, according to Theorem 2, if

lim inf
n→∞

E(|
∑n−1
i=0 U

im′|)√
n

<∞ , (15)

then m′ ∈ L2(P). By (6),

∥∥∥ n−1∑
i=0

U im′
∥∥∥
1
≤
∥∥∥ n−1∑
i=0

U if
∥∥∥
1

+ 2‖g1‖1 + 4‖g3‖1 .

Hence, since g1 and g3 are in L1(P),

lim inf
n→∞

E(|
∑n−1
i=0 U

im′|)√
n

≤ lim inf
n→∞

E(|
∑n−1
i=0 U

if |)√
n

,

which is finite under the first part of (7). Therefore (15) holds and m′ ∈ L2(P). Next
recall that m′ = m+ (I − V )g2 and recall that (V jm)j is a stationary sequence of L1(P)
martingale differences with respect to (F∞,j)j . Since S is ergodic, according again to
Theorem 2, to prove that m ∈ L2(P), it suffices to prove that

lim inf
n→∞

E(|
∑n−1
j=0 V

jm|)
√
n

<∞ . (16)

But since m′ = m+ (I − V )g2 and g2 is in L1(P), proving (16) is reduced to show that

lim inf
n→∞

E(|
∑n−1
j=0 V

jm′|)
√
n

<∞ . (17)

With this aim, recall first that m′ ∈ L2(P) and note that

1√
n

∥∥∥ n−1∑
j=0

V jm′
∥∥∥
1
≤ 1√

n

∥∥∥ n−1∑
j=0

V jm′
∥∥∥
2

:= σn . (18)
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For any fixed positive integer n, let d := n−1/2
∑n−1
j=0 V

jm′. Since (U im′)i is a stationary

and ergodic sequence of martingale differences in L2(P), so is (U id)i. By the CLT for

stationary and ergodic martingales in L2(P), as N → ∞, N−1/2
∑N−1
i=0 U id converges in

distribution to a centered Gaussian random variable Gn with variance σ2
n. Hence, by [1,

Th. 3.4] and noticing that E|Gn| = σn
√

2/π, for any fixed positive integer n, we get

σn ≤
√
π

2
lim inf
N→∞

1√
N

∥∥∥N−1∑
i=0

U id
∥∥∥
1

=

√
π

2
lim inf
N→∞

1√
nN

∥∥∥N−1∑
i=0

n−1∑
j=0

U iV jm′
∥∥∥
1
. (19)

But, recalling (6) and that m′ = m+ (I − V )g2, we have

∥∥∥N−1∑
i=0

n−1∑
j=0

U iV jm′
∥∥∥
1
≤
∥∥∥N−1∑
i=0

n−1∑
j=0

U iV jf
∥∥∥
1

+
∥∥∥ n−1∑
j=0

(I − UN )V jg1

∥∥∥
1

+
∥∥∥(I − UN )(I − V n)g3

∥∥∥
1
.

Hence

1√
N

∥∥∥N−1∑
i=0

n−1∑
j=0

U iV jm′
∥∥∥
1
≤ 1√

N

∥∥∥N−1∑
i=0

n−1∑
j=0

U iV jf
∥∥∥
1

+
2n√
N
‖g1‖1 +

4√
N
‖g3‖1 .

Since g1 and g3 are in L1(P), the two last terms of the right-hand side are converging to
zero as N tends to infinity. Hence, taking into account (18) and (19), we get

lim inf
n→∞

E(|
∑n−1
j=0 V

jm′|)
√
n

≤
√
π

2
lim inf
n→∞

lim inf
N→∞

1√
nN

∥∥∥N−1∑
i=0

n−1∑
j=0

U iV jf
∥∥∥
1
.

which is finite by the second part of condition (8). This ends the proof of (17) (and then
of (16)) and leads to the fact that m is in L2(P). Next recall that we have proved that
m′ defined in (39) is in L2(P) which combined with the fact that m is in L2(P) implies
that (I − V )g2 is in L2(P). On another hand setting

m′′ = m+ (I − U)g1 ,

we can use previous arguments to infer that m′′ is in L2(P). Hence taking into account
that m ∈ L2(P), we get that (I − U)g1 is in L2(P). This ends the proof of the theorem.

3.2 Proof of Theorem 4

Let T, S be two commuting probability preserving bijective transformations on (Ω,A, µ),
Uf = f ◦ T , V f = f ◦ S. We suppose that A is generated by U iV je, (i, j) ∈ Z2, and
U iV je are mutually independent. Denote

C = σ{U ie : i ∈ Z} .

(C, T ) is thus a Bernoulli dynamical system and the sigma algebras SjC, j ∈ Z, are
mutually independent.

Let us recall the so-called Rokhlin lemma.

Lemma 8 (Rokhlin lemma) Let (Ω,A, µ, T ) be an ergodic dynamical system, n a pos-
itive integer, and ε > 0. Then there exists a set F ∈ A such that

9



(1) F, T−1F, . . . , T−n+1F are disjoint,

(2) µ(∪n−1i=0 T
−iF ) > 1− ε.

The sequence of sets F, T−1F, . . . , T−n+1F defined in the Rokhlin lemma is called a
Rokhlin tower.

For any integer k ≥ 1, we set

nk = [2k/2], mk = 2k .

By the Rokhlin lemma there exists a Rokhlin tower F, T−1F, . . . , T−Nk+1F with Nk =
mknk ∼ 23k/2. Note that 1/Nk ≥ µ(T−iF ) > (1− ε)/Nk, for any i = 0, . . . , Nk − 1. We
define

gk(ω) =


(j + 1)

√
mk/nk on T−jF, j = 0 . . . , nk − 1,

(2nk − j − 1)
√
mk/nk on T−jF, j = nk, . . . , 2nk − 1,

0 on the rest of Ω.

We can notice that

gk − Ugk =


√
mk/nk on T−jF, j = 0 . . . , nk − 1,

−
√
mk/nk on T−jF, j = nk, . . . , 2nk − 1,

0 on the rest of Ω.

In addition, we have

‖gk − Ugk‖22 ≤ 2× mk

nk
× 1

mk
∼ 2

2k/2
,

‖gk‖1 ≤ 2n2k

√
mk

nk
× 1

nkmk
= 2

√
nk
mk
≤ 21−k/4,

∥∥∥ 2nk−1∑
i=0

U i(gk − Ugk)
∥∥∥
2

= ‖gk − U2nkgk‖2 ≤ 2
√
nk .

Notice that all sums of U i(gk − Ugk) are C-measurable hence the random variables
(V j(gk − U2nkgk))j are iid.
The support of gk − U2nkgk is included in the union Bk of F, . . . , T−4nk+1F hence is of
measure ≤ 4/mk = 2−k+2.
Next, let

Ak = {|gk − U2nkgk| ≥ (1/2)
√
mknk} .

It follows that the set Ak is included in Bk and is of measure 2/mk = 2−k+1. Because the
sigma algebras SiC, i ∈ Z, are mutually independent, the sets S−jAk, j = 0, . . . ,mk − 1,
are independent. For h = 1Ak using that e2 ln(1−x)/x ≥ e−4 for any x ∈]0, 1/2] and that
mkµ(Ak) = 2, we thus have, for any k ≥ 2,

µ
(mk−1∑

j=0

V jh = 1
)

= mkµ(Ak)(1− µ(Ak))mk−1 ≥ 2/e4 .

We then conclude that

µ
( 1
√
nk

1
√
mk

∣∣∣ 2nk−1∑
i=0

mk−1∑
j=0

U iV j(gk − Ugk)
∣∣∣ ≥ 1/2

)
≥ 2/e4. (20)

10



By recursion we shall define a strictly increasing sequence k` ↗∞ and then set

g =

∞∑
`=1

gk` and f = g − Ug .

1. For ` = 1 we put k` = 1.

2. Suppose that for 1 ≤ `′ < ` the k`′ have been defined.
All the functions gk`′ are bounded (0 ≤ gk`′ ≤

√
nk`′mk`′ ) hence the sums

n−1∑
i=0

`−1∑
`′=1

U i(gk`′ − Ugk`′ ) =

`−1∑
`′=1

(gk`′ − U
ngk`′ ),

n ≥ 1, are uniformly bounded.
If k` is sufficiently large we thus get

1
√
nk`

`−1∑
`′=1

∣∣∣ 2nk`−1∑
i=0

U i(gk`′ − Ugk`′ )
∣∣∣ < 1/2` .

Note that, for j ∈ Z, the functions

V j
( 1
√
nk`

`−1∑
`′=1

2nk`−1∑
i=0

U i(gk`′ − Ugk`′ )
)

are martingale differences. Hence

∥∥∥ 1
√
nk`

1
√
mk`

2nk`−1∑
i=0

mk`−1∑
j=0

U iV j
`−1∑
`′=1

(gk`′ − Ugk`′ )
∥∥∥
2
≤ 1

2`
. (21)

Recall now that ‖gk − Ugk‖2 ≤
√

2/2k/4. Hence choosing k` sufficiently large we get

∥∥∥ 2nk
`′
−1∑

i=0

U i(gk` − Ugk`)
∥∥∥
2
≤ 1

4`

for all 1 ≤ `′ < `.

Having constructed the sequence of k` this way we thus have

∥∥∥ 1
√
nk`

∞∑
`′=`+1

2nk`−1∑
i=0

U i(gk`′ − Ugk`′ )
∥∥∥
2
< 1/2`.

Using the fact that, for j ∈ Z, the functions

V j
( 1
√
nk`

∞∑
`′=`+1

2nk`−1∑
i=0

U i(gk`′ − Ugk`′ )
)
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are martingale differences, we then derive that

∥∥∥ 1
√
nk`

1
√
mk`

2nk`−1∑
i=0

mk`−1∑
j=0

U iV j
∞∑

`′=`+1

(gk`′ − Ugk`′ )
∥∥∥
2
≤ 1

2`
. (22)

Then, the upper bounds (21) and (22) entail that

∥∥∥ 1
√
nk`

1
√
mk`

2nk`−1∑
i=0

mk`−1∑
j=0

U iV j(I − U)(g − gk`)
∥∥∥
2
≤ 2

2`
. (23)

Hence taking into account (20) and (23), it follows that, for f = g − Ug, the sequence

(n1n2)−1/2
∑n1−1
i=0

∑n2−1
j=0 U iV jf cannot converge in distribution to zero.

Next note that for any p and q fixed, by independence,

p∑
i=0

q∑
j=0

E(U iV j(g − Ug)|F0,0) =

p∑
i=0

E(U i(g − Ug)|F0,0) = g − E(Up+1g|F0,0) .

But, by the construction of g, limp→∞ ‖Up+1g‖1 = 0. Hence ‖E(Up+1g|F0,0)‖1 is going
to zero as p→∞. Therefore condition (5) is satisfied with f = g − Ug.

It remains to prove that the conditions (7) and (8) are satisfied with f = g − Ug.
With this aim, note first that

1√
n

n−1∑
i=0

U if =
1√
n

(g − Ung)→ 0

in L1 for n → ∞ (recall that g ∈ L1). Next, since the random variables (V jf)j≥0 are
independent and square integrable,

1√
m

∥∥∥m−1∑
j=0

V jf
∥∥∥
2

= ‖g − Ug‖2 <∞ .

Hence both conditions in (7) are satisfied. On another hand, for every m fixed,

1√
n

1√
m

∥∥∥ n−1∑
i=0

m−1∑
j=0

U iV j(g − Ug)
∥∥∥
1
≤ 2
√
m√
n
‖g‖1 →n→∞ 0 ,

proving the second part of condition (8). It remains to prove its first part. Here we use
particular properties of g constructed above. We have found a sequence of nk` for which
there exists a positive constant c > 0 such that

1
√
nk`

∥∥∥ 2nk`−1∑
i=0

U i(g − Ug)
∥∥∥
2
≤ c
(
2−` + 1

)
.

Since
(
V j
∑2nk`−1
i=0 U i(g − Ug)

)
j≥0 is a stationary sequence of martingale differences in

L2, it follows that

1
√
nk`

1√
m

∥∥∥ 2nk`−1∑
i=0

m−1∑
j=0

U iV j(g − Ug)
∥∥∥
2
≤ c
(
2−` + 1

)
≤ 2c .
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Because the upper bound is uniform for all nk` , the first part of condition (8) holds true.

3.3 Proof of Theorem 6

We shall use the coboundary decomposition (6). Note first that (U iV jm)i,j is an ergodic
and stationary L2(P) orthomartingale field. Then, according to the CLT for ergodic
fields of martingale differences as obtained in [8], as min(n1, n2) → ∞, the sequence

(n1n2)−1/2
∑n1−1
i=0

∑n2−1
j=0 U iV jm converges in distribution to a centered Gaussian ran-

dom variable with variance ‖m‖22. Theorem 6 then follows from the following proposition.

Proposition 9 Assume the conditions of Theorem 3 and that condition (9) is satisfied.
Then

lim
min(n1,n2)→∞

‖Sn1,n2
(f)− Sn1,n2

(m)‖1√
n1n2

= 0 . (24)

Proof of Proposition 9. Since

(n1n2)−1/2
∥∥∥ n1−1∑
i=0

n2−1∑
j=0

U iV j(I − U)(I − V )g3

∥∥∥
1
≤ 4(n1n2)−1/2‖g3‖1 →min(n1,n2)→∞ 0 ,

the convergence (24) will follow if one can prove that, as min(n1, n2)→∞,

(n1n2)−1/2
(∥∥∥ n1−1∑

i=0

n2−1∑
j=0

U iV j(I − U)g1

∥∥∥
1

+
∥∥∥ n1−1∑
i=0

n2−1∑
j=0

U iV j(I − V )g2

∥∥∥
1

)
→ 0 . (25)

Since (V j(I − U)g1)j≥0 and (U i(I − U)g2)j≥0 are sequences of martingale differences in
L2(P), we shall rather prove (25) in L2(P) and show that

lim
n→∞

‖(I − Un)g1‖2√
n

= 0 and lim
n→∞

‖(I − V n)g2‖2√
n

= 0 . (26)

With this aim, we start by noticing that, for any n fixed,

d1,n :=
1√
n

n−1∑
i=0

U i
(
m+ (I − U)g1

)
is such that (V jd1,n)j≥0 is an ergodic and stationary sequence of L2(P) martingale differ-
ences with respect to the filtration (F∞,j)j . Hence, by the CLT for ergodic and stationary
martingales, as N →∞,

1√
N

N∑
j=1

V jd1,n →D G1,n ,

where G1,n is a centered random Gaussian with standard deviation Cn = ‖d1,n‖2. Since(
N−1/2

∣∣∑N
j=1 V

jd1,n
∣∣)
N≥1 is uniformly integrable, by the convergence of moments the-

orem (see [1, Th. 3.5]) we have in particular that

lim
N→∞

1√
N

∥∥∥ N∑
j=1

V jd1,n

∥∥∥
1

= ‖G1,n‖1 =

√
2

π
Cn .
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But limN→∞
1√
N

∥∥∑N−1
j=0 V jd1,n

∥∥
1

= limN→∞
1√
nN

∥∥Sn,N (f)
∥∥
1
. So, overall, for any n

fixed,

lim
N→∞

1√
nN

∥∥Sn,N (f)
∥∥
1

=

√
2

π
Cn ,

implying by standard arguments that there exists an increasing subsequence (nk) tending
to infinity such that

lim
k→∞

∣∣∣ 1√
nkk

∥∥Snk,k(f)
∥∥
1
−
√

2

π
Cnk

∣∣∣ = 0 . (27)

Next, note that

C2
n = ‖m‖22 +

2

n
E
(

(I − Un)g1

n−1∑
i=0

U im
)

+
‖(I − Un)g1‖22

n
.

Notice first that since (V j(I − Un)g1)j≥0 is an ergodic and stationary sequence of L2(P)
martingale differences with respect to the filtration (F∞,j)j≥0, we have, by using [1, Th.
3.4] and arguments used to get (19),

‖(I − Un)g1‖2√
n

≤
√
π

2
lim inf
N→∞

1√
nN

∥∥∥ n−1∑
i=0

N−1∑
j=0

U iV j(I − U)g1

∥∥∥
1
.

But, according to the coboundary decomposition (6), for any n fixed,

lim inf
N→∞

1√
nN

∥∥∥ n−1∑
i=0

N−1∑
j=0

U iV j(I − U)g1

∥∥∥
1

= lim inf
N→∞

1√
nN

∥∥∥ n−1∑
i=0

N−1∑
j=0

U iV j(f −m)
∥∥∥
1
.

In addition,

1√
nN

∥∥∥ n−1∑
i=0

N−1∑
j=0

U iV j(f −m)
∥∥∥
1
≤ 1√

nN

∥∥∥ n−1∑
i=0

N−1∑
j=0

U iV jf
∥∥∥
1

+ ‖m‖2 .

So, overall, taking into account condition (9), we get

κ := lim sup
n→∞

‖(I − Un)g1‖2√
n

≤
√
π

2

(
‖m‖2 + lim

n,N→∞

1√
nN

∥∥Sn,N (f)
∥∥
1

)
<∞ . (28)

Now, for any positive real A, write

∣∣∣C2
n − ‖m‖22 −

‖(I − Un)g1‖22
n

∣∣∣ ≤ 2A√
n
‖(I − Un)g1‖1

+ 2
‖(I − Un)g1‖2√

n
×
( 1

n
E
(∣∣∣ n∑

i=1

U im
∣∣∣21{|∑n

i=1 U
im|>A

√
n}

)1/2
. (29)

Hence, using that n−1/2‖(I − Un)g1‖1 →n→∞ 0 and taking into account (28) and the

fact that
(
n−1(

∑n−1
i=0 U

im)2
)
n≥1 is uniformly integrable, we derive that the terms in

the right-hand side of (29) tend to zero by letting first n goes to infinity and after A.
Therefore

lim
n→∞

∣∣∣C2
n − ‖m‖22 −

‖(I − Un)g1‖22
n

∣∣∣ = 0 .
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Assume now that

κ = lim sup
n→∞

1√
n
‖(I − Un)g1‖2 > 0 . (30)

Then, there exists an increasing subsequence (n′`)`≥1 tending to infinity such that

lim
`→∞

1√
n′`
‖(I − Un

′
`)g1‖2 = κ and then lim

`→∞
C2
n′`

= ‖m‖22 + κ2 . (31)

According to (27) and (31), we then infer that if (30) holds true then there exist two
increasing subsequences (n′′` )`≥1 and (k′′` )`≥1 tending to infinity such that

lim
`→∞

1√
n′′` k

′′
`

∥∥∥Sn′′` ,k′′` (f)
∥∥∥
1
>

√
2

π
‖m‖2 . (32)

But, using once again the coboundary decomposition (6), note that

1

n
Sn,n(f) =

1

n
Sn,n(m)+

1

n
(I−Un)

n∑
j=1

V jg1+
1

n
(I−V n)

n∑
i=1

U ig2+
1

n
(I−V n)(I−V n)g3 .

Using that g3 is in L1(P), and the fact that since g1 and g2 are in L1(P), the Birkhoff
theorem in L1(P) implies that

lim
n→∞

1

n
‖(I − Un)

n∑
j=1

V jg1‖1 = 0 and lim
n→∞

1

n
‖(I − V n)

n∑
i=1

U ig2‖1 = 0 ,

we get

lim
n→∞

1

n
‖Sn,n(f)‖1 = lim

n→∞

1

n
‖Sn,n(m)‖1 . (33)

But since n−1Sn,n(m) converges in distribution to a centered Gaussian random variable
with variance ‖m‖22 and ( 1

n |Sn,n(m)|)n≥1 is uniformly integrable, we derive, by the con-
vergence of moments theorem, that

lim
n→∞

1

n
‖Sn,n(m)‖1 =

√
2

π
‖m‖2 .

This result together with (33) imply that

lim
n→∞

1

n
‖Sn,n(f)‖1 =

√
2

π
‖m‖2 . (34)

Clearly, under condition (9), if (30) is supposed to be true, (32) and (34) are not compat-
ible. This proves that (30) cannot be true and then that the first part of (26) is satisfied.
With similar arguments, one can prove that, provided the additional condition (9) is as-
sumed, the second part of (26) is also satisfied. This ends the proof of the proposition
and then of the theorem.

4 Extension to multidimensional index of higher di-
mension

To state the extension of Theorems 3 and 6 to higher dimensions, some additional no-
tations are needed. Let d ≥ 1 and (Ti)i∈Zd be Zd actions on (Ω,A,P) generated by
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commuting invertible and measure-preserving transformations Tεq , 1 ≤ q ≤ d. Here εq is
the vector of Zd which has 1 ate the q-th place and 0 elsewhere. By Ui we denote the
operator in Lp (1 ≤ p ≤ ∞) defined by Uif = f ◦ Ti, i ∈ Zd. By i ≤ j, we understand
ik ≤ jk for all 1 ≤ k ≤ d.

We suppose that there is a completely commuting (Fj)j∈Zd , i.e. there is a σ-algebra

F0 such that Fi = T−iF0, for i ≤ j we have Fi ⊂ Fj and for an integrable f ,

E(E(f |Fi1,...,id)|Fj1,...,jd) = E(f |Fi1∧j1,...,id∧jd) .

By F (k)
` we denote the σ-algebra generated by all Fi with i = (i1, . . . , id) with ik ≤ `

and ij ∈ Z for 1 ≤ j ≤ d, j 6= `. For σ-algebras G ⊂ F ⊂ A, by Lp(F)	Lp(G) we denote
the space of f ∈ Lp(F) for which E(f |G) = 0 a.s.

For f a F0-measurable centered L1(P) random variable, it has been proved in Volný
[9, Th. 4] that the condition

the series
∑

i1,...,id≥0

E(Ui1,...,idf |F0) converges in L1(P) (35)

ensures the existence of the following orthomartingale-coboundary decomposition:

f = m+
∑

∅(J(<d>

∏
s∈J

(I − Us)mJ +

d∏
s=1

(I − Us)g (36)

where < d >:= {1, . . . , d}, m, g and mJ belong to L1(F0,P), L1(
∏d
s=1 TsF0,P) and

L1(
∏
s∈J TsF0,P) respectively and (U

i
<d>m)i∈Zd and (U

i
JcmJ)i∈Zd−|J| are orthomartin-

gale diffferences random fields for ∅ ( J (< d >.

For any positive integer k, define Sk the set of all the permutations of {1, . . . , d}. We
are now in position to state the extension of Theorems 3 and 6 .

Theorem 10 Let d ≥ 1 and f a F0-measurable centered L1(P) random variable. Let

nd = (n1, . . . , nd) and Snd(f) =
∑n1−1
i1=0 . . .

∑nd−1
id=0 Ui1,...,idf . Assume that each of the

transformations Tεq , 1 ≤ q ≤ d, is ergodic. Suppose also that condition (35) holds and
that for any integer k ∈ {1, . . . , d} and all the permutations σ in Sk,

lim inf
nσ(1)→∞

· · · lim inf
nσ(k)→∞

E
(∣∣∑nσ(1)−1

i1=0 . . .
∑nσ(k)−1
ik=0 Ui1,...,ikf

∣∣)
(
∏k
i=1 nσ(i))

1/2
<∞ . (37)

Then m ∈ L2(P) and for any set J such that ∅ ( J (< d >,
∏
s∈J(I − Us)mJ ∈ L2(P)

(m and mJ are defined in (36)). If, in addition,

lim
min(n1,n2,...,nd)→∞

E(|Snd(f)|)
(
∏d
i=1 ni)

1/2
exists, (38)

then (
∏d
i=1 ni)

−1/2Snd(f) converges in distribution to a centered normal variable (that
can be degenerate) as min(n1, n2, . . . , nd)→∞.

Proof of Theorem 10. The result will follow by recurrence. Note that it holds for
d = 1 and also for d = 2 as shown in the previous section. Assume that it holds for d− 1
and let us prove it for d. Recall the decomposition (36) and let

m′ = m+
∑

∅(J⊆<d>1

∏
s∈J

(I − Us)mJ , (39)
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where < d >1=< d > \{1} = {2, . . . , d}. Note that (U i1m
′)i∈Z is a stationary sequence

of L1(P) martingale differences w.r.t. (Fi,0,...,0)i∈Z. Since T1 is ergodic, according to
Theorem 2, if

lim inf
n→∞

E(|
∑n−1
i=0 U

i
1m
′|)√

n
<∞ ,

then m′ ∈ L2(P). This follows from the decomposition (36) and the fact that, by condition

(37), lim infn→∞
E(|

∑n−1
i=0 Ui1f |)√
n

< ∞. Next, starting from (39), and taking into account

the induction hypothesis, namely: Theorem 10 holds for d − 1, we infer that if for any
integer k ∈ {2, . . . , d} and all the permutations σ in Sk,

lim inf
nσ(1)→∞

· · · lim inf
nσ(k)→∞

E
(∣∣∑nσ(1)−1

i1=0 . . .
∑nσ(k)−1
ik=0 Ui1,...,ikm

′
∣∣)

(
∏k
i=1 nσ(i))

1/2
<∞ . (40)

then m ∈ L2(P) and, for any set J such that ∅ ( J (< d >1,
∏
s∈J(I − Us)mJ ∈ L2(P).

By using similar arguments as those developed in the proof of Theorem 3, we infer that
(40) is satisfied under condition (37). Hence m ∈ L2(P). Then, using in addition that
m′ ∈ L2(P), we conclude that, for any set J such that ∅ ( J ⊆< d >1,

∏
s∈J(I−Us)mJ ∈

L2(P). The first part of Theorem 10 follows by using d − 1 times the same arguments
and replacing < d >1 by < d >i for i = 2, . . . , k. The second part of the theorem follows
by applying the CLT for ergodic and stationary fields of orthomartingales as proved in
Volný [8] for (

∏d
i=1 ni)

−1/2Snd(m) and by using similar arguments as those developed in
the proof of Theorem 6.
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