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Abstract
We formulate an equilibrium model of intraday trading
in electricity markets. Agents face balancing constraints
between their customers consumption plus intraday
sales and their production plus intraday purchases.
They have continuously updated forecast of their cus-
tomers consumption at maturity. Forecasts are prone
to idiosyncratic noise and common noise (weather).
Agents production capacities are subject to independent
random outages, which are each modeled by a Markov
chain. The equilibrium price is defined as the price
that minimizes trading cost plus imbalance cost of each
agent and satisfies the usual market clearing condition.
Existence and uniqueness of the equilibrium are proved,
and we show that the equilibrium price and the optimal
trading strategies are martingales. The main economic
insights are the following: (i) when there is no uncer-
tainty on generation, it is shown that the market price
is a convex combination of forecasted marginal cost of
each agent, with deterministic weights. Furthermore,
the equilibriummarket price is consistent with Almgren
and Chriss’s model, and we identify the fundamental
part and the permanent market impact. It turns out that
heterogeneity across agents is a necessary condition
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for Samuelson’s effect to hold. We show that when
heterogeneity lies only on costs, Samuelson’s effect
holds true. A similar result stands when heterogeneity
lies only on market access quality. (ii) When there is
production uncertainty only, we provide an approxima-
tion of the equilibrium for large number of players. The
resulting price exhibits increasing volatility with time.

KEYWORDS
coupled forward–backward SDE with jumps, equilibrium model,
intraday electricity markets, martingale optimality principle,
Samuelson’s effect

1 INTRODUCTION

Because electricity cannot be stored, the development of competitive electricity markets has led
to the introduction of intraday markets. The purpose of these markets whose time-horizon does
not exceed more than 36 h is to allow electricity market players to balance their position between
their customers consumption and their generation for each hour of the day and avoid expensive
imbalance costs. In the last decade, due to the high uncertainty of newly built wind generation
production, the need of short-term balancing mechanism has increased. For electric utilities and
intradaymarket players, themain problem is to find the optimal trading strategy that wouldmini-
mize trading and imbalance costs. Indeed, they face the alternative of either building a precaution-
ary position to cope with potential adverse and costly situation (anticipation strategy) or simply
adapt their position when a new situation occurs (adaptation strategy). From a financial research
point of view, intraday electricity markets offer a remarkable case of short-term physical futures
market. They present convergent stylized facts about liquidity and volatility of intraday prices;
liquidity depth and volatility both increase with time closer to delivery (see Kiesel and Paraschiv
(2017), Balardy (2018), Kremer et al. (2020), Glas et al. (2020), Deschatre and Gruet (2021)).
This paper is a contribution to the understanding of the optimal trading strategy and of the

drivers of the volatility and the liquidity of intraday markets. We develop an equilibriummodel of
intraday trading for a fixed hour of delivery 𝑇 that allows to explain and understand the optimal
trading strategies of market players and the market price dynamics. We consider that the market
is composed of 𝑁 agents 𝑖 having each a forecast 𝐷𝑖

𝑡 at time 𝑡 ∈ [0, 𝑇] of their customers con-
sumption at time 𝑇. We suppose that the volatility 𝜎𝑖𝑡 of the demand forecast is deterministic. The
demand forecast of each agent is affected both by an individual Brownian noise and a collective
Brownian noise with correlation 𝜌𝑖 , reflecting the dependence of market players to weather and
global economic conditions. Further, each agent is endowed with a generation capacity with lin-
ear marginal cost of coefficient 𝛽𝑖𝑡. Further, 𝛽

𝑖
𝑡 evolves following aMarkov chain, capturing by this

way the possibility of power plant outages driving the marginal cost of an agent from a low to a
high cost (and vice versa). Agents can buy or sell power for delivery at time 𝑇 at the market price
plus a liquidity premium 𝛾𝑖𝑞

𝑖
𝑡 proportional to the trade 𝑞

𝑖
𝑡. This premium translates the potential

different market access cost of agents. The objective of each agent is to minimize the expected
total trading cost plus the costs of imbalance 𝜂𝑖(𝐷𝑖

𝑇 − 𝑋𝑖
𝑇 − 𝜉𝑖𝑇)

2 where 𝜂𝑖 represents agent’s 𝑖 own
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perception of the cost of imbalance, 𝑋𝑖
𝑇 and 𝜉

𝑖
𝑇 are the inventory and the production of the agent

at 𝑇. Although the cost of imbalance is fixed by the electricity network operator and is the same
for any market player, we allow for different evaluation of the cost of imbalance, translating the
possibility that some players may have strong reluctance for imbalances while other might not
care as much. All information regarding the state of the system is considered public. This point
is particularly relevant in the case of intraday electricity markets: under REMIT financial regula-
tion, market players have to report any unplanned outages to the market before a trading position
can be taken. A market equilibrium is defined as trading strategies and a market price such that
each agent hasminimized her criteria and themarket clears for themarket price. Thismodel owes
agent’s features to Aïd et al. (2016) and Tan and Tankov (2018) (see Edoli et al. (2017) for a vari-
ant without market impact but with a risk-averse agent). However, compared to the single-agent
model in Aïd et al. (2016), we consider here a market equilibrium with 𝑁 agents, and incorpo-
rate uncertainty in the production capacity. Moreover, since we aim to find an equilibrium, the
price has to be endogenously determined, which means that we have to work a priori in a non-
Markovian context. Therefore, instead of using the Bellman equation as in Aïd et al. (2016), we
shall employ techniques from backward stochastic differential equations (SDEs) with jumps.
Moreover, this framework allows us to analyze the time variation of the market price volatility

in the context of an equilibrium under perfect competition and full information. Since the semi-
nal paper by Samuelson (1965) where the increase of volatility closer to maturity was posited and
a first explanation was proposed, a whole stream of financial economics literature has developed
to test, study, and explain this effect, named after its author, the Samuelson’s effect (or Samuel-
son’s hypothesis or maturity effect, or in the present context of this paper the effect). The increase
in futures prices volatility closer to maturity has been statistically demonstrated to hold for many
commodities. The effect has been found for agricultural commodities (Bessembinder et al. (1996),
Duong and Kalev (2008)), whereas only mixed results were shown for metals (see Ng and Pirrong
(1994) for a positive effect and Brooks (2020) for a negative one). In the case of crude oil, most
studies find no effect (Galloway and Kolb (1996), Duong and Kalev (2008)). In the case of elec-
tricity, the effect has been obtained for other maturities than the intraday: for example, Jaeck and
Lautier (2016) finds the effect for monthly contract delivery on several markets.
The literature proposes several potential reasons why or conditions under which the effect

should hold or not. The most discussed theories are the the flow of information, the state-variable
hypothesis, and the cost of carry. Explanations based on the flow of information rely on the obser-
vation that far from maturity, the increase of information from one day to another on market
conditions at maturity evolves slower than closer to maturity. This point was raised in Samuel-
son’s initial paper who then derived the effect in a model based on two hypothesis: the spot price
is mean-reverting and the futures price is the conditional expectation of the spot price. Hong
(2000) added to this theory that symmetry of information between players should hold for the
effect to be observed or equivalently information asymmetry could break the maturity effect.
The state-variable hypothesis was formulated by Anderson and Danthine (1983) and Anderson
(1985). It states that the monotonicity (if any) of the volatility of futures prices depends on the way
uncertainty on the equilibrium between demand and supply is resolved. In particular, in the case
where there is no supply uncertainty and volatility of demand uncertainty decreases with time,
this hypothesis predicts that the futures price volatility may decrease. The cost of carry (or storage
cost) condition has been formulated by Bessembinder et al. (1996). It states that a necessary con-
dition for the effect to hold is that the cost of carry1 should be negatively correlated with the spot
price. Routledge et al. (2000) showed that the effect could break downwhen storage is high, which
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is consistent with the cost of carry condition. Brooks (2020) developed this condition by making
the difference between futures markets where carry arbitrage is still possible and those where it is
not, and by stating that the effect holds only on the former. To our knowledge, no necessary and
sufficient condition has been proposed so far.
In our framework, we obtain the following results. We prove existence and uniqueness of the

equilibrium. The proof is based on the martingale optimality principle in stochastic control, and
existence of solution to backward stochastic differential equations (backward SDEs) with jumps,
for which we provide a complementary existence result to Becherer (2002). We show that both
the equilibrium price and the optimal trading strategies are martingales, and they are character-
ized in terms of a coupled system of forward-backward SDE that we solve with explicit formulae.
While the machinery of backward SDEs for tackling stochastic control is not new, our main con-
tribution is to show how it can be applied in the context of market equilibrium to obtain not only
an existence/uniqueness result, but also to find explicitly solutions, leading to quantitative eco-
nomic insight. Let us mention the recent paper by Escauriaza et al. (2020), which also uses BSDE
techniques (without jumps) for proving the existence of a Radner equilibrium.
In the case where there is no production cost uncertainty, we observe that the market price is a

convex combination of the forecastedmarginal cost of each agentwhere theweights are determin-
istic functions of time. The optimal trading rate of each agent consists in comparing her forecasted
marginal cost to the market price and to take position accordingly, that is, to sell (resp. to buy) if
it is lower (resp. higher). Thus, we find that the adaptation strategy, which is the most common
strategy implemented in intraday trading desks is optimal, in the sense that, at equilibrium, amar-
ket player cannot hope to do much better. This result is in line with the papers by Aïd et al. (2016)
and Tan and Tankov (2018), and complements their findings. Further, we show that the equilib-
rium price has the form of Almgren and Chriss model (Almgren and Chriss (2001)). We identify
the fundamental part of the price as the average forecasted marginal cost to satisfy the demands
and identify the market permanent impact of each agents. Permanent market impacts are deter-
ministic function of time with a monotony depending on the agent. If all agents are identical, the
market equilibrium reduces to its fundamental component because of the market clearing con-
dition. This result closes the unanswered question of the origin of the fundamental price in Aïd
et al. (2016), Tan and Tankov (2018), and more recently Féron et al. (2020).
The closed-form expression derived for the price and the trading strategies allows us to pro-

vide insight on the dynamics of the price volatility defined as the quadratic variation of the price.
Contrary to the recent work of Féron et al. (2020) where the Samuelson’s effect is obtained in
a mean-field Nash equilibrium model of intraday trading, we do not need to resolve to strategic
interactions to find conditions for the effect. We show that if all agents are identical, the price
volatility monotonicity is fully determined by the volatility of the demand forecasts. In our case,
the demand forecasts volatilities are decreasing in time (see Nedellec et al. (2014)). Thus, it implies
that if Samuelson’s effect holds true, agentsmust be heterogeneous. As a consequence, the Ander-
son and Danthine state variable hypothesis is not sufficient to explain increasing price volatility
in a context of decreasing demand forecast volatility. We provide numerical illustrations where
the mixing of agents of two different types allows to have decreasing or increasing volatility func-
tions depending on the proportion of the agent’s type. Because heterogeneity between agents can
take complicated combinations, we provide two situations where the heterogeneity with respect
to one single parameter can sustain the maturity effect. Consider that agents have the same con-
stant demand volatility and the same correlation to common noise, we show that if they differ
either by their marginal cost or by their market access quality, the Samuelson’s effect does hold.
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Although beyond the scope of our theoretical work, this result opens the possibility of testable
predictions due to the observability of these parameters.
In the case where there is only production cost uncertainty, we show that if the number of

agents is large, the equilibrium tends to the case of no production cost uncertainty by the inde-
pendence of jumps in the Markov chains between agents. This result enables to simulate an
approximated equilibrium price process and the corresponding approximated trading strategies.
To provide a vivid illustration of the possible dynamics, we pick a situation where the market is
composed of two large populations each of them having only two potential states for their cost
(good or bad). Further, the first population enjoys high but stable marginal costs (low transition
probability between states) whereas the other enjoys either zero or very high marginal cost with
high transition probability. These features are intended to capture the high volatility of genera-
tion of intermittent sources of energy like windpower. The resulting equilibrium price process
exhibits the Samuelson’s effect. More specifically, this pure jump model succeeds in reproducing
one important feature of the observed intraday price. During the first 60% of the period, the price
does not change and trading rates are low whereas in the last 10% of the period, the price experi-
ences large swings and trading rates are high. Besides, this behavior of the price admits a simple
explanation in line with the information flow explanation of Samuelson (1965) and Hong (2000).
Since there is a large number of players in the second population, there are always some players
experiencing a change of marginal cost from good to bad (or vice versa). Far from maturity, this
change has not much consequence as the player can still have the hope to experience the return
to the other state or still have time to compensate its position by taking the appropriate trading
position. But closer to maturity, when some players of the second population switch from good
to bad, they suddenly switch from being long to being short and have little time to adjust their
positions and thus, need to trade at a high speed.
The paper is structured as follows. Section 2 describes precisely the model. We provide in Sec-

tion 3 the main results in terms of optimal strategies of each player for a given price process.
Section 4 gives the market equilibrium characterization by solving explicitly the coupled system
of forward–backward SDE, and the martingale properties of the equilibrium price. We describe in
Section 5 themarket equilibrium in the case of no production uncertaintywhile Section 6 provides
the result in the other case.

2 THE EQUILIBRIUMMODEL

Weconsider an economywith𝑁 ∈ ℕ∖{0} power producers, which can buy/sell energy on an intra-
day electricity market. Their purpose is to satisfy the demand of their customers at a given fixed
time 𝑇, minimizing trading costs.

2.1 Single-agent optimal execution problem

FollowingAïd et al. (2016),we formulate the optimization problemof a single agent 𝑖 ∈ {1, 2, … ,𝑁}

in the economy on a finite time horizon 𝑇 > 0. We begin introducing some notations.
Consider a complete probability space (Ω, , ℙ) and a finite set 𝐸 ⊂ (0, +∞) of cardinality𝑀,

where𝑀 is a positive integer. We fix the following quantities at the initial time 𝑡 = 0:

∙ the initial demand forecasts of the agents (𝑑10, 𝑑
2
0, … , 𝑑𝑁0 ) ∈ ℝ𝑁 ;
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∙ the initial production capacities (𝑒10, 𝑒
2
0, … , 𝑒𝑁0 ) ∈ 𝐸𝑁 ;

∙ the initial net positions of the agents of sales/purchases of electricity in the intraday electricity
market (𝑥10, 𝑥

2
0, … , 𝑥𝑁0 ) ∈ ℝ𝑁 .

On (Ω, , ℙ), we consider 𝑁 + 1 independent real-valued Brownian motions
(𝑊0

𝑡 )𝑡≥0, (𝑊1
𝑡 )𝑡≥0, … , (𝑊𝑁

𝑡 )𝑡≥0 and 𝑁 independent continuous-time homogenous Markov
chains (𝛽1𝑡 )𝑡≥0, … , (𝛽𝑁𝑡 )𝑡≥0. We assume that (𝑊0,𝑊1,… ,𝑊𝑁) and (𝛽1, … , 𝛽𝑁) are independent.
Moreover, every Markov chain 𝛽𝑖 is supposed to have finite state space 𝐸, starting point 𝑒𝑖0 at
time 𝑡 = 0: it represents the uncertainty over time on the production capacity of agent 𝑖. We
denote by Λ𝑖 = (𝜆𝑖(𝑒, 𝑒

′) ∶ 𝑒, 𝑒′ ∈ 𝐸) the intensity matrix of 𝛽𝑖 . We also denote by 𝔽 = (𝑡)𝑡≥0 the
augmentation of the filtration generated by (𝑊0,𝑊1,… ,𝑊𝑁) and (𝛽1, … , 𝛽𝑁). Finally,  denotes
the predictable 𝜎-algebra on Ω× [0, 𝑇] associated with 𝔽.
The demand forecast 𝐷𝑖 of agent 𝑖 evolves on [0, 𝑇] according to the equation

𝐷𝑖
𝑡 = 𝑑𝑖0 + 𝜇𝑖 𝑡 + ∫

𝑡

0

𝜎𝑖(𝑠)

(
𝜌𝑖 𝑑𝑊

0
𝑠 +

√
1 − 𝜌2

𝑖
𝑑𝑊𝑖

𝑠

)
, (1)

where 𝜇𝑖 ∈ ℝ, 𝜌𝑖 ∈ [−1, 1] and 𝜎𝑖 ∶ [0, 𝑇] → ℝ is a deterministic function of time. Further, the
dynamics of 𝐷𝑖 takes into account the potential common dependence of realized demands to
weather conditions. In order to satisfy the terminal demand 𝐷𝑖

𝑇 , agent 𝑖 have the two following
possibilities:

∙ Power production. The agent can choose to product a quantity 𝜉𝑖 , facing at the terminal time 𝑇
the cost

𝑐𝑖(𝜉𝑖) =
1

2
𝛽𝑖𝑇 𝜉

2
𝑖
. (2)

∙ Trading in intraday electricity market. Let 𝑋𝑖,𝑞𝑖

𝑡 denote the agent net position of sales/purchases
of electricity at time 𝑡 ∈ [0, 𝑇], delivered at the terminal date 𝑇, which is given by

𝑋
𝑖,𝑞𝑖

𝑡 = 𝑥𝑖0 + ∫
𝑡

0

𝑞𝑖𝑠 𝑑𝑠, (3)

where 𝑞𝑖 , called the trading rate, is chosen by the agent.

We define an admissible pair of controls for each agent 𝑖 as a pair (𝑞, 𝜉) in𝑞 ×𝜉,+, where

𝑞 =

{
𝑞 = (𝑞𝑡)0≤𝑡≤𝑇 ∶ 𝑞 is a real-valued 𝔽-adapted process such that 𝔼∫

𝑇

0

𝑞2𝑡 𝑑𝑡 < +∞

}
,

𝜉,+ = {𝜉 ∶ Ω → [0,+∞) ∶ 𝜉 is an 𝑇-measurable random variable}. (4)

The expected total cost for agent 𝑖 is given by

𝐽𝑖(𝑞
𝑖, 𝜉𝑖) = 𝔼

[
∫

𝑇

0

𝑞𝑖𝑡
(
𝑃𝑡 + 𝛾𝑖 𝑞

𝑖
𝑡

)
𝑑𝑡 + 𝑐𝑖(𝜉𝑖) +

𝜂𝑖
2
(𝐷𝑖

𝑇 − 𝑋
𝑖,𝑞𝑖

𝑇 − 𝜉𝑖)
2

]
, (5)
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where 𝛾𝑖 and 𝜂𝑖 are positive constants, while 𝑃 denotes the intraday electricity quoted price, which
will be endogenously determined in the following class of processes:
𝐋2(0, 𝑇) = the set of all 𝔽-adapted processes 𝑃 = (𝑃𝑡)0≤𝑡≤𝑇 such that

𝔼

[
∫

𝑇

0

|𝑃𝑡|2𝑑𝑡] < ∞. (6)

The agent’s 𝑖 optimization problem consist in trading at minimal cost to achieve a given termi-
nal target, taking into account the liquidity cost of her sales or purchases. We take a potentially
different impact parameter per agent 𝛾𝑖 , capturing here the potential different liquidity cost faced
by market players. In this sense, we deviate from Almgren and Chriss (2001) and Aïd et al. (2016),
in the sense that there is no permanent market impact in agent’s 𝑖 problem. Further, although in
intraday electricity market, the same penalty cost is applied by the transmission system operator
to any market player, we capture the idea that agents may have different appreciation of the cost
of imbalances by using different imbalance cost parameter 𝜂𝑖 . Thus, each agent 𝑖 is characterized
by her cost function with Markov chain 𝛽𝑖 , her valuation of imbalances 𝜂𝑖 , her liquidity access 𝛾𝑖 ,
her demand forecast error function 𝜎𝑖 , and her correlation with the common noise 𝜌𝑖 .
The optimization problem of agent 𝑖 consists in minimizing the expected total cost (Equation

(5)) over all admissible pairs of controls (𝑞, 𝜉) in𝑞 ×𝜉,+. In order to solve such an optimization
problem, we begin noting that we can easily find the optimal 𝜉∗,+

𝑖
∈ 𝜉,+ for agent 𝑖. As a matter

of fact, in the expected total cost (Equation (5)), the control 𝜉𝑖 appears only at the terminal time 𝑇.
Then, the optimal 𝜉∗,+

𝑖
is a nonnegative 𝑇-measurable random variable minimizing the quantity

𝔼

[
𝑐𝑖(𝜉𝑖) +

𝜂𝑖
2

(
𝐷𝑖
𝑇 − 𝑋

𝑖,𝑞𝑖

𝑇 − 𝜉𝑖

)2
]
. (7)

It is then easy to see that 𝜉∗,+
𝑖

is given by

𝜉∗,+
𝑖

=
𝜂𝑖

𝜂𝑖 + 𝛽𝑖𝑇

(
𝐷𝑖
𝑇 − 𝑋

𝑖,𝑞𝑖

𝑇

)+

=

⎧⎪⎨⎪⎩
𝜂𝑖

𝜂𝑖 + 𝛽𝑖𝑇

(
𝐷𝑖
𝑇 − 𝑋

𝑖,𝑞𝑖

𝑇

)
, 𝐷𝑖

𝑇 ≥ 𝑋
𝑖,𝑞𝑖

𝑇 ,

0, 𝐷𝑖
𝑇 < 𝑋

𝑖,𝑞𝑖

𝑇 .

(8)

Remark 2.1. The optimization problem in Equation (5) shares some similarities with optimal exe-
cution problems in equity markets. The key differences are the presence of a stochastic demand
and an uncertain capacity production, which are specific to power trading.

2.2 Auxiliary optimal execution problem

In the present section, inspired by Aïd et al. (2016), we consider a relaxed version of the optimiza-
tion problem for agent 𝑖, where the control 𝜉𝑖 is not constrained to be nonnegative, but it belongs
to the set𝜉 defined as

𝜉 =
{
𝜉 ∶ Ω → ℝ ∶ 𝜉 is an 𝑇-measurable random variable

}
. (9)

 14679965, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

afi.12340 by C
ochrane France, W

iley O
nline L

ibrary on [25/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



524 AID et al.

The optimization problem of agent 𝑖 now consists inminimizing the expected total cost (Equation
(5)) over all admissible pairs of controls (𝑞, 𝜉) in𝑞 ×𝜉 . From the expression of 𝐽𝑖 in Equation
(5), it is straightforward to see that the optimal control 𝜉∗

𝑖
is given by

𝜉∗
𝑖
=

𝜂𝑖

𝜂𝑖 + 𝛽𝑖𝑇

(
𝐷𝑖
𝑇 − 𝑋

𝑖,𝑞𝑖

𝑇

)
. (10)

Plugging 𝜉∗
𝑖
into 𝐽𝑖 , we find (to alleviate notation, we still denote by 𝐽𝑖 the new expected total cost,

that now depends only on the control 𝑞𝑖)

𝐽𝑖(𝑞
𝑖) ∶= 𝐽𝑖(𝑞

𝑖, 𝜉∗
𝑖
) = 𝔼

[
∫

𝑇

0

𝑞𝑖𝑡
(
𝑃𝑡 + 𝛾𝑖 𝑞

𝑖
𝑡

)
𝑑𝑡 +

1

2

𝜂𝑖 𝛽
𝑖
𝑇

𝜂𝑖 + 𝛽𝑖𝑇

(
𝐷𝑖
𝑇 − 𝑋

𝑖,𝑞𝑖

𝑇

)2
]
. (11)

In conclusion, the optimization problem of agent 𝑖 consists in minimizing (Equation (11)) over all
controls 𝑞𝑖 ∈ 𝑞. Because of the presence of the stochastic process 𝑃, we cannot solve such an
optimization problem by means of the Bellman optimality principle, and, in particular, via PDE
methods. For this reason, we rely on the martingale optimality principle, which can be imple-
mented using only probabilistic techniques, based in particular on the theory of backward SDEs.
More specifically, we solve the optimization problem of every agent finding 𝑁 optimal trading
rates 𝑞̂1,𝑃, … , 𝑞̂𝑁,𝑃, which depend on the price process 𝑃. Given the exogenous demands (𝐷𝑖)𝑖 and
production capacities (𝛽𝑖)𝑖 , the equilibrium price 𝑃̂ = (𝑃̂𝑡)0≤𝑡≤𝑇 is then obtained imposing the
equilibrium condition

𝑁∑
𝑖=1

𝑞̂𝑖,𝑃̂𝑡 = 0, for all 0 ≤ 𝑡 ≤ 𝑇. (12)

Remark 2.2. Despite the homogeneous description of market players, the market model above
allows to take into account a diversity of agents like pure retailers, pure producers, or pure traders.
Pure retailers have uncertain terminal demand 𝐷𝑖

𝑇 but no generation plant. They can be repre-
sented taking a constant Markov chain 𝛽𝑖 taking a large value 𝑒𝑖 . Pure producers have no demand
𝐷𝑖
𝑇 to satisfy and are represented by theMarkov chain of their generation cost. Finally, pure traders

have neither a demand to satisfy nor generation asset, but only an initial inventory position.

3 MARTINGALE OPTIMALITY PRINCIPLE AND OPTIMAL
TRADING RATES

The aim of this section is to find an optimal trading rate 𝑞̂𝑖,𝑃 of agent 𝑖 for every fixed price process
𝑃. In order to do it in the present non-Markovian framework (the non-Markovian feature is due
to the presence of the process 𝑃), we consider a value process 𝑉𝑖,𝑞𝑖 = (𝑉

𝑖,𝑞𝑖
𝑡 )0≤𝑡≤𝑇 given by

𝑉
𝑖,𝑞𝑖

𝑡 = ∫
𝑡

0

𝑞𝑖𝑠 (𝑃𝑠 + 𝛾𝑖 𝑞
𝑖
𝑠)𝑑𝑠 +

(
𝐷𝑖
𝑡 − 𝑋

𝑖,𝑞𝑖

𝑡

)2

𝑌2,𝑖
𝑡 +

(
𝐷𝑖
𝑡 − 𝑋

𝑖,𝑞𝑖

𝑡

)
𝑌1,𝑖
𝑡 + 𝑌0,𝑖

𝑡 , (13)

for all 0 ≤ 𝑡 ≤ 𝑇, with 𝑌2,𝑖 , 𝑌1,𝑖 , 𝑌0,𝑖 satisfying suitable backward SDEs, namely Equations (23),
(32), and (43) below. Then, the optimal trading rate 𝑞̂𝑖,𝑃 is obtained using the martingale optimal-
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AID et al. 525

ity principle, namely imposing that for such a 𝑞̂𝑖,𝑃, the value process 𝑉𝑖,𝑞̂𝑖,𝑃 is a true martingale,
while it has to be a submartingale for any other trading rate 𝑞𝑖 (for more details on the martingale
optimality principle see items (i)-(ii)-(iii) in the proof of Theorem 3.6 below).
The present section is organized as follows. We firstly consider the three building blocks of for-

mula (13), namely Equations (23), (32), and (43) (whose forms are chosen in order to satisfy the
martingale/submartingale requirements of the value process) and prove an existence and unique-
ness result for each of them. Then, exploiting the properties of the value process 𝑉𝑖,𝑞𝑖 , we prove
the main result of this section, namely Theorem 3.6.

3.1 Notations and preliminary results

First of all, we introduce some notations. We denote by 𝜋𝑖 the jumpmeasure of the Markov chain
𝛽𝑖 , which is given by 𝜋𝑖 =

∑
𝑡∶𝛽𝑖𝑡≠𝛽𝑖𝑡− 𝛿(𝑡,𝛽𝑖𝑡), where 𝛿(𝑡,𝛽𝑖𝑡) is the Dirac delta at (𝑡, 𝛽

𝑖
𝑡). We also denote

by 𝜈𝑖 the compensator of 𝜋𝑖 , which has the following form (see for instance Section 8.3 and, in
particular, Theorem 8.4 in Darling and Norris (2008)):

𝜈𝑖(𝑑𝑡, {𝑒}) = 𝜆𝑖(𝛽
𝑖
𝑡−, 𝑒) 1{𝛽𝑖𝑡−≠𝑒} 𝑑𝑡, ∀ 𝑒 ∈ 𝐸. (14)

In addition to the set 𝐋2(0, 𝑇) previously defined, we introduce the following sets:

∙ 𝐒∞(0, 𝑇): the set of all bounded càdlàg 𝔽-adapted processes on [0, 𝑇].
∙ 𝐒2(0, 𝑇): the set of all càdlàg𝔽-adapted processes𝑌 = (𝑌𝑡)0≤𝑡≤𝑇 satisfying𝔼[sup0≤𝑡≤𝑇 |𝑌𝑡|2] < ∞.
∙ 𝐋2

Pred(0, 𝑇): the set of all𝔽-predictable processes 𝑍 = (𝑍𝑡)0≤𝑡≤𝑇satisfying 𝔼[∫ 𝑇

0
|𝑍𝑡|2𝑑𝑡] < ∞.

∙ 𝐋2
𝛽𝑖
(0, 𝑇): the set of all  ⊗ (𝐸)-measurable maps𝑈 ∶ Ω × [0, 𝑇] × 𝐸 → ℝ satisfying

𝔼

[
∫

𝑇

0

∑
𝑒∈𝐸

|𝑈𝑡(𝑒)|2𝜆𝑖(𝛽𝑖𝑡−, 𝑒)1{𝛽𝑖𝑡−≠𝑒}𝑑𝑡
]
< ∞. (15)

Here(𝐸) denotes the Borel 𝜎-algebra of 𝐸,which turns out to be equal to the power set of 𝐸, since
𝐸 is a finite subset of (0, +∞).

Construction of 𝑌2,𝑖

Let us construct the first building block of formula (13), namely 𝑌2,𝑖 . First of all, for every
𝑖 = 1, … ,𝑁, consider the following system of𝑀 (recall that the set 𝐸 has cardinality𝑀) coupled
ordinary differential equations of Riccati type on the time interval [0, 𝑇]:

𝑦′
𝑖,𝑒
(𝑡) =

1

𝛾𝑖
|𝑦𝑖,𝑒(𝑡)|2 − ∑

𝑒∈𝐸

𝑦𝑖,𝑒(𝑡)𝜆𝑖(𝑒, 𝑒), 𝑦𝑖,𝑒(𝑇) =
1

2

𝜂𝑖 𝑒

𝜂𝑖 + 𝑒
, (16)

for every 𝑒 ∈ 𝐸.

Lemma 3.1. For every 𝑖 = 1, … ,𝑁, there exists a unique continuously differentiable solution 𝐲𝑖 =

(𝑦𝑖,𝑒)𝑒∈𝐸 ∶ [0, 𝑇] → ℝ𝑀 to the system of equations (Equation (16)). Moreover, every component 𝑦𝑖,𝑒
of 𝐲𝑖 is nonnegative on the entire interval [0, 𝑇].

 14679965, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

afi.12340 by C
ochrane France, W

iley O
nline L

ibrary on [25/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



526 AID et al.

Proof. For simplicity of notation, we fix 𝑖 ∈ {1, … ,𝑁} and denote 𝐲𝑖 = (𝑦𝑖,𝑒)𝑒∈𝐸 simply by 𝐲 =

(𝑦𝑒)𝑒∈𝐸 . Notice that system (16) can be equivalently rewritten in forward form as follows:

𝑦̂′𝑒(𝑡) = −
1

𝛾𝑖
|𝑦̂𝑒(𝑡)|2 + ∑

𝑒∈𝐸

𝑦̂𝑒(𝑡)𝜆𝑖(𝑒, 𝑒), 𝑦̂𝑒(0) =
1

2

𝜂𝑖 𝑒

𝜂𝑖 + 𝑒
, (17)

with 𝑦̂𝑒(𝑡) = 𝑦𝑒(𝑇 − 𝑡), for all 0 ≤ 𝑡 ≤ 𝑇. By the classical Picard–Lindelöf theorem (see for instance
Theorem II.1.1 in Hartman (2002)), it follows that there exists an interval [0, 𝛿) ⊂ [0, +∞) on
which system (16) admits a unique solution denoted by 𝐲̂ = (𝑦̂𝑒)𝑒∈𝐸 . Let us prove that such a solu-
tion can be extended to the entire interval [0, +∞), so that, in particular, 𝐲̂ is defined on [0, 𝑇].
According to standard extension theorems for ordinary differential equations (see for instance

Corollary II.3.1 in Hartman (2002)), it is enough to prove that the solution 𝐲̂ does not blow up in
finite time. This holds true for system (17) as a consequence of the two following properties:

(1) every component 𝑦̂𝑒 of 𝐲̂ is nonnegative on the entire interval [0, +∞);
(2) the sum

∑
𝑒∈𝐸

𝑦̂′𝑒(𝑡) is bounded from above by a constant independent of 𝑡 ∈ [0, +∞).

We begin proving item (1). Define 𝑡0 = inf {𝑡 ≥ 0 ∶ min𝑒∈𝐸 𝑦̂𝑒(𝑡) ≤ 0}, with inf ∅ = +∞. We prove
that every 𝑦̂𝑒, 𝑒 ∈ 𝐸, is strictly positive on [0, 𝑡0) and identically equal to zero on [𝑡0, +∞) (in the
case 𝑡0 = +∞, every 𝑦̂𝑒 is strictly positive on the entire interval [0,∞)). If 𝑡0 = +∞, there is nothing
to prove. Therefore, suppose that 𝑡0 < +∞, so that there exists 𝑒0 ∈ 𝐸 such that 𝑦̂𝑒0 (𝑡0) = 0. Since
for every 𝑒 ∈ 𝐸 we have 𝑦̂𝑒(0) > 0, then 𝑡0 > 0 and, by continuity, every component 𝑦̂𝑒 is strictly
positive on the interval [0, 𝑡0). It remains to prove that every 𝑦̂𝑒 is identically equal to zero on
[𝑡0, +∞). Using Equation (17), this latter property follows if we prove that every 𝑦̂𝑒 is equal to zero
at 𝑡0 (as a matter of fact, if this is true, then from Equation (17) we deduce that every 𝑦̂𝑒 remains
at zero for all 𝑡 > 𝑡0). In order to prove that every 𝑦𝑒 is zero at 𝑡0, we proceed by contradiction
and assume that there exists 𝑒1 ∈ 𝐸 such that 𝑦̂𝑒1 (𝑡0) > 0. Then, it follows from Equation (17) that
𝑦̂′𝑒0 (𝑡0) > 0. This is in contradictionwith the fact that 𝑦̂𝑒0 is strictly positive on [0, 𝑡0) (which implies
that 𝑦̂′𝑒0 (𝑡0) ≤ 0). This concludes the proof of item (1).
Let us now prove item (2). Taking the sum over 𝑒 ∈ 𝐸 in Equation (17), we obtain

∑
𝑒∈𝐸

𝑦̂′𝑒(𝑡) = −
1

𝛾𝑖

∑
𝑒∈𝐸

|𝑦̂𝑒(𝑡)|2 + ∑
𝑒,𝑒∈𝐸

𝑦̂𝑒(𝑡)𝜆𝑖(𝑒, 𝑒). (18)

By Young’s inequality (𝑎𝑏 ≤ 𝑎2∕(2𝛾𝑖) + 𝛾𝑖 𝑏
2∕2) we find

∑
𝑒,𝑒∈𝐸

𝑦̂𝑒(𝑡)𝜆𝑖(𝑒, 𝑒) =
∑
𝑒∈𝐸

𝑦̂𝑒(𝑡)

(∑
𝑒∈𝐸

𝜆𝑖(𝑒, 𝑒)

)
≤ 1

2𝛾𝑖

∑
𝑒∈𝐸

|𝑦̂𝑒(𝑡)|2 + 𝐶̂, (19)

with

𝐶̂ ∶=
𝛾𝑖
2

∑
𝑒∈𝐸

|||| ∑𝑒∈𝐸 𝜆𝑖(𝑒, 𝑒)||||
2

. (20)
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AID et al. 527

Plugging Equation (19) into Equation (18), we end up with

∑
𝑒∈𝐸

𝑦̂′𝑒(𝑡) ≤ −
1

2𝛾𝑖

∑
𝑒∈𝐸

|𝑦̂𝑒(𝑡)|2 + 𝐶̂ ≤ 𝐶̂, (21)

which concludes the proof of item (2). □

By Lemma 3.1, we know that there exists a unique 𝐶1-solution 𝐲𝑖 = (𝑦𝑖,𝑒)𝑒∈𝐸 to system (16).
Then, define the stochastic process

𝑌2,𝑖
𝑡 = 𝑦𝑖,𝛽𝑖𝑡

(𝑡), for all 0 ≤ 𝑡 ≤ 𝑇. (22)

As it will be proved in Proposition 3.2 below, 𝑌2,𝑖 solves the following backward SDE on [0, 𝑇],
driven by the Markov chain 𝛽𝑖 , with quadratic growth in the component 𝑌2,𝑖:

𝑌2,𝑖
𝑡 =

1

2

𝜂𝑖 𝛽
𝑖
𝑇

𝜂𝑖 + 𝛽𝑖𝑇
+ ∫

𝑇

𝑡

𝑓2,𝑖
𝑠 𝑑𝑠 − ∫

(𝑡,𝑇]×𝐸

𝑈2,𝑖
𝑠 (𝑒) (𝜋𝑖 − 𝜈𝑖)(𝑑𝑠, 𝑑𝑒), (23)

for all 0 ≤ 𝑡 ≤ 𝑇, where

𝑓2,𝑖
𝑡 = −

1

𝛾𝑖
|𝑌2,𝑖

𝑡 |2, (24)

and

𝑈2,𝑖
𝑡 (𝑒) = 𝑦𝑖,𝑒(𝑡) − 𝑦𝑖,𝛽𝑖𝑡−

(𝑡). (25)

Proposition 3.2. For every 𝑖 = 1, … ,𝑁, the backward Equation (23) admits a unique solution
(𝑌2,𝑖, 𝑈2,𝑖) ∈ 𝐒∞(0, 𝑇) × 𝐋2

𝛽𝑖
(0, 𝑇) given by Equations (22) and (25). Moreover, 𝑌2,𝑖 is nonnegative.

Proof. Let (𝑌2,𝑖, 𝑈2,𝑖) be the pair given by Equations (22) and (25). Notice that (𝑌2,𝑖, 𝑈2,𝑖) belongs
to 𝐒∞(0, 𝑇) × 𝐋2

𝛽𝑖
(0, 𝑇). As a matter of fact

sup
0≤𝑡≤𝑇

||𝑌2,𝑖
𝑡

|| = sup
0≤𝑡≤𝑇 |𝑦𝑖,𝛽𝑖𝑡 (𝑡)| ≤ sup

0≤𝑡≤𝑇max
𝑒∈𝐸

|𝑦𝑖,𝑒(𝑡)| < +∞, (26)

and

𝔼

[
∫

𝑇

0

∑
𝑒∈𝐸

|||𝑈2,𝑖
𝑡 (𝑒)

|||2𝜆𝑖(𝛽𝑖𝑡−, 𝑒)𝑑𝑡
]
= 𝔼

[
∫

𝑇

0

∑
𝑒∈𝐸

|||𝑦𝑖,𝑒(𝑡) − 𝑦𝑖,𝛽𝑖𝑡−
(𝑡)

|||2𝜆𝑖(𝛽𝑖𝑡−, 𝑒)𝑑𝑡
]

≤ 𝔼

[
∫

𝑇

0

∑
𝑒∈𝐸

(
2||𝑦𝑖,𝑒(𝑡)||2 + 2

|||𝑦𝑖,𝛽𝑖𝑡−(𝑡)|||2
)
𝜆𝑖(𝛽

𝑖
𝑡−, 𝑒)𝑑𝑡

]

≤ 4𝑀 ∫
𝑇

0

max
𝑒∈𝐸

|𝑦𝑖,𝑒(𝑡)|2(∑
𝑒∈𝐸

𝜆𝑖
(
𝛽𝑖𝑡−, 𝑒

))
𝑑𝑡 < +∞, (27)
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528 AID et al.

where recall that𝑀 is the cardinality of the set 𝐸. It remains to prove that (𝑌2,𝑖, 𝑈2,𝑖) solves Equa-
tion (23). Applying Itô’s formula to 𝑦𝑖,𝛽𝑖⋅ (⋅) between 𝑡 ∈ [0, 𝑇) and 𝑇, we find

𝑦𝑖,𝛽𝑖
𝑇
(𝑇) = 𝑦𝑖,𝛽𝑖𝑡

(𝑡) + ∫
𝑇

𝑡

𝑦′
𝑖,𝛽𝑖𝑠

(𝑠)𝑑𝑠 +
∑

𝑡<𝑠≤𝑇

(
𝑦𝑖,𝛽𝑖𝑠

(𝑠) − 𝑦𝑖,𝛽𝑖𝑠−
(𝑠)

)
. (28)

Now, since
∑

𝑒∈𝐸
𝜆𝑖(𝑒, 𝑒) = 0, Equation (16) can be rewritten as follows:

𝑦′
𝑖,𝑒
(𝑡) =

1

𝛾𝑖
|𝑦𝑖,𝑒(𝑡)|2 − ∑

𝑒∈𝐸

(
𝑦𝑖,𝑒(𝑡) − 𝑦𝑖,𝑒(𝑡)

)
𝜆𝑖(𝑒, 𝑒). (29)

Therefore

∫
𝑇

𝑡

𝑦′
𝑖,𝛽𝑖𝑠

(𝑠)𝑑𝑠 = −∫
𝑇

𝑡

𝑓2,𝑖
𝑠 𝑑𝑠 − ∫

𝑇

𝑡
∫
𝐸

𝑈2,𝑖
𝑠 (𝑒) 𝜈𝑖(𝑑𝑠, 𝑑𝑒). (30)

On the other hand, we have

∑
𝑡<𝑠≤𝑇

(
𝑦𝑖,𝛽𝑖𝑠

(𝑠) − 𝑦𝑖,𝛽𝑖𝑠−
(𝑠)

)
= ∫

(𝑡,𝑇]×𝐸

𝑈2,𝑖
𝑠 (𝑒) 𝜋𝑖(𝑑𝑠, 𝑑𝑒). (31)

Hence, plugging Equations (30) and (31) into Equation (28), we obtain Equation (23). □

Construction of 𝑌1,𝑖

Let us construct the second ingredient of formula (13), namely 𝑌1,𝑖 , which will be denoted by
𝑌1,𝑖,𝑃 to emphasize its dependence on 𝑃. For every 𝑖 = 1, … ,𝑁 and any 𝑃 ∈ 𝐋2(0, 𝑇), consider the
following linear backward SDE on [0, 𝑇], driven by the Brownian motions 𝑊0,𝑊1,… ,𝑊𝑁 and
the Markov chains 𝛽1, … , 𝛽𝑁 :

𝑌1,𝑖,𝑃
𝑡 = ∫

𝑇

𝑡

𝑓1,𝑖,𝑃
𝑠 𝑑𝑠 −

𝑁∑
𝑗=0

∫
𝑇

𝑡

𝑍
1,𝑖,𝑗,𝑃
𝑠 𝑑𝑊

𝑗
𝑠 −

𝑁∑
𝑗=1

∫
(𝑡,𝑇]×𝐸

𝑈
1,𝑖,𝑗,𝑃
𝑠 (𝑒) (𝜋𝑗 − 𝜈𝑗)(𝑑𝑠, 𝑑𝑒), (32)

where

𝑓1,𝑖,𝑃
𝑡 = 2𝜇𝑖𝑡𝑌

2,𝑖
𝑡 +

1

𝛾𝑖
𝑌2,𝑖
𝑡

(
𝑃𝑡 − 𝑌1,𝑖,𝑃

𝑡

)
. (33)

Notice that Equation (32) has zero terminal condition at time 𝑇: 𝑌1,𝑖,𝑃
𝑇 = 0. We also observe that

the generator depends linearly on the component 𝑌1,𝑖,𝑃 and it is random (as it depends on 𝑌2,𝑖

and 𝑃). We now address the problem of existence and uniqueness of a solution to Equation (32),
for which we need the following martingale representation result.

Lemma 3.3. For every square-integrable real-valued 𝑇-measurable random variable 𝜁, there exist
𝑍0, 𝑍1, … , 𝑍𝑁 ∈ 𝐋2

Pred(0, 𝑇),𝑈
1 ∈ 𝐋2

𝛽1
(0, 𝑇), …,𝑈𝑁 ∈ 𝐋2

𝛽𝑁
(0, 𝑇) such that

𝜁 = 𝔼[𝜁] +

𝑁∑
𝑗=0

∫
𝑇

0

𝑍
𝑗
𝑠 𝑑𝑊

𝑗
𝑠 +

𝑁∑
𝑗=1

∫
(0,𝑇]×𝐸

𝑈
𝑗
𝑠 (𝑒) (𝜋

𝑗 − 𝜈𝑗)(𝑑𝑠, 𝑑𝑒). (34)

 14679965, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

afi.12340 by C
ochrane France, W

iley O
nline L

ibrary on [25/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



AID et al. 529

Proof. The result is standard and follows for instance from Example 2.1-(2) in Becherer (2002).
For completeness, we report the main steps of the proof. Denote by 𝔽𝑊 = (𝑊

𝑡 )𝑡≥0 (resp. 𝔽𝛽𝑖 =
(𝛽𝑖

𝑡 )𝑡≥0) the augmentation of the filtration generated by (𝑊0,𝑊1,… ,𝑊𝑁) (resp. 𝛽𝑖). It is well-
known that if 𝜁 is 𝑊

𝑇 -measurable (resp. 𝛽𝑖

𝑇 -measurable) then representation (34) holds; indeed,
in this case representation (34) is such that𝑈1,… ,𝑈𝑁 (resp.𝑍0, 𝑍1, … , 𝑍𝑁 and𝑈𝑗 , 𝑗 ≠ 𝑖) are equal
to zero.
It is then easy to see that representation (34) also holds for every 𝜁 of the form 𝜁0𝜁1 ⋯𝜁𝑁 , with

𝜁0 and 𝜁𝑖 , 𝑖 ∈ {1, … ,𝑁}, being respectively 𝑊
𝑇 -measurable and 𝛽𝑖

𝑇 -measurable. The claim fol-
lows from the fact that the linear span of the random variables of the form 𝜁0𝜁1 ⋯𝜁𝑁 is dense in
𝐿2(Ω,𝑇, ℙ;ℝ) (the space of square-integrable real-valued𝑇-measurable randomvariables). □

Proposition 3.4. For every 𝑖 = 1, … ,𝑁 and any 𝑃 ∈ 𝐋2(0, 𝑇), the backward Equation (32) admits
a unique solution (𝑌1,𝑖,𝑃, 𝑍1,𝑖,0,𝑃, 𝑍1,𝑖,1,𝑃, … , 𝑍𝑖,1,𝑁,𝑃, 𝑈1,𝑖,1,𝑃, … ,𝑈1,𝑖,𝑁,𝑃) ∈ 𝐒2(0, 𝑇) × 𝐋2

Pred(0, 𝑇) ×
⋯ × 𝐋2

Pred(0, 𝑇) × 𝐋2
𝛽1
(0, 𝑇) ×⋯ × 𝐋2

𝛽𝑁
(0, 𝑇). Moreover, 𝑌1,𝑖,𝑃 is given by

𝑌1,𝑖,𝑃
𝑡 =

1

Γ𝑖𝑡
𝔼

[
∫

𝑇

𝑡

Γ𝑖𝑠𝑌
2,𝑖
𝑠

(
2𝜇𝑖 +

1

𝛾𝑖
𝑃𝑠

)
𝑑𝑠

||||𝑡

]
, ℙ-a.s., (35)

for all 0 ≤ 𝑡 ≤ 𝑇, where Γ𝑖𝑡 = 𝑒
−

1

𝛾𝑖
∫ 𝑡

0
𝑌
2,𝑖
𝑠 𝑑𝑠

= 𝑒
−

1

𝛾𝑖
∫ 𝑡

0
𝑦
𝑖,𝛽𝑖𝑠

(𝑠)𝑑𝑠
.

Proof. Existence. Fix 𝑖 ∈ {1, … ,𝑁}, 𝑃 ∈ 𝐋2(0, 𝑇) and define (to alleviate notation, wewrite 𝜁𝑖 rather
than 𝜁𝑖,𝑃 as 𝑃 is fixed throughout the proof; we adopt the same convention for all the other quan-
tities involved in the proof)

𝜁𝑖 = ∫
𝑇

0

Γ𝑖𝑠𝑌
2,𝑖
𝑠

(
2𝜇𝑖 +

1

𝛾𝑖
𝑃𝑠

)
𝑑𝑠. (36)

Since 𝜁𝑖 is a square-integrable real-valued 𝑇-measurable random
variable, we can apply Lemma 3.3 from which we deduce the existence of 𝑍̂1,𝑖,0, 𝑍̂1,𝑖,1, … , 𝑍̂1,𝑖,𝑁 ∈

𝐋2

Pred(0, 𝑇), 𝑈̂
1,𝑖,1 ∈ 𝐋2

𝛽1
(0, 𝑇), …, 𝑈̂1,𝑖,𝑁 ∈ 𝐋2

𝛽𝑁
(0, 𝑇) such that

𝜁𝑖 = 𝔼[𝜁𝑖] +

𝑁∑
𝑗=0

∫
𝑇

0

𝑍̂
1,𝑖,𝑗
𝑠 𝑑𝑊

𝑗
𝑠 +

𝑁∑
𝑗=1

∫
(0,𝑇]×𝐸

𝑈̂
1,𝑖,𝑗
𝑠 (𝑒) (𝜋𝑗 − 𝜈𝑗)(𝑑𝑠, 𝑑𝑒). (37)

Now, define 𝑌̂1,𝑖 = (𝑌̂1,𝑖
𝑡 )0≤𝑡≤𝑇 as (the càdlàg version of)(

𝔼

[
∫

𝑇

𝑡

Γ𝑖𝑠𝑌
2,𝑖
𝑠

(
2𝜇𝑖 +

1

𝛾𝑖
𝑃𝑠

)
𝑑𝑠

||||𝑡

])
0≤𝑡≤𝑇

. (38)
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530 AID et al.

Since 𝑃 ∈ 𝐋2(0, 𝑇), we see that 𝑌̂1,𝑖 ∈ 𝐒2(0, 𝑇). Moreover, taking the conditional expectation with
respect to 𝑡 in Equation (37), we obtain

𝑌̂1,𝑖
𝑡 = 𝑌̂1,𝑖

0 − ∫
𝑡

0

Γ𝑖𝑠𝑌
2,𝑖
𝑠

(
2𝜇𝑖 +

1

𝛾𝑖
𝑃𝑠

)
𝑑𝑠 +

𝑁∑
𝑗=0

∫
𝑡

0

𝑍̂
1,𝑖,𝑗
𝑠 𝑑𝑊

𝑗
𝑠

+

𝑁∑
𝑗=1

∫
(0,𝑡]×𝐸

𝑈̂
1,𝑖,𝑗
𝑠 (𝑒) (𝜋𝑗 − 𝜈𝑗)(𝑑𝑠, 𝑑𝑒). (39)

Finally, we define 𝑌1,𝑖 = (𝑌1,𝑖
𝑡 )0≤𝑡≤𝑇 as 𝑌1,𝑖

𝑡 = 𝑌̂1,𝑖
𝑡 ∕Γ𝑖𝑡. Then, noting that

𝑑Γ𝑖𝑡 = −
1

𝛾𝑖
𝑌2,𝑖
𝑡 Γ𝑖𝑡𝑑𝑡, Γ𝑖0 = 1, (40)

applying Itô’s formula to 𝑌̂1,𝑖
𝑡 ∕Γ𝑖𝑡, we get

𝑌1,𝑖
𝑡 = 𝑌1,𝑖

0 − ∫
𝑡

0

𝑌2,𝑖
𝑠

(
2𝜇𝑖 +

1

𝛾𝑖
𝑃𝑠

)
𝑑𝑠 +

𝑁∑
𝑗=0

∫
𝑇

𝑡

𝑍
1,𝑖,𝑗
𝑠 𝑑𝑊

𝑗
𝑠

+

𝑁∑
𝑗=1

∫
(𝑡,𝑇]×𝐸

𝑈
1,𝑖,𝑗
𝑠 (𝑒) (𝜋𝑗 − 𝜈𝑗)(𝑑𝑠, 𝑑𝑒) +

1

𝛾𝑖 ∫
𝑡

0

𝑌1,𝑖
𝑠 𝑌2,𝑖

𝑠 𝑑𝑠, (41)

where

𝑍
1,𝑖,𝑗
𝑡 =

𝑍̂
1,𝑖,𝑗
𝑡

Γ𝑖𝑡
, 𝑈

1,𝑖,𝑗
𝑡 (𝑒) =

𝑈̂
1,𝑖,𝑗
𝑡 (𝑒)

Γ𝑖𝑡
. (42)

This proves that (𝑌1,𝑖, 𝑍1,𝑖,0, 𝑍1,𝑖,1, … , 𝑍1,𝑖,𝑁, 𝑈1,𝑖,1, … ,𝑈1,𝑖,𝑁) solves Equation (32); moreover, since
(Γ𝑖)−1 ∈ 𝐒∞(0, 𝑇), it is easy to see that such a solution belongs to 𝐒2(0, 𝑇) × 𝐋2

Pred(0, 𝑇) ×⋯ ×

𝐋2

Pred(0, 𝑇) × 𝐋2
𝛽1
(0, 𝑇) ×⋯ × 𝐋2

𝛽𝑁
(0, 𝑇).

Uniqueness. Fix 𝑖 ∈ {1, … ,𝑁} and let (𝑌̃1,𝑖 , 𝑍̃1,𝑖,0, 𝑍̃1,𝑖,1, … , 𝑍̃1,𝑖,𝑁, 𝑈̃1,𝑖,1, … , 𝑈̃1,𝑖,𝑁) ∈ 𝐒2(0, 𝑇) ×

𝐋2

Pred(0, 𝑇) ×⋯ × 𝐋2

Pred(0, 𝑇) × 𝐋2
𝛽1
(0, 𝑇) ×⋯ × 𝐋2

𝛽𝑁
(0, 𝑇) be a solution to Equation (32). Apply-

ing Itô’s formula to the product Γ𝑖𝑡𝑌̃
1,𝑖
𝑡 , it is easy to see that 𝑌̃1,𝑖 is given by Equation (35). This

proves the uniqueness of the 𝑌-component, which in turn implies the uniqueness of all other
components and concludes the proof. □

Construction of 𝑌0,𝑖

Let us finally construct the third and last ingredient of formula (13), namely 𝑌0,𝑖,𝑃, which will be
denoted by 𝑌0,𝑖,𝑃 to emphasize its dependence on 𝑃. For every 𝑖 = 1, … ,𝑁 and any 𝑃 ∈ 𝐋2(0, 𝑇),
consider the following backward SDE on [0, 𝑇], driven by the Brownian motions𝑊0,𝑊1,… ,𝑊𝑁

and the Markov chains 𝛽1, … , 𝛽𝑁 :

𝑌0,𝑖,𝑃
𝑡 = ∫

𝑇

𝑡

𝑓0,𝑖,𝑃
𝑠 𝑑𝑠 −

𝑁∑
𝑗=0

∫
𝑇

𝑡

𝑍
0,𝑖,𝑗,𝑃
𝑠 𝑑𝑊

𝑗
𝑠 −

𝑁∑
𝑗=1

∫
(𝑡,𝑇]×𝐸

𝑈
0,𝑖,𝑗,𝑃
𝑠 (𝑒) (𝜋𝑗 − 𝜈𝑗)(𝑑𝑠, 𝑑𝑒), (43)
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AID et al. 531

where

𝑓0,𝑖,𝑃
𝑡 ∶= |𝜎𝑖𝑡|2𝑌2,𝑖

𝑡 + 𝜇𝑖𝑌
1,𝑖,𝑃
𝑡 + 𝜎𝑖𝑡𝜌𝑖𝑍

1,𝑖,0,𝑃
𝑡 + 𝜎𝑖𝑡

√
1 − 𝜌2

𝑖
𝑍1,𝑖,𝑖,𝑃
𝑡 −

1

4𝛾𝑖

(
𝑃𝑡 − 𝑌1,𝑖,𝑃

𝑡

)2

. (44)

Notice that Equation (43) has zero terminal condition at time 𝑇: 𝑌0,𝑖,𝑃
𝑇 = 0.

Proposition 3.5. For every 𝑖 = 1, … ,𝑁 and any 𝑃 ∈ 𝐋2(0, 𝑇), the backward Equation (43) admits
a unique solution (𝑌0,𝑖,𝑃, 𝑍0,𝑖,0,𝑃, 𝑍0,𝑖,1,𝑃, … , 𝑍0,𝑖,𝑁,𝑃, 𝑈0,𝑖,1,𝑃, … ,𝑈0,𝑖,𝑁,𝑃) ∈ 𝐒2(0, 𝑇) × 𝐋2

Pred(0, 𝑇) ×
⋯ × 𝐋2

Pred(0, 𝑇) × 𝐋2
𝛽1
(0, 𝑇) ×⋯ × 𝐋2

𝛽𝑁
(0, 𝑇). Moreover, 𝑌0,𝑖,𝑃 is given by

𝑌0,𝑖,𝑃
𝑡 = 𝔼

[
∫

𝑇

𝑡

(|𝜎𝑖
𝑠|2𝑌2,𝑖

𝑠 + 𝜇𝑖𝑌
1,𝑖,𝑃
𝑠 + 𝜎𝑖

𝑠𝜌𝑖𝑍
1,𝑖,0,𝑃
𝑠 + 𝜎𝑖

𝑠

√
1 − 𝜌2𝑖 𝑍

1,𝑖,𝑖,𝑃
𝑠 −

1

4𝛾𝑖

(
𝑃𝑠 − 𝑌1,𝑖,𝑃

𝑠

)2)
𝑑𝑠

||||𝑡

]
, ℙ-a.s.

(45)
for all 0 ≤ 𝑡 ≤ 𝑇.

Proof. The result can be proved proceeding along the same lines as in the proof of Proposition 3.4,
noting that the backward equation is still linear (in this case, the generator does not even depend
on the unknowns). □

3.2 Main result

We can finally state our main result, which provides the optimal trading rate of agent 𝑖 given a
fixed price process 𝑃.

Theorem 3.6. For every 𝑖 = 1, … ,𝑁 and any 𝑃 ∈ 𝐋2(0, 𝑇), there exists a unique (up to ℙ-
indistinguishability) continuous process 𝑋̂𝑖,𝑃 = (𝑋̂𝑖,𝑃

𝑡 )0≤𝑡≤𝑇 in 𝐋2

Pred(0, 𝑇) satisfying the following
equation:

𝑋̂𝑖,𝑃
𝑡 = 𝑥𝑖0 +

1

2𝛾𝑖 ∫
𝑡

0

(
2𝑌2,𝑖

𝑠

(
𝐷𝑖
𝑠 − 𝑋̂𝑖,𝑃

𝑠

)
+ 𝑌1,𝑖,𝑃

𝑠 − 𝑃𝑠

)
𝑑𝑠, for all 0 ≤ 𝑡 ≤ 𝑇, ℙ-a.s. (46)

with 𝑌2,𝑖 and 𝑌1,𝑖,𝑃 given, respectively, by Equations (22) and (35). Define

𝑞̂𝑖,𝑃𝑡 =
1

2𝛾𝑖

(
2𝑌2,𝑖

𝑡

(
𝐷𝑖
𝑡 − 𝑋̂𝑖,𝑃

𝑡

)
+ 𝑌1,𝑖,𝑃

𝑡 − 𝑃𝑡

)
, for all 0 ≤ 𝑡 ≤ 𝑇. (47)

Then 𝑋̂𝑖,𝑃 ≡ 𝑋𝑖,𝑞̂𝑖,𝑃 and the following holds:

(1) 𝑞̂𝑖,𝑃 is an admissible control: 𝑞̂𝑖,𝑃 ∈ 𝑞;
(2) 𝑞̂𝑖,𝑃 is an optimal control for agent 𝑖.

Proof. Concerning Equation (46), notice that such an equation is deterministic with stochastic
coefficients, so it can be solved pathwise. More precisely, Equation (46) is a first-order linear ordi-
nary differential equation (with stochastic coefficients), so that it admits a unique solution, which
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532 AID et al.

can be written in explicit form. It is then clear that such a solution is continuous and 𝔽-adapted,
since all the coefficients are also 𝔽-adapted.
It remains to prove items (1) and (2). To this end, fix 𝑖 = 1, … ,𝑁 and 𝑃 ∈ 𝐋2(0, 𝑇) (to alleviate

notation, in the sequel we do not explicitly report the dependence on 𝑃; so, for instance, we sim-
ply write 𝑋̂𝑖, 𝑌1,𝑖 , 𝑞̂𝑖 instead of 𝑋̂𝑖,𝑃, 𝑌1,𝑖,𝑃, 𝑞̂𝑖,𝑃). The admissibility of 𝑞̂𝑖 follows directly from its
definition, using the integrability properties of 𝑃, 𝐷𝑖 , 𝑋̂𝑖 , 𝑌1,𝑖 , 𝑌2,𝑖 . Let us now prove item (2). In
order to prove the optimality of 𝑞̂𝑖 , we implement the martingale optimality principle. More pre-
cisely, we construct a family of processes (𝑉𝑖,𝑞𝑖

𝑡 )0≤𝑡≤𝑇, for every 𝑞𝑖 ∈ 𝑞, satisfying the following
properties:

(i) for every 𝑞𝑖 ∈ 𝑞, we have

𝑉
𝑖,𝑞𝑖

𝑇 = ∫
𝑇

0

𝑞𝑖𝑡
(
𝑃𝑡 + 𝛾𝑖 𝑞

𝑖
𝑡

)
𝑑𝑡 +

1

2

𝜂𝑖 𝛽
𝑖
𝑇

𝜂𝑖 + 𝛽𝑖𝑇

(
𝐷𝑖
𝑇 − 𝑋

𝑖,𝑞𝑖

𝑇

)2

. (48)

(ii) 𝑉
𝑖,𝑞𝑖

0 is a constant independent of 𝑞𝑖 ∈ 𝑞.
(iii) 𝑉𝑖,𝑞𝑖 is a submartingale for all 𝑞𝑖 ∈ 𝑞, and 𝑉𝑖,𝑞̂𝑖 is a martingale when 𝑞𝑖 = 𝑞̂𝑖 .

Notice that when 𝑞𝑖 is given by 𝑞̂𝑖 then 𝑋𝑖,𝑞̂𝑖 ≡ 𝑋̂𝑖 , with 𝑋̂𝑖 satisfying Equation (46). Suppose for a
moment that we have already constructed a family of stochastic processes (𝑉𝑖,𝑞𝑖

𝑡 )0≤𝑡≤𝑇, 𝑞𝑖 ∈ 𝑞,
satisfying points (i)-(ii)-(iii). Then, observe that, for any 𝑞𝑖 ∈ 𝑞, we have

𝐽𝑖(𝑞
𝑖) = 𝔼

[
∫

𝑇

0

𝑞𝑖𝑡
(
𝑃𝑡 + 𝛾𝑖 𝑞

𝑖
𝑡

)
𝑑𝑡 +

1

2

𝜂𝑖 𝛽
𝑖
𝑇

𝜂𝑖 + 𝛽𝑖𝑇

(
𝐷𝑖
𝑇 − 𝑋

𝑖,𝑞𝑖

𝑇

)2
]
= 𝔼

[
𝑉
𝑖,𝑞𝑖

𝑇

] ≥ 𝑉
𝑖,𝑞𝑖

0 = 𝑉
𝑖,𝑞̂𝑖

0

= 𝔼
[
𝑉
𝑖,𝑞̂𝑖

𝑇

]
= 𝔼

[
∫

𝑇

0

𝑞̂𝑖𝑡
(
𝑃𝑡 + 𝛾𝑖 𝑞̂

𝑖
𝑡

)
𝑑𝑡 +

1

2

𝜂𝑖 𝛽
𝑖
𝑇

𝜂𝑖 + 𝛽𝑖𝑇

(
𝐷𝑖
𝑇 − 𝑋̂𝑖

𝑇

)2]
= 𝐽𝑖(𝑞̂

𝑖), (49)

which proves the optimality of 𝑞̂𝑖 . It remains to construct (𝑉𝑖,𝑞𝑖

𝑡 )0≤𝑡≤𝑇, 𝑞𝑖 ∈ 𝑞, satisfying (i)–(ii)–
(iii). Given 𝑞𝑖 ∈ 𝑞, we take (𝑉𝑖,𝑞𝑖

𝑡 )0≤𝑡≤𝑇 as in Equation (13), namely

𝑉
𝑖,𝑞𝑖

𝑡 = ∫
𝑡

0

𝑞𝑖𝑠 (𝑃𝑠 + 𝛾𝑖 𝑞
𝑖
𝑠)𝑑𝑠 +

(
𝐷𝑖
𝑡 − 𝑋

𝑖,𝑞𝑖

𝑡

)2

𝑌2,𝑖
𝑡 +

(
𝐷𝑖
𝑡 − 𝑋

𝑖,𝑞𝑖

𝑡

)
𝑌1,𝑖
𝑡 + 𝑌0,𝑖

𝑡 , (50)

for all 0 ≤ 𝑡 ≤ 𝑇, with 𝑌2,𝑖 , 𝑌1,𝑖 , and 𝑌0,𝑖 satisfying, respectively, Equations (23), (32), and (43).
From the definition of (𝑉𝑖,𝑞𝑖

𝑡 )0≤𝑡≤𝑇 , it is clear that (i) holds. Moreover, since 𝑌̂2,𝑖 , 𝑌̂1,𝑖 , 𝑌̂0,𝑖 are
independent of 𝑞𝑖 , we see that (ii) holds as well. It remains to prove item (iii). By Itô’s formula, we
obtain 𝑉

𝑖,𝑞𝑖

𝑡 = 𝑉
𝑖,𝑞𝑖

0 + ∫ 𝑡

0
𝑏
𝑖,𝑞𝑖

𝑠 𝑑𝑠 +martingale, where

𝑏
𝑖,𝑞𝑖

𝑡 = 𝑞𝑖𝑡(𝑃𝑡 + 𝛾𝑖𝑞
𝑖
𝑡) −

(
𝐷𝑖
𝑡 − 𝑋

𝑖,𝑞𝑖

𝑡

)2

𝑓2,𝑖
𝑡 −

(
𝐷𝑖
𝑡 − 𝑋

𝑖,𝑞𝑖

𝑡

)
𝑓1,𝑖
𝑡 − 𝑓0,𝑖

𝑡

+𝑌2,𝑖
𝑡

[
2
(
𝐷𝑖
𝑡 − 𝑋

𝑖,𝑞𝑖

𝑡

)
(𝜇𝑖 − 𝑞𝑖𝑡) + |𝜎𝑖(𝑡)|2] + (𝜇𝑖 − 𝑞𝑖𝑡)𝑌

1,𝑖
𝑡 + 𝜎𝑖(𝑡)𝜌𝑖𝑍

1,𝑖,0
𝑡 + 𝜎𝑖(𝑡)

√
1 − 𝜌2𝑖 𝑍

1,𝑖,𝑖
𝑡 . (51)
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AID et al. 533

It is easy to see that when 𝑞𝑖 = 𝑞̂𝑖 , the drift 𝑏𝑖,𝑞̂𝑖 becomes zero. So, in particular, 𝑉𝑖,𝑞̂𝑖 is a true
martingale. In order to conclude the proof, we need to prove that in general we have 𝑏𝑖,𝑞𝑖 ≥ 0, that
is (𝑉𝑖,𝑞𝑖

𝑡 )0≤𝑡≤𝑇 is a submartingale for any 𝑞𝑖 . To this end, it is useful to rewrite 𝑏𝑖,𝑞
𝑖

𝑡 as a quadratic
polynomial in the variable 𝑞𝑖𝑡

𝑏
𝑖,𝑞𝑖

𝑡 = 𝛾𝑖|𝑞𝑖𝑡|2 + [
𝑃𝑡 − 2𝑌2,𝑖

𝑡

(
𝐷𝑖
𝑡 − 𝑋

𝑖,𝑞𝑖

𝑡

)
− 𝑌1,𝑖

𝑡

]
𝑞𝑖𝑡 −

(
𝐷𝑖
𝑡 − 𝑋

𝑖,𝑞𝑖

𝑡

)2

𝑓2,𝑖
𝑡

−
(
𝐷𝑖
𝑡 − 𝑋

𝑖,𝑞𝑖

𝑡

)
𝑓1,𝑖
𝑡 − 𝑓0,𝑖

𝑡 + 𝑌2,𝑖
𝑡

[
2
(
𝐷𝑖
𝑡 − 𝑋

𝑖,𝑞𝑖

𝑡

)
𝜇 + |𝜎𝑖(𝑡)|2]

+ 𝜇𝑖𝑌
1,𝑖
𝑡 + 𝜎𝑖(𝑡)𝜌𝑖𝑍

1,𝑖,0
𝑡 + 𝜎𝑖(𝑡)

√
1 − 𝜌2

𝑖
𝑍1,𝑖,𝑖
𝑡 . (52)

Since 𝛾𝑖 > 0, 𝑏𝑖,𝑞
𝑖

𝑡 is nonnegative for every value of 𝑞𝑖𝑡 if and only if the discriminant is nonpositive.
Notice, however, that the discriminant cannot be strictly negative, otherwise this would give a
contradiction to the fact that 𝑏𝑖,𝑞̂𝑖 is zero. In conclusion, the discriminant has be identically equal
to zero, namely

4𝛾𝑖

{
−

(
𝐷𝑖
𝑡 − 𝑋

𝑖,𝑞𝑖

𝑡

)2

𝑓2,𝑖
𝑡 −

(
𝐷𝑖
𝑡 − 𝑋

𝑖,𝑞𝑖

𝑡

)
𝑓1,𝑖
𝑡 − 𝑓0,𝑖

𝑡 + 𝑌2,𝑖
𝑡

[
2
(
𝐷𝑖
𝑡 − 𝑋

𝑖,𝑞𝑖

𝑡

)
𝜇𝑖 + |𝜎𝑖(𝑡)|2]

+𝜇𝑖𝑌
1,𝑖
𝑡 + 𝜎𝑖(𝑡)𝜌𝑖𝑍

1,𝑖,0
𝑡 + 𝜎𝑖(𝑡)

√
1 − 𝜌2

𝑖
𝑍1,𝑖,𝑖
𝑡

}
=

[
𝑃𝑡 − 2𝑌2,𝑖

𝑡

(
𝐷𝑖
𝑡 − 𝑋

𝑖,𝑞𝑖

𝑡

)
− 𝑌1,𝑖

𝑡

]2
. (53)

Rewriting it in terms of the variable 𝐷𝑖
𝑡 − 𝑋

𝑖,𝑞𝑖

𝑡 , we find

4
(
−𝛾𝑖𝑓

2,𝑖
𝑡 − |𝑌2,𝑖

𝑡 |2)(𝐷𝑖
𝑡 − 𝑋

𝑖,𝑞𝑖

𝑡

)2

+ 4
[
𝛾𝑖
(
2𝜇𝑖𝑌

2,𝑖
𝑡 − 𝑓1,𝑖

𝑡

)
+ 𝑌2,𝑖

𝑡

(
𝑃𝑡 − 𝑌1,𝑖

𝑡

)](
𝐷𝑖
𝑡 − 𝑋

𝑖,𝑞𝑖

𝑡

)
+4𝛾𝑖

(|𝜎𝑖(𝑡)|2𝑌2,𝑖
𝑡 + 𝜇𝑖𝑌

1,𝑖
𝑡 + 𝜎𝑖(𝑡)𝜌𝑖𝑍

1,𝑖,0
𝑡 + 𝜎𝑖(𝑡)

√
1 − 𝜌2𝑖 𝑍

1,𝑖,𝑖
𝑡 − 𝑓0,𝑖

𝑡

)
−

(
𝑃𝑡 − 𝑌1,𝑖

𝑡

)2
= 0. (54)

Now,we see that 𝑓2,𝑖 , 𝑓1,𝑖 , and 𝑓0,𝑖 (defined in Equations (24), (33), and (44), respectively) are such
that the above equality is always satisfied, regardless of the value of 𝐷𝑖

𝑡 − 𝑋
𝑖,𝑞𝑖

𝑡 . It follows that 𝑏𝑖,𝑞𝑖

is nonnegative, which implies that (𝑉𝑖,𝑞𝑖

𝑡 )0≤𝑡≤𝑇 is a submartingale and concludes the proof. □

Remark 3.7. In the particular case with one agent (𝑁 = 1), no uncertainty in the capacity produc-
tion (𝛽 is constant), the price process 𝑃 is an arithmetic Brownian motion, we recover the result
in Aïd et al. (2016) that was derived by Bellman equation.

4 EQUILIBRIUM PRICE

In the present section, we use the explicit expression of 𝑞̂𝑖,𝑃 in Equation (47) together with the
equilibrium condition (12) to find the equilibrium price process 𝑃̂ = (𝑃̂𝑡)0≤𝑡≤𝑇 (Theorem 4.1). We
also find the dynamics of the equilibrium price process (Theorem 4.2), and obtain notably the
martingale property of the equilibrium price process.
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534 AID et al.

Theorem 4.1. There exists a unique solution (𝑋̂𝑖, 𝑌̂1,𝑖 , 𝑍̂1,𝑖,0, 𝑍̂1,𝑖,𝑗 , 𝑈̂1,𝑖,𝑗)𝑖,𝑗=1,…,𝑁 , with 𝑋̂𝑖 ∈

𝐋2

Pred(0, 𝑇) being a continuous process, 𝑌̂
1,𝑖 ∈ 𝐒2(0, 𝑇), 𝑍̂1,𝑖,𝑗 ∈ 𝐋2

Pred(0, 𝑇), 𝑈̂
1,𝑖,𝑗 ∈ 𝐋2

𝛽𝑗
(0, 𝑇), sat-

isfying the following coupled forward–backward system of SDEs:

⎧⎪⎪⎨⎪⎪⎩
𝑋̂𝑖
𝑡 = 𝑥𝑖0 +

1

2𝛾𝑖
∫ 𝑡

0

(
2𝑌2,𝑖

𝑠

(
𝐷𝑖
𝑠 − 𝑋̂𝑖

𝑠

)
+ 𝑌̂1,𝑖

𝑠 − 𝑃̂𝑠

)
𝑑𝑠, 0 ≤ 𝑡 ≤ 𝑇, (55)

𝑌̂1,𝑖
𝑡 = ∫ 𝑇

𝑡

(
2𝜇𝑖𝑌

2,𝑖
𝑠 +

1

𝛾𝑖
𝑌2,𝑖
𝑠

(
𝑃̂𝑠 − 𝑌̂1,𝑖

𝑠

))
𝑑𝑠 −

∑𝑁

𝑗=0
∫ 𝑇

𝑡
𝑍̂
1,𝑖,𝑗
𝑠 𝑑𝑊

𝑗
𝑠 (56)

−
∑𝑁

𝑗=1
∫
(𝑡,𝑇]×𝐸

𝑈̂
1,𝑖,𝑗
𝑠 (𝑒) (𝜋𝑗 − 𝜈𝑗)(𝑑𝑠, 𝑑𝑒), 0 ≤ 𝑡 ≤ 𝑇,

where

𝑃̂𝑡 ∶=

𝑁∑
𝑗=1

𝛾̄

𝛾𝑗

(
2𝑌

2,𝑗
𝑡

(
𝐷
𝑗
𝑡 − 𝑋̂

𝑗
𝑡

)
+ 𝑌̂

1,𝑗
𝑡

)
, 𝛾̄ ∶=

(
𝑁∑
𝑖=1

1

𝛾 𝑖

)−1

, for all 0 ≤ 𝑡 ≤ 𝑇. (57)

Moreover, 𝑋̂𝑖 coincides with 𝑋̂𝑖,𝑃̂ of Equation (46), while 𝑌̂1,𝑖 , 𝑍̂1,𝑖,𝑗 , 𝑈̂1,𝑖,𝑗 coincide with
𝑌̂1,𝑖,𝑃̂, 𝑍̂1,𝑖,𝑗,𝑃̂, 𝑈̂1,𝑖,𝑗,𝑃̂ of Equation (32). Finally, 𝑃̂ is the price process satisfying the equilibrium con-
dition (12) with 𝑞̂𝑖,𝑃̂ as in Equation (47).

Proof. Existence and uniqueness for system (55)–(56) can be proved proceeding along the same
lines as in the proof of Lemma 2.2 in Li and Wei (2014), the only difference being that 𝜋𝑗 is a
Poisson random measure in Li and Wei (2014). We also notice that, proceeding as in the proof of
Proposition 3.1 in Li and Wei (2014), we obtain the following estimate:

𝑁∑
𝑖=1

𝔼

[
sup
0≤𝑡≤𝑇 |𝑋̂𝑖

𝑡|2 + sup
0≤𝑡≤𝑇 |𝑌̂1,𝑖

𝑡 |2 + 𝑁∑
𝑗=0

∫
𝑇

0

|𝑍̂1,𝑖,𝑗
𝑡 |2 𝑑𝑡

+

𝑁∑
𝑗=1

∫
𝑇

0

∑
𝑒∈𝐸

|𝑈̂1,𝑖,𝑗
𝑡 (𝑒)|2 𝜆𝑖(𝛽𝑖𝑡−, 𝑒) 1{𝛽𝑖𝑡−≠𝑒} 𝑑𝑡

]
≤ 𝐶̂, (58)

where 𝐶̂ is a positive constant depending only on 𝑥𝑖0, 𝑑
𝑖
0, 𝐸, 𝜇𝑖 , 𝜎

𝑖 , Λ𝑖 𝛾𝑖 , 𝜂𝑖 , 𝑇.
Finally, regarding the last part of the statement, it is easy to see that 𝑋̂𝑖 coincides with 𝑋̂𝑖,𝑃̂ of

Equation (46), while 𝑌̂1,𝑖 , 𝑍̂1,𝑖,𝑗 , 𝑈̂1,𝑖,𝑗 coincide with 𝑌̂1,𝑖,𝑃̂, 𝑍̂1,𝑖,𝑗,𝑃̂, 𝑈̂1,𝑖,𝑗,𝑃̂ of Equation (32). Finally,
it is also clear that 𝑃̂ is the equilibrium price process, as formula (57) follows directly from the
equilibrium condition (12) and the definition of 𝑞̂𝑖,𝑃̂ in Equation (47). □

Theorem 4.2. The equilibrium price process 𝑃̂ = (𝑃̂𝑡)0≤𝑡≤𝑇 is a martingale. More precisely, the
dynamics of 𝑃̂ is given by

𝑃̂𝑡 = 𝑃̂0 +

𝑁∑
𝑖=1

∫
𝑡

0

𝛾̄

𝛾𝑖
2𝑌2,𝑖

𝑠 𝜎𝑖(𝑠)

(
𝜌𝑖 𝑑𝑊

0
𝑠 +

√
1 − 𝜌2

𝑖
𝑑𝑊𝑖

𝑠

)
+

𝑁∑
𝑖=0

∫
𝑡

0

(
𝑁∑
𝑗=1

𝛾̄

𝛾𝑗
𝑍̂
1,𝑗,𝑖
𝑠

)
𝑑𝑊𝑖

𝑠 (59)

+

𝑁∑
𝑖=1

∫
(0,𝑡]×𝐸

(
𝛾̄

𝛾𝑖
2(𝐷𝑖

𝑠 − 𝑋̂𝑖
𝑠)𝑈

2,𝑖
𝑠 (𝑒) +

𝑁∑
𝑗=1

𝛾̄

𝛾𝑗
𝑈̂

1,𝑗,𝑖
𝑠 (𝑒)

)
(𝜋𝑖 − 𝜈𝑖)(𝑑𝑠, 𝑑𝑒),
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AID et al. 535

for all 0 ≤ 𝑡 ≤ 𝑇. Similarly, the optimal trading strategies 𝑞̂1,𝑃̂, … , 𝑞̂𝑁,𝑃̂ are martingales.

Proof. Recall that

𝑃̂𝑡 =

𝑁∑
𝑖=1

𝛾̄

𝛾𝑖

(
2𝑌2,𝑖

𝑡

(
𝐷𝑖
𝑡 − 𝑋̂𝑖

𝑡

)
+ 𝑌̂1,𝑖

𝑡

)
, 0 ≤ 𝑡 ≤ 𝑇, (60)

where𝐷𝑖 ,𝑌2,𝑖 , 𝑋̂𝑖 , 𝑌̂1,𝑖 satisfy, respectively, Equations (1), (23), (55), and (56). Then, an application
of Itô’s formula yields

𝑃̂𝑡 = 𝑃̂0 + ∫
𝑡

0

𝑏̂𝑠 𝑑𝑠 +martingale, (61)

with the martingale term as in Equation (59) and

𝑏̂𝑡 =

𝑁∑
𝑖=1

𝛾̄

𝛾𝑖

(
2𝑌2,𝑖

𝑡

(
𝜇𝑖 − 𝑞̂𝑖,𝑃̂𝑡

)
− 2𝑓2,𝑖

𝑡

(
𝐷𝑖
𝑡 − 𝑋̂𝑖

𝑡

)
− 𝑓1,𝑖,𝑃̂

𝑡

)
, (62)

where recall that (𝑞̂𝑖 stands for 𝑞̂𝑖,𝑃̂)

𝑞̂𝑖𝑡 =
1

2𝛾𝑖

(
2𝑌2,𝑖

𝑡

(
𝐷𝑖
𝑡 − 𝑋̂𝑖

𝑡

)
+ 𝑌̂1,𝑖

𝑡 − 𝑃̂𝑡

)
, (63)

𝑓2,𝑖
𝑡 = −

1

𝛾𝑖
|𝑌2,𝑖

𝑡 |2,
𝑓1,𝑖,𝑃̂
𝑡 = 2𝜇𝑖𝑌

2,𝑖
𝑡 +

1

𝛾𝑖
𝑌2,𝑖
𝑡

(
𝑃̂𝑡 − 𝑌̂1,𝑖

𝑡

)
.

Hence, 𝑏̂𝑡 can be rewritten as

𝑏̂𝑡 =

𝑁∑
𝑖=1

𝛾̄

𝛾𝑖

(
−2𝑞̂𝑖𝑡𝑌

2,𝑖
𝑡 +

2

𝛾𝑖
|𝑌2,𝑖

𝑡 |2 (
𝐷𝑖
𝑡 − 𝑋̂𝑖

𝑡

)
−

1

𝛾𝑖
𝑌2,𝑖
𝑡

(
𝑃̂𝑡 − 𝑌̂1,𝑖

𝑡

))

=

𝑁∑
𝑖=1

𝛾̄

𝛾𝑖

(
−2𝑞̂𝑖𝑡𝑌

2,𝑖
𝑡 +

1

𝛾𝑖
𝑌2,𝑖
𝑡

(
2𝑌2,𝑖

𝑡

(
𝐷𝑖
𝑡 − 𝑋̂𝑖

𝑡

)
−

(
𝑃̂𝑡 − 𝑌̂1,𝑖

𝑡

)))
. (64)

By the expression of 𝑞̂𝑖𝑡 in Equation (63), we find

𝑏̂𝑡 =

𝑁∑
𝑖=1

𝛾̄

𝛾𝑖

(
−2𝑞̂𝑖𝑡𝑌

2,𝑖
𝑡 + 2𝑞̂𝑖𝑡𝑌

2,𝑖
𝑡

)
= 0, (65)
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536 AID et al.

which proves that 𝑃̂ is a martingale. Finally, let us consider an optimal trading strategy 𝑞̂𝑖 . By
formula (63), we have

𝑞̂𝑖𝑡 = 𝑞̂𝑖0 + ∫
𝑡

0

𝑏̂𝑖𝑠 𝑑𝑠 +martingale, (66)

with

𝑏̂𝑖𝑡 =
1

2𝛾𝑖

(
2𝑌2,𝑖

𝑡

(
𝜇𝑖 − 𝑞̂𝑖𝑡

)
− 2𝑓2,𝑖

𝑡

(
𝐷𝑖
𝑡 − 𝑋̂𝑖

𝑡

)
− 𝑓1,𝑖,𝑃̂

𝑡

)
, (67)

where we used the fact that 𝑃̂ is a martingale. Then, we see that proceeding along the same lines
as for 𝑃̂, we deduce that 𝑞̂𝑖 is a martingale. □

We now provide a formula for the solution to the coupled forward–backward sys-
tem of Equations (55)–(56). To this end, the following formula (68) for the 𝑌-component
turns out to be particularly useful, especially in the case without jumps (as it will be
shown in the next section). In the general case, formula (68) provides compact expres-
sions for both the equilibrium price and the forward process, see formulae (74) and (75)
of Proposition 4.3. In particular, formula (74) for the equilibrium price allows in turn to
find a more explicit formula for the optimal trading rates in the case 𝜇𝑖 = 0 for every 𝑖

(see Corollary 4.4).

Proposition 4.3. The following formula holds (notice that 1 − 𝛾̄ 𝜃𝑡 ≠ 0, for every 0 ≤ 𝑡 ≤ 𝑇):

𝒀̂1
𝑡 =

𝛾̄

1 − 𝛾̄ 𝜃𝑡
𝒂𝑡 𝟏

⊺
𝑁 𝐉 (2𝚫𝑡 + 2 𝒂̃𝑡 + 𝛾̄ 𝐉 𝒃𝑡) + 2 𝒂̃𝑡 + 𝛾̄ 𝐉 𝒃𝑡, (68)

for all 0 ≤ 𝑡 ≤ 𝑇, where 𝛾̄ is as in Equation (57), 𝜃𝑡 = 𝑎1𝑡 ∕𝛾1 +⋯+ 𝑎𝑁𝑡 ∕𝛾𝑁 with 𝑎𝑖𝑡 as in Equation
(70), 𝟏⊺𝑁 denotes the transpose of the column vector 𝟏𝑁 with all entries equal to one, while 𝒀̂1

𝑡 , 𝚫𝑡 , 𝒂𝑡 ,
𝒂̃𝑡 , 𝒃𝑡 are column vectors of dimension𝑁 given by

𝒀̂1
𝑡 =

⎛⎜⎜⎝
𝑌̂1,1
𝑡

⋮

𝑌̂1,𝑁
𝑡

⎞⎟⎟⎠, 𝚫𝑡 =
⎛⎜⎜⎝
𝑌2,1
𝑡

(
𝐷1
𝑡 − 𝑋̂1

𝑡

)
⋮

𝑌2,𝑁
𝑡

(
𝐷𝑁
𝑡 − 𝑋̂𝑁

𝑡

)⎞⎟⎟⎠, 𝒂𝑡 =
⎛⎜⎜⎝
𝑎1𝑡
⋮

𝑎𝑁𝑡

⎞⎟⎟⎠, 𝒂̃𝑡 =
⎛⎜⎜⎝
𝜇1𝛾1𝑎

1
𝑡

⋮

𝜇2𝛾2𝑎
𝑁
𝑡

⎞⎟⎟⎠, 𝒃𝑡 =
⎛⎜⎜⎝
𝑏1𝑡
⋮

𝑏𝑁𝑡

⎞⎟⎟⎠, (69)

with

𝑎𝑖𝑡 =
1

𝛾𝑖
(𝑇 − 𝑡) 𝑌2,𝑖

𝑡 , (70)

𝑏𝑖𝑡 =
1

𝛾𝑖Γ
𝑖
𝑡
∫

𝑇

𝑡

(
∫

𝑠

𝑡

𝔼
[
Γ𝑖𝑟𝜅

𝑖
𝑟
||𝑡

]
𝑑𝑟

)
𝑑𝑠 =

1

𝛾𝑖Γ
𝑖
𝑡

𝔼

[
∫

𝑇

𝑡

Γ𝑖𝑟𝜅
𝑖
𝑟 (𝑇 − 𝑟) 𝑑𝑟

||||𝑡

]
, (71)
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AID et al. 537

𝜅𝑖𝑡 =
∑
𝑒∈𝐸

𝑈2,𝑖
𝑡 (𝑒)

(
2(𝐷𝑖

𝑡 − 𝑋̂𝑖
𝑡)𝑈

2,𝑖
𝑡 (𝑒) +

𝑁∑
𝑗=1

𝛾𝑖
𝛾𝑗
𝑈̂

1,𝑗,𝑖
𝑡 (𝑒)

)
𝜆𝑖(𝛽

𝑖
𝑡−, 𝑒) 1{𝛽𝑖𝑡−≠𝑒}. (72)

Moreover, the𝑁 ×𝑁 matrices 𝐀𝑡 and 𝐉 are defined as

𝐀𝑡 =
(
𝒂𝑡 𝒂𝑡 ⋯ 𝒂𝑡

)
=

⎛⎜⎜⎜⎜⎝
𝑎1𝑡 𝑎1𝑡 𝑎1𝑡 ⋯ 𝑎1𝑡
𝑎2𝑡 𝑎2𝑡 𝑎2𝑡 ⋯ 𝑎2𝑡
⋮ ⋮ ⋮ ⋱ ⋮

𝑎𝑁𝑡 𝑎𝑁𝑡 𝑎𝑁𝑡 ⋯ 𝑎𝑁𝑡

⎞⎟⎟⎟⎟⎠
, 𝐉 =

⎛⎜⎜⎜⎜⎜⎝

1

𝛾1
0 0 ⋯ 0

0
1

𝛾2
0 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 ⋯
1

𝛾𝑁

⎞⎟⎟⎟⎟⎟⎠
. (73)

In addition, the equilibrium price is given by

𝑃̂𝑡 =
𝛾̄

1 − 𝛾̄ 𝜃𝑡
𝟏
⊺
𝑁 𝐉 (2𝚫𝑡 + 2 𝒂̃𝑡 + 𝛾̄ 𝐉 𝒃𝑡), for all 0 ≤ 𝑡 ≤ 𝑇. (74)

Finally, Equation (55) can be rewritten as follows:

𝑑𝑿̂𝑡 =
1

2
𝐉

(
𝐈 −

𝛾̄

1 − 𝛾̄ 𝜃𝑡
(𝟏𝑁×𝑁 − 𝐀𝑡) 𝐉

)
(2𝚫𝑡 + 2 𝒂̃𝑡 + 𝛾̄ 𝐉 𝒃𝑡) 𝑑𝑡, 0 ≤ 𝑡 ≤ 𝑇, (75)

with 𝑿̂0 = 𝒙0, where 𝟏𝑁×𝑁 denotes the𝑁 ×𝑁 matrix with all entries equal to 1 and

𝑿̂𝑡 =
⎛⎜⎜⎝
𝑋̂1
𝑡

⋮

𝑋̂𝑁
𝑡

⎞⎟⎟⎠, 𝒙0 =
⎛⎜⎜⎝
𝑥10
⋮

𝑥𝑁0

⎞⎟⎟⎠. (76)

Proof. We split the proof into three steps. □

Proof of formula (68). We begin recalling from Equation (35) that 𝑌̂1,𝑖 is given by the following
formula:

𝑌̂1,𝑖
𝑡 =

1

Γ𝑖𝑡
𝔼

[
∫

𝑇

𝑡

Γ𝑖𝑠𝑌
2,𝑖
𝑠

(
2𝜇𝑖 +

1

𝛾𝑖
𝑃̂𝑠

)
𝑑𝑠

||||𝑡

]

=
1

Γ𝑖𝑡
∫

𝑇

𝑡

(
2𝜇𝑖𝔼

[
Γ𝑖𝑠𝑌

2,𝑖
𝑠

||𝑡

]
+

1

𝛾𝑖
𝔼
[
Γ𝑖𝑠𝑌

2,𝑖
𝑠 𝑃̂𝑠||𝑡

])
𝑑𝑠, (77)

for all 0 ≤ 𝑡 ≤ 𝑇, where Γ𝑖𝑡 = 𝑒
−

1

𝛾𝑖
∫ 𝑡

0
𝑌
2,𝑖
𝑠 𝑑𝑠

. Now, an application of Itô’s formula yields that the pro-
cess Γ𝑖𝑌2,𝑖 is a martingale and, in particular, it holds that

Γ𝑖𝑠𝑌
2,𝑖
𝑠 = Γ𝑖𝑡𝑌

2,𝑖
𝑡 + ∫

(𝑡,𝑠]×𝐸

Γ𝑖𝑟𝑈
2,𝑖
𝑟 (𝑒) (𝜋𝑖 − 𝜈𝑖)(𝑑𝑟, 𝑑𝑒), 0 ≤ 𝑡 ≤ 𝑠 ≤ 𝑇. (78)
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538 AID et al.

As a consequence, recalling that the dynamics of 𝑃̂ is given by Equation (59), we see that

𝔼
[
Γ𝑖
𝑠𝑌

2,𝑖
𝑠 𝑃̂𝑠

||𝑡

]
= Γ𝑖

𝑡𝑌
2,𝑖
𝑡 𝑃̂𝑡 + 𝔼

[
∫
(𝑡,𝑠]×𝐸

Γ𝑖
𝑟𝑈

2,𝑖
𝑟 (𝑒)

(
𝛾̄

𝛾𝑖
2(𝐷𝑖

𝑟 − 𝑋̂𝑖
𝑟)𝑈

2,𝑖
𝑟 (𝑒) +

𝑁∑
𝑗=1

𝛾̄

𝛾𝑗
𝑈̂

1,𝑗,𝑖
𝑟 (𝑒)

)
𝜈𝑖(𝑑𝑟, 𝑑𝑒)

||||𝑡

]

= Γ𝑖
𝑡𝑌

2,𝑖
𝑡 𝑃̂𝑡 +

𝛾̄

𝛾𝑖
𝔼

[
∫

𝑠

𝑡

Γ𝑖
𝑟𝜅

𝑖
𝑟 𝑑𝑟

||||𝑡

]
, (79)

where 𝜅𝑖 is given by Equation (72). Hence, by the martingale property of Γ𝑖𝑌2,𝑖 and Equation (79),
we can rewrite formula (77) as follows:

𝑌̂1,𝑖
𝑡 =

1

Γ𝑖𝑡
∫

𝑇

𝑡

(
2𝜇𝑖Γ

𝑖
𝑡𝑌

2,𝑖
𝑡 +

1

𝛾𝑖
Γ𝑖𝑡𝑌

2,𝑖
𝑡 𝑃̂𝑡 +

𝛾̄

𝛾2
𝑖
∫

𝑠

𝑡

𝔼
[
Γ𝑖𝑟𝜅

𝑖
𝑟
||𝑡

]
𝑑𝑟

)
𝑑𝑠 = 𝑎𝑖𝑡 𝑃̂𝑡 + 2𝜇𝑖𝛾𝑖 𝑎

𝑖
𝑡 +

𝛾̄

𝛾𝑖
𝑏𝑖𝑡,

(80)

where 𝑎𝑖 and 𝑏𝑖 are given by Equations (70) and (71), respectively. Using formula (57) for 𝑃̂, we
find

𝑌̂1,𝑖
𝑡 = 𝑎𝑖𝑡

𝑁∑
𝑗=1

𝛾̄

𝛾𝑗

(
𝑌̂
1,𝑗
𝑡 + 2𝑌

2,𝑗
𝑡

(
𝐷
𝑗
𝑡 − 𝑋̂

𝑗
𝑡

))
+ 2𝜇𝑖𝛾𝑖 𝑎

𝑖
𝑡 +

𝛾̄

𝛾𝑖
𝑏𝑖𝑡. (81)

The latter can be written in matrix form as follows:

𝒀̂1
𝑡 = 𝛾̄ 𝐀𝑡 𝐉 𝒀̂

1
𝑡 + 2 𝛾̄ 𝐀𝑡 𝐉𝚫𝑡 + 2 𝒂̃𝑡 + 𝛾̄ 𝐉 𝒃𝑡, (82)

where𝚫𝑡 is the column vector of dimension𝑁 given in Equation (69). In order to solve for 𝒀̂1, we
rewrite Equation (82) as follows:

(𝐈 − 𝛾̄ 𝐀𝑡 𝐉)𝒀̂
1
𝑡 = 2 𝛾̄ 𝐀𝑡 𝐉𝚫𝑡 + 2 𝒂̃𝑡 + 𝛾̄ 𝐉 𝒃𝑡, (83)

where 𝐈 is the 𝑁 ×𝑁 identity matrix. Hence, we can solve for 𝒀̂1 if the matrix on the left-hand
side of Equation (83) is invertible. We now prove that this holds true and the inverse matrix of
𝐈 − 𝛾̄ 𝐀𝑡 𝐉 is given by

(𝐈 − 𝛾̄ 𝐀𝑡 𝐉)
−1

= 𝐈 +
𝛾̄

1 − 𝛾̄ 𝜃𝑡
𝐀𝑡 𝐉, with 𝜃𝑡 =

𝑁∑
𝑖=1

𝑎𝑖𝑡
𝛾𝑖
. (84)

Let us first check that 1 − 𝛾̄ 𝜃𝑡 ≠ 0, so that Equation (84) is well-defined. To this regard, notice
that the 𝑖th element 𝑎𝑖𝑡, which is given by formula (70), can also be written as follows:

𝑎𝑖𝑡 = 1 − 𝔼

[
𝑒
−

1

𝛾𝑖
∫ 𝑇

𝑡
𝑌
2,𝑖
𝑠 𝑑𝑠||||𝑡

]
. (85)
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AID et al. 539

Let us prove equality (85). By the definition of Γ𝑖 , we have Γ𝑖𝑇 = Γ𝑖𝑡 −
1

𝛾𝑖
∫ 𝑇

𝑡
Γ𝑖𝑠𝑌

2,𝑖
𝑠 𝑑𝑠. Taking the

conditional expectation with respect to 𝑡, we find

𝔼

[
𝑒
−

1

𝛾𝑖
∫ 𝑇

𝑡
𝑌
2,𝑖
𝑠 𝑑𝑠||||𝑡

]
=

1

Γ𝑖𝑡
𝔼
[
Γ𝑖𝑇

||𝑡

]
= 1 −

1

𝛾𝑖Γ
𝑖
𝑡
∫

𝑇

𝑡

𝔼
[
Γ𝑖𝑠𝑌

2,𝑖
𝑠

||𝑡

]
𝑑𝑠. (86)

By the martingale property of Γ𝑖𝑌2,𝑖 , we see that

𝔼

[
𝑒
−

1

𝛾𝑖
∫ 𝑇

𝑡
𝑌
2,𝑖
𝑠 𝑑𝑠||||𝑡

]
= 1 − 𝑎𝑖𝑡, (87)

fromwhichEquation (85) follows. Now,multiplying the above equality by 1∕𝛾𝑖 and summingwith
respect to 𝑖, we obtain

1

𝛾̄
− 𝜃𝑡 =

𝑁∑
𝑖=1

𝔼

[
𝑒
−

1

𝛾𝑖
∫ 𝑇

𝑡
𝑌
2,𝑖
𝑠 𝑑𝑠||||𝑡

]
, (88)

namely 1 − 𝛾̄𝜃𝑡 = 𝛾̄
∑𝑁

𝑖=1
𝔼[exp(−

1

𝛾𝑖
∫ 𝑇

𝑡
𝑌2,𝑖
𝑠 𝑑𝑠)|𝑡]. Recalling from Proposition 3.2 that 𝑌2,𝑖 is

nonnegative and belongs to 𝐒∞(0, 𝑇), we deduce that 1 − 𝛾̄𝜃𝑡 is a strictly positive real number.
This shows that Equation (84) is well-defined.
Let us now prove that the matrix on the right-hand side of Equation (84) is the inverse matrix

of 𝐈 − 𝛾̄ 𝐀𝑡 𝐉. To this end, notice that

(𝐀𝑡 𝐉)
2 = 𝜃𝑡 𝐀𝑡 𝐉, (89)

where we recall that 𝜃𝑡 = 𝑎1𝑡 ∕𝛾1 +⋯+ 𝑎𝑁𝑡 ∕𝛾𝑁 , namely 𝜃𝑡 is the trace of the matrix𝐀𝑡 𝐉. Then, by
direct calculation, it is easy to see that(

𝐈 +
𝛾̄

1 − 𝛾̄ 𝜃𝑡
𝐀𝑡 𝐉

)
(𝐈 − 𝛾̄ 𝐀𝑡 𝐉) = 𝐈, (90)

which shows the validity of Equation (84). This allows us to solve for 𝒀̂1 in Equation (83), so that
we obtain

𝒀̂1
𝑡 =

(
𝐈 +

𝛾̄

1 − 𝛾̄ 𝜃𝑡
𝐀𝑡 𝐉

)
(2 𝛾̄ 𝐀𝑡 𝐉𝚫𝑡 + 2 𝒂̃𝑡 + 𝛾̄ 𝐉 𝒃𝑡). (91)

By Equation (89) and the property 𝐀𝑡 𝐉 𝒗 = (
∑𝑁

𝑖=1
𝑣𝑖∕𝛾𝑖)𝒂𝑡, valid for every 𝒗 ∈ ℝ𝑁 , we find

𝒀̂1
𝑡 = 2 𝛾̄

(
1 +

𝛾̄ 𝜃𝑡
1 − 𝛾̄ 𝜃𝑡

)
𝐀𝑡 𝐉𝚫𝑡 + 2 𝒂̃𝑡 + 𝛾̄ 𝐉 𝒃𝑡 +

𝛾̄

1 − 𝛾̄ 𝜃𝑡

𝑁∑
𝑖=1

1

𝛾𝑖

(
2𝜇𝑖𝛾𝑖𝑎

𝑖
𝑡 +

𝛾̄

𝛾𝑖
𝑏𝑖𝑡

)
𝒂𝑡. (92)
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540 AID et al.

Since 1 + 𝛾̄ 𝜃𝑡

1−𝛾̄ 𝜃𝑡
=

1

1−𝛾̄ 𝜃𝑡
and 𝐀𝑡 𝐉𝚫𝑡 = 𝒂𝑡

∑𝑁

𝑖=1
𝑌2,𝑖
𝑡 (𝐷𝑖

𝑡 − 𝑋̂𝑖
𝑡)∕𝛾𝑖 , this yields

𝒀̂1
𝑡 =

𝛾̄

1 − 𝛾̄ 𝜃𝑡
𝒂𝑡

𝑁∑
𝑖=1

1

𝛾𝑖

(
2𝑌2,𝑖

𝑡 (𝐷𝑖
𝑡 − 𝑋̂𝑖

𝑡) + 2 𝜇𝑖𝛾𝑖𝑎
𝑖
𝑡 +

𝛾̄

𝛾𝑖
𝑏𝑖𝑡

)
+ 2 𝒂̃𝑡 + 𝛾̄ 𝐉 𝒃𝑡. (93)

Finally, noting that
∑𝑁

𝑖=1

1

𝛾𝑖
(2𝑌2,𝑖

𝑡 (𝐷𝑖
𝑡 − 𝑋̂𝑖

𝑡) + 2𝜇𝑖𝛾𝑖𝑎
𝑖
𝑡 + 𝛾̄𝑏𝑖𝑡∕𝛾𝑖) = 𝟏

⊺
𝑁 𝐉 (2𝚫𝑡 + 2 𝒂̃𝑡 + 𝛾̄ 𝐉 𝒃𝑡), we

conclude that formula (68) holds. □

Proof of formula (74). Rewriting Equation (57) in matrix form, we obtain

𝑃̂𝑡 = 𝛾̄ 𝟏
⊺
𝑁 𝐉

(
2𝚫𝑡 + 𝒀̂1

𝑡

)
, for all 0 ≤ 𝑡 ≤ 𝑇. (94)

Plugging formula (68) into the above equality, we find

𝑃̂𝑡 = 𝛾̄ 𝟏
⊺
𝑁 𝐉

(
2𝚫𝑡 +

𝛾̄

1 − 𝛾̄ 𝜃𝑡
𝒂𝑡 𝟏

⊺
𝑁 𝐉 (2𝚫𝑡 + 2 𝒂̃𝑡 + 𝛾̄ 𝐉 𝒃𝑡) + 2 𝒂̃𝑡 + 𝛾̄ 𝐉 𝒃𝑡

)
. (95)

Notice that 𝟏⊺𝑁 𝐉 𝒂𝑡 = 𝜃𝑡, so that

𝑃̂𝑡 = 𝛾̄
𝛾̄ 𝜃𝑡

1 − 𝛾̄ 𝜃𝑡
𝟏
⊺
𝑁 𝐉 (2𝚫𝑡 + 2 𝒂̃𝑡 + 𝛾̄ 𝐉 𝒃𝑡) + 𝛾̄ 𝟏

⊺
𝑁 𝐉 (2𝚫𝑡 + 2 𝒂̃𝑡 + 𝛾̄ 𝐉 𝒃𝑡)

=
𝛾̄

1 − 𝛾̄ 𝜃𝑡
𝟏
⊺
𝑁 𝐉 (2𝚫𝑡 + 2 𝒂̃𝑡 + 𝛾̄ 𝐉 𝒃𝑡), (96)

which proves formula (74). □

Proof of formula (75). We recall fromTheorem4.1 that 𝑋̂𝑖 solves the following ordinary differential
equation with stochastic coefficients:

𝑑𝑋̂𝑖
𝑡 =

1

2𝛾𝑖

(
2𝑌2,𝑖

𝑡

(
𝐷𝑖
𝑡 − 𝑋̂𝑖

𝑡

)
+ 𝑌̂1,𝑖

𝑡 − 𝑃̂𝑡

)
𝑑𝑡, 0 ≤ 𝑡 ≤ 𝑇. (97)

The latter can be written in matrix as follows:

𝑑𝑿̂𝑡 =
1

2
𝐉
(
2𝚫𝑡 + 𝒀̂1

𝑡 − 𝟏𝑁 𝑃̂𝑡
)
𝑑𝑡. (98)

Using the expressions of 𝒀̂1
𝑡 and 𝑃̂𝑡 in Equations (68) and (74), respectively, we find

𝑑𝑿̂𝑡 =
1

2
𝐉

(
2𝚫𝑡 + 2 𝒂̃𝑡 + 𝛾̄ 𝐉 𝒃𝑡 −

𝛾̄

1 − 𝛾̄ 𝜃𝑡

(
𝟏𝑁 𝟏

⊺
𝑁 − 𝒂𝑡 𝟏

⊺
𝑁

)
𝐉 (2𝚫𝑡 + 2 𝒂̃𝑡 + 𝛾̄ 𝐉 𝒃𝑡)

)
. (99)
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AID et al. 541

Noting that 𝒂𝑡 𝟏
⊺
𝑁 = 𝐀𝑡 and 𝟏𝑁 𝟏

⊺
𝑁 = 𝟏𝑁×𝑁 (where we recall that 𝟏𝑁×𝑁 denotes the 𝑁 ×𝑁 matrix

with all entries equal to 1), we obtain

𝑑𝑿̂𝑡 =
1

2
𝐉

(
2𝚫𝑡 + 2 𝒂̃𝑡 + 𝛾̄ 𝐉 𝒃𝑡 −

𝛾̄

1 − 𝛾̄ 𝜃𝑡
(𝟏𝑁×𝑁 − 𝐀𝑡) 𝐉 (2𝚫𝑡 + 2 𝒂̃𝑡 + 𝛾̄ 𝐉 𝒃𝑡)

)
=

1

2
𝐉

(
𝐈 −

𝛾̄

1 − 𝛾̄ 𝜃𝑡
(𝟏𝑁×𝑁 − 𝐀𝑡) 𝐉

)
(2𝚫𝑡 + 2 𝒂̃𝑡 + 𝛾̄ 𝐉 𝒃𝑡), (100)

which corresponds to formula (75). □

Using Proposition 4.3, it is possible to provide more precise results for the optimal trading rates
and the equilibrium price, when agents have no systematic bias on their forecasts (𝜇𝑖 = 0).

Corollary 4.4. Suppose that 𝜇𝑖 = 0 for every 𝑖.

(i) The optimal trading rate of agent 𝑖 is given by (we denote 𝑞̂𝑖 ∶= 𝑞̂𝑖,𝑃̂)

𝑞̂𝑖𝑡 =
1 − 𝑎𝑖𝑡
2𝛾𝑖

⎛⎜⎜⎝
2𝑌2,𝑖

𝑡 (𝐷𝑖
𝑡 − 𝑋̂𝑖

𝑡) +
𝛾̄

𝛾𝑖
𝑏𝑖𝑡

1 − 𝑎𝑖𝑡
− 𝑃̂𝑡

⎞⎟⎟⎠, (101)

where 1 − 𝑎𝑖𝑡 = 1 −
1

𝛾𝑖
(𝑇 − 𝑡)𝑌2,𝑖

𝑡 is strictly positive, for every 𝑖, as it follows from equality (87),

moreover 𝑏𝑖𝑡 is given by Equation (71).
(ii) The equilibrium price is given by

𝑃̂𝑡 =

𝑁∑
𝑖=1

𝜋𝑖
𝑡

2 𝑌2,𝑖
𝑡 (𝐷𝑖

𝑡 − 𝑋̂𝑖
𝑡) +

𝛾̄

𝛾𝑖
𝑏𝑖𝑡

1 − 𝑎𝑖𝑡
, where 𝜋𝑖

𝑡 ∶=

1

𝛾𝑖
(1 − 𝑎𝑖𝑡)∑𝑁

𝑗=1

1

𝛾𝑗
(1 − 𝑎

𝑗
𝑡 )
. (102)

Proof.

(i) When 𝜇𝑖 = 0 for every 𝑖, the expression of 𝒀̂1
𝑡 in Equation (68) reads (notice that the vector 𝒂̃𝑡

in Equation (68) is equal to zero)

𝒀̂1
𝑡 =

𝛾̄

1 − 𝛾̄ 𝜃𝑡
𝒂𝑡 𝟏

⊺
𝑁 𝐉 (2𝚫𝑡 + 𝛾̄ 𝐉 𝒃𝑡) + 𝛾̄ 𝐉 𝒃𝑡. (103)

Similarly, the expression of 𝑃̂𝑡 in Equation (74) becomes

𝑃̂𝑡 =
𝛾̄

1 − 𝛾̄ 𝜃𝑡
𝟏
⊺
𝑁 𝐉

(
2𝚫𝑡 + 𝛾̄ 𝐉2 𝒃𝑡

)
. (104)

Then, it holds that

𝒀̂1
𝑡 = 𝒂𝑡 𝑃̂𝑡 + 𝛾̄ 𝐉 𝒃𝑡. (105)
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542 AID et al.

Thus, by Equations (109), (47), and (105), the optimal trading rate at equilibrium can be writ-
ten as (we denote 𝑞̂𝑖 ∶= 𝑞̂𝑖,𝑃̂)

𝑞̂𝑖𝑡 =
1

2𝛾𝑖

(
2Δ𝑖

𝑡 + 𝑌̂1,𝑖
𝑡 − 𝑃̂𝑡

)
=

1

2𝛾𝑖

(
2Δ𝑖

𝑡 +
𝛾̄

𝛾𝑖
𝑏𝑖𝑡 − (1 − 𝑎𝑖𝑡) 𝑃̂𝑡

)
, (106)

which yields equality (101) recalling that Δ𝑖
𝑡 = 𝑌2,𝑖

𝑡 (𝐷𝑖
𝑡 − 𝑋̂𝑖

𝑡).
(ii) From the expression of 𝑃̂𝑡 in Equation (74), we obtain (recalling that 𝒂̃𝑡 = 0)

𝑃̂𝑡 =
𝛾̄

1 − 𝛾̄ 𝜃𝑡
𝟏
⊺
𝑁 𝐉 (2𝚫𝑡 + 𝛾̄ 𝐉 𝒃𝑡) =

1∑𝑁

𝑗=1

1

𝛾𝑗
(1 − 𝑎

𝑗
𝑡 )

𝟏
⊺
𝑁 𝐉 (2𝚫𝑡 + 𝛾̄ 𝐉 𝒃𝑡)

=
1∑𝑁

𝑗=1

1

𝛾𝑗
(1 − 𝑎

𝑗
𝑡 )

𝑁∑
𝑖=1

1

𝛾𝑖

(
2𝑌2,𝑖

𝑡 (𝐷𝑖
𝑡 − 𝑋̂𝑖

𝑡) +
𝛾̄

𝛾𝑖
𝑏𝑖𝑡

)

=

𝑁∑
𝑖=1

𝜋𝑖
𝑡

2 𝑌2,𝑖
𝑡 (𝐷𝑖

𝑡 − 𝑋̂𝑖
𝑡) +

𝛾̄

𝛾𝑖
𝑏𝑖𝑡

1 − 𝑎𝑖𝑡
, (107)

with 𝜋𝑖
𝑡 as in (102).

□

5 THE CASEWITHOUT JUMPS

In the present section, we focus on the case where there are no jumps, so that the terminal con-
dition of 𝑌2,𝑖 is deterministic and given by 1

2

𝜂𝑖 𝑒𝑖

𝜂𝑖+𝑒𝑖
, for some fixed 𝑒𝑖 ∈ 𝐸. We also assume that

for all 𝑖 = 1, … ,𝑁, 𝜇𝑖 = 0, meaning that market players have unbiased forecasts of their terminal
demand. In such a framework, 𝑌2,𝑖 solves the following backward equation:

𝑑𝑌2,𝑖
𝑡 =

1

𝛾𝑖
|𝑌2,𝑖

𝑡 |2 𝑑𝑡, 𝑌2,𝑖
𝑇 =

1

2

𝜂𝑖 𝑒𝑖
𝜂𝑖 + 𝑒𝑖

=∶
1

2
𝜖𝑖. (108)

Hence, 𝑌2,𝑖 is given by

𝑌2,𝑖
𝑡 =

𝑌2,𝑖
𝑇

1 +
1

𝛾𝑖
𝑌2,𝑖
𝑇 (𝑇 − 𝑡)

=∶
1

2

𝜖𝑖

1 +
1

2
𝜙𝑖(𝑇 − 𝑡)

, 0 ≤ 𝑡 ≤ 𝑇, with 𝜙𝑖 ∶=
𝜖𝑖
𝛾𝑖
. (109)

5.1 Main result

In the present framework, we can give more precise formulae, compared to Corollary 4.4, for
the optimal trading rates and the equilibrium price when 𝜇𝑖 = 0; moreover, we can provide a
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AID et al. 543

formula for the volatility of the equilibrium price. For sake of notations, we write 𝑊̃𝑖
𝑡 ∶= 𝜌𝑖𝑊

0
𝑡 +√

1 − 𝜌2
𝑖
𝑊𝑖

𝑡.

Corollary 5.1. Suppose that 𝜇𝑖 = 0 for every 𝑖.

(i) The equilibrium price 𝑃̂𝑡 is given by (recall that 𝑐𝑖(𝜉̂𝑖) = 𝑒𝑖𝜉̂
2
𝑖
∕2, so in particular 𝑐′

𝑖
(𝜉̂𝑖𝑡) = 𝑒𝑖𝜉̂

𝑖
𝑡)

𝑃̂𝑡 =

𝑁∑
𝑖=1

𝐹𝑖(𝑡)𝑐
′
𝑖
(𝜉̂𝑖𝑡), with 𝐹𝑖(𝑡) ∶=

𝐺(𝑡)

𝑓𝑖(𝑡)
, 𝐺(𝑡) ∶=

(
𝑁∑
𝑖=1

1∕𝑓𝑖(𝑡)

)−1

,

𝑓𝑖(𝑡) ∶= 𝛾𝑖 +
1

2
𝜖𝑖(𝑇 − 𝑡), and 𝜉̂𝑖𝑡 ∶=

𝜂𝑖
𝑒𝑖 + 𝜂𝑖

(𝐷𝑖
𝑡 − 𝑋̂𝑖

𝑡). (110)

and the optimal trading rate 𝑞̂𝑖𝑡 is given by

𝑞̂𝑖𝑡 =
1

2

𝑐′
𝑖
(𝜉̂𝑖𝑡) − 𝑃̂𝑡

𝑓𝑖(𝑡)
. (111)

(ii) The dynamics of the equilibrium price writes

𝑑𝑃̂𝑡 =

𝑁∑
𝑖=1

𝐹𝑖(𝑡)𝜖𝑖𝜎𝑖(𝑡)𝑑𝑊̃
𝑖
𝑡. (112)

(iii) In particular, the volatility 𝜁 = (𝜁𝑡)𝑡∈[0,𝑇] of the equilibrium price process is deterministic, and
satisfies

𝜁2𝑡 =

𝑁∑
𝑖=1

(
1 − 𝜌2

𝑖

)
(𝜖𝑖𝐹𝑖(𝑡)𝜎𝑖(𝑡))

2
+

(
𝑁∑
𝑖=1

𝜌𝑖𝜖𝑖𝐹𝑖(𝑡)𝜎𝑖(𝑡)

)2

. (113)

(iv) Moreover, if 𝜎𝑖 = 𝜎, 𝛾𝑖 = 𝛾, 𝜌𝑖 = 𝜌, for every 𝑖, then

𝜁2𝑡 =
(
1 − 𝜌2

)
𝜎2𝐺2(𝑡)

𝑁∑
𝑖=1

(
2𝑌2,𝑖

𝑇

𝛾 + 𝑌2,𝑖
𝑇 (𝑇 − 𝑡)

)2

(114)

+ 𝜌2 𝜎2𝐺2(𝑡)

(
𝑁∑
𝑖=1

2𝑌2,𝑖
𝑇

𝛾 + 𝑌2,𝑖
𝑇 (𝑇 − 𝑡)

)2

.

If in addition, all players have the same cost functions, namely 𝑒𝑖 = 𝑒, for every 𝑖, then the volatil-
ity of the equilibrium price is constant equal to

𝜁2𝑡 =

[
4
(
1 − 𝜌2

) 1

𝑁
|𝑌2

𝑇|2 + 4 𝜌2 |𝑌2
𝑇|2]𝜎2, (115)

where 𝑌2
𝑇 =

1

2

𝜂 𝑒

𝜂+𝑒
, for every 𝑖.
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544 AID et al.

Proof. Item (i). By formula (101), we have in the case without jumps (𝑏𝑖 = 0)

𝑞̂𝑖𝑡 =
1

2𝛾𝑖

(
2𝑌2,𝑖

𝑡 (𝐷𝑖
𝑡 − 𝑋̂𝑖

𝑡) − (1 − 𝑎𝑖𝑡)𝑃̂𝑡

)
=

1

2𝛾𝑖

⎛⎜⎜⎝
𝑐′
𝑖
(𝜉̂𝑖𝑡)

1 +
1

2
𝜙𝑖(𝑇 − 𝑡)

− (1 − 𝑎𝑖𝑡)𝑃̂𝑡

⎞⎟⎟⎠, (116)

where we used that

2𝑌2,𝑖
𝑡 (𝐷𝑖

𝑡 − 𝑋̂𝑖
𝑡) =

𝜖𝑖(𝐷
𝑖
𝑡 − 𝑋̂𝑖

𝑡)

1 +
1

2
𝜙𝑖(𝑇 − 𝑡)

=
𝑐′
𝑖
(𝜉̂𝑖𝑡)

1 +
1

2
𝜙𝑖(𝑇 − 𝑡)

. (117)

Noting 1 − 𝑎𝑖𝑡 = 1∕(1 +
1

2
𝜙𝑖(𝑇 − 𝑡)), we get

𝑞̂𝑖𝑡 =
1

2𝛾𝑖

⎛⎜⎜⎝
𝑐′
𝑖
(𝜉̂𝑖𝑡) − 𝑃̂𝑡

1 +
1

2
𝜙𝑖(𝑇 − 𝑡)

⎞⎟⎟⎠. (118)

Thus, summing up all the trading rates, we find

𝑃̂𝑡 =

𝑁∑
𝑖=1

(
𝑁∑
𝑘=1

(
𝛾𝑘

(
1 +

1

2
𝜙𝑘(𝑇 − 𝑡)

))−1
)−1

1

𝛾𝑖(1 +
1

2
𝜙𝑖(𝑇 − 𝑡))

𝑐′
𝑖
(𝜉̂𝑖𝑡), (119)

with

𝐹𝑖(𝑡) ∶=
𝐺(𝑡)

𝛾𝑖(1 +
1

2
𝜙𝑖(𝑇 − 𝑡))

, 𝐺(𝑡) ∶=

(
𝑁∑
𝑘=1

(
𝛾𝑘

(
1 +

1

2
𝜙𝑘(𝑇 − 𝑡)

))−1
)−1

. (120)

Items (ii) and (iii). Using formula (110) and that the noise terms are only due to𝐷1
𝑡 , … , 𝐷𝑁

𝑡 , we find

𝑑𝑃̂𝑡 =

𝑁∑
𝑖=1

𝐹𝑖(𝑡)𝜖𝑖𝜎𝑖(𝑡)𝑑𝑊̃
𝑖
𝑡, (121)

which corresponds to formula (112). From such a formula, we immediately get Equation (113).
Item (iv). Formula (114) is a direct consequence of Equation (113). Finally, if all cost functions

are identical, namely 𝑌2,𝑖
𝑇 = 𝑌2

𝑇 =
1

2

𝜂 𝑒

𝜂+𝑒
, for every 𝑖, then by Equation (114), we immediately get

Equation (115), which proves that the volatility is decreasing in 𝑡. □

Remark 5.2.

(i) The item (i) in Corollary 5.1 shows that the equilibrium price is a convex combination of
the forecasted marginal cost to produce the quantity 𝐷𝑖

𝑡 − 𝑋̂𝑖
𝑡. The quantity 𝐷𝑖

𝑡 − 𝑋̂𝑖
𝑡 is the

best estimator an agent can have on the quantity she will have to produce at time 𝑇. The
weights of the convex combination are deterministic functions of time. Further, for any agent,
the optimal trading strategy is simply to compare its forecasted marginal cost 𝑐′

𝑖
(𝜉̂𝑖𝑡) to the
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AID et al. 545

equilibrium price 𝑃̂𝑡. If the forecasted marginal cost is higher (resp. lower) than 𝑃̂𝑡, she buys
(resp. sell).

(ii) Using Equation (110), we can rewrite 𝑃̂ as

𝑃̂𝑡 = 𝑆𝑡 −

𝑁∑
𝑖=1

𝐹𝑖(𝑡)𝜖𝑖𝑋̂
𝑖
𝑡, 𝑆𝑡 ∶=

𝑁∑
𝑖=1

𝐹𝑖(𝑡)𝜖𝑖(𝐷
𝑖
𝑡 − 𝑥𝑖0). (122)

The process 𝑆𝑡 is an uncontrolled process, which represents a fundamental price, and the
factors 𝜖𝑖𝐹𝑖(𝑡) reads as the permanent market impact of each agent. This decomposition is
consistent with the famous Almgren and Chriss model of intraday trading (Almgren and
Chriss (2001)). Note that if agents are identical, 𝑃̂𝑡 reduces to its fundamental component
because of the market clearing condition.

(iii) Under the assumptions for the validity of formula (115), we see that 𝜁2𝑡 converges to zero as𝑁
goes to infinity when 𝜌 = 0, while the limit is strictly positive when 𝜌 ≠ 0. This result trans-
lates in the following remark: in a market with no production shocks, prices move because
agents face a common economic factor.

(iv) Rewriting Equation (110), it holds that

𝐹𝑖(𝑡) =
⎡⎢⎢⎣

𝑁∑
𝑘=1

𝛾𝑖 +
1

2
𝜖𝑖(𝑇 − 𝑡)

𝛾𝑘 +
1

2
𝜖𝑘(𝑇 − 𝑡)

⎤⎥⎥⎦
−1

. (123)

Hence, when there are no market frictions, that is, all the 𝛾𝑖 are zero, all the functions 𝐹𝑖 are
constant, and thus, the equilibrium price still exists.

5.2 Samuelson’s effect

We study here the monotonicity in time of the volatility function 𝜁𝑡 given in the formula (113).
We start by a remark. If the market players are homogeneous (same cost 𝑒𝑖 , same penalization
of imbalances 𝜂𝑖 , same market access 𝛾𝑖), all functions 𝐹𝑖 are constant equal to 1∕𝑁 and, if we
further assume the same dependence on common shocks 𝜌𝑖 = 𝜌, the volatility reduces to

𝜁2𝑡 =
𝜖2

𝑁2

⎡⎢⎢⎣(1 − 𝜌2)

𝑁∑
𝑖=1

𝜎2
𝑖
(𝑡) + 𝜌2

(
𝑁∑
𝑖=1

𝜎𝑖(𝑡)

)2⎤⎥⎥⎦. (124)

In this homogeneous case, themonotonicity of the price volatility is fully determined by themono-
tonicity of the volatility of the demand forecasts. And as a consequence, in the case of a decrease
of the demand uncertainty closer to maturity, which is the case of intraday electricity markets,
the Samuelson’s effect would not hold, contrary to the prediction of the state-variable hypothesis
andAnderson andDanthine (1983). For the Samuelson’s effect to be observed, some heterogeneity
is somehow necessary. Moreover, heterogeneity can induce rich behaviors of the price volatility.
Figure 1 illustrates this fact, in the case where two populations I and II of identical players are
interacting, and when the volatility demand is in the form 𝜎2

𝑖
(𝑡) = 𝜗𝐼 + 𝜓𝐼(𝑇 − 𝑡), 𝑖 in group I, and

𝜎2
𝑖
(𝑡) = 𝜗𝐼𝐼 + 𝜓𝐼𝐼(𝑇 − 𝑡), 𝑖 in group II, for some nonnegative constants 𝜗𝐼 , 𝜓𝐼 , 𝜗𝐼𝐼 , 𝜓𝐼𝐼 . The param-
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546 AID et al.

F IGURE 1 Price volatility function 𝜁2𝑡 as a function of the proportion of type 1 agents 𝛼 with parameters
given in Table 1 [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Parameters value used for Figure 1

Type I Type II
Figure 1 (left) 𝜓𝐼 = 20, 𝜗𝐼 = 5, 𝜌 = 0, 𝜓𝐼𝐼 = 0, 𝜗𝐼𝐼 = 0, 𝜌 = 0,

𝑒 = 10, 𝛾 = 0.1 𝜂 = 5. 𝑒 = 10, 𝛾 = 100, 𝜂 = 5.
Figure 1 (right) 𝜓𝐼 = 1, 𝜗𝐼 = 0, 𝜌 = 1, 𝜓𝐼𝐼 = 0.1, 𝜗𝐼𝐼 = 10, 𝜌 = −1,

𝑒 = 2, 𝛾 = 1 𝜂 = 5. 𝑒 = 1, 𝛾 = 1 𝜂 = 5.

eters of each population are given in Table 1. We observe that a small fraction of population can
make the monotonicity of the volatility go from nonincreasing to nondecreasing (Figure 1 (left)
for 𝛼 = 5 10−3). Further, we also observe on Figure 1 (right) that it is also possible to produce the
Samuelson’s effect by mixing two populations who individually would lead a nonincreasing price
volatility function.
Thus, because it is utterly difficult to isolate a necessary and sufficient condition on the whole

set of parameters for the Samuelson’s effect to hold, we focus on parameters, which would yield
a positive result only by themselves, all other parameters being equal. From the analysis above, it
is already clear that different correlations with the common noise cannot explain by themselves
the Samuelson’s effect. But, we show below that heterogeneity on market quality access only (𝛾𝑖)
or only on production costs resumed by the parameter 𝜖𝑖 leads to a positive result. For simplicity,
we assume in both cases that the demand volatility is constant 𝜎𝑖(𝑡) = 𝜎.

Market access quality
We assume that all the market players have the same cost 𝑒𝑖 , and penalization imbalance, hence
the same 𝜖𝑖 = 𝜖, 𝑖 = 1, … ,𝑁 (recall Equation (108)). Firms only differ by their market access quality
parameter 𝛾𝑖 , sorted in a nondecreasing order (𝛾𝑖 < 𝛾𝑗 , for 𝑖 < 𝑗). The (square) of the volatility is
given by

𝜁2𝑡 = (1 − 𝜌2)𝜖2𝜎2
𝑁∑
𝑖=1

𝐹2
𝑖
(𝑡) + 𝜌2𝜖2𝜎2. (125)
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AID et al. 547

Recalling the expression of 𝐺 and 𝐹𝑖 in Equation (110), their derivatives are given by

𝐺′ = −
𝜖

2

∑
𝑘
1∕𝑓2

𝑘(∑
𝑘
1∕𝑓𝑘

)2 = −
𝜖

2
𝐺2

𝑁∑
𝑘=1

1

𝑓2
𝑘

, 𝐹′
𝑖
=

𝐺′

𝑓𝑖
−

𝐺𝑓′
𝑖

𝑓2
𝑖

=
𝜖

2
𝐺2

𝑁∑
𝑘=1

𝛾𝑘 − 𝛾𝑖

𝑓2
𝑘
𝑓2
𝑖

. (126)

It follows that the time derivative of 𝜁2 is equal to

(𝜁2)′ = (1 − 𝜌2)𝜎2𝜖2
𝑁∑
𝑖=1

2𝐹𝑖𝐹
′
𝑖
= (1 − 𝜌2)𝜎2𝜖3𝐺2

𝑁∑
𝑖=1

1

𝑓𝑖

𝑁∑
𝑘=1

𝛾𝑘 − 𝛾𝑖

𝑓2
𝑘
𝑓2
𝑖

. (127)

Now, by rearranging the sum of terms as

𝑁∑
𝑖=1

1

𝑓𝑖

𝑁∑
𝑘=1

𝛾𝑘 − 𝛾𝑖

𝑓2
𝑘
𝑓2
𝑖

=
1

𝑓1

(
𝛾2 − 𝛾1

𝑓2
1𝑓

2
2

+
𝛾3 − 𝛾1

𝑓2
1𝑓

2
3

+⋯

)
+

1

𝑓2

(
𝛾1 − 𝛾2

𝑓2
2𝑓

2
1

+
𝛾3 − 𝛾2

𝑓2
2𝑓

2
3

+⋯

)

+
1

𝑓3

(
𝛾1 − 𝛾3

𝑓2
3𝑓

2
1

+
𝛾2 − 𝛾3

𝑓2
3𝑓

2
2

+⋯

)
+⋯

=
𝛾2 − 𝛾1

𝑓2
1𝑓

2
2

[
1

𝑓1
−

1

𝑓2

]
+

𝛾3 − 𝛾1

𝑓2
1𝑓

2
3

[
1

𝑓1
−

1

𝑓3

]
+

𝛾3 − 𝛾2

𝑓2
2𝑓

2
3

[
1

𝑓2
−

1

𝑓3

]
+⋯, (128)

and noting that

1

𝑓𝑖
−

1

𝑓𝑘
=

𝛾𝑘 − 𝛾𝑖
𝑓𝑖𝑓𝑘

> 0, 𝑖 < 𝑘, (129)

we deduce that

𝑁∑
𝑖=1

1

𝑓𝑖

𝑁∑
𝑘=1

𝛾𝑘 − 𝛾𝑖

𝑓2
𝑘
𝑓2
𝑖

> 0, (130)

which implies that (𝜁2𝑡 )
′ > 0, that is, the Samuelson’s effect holds true.

Production costs
We assume that all the market players have the same market impact 𝛾𝑖 = 𝛾, 𝑖 = 1, … ,𝑁, but differ
through their cost 𝑒𝑖 or imbalance 𝜂𝑖 . We set 𝜖𝑖 < 𝜖𝑗 for 𝑖 < 𝑗. The (square) volatility is then given
by

𝜁2𝑡 = (1 − 𝜌2)𝜎2
𝑁∑
𝑖=1

𝜖2
𝑖
𝐹2
𝑖
+ 𝜌2𝜎2

(
𝑁∑
𝑖=1

𝜖𝑖𝐹𝑖

)2

. (131)

We now have

𝐺′ = −
1

2
𝐺2

𝑁∑
𝑘=1

𝜖𝑘

𝑓2
𝑘

, 𝐹′
𝑖
=

𝐺′

𝑓𝑖
−

𝐺𝑓′
𝑖

𝑓2
𝑖

=
𝛾

2
𝐺2

𝑁∑
𝑘=1

𝜖𝑖 − 𝜖𝑘

𝑓2
𝑘
𝑓2
𝑖

. (132)
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548 AID et al.

Denote by 𝑣(𝑡) ∶=
∑𝑁

𝑖=1
𝜖2
𝑖
𝐹2
𝑖
and 𝑤(𝑡) ∶= (

∑𝑁

𝑖=1
𝜖𝑖𝐹𝑖)

2. A straightforward calculation yields

𝑣′ = 2

𝑁∑
𝑖=1

𝜖2
𝑖
𝐹𝑖𝐹

′
𝑖
= 𝛾𝐺3

𝑁∑
𝑖=1

𝜖2
𝑖

𝑓𝑖

𝑁∑
𝑘=1

𝜖𝑖 − 𝜖𝑘

𝑓2
𝑘
𝑓2
𝑖

, (133)

and by rearranging again the sum of terms as

𝑁∑
𝑖=1

𝜖2
𝑖

𝑓𝑖

𝑁∑
𝑘=1

𝜖𝑖 − 𝜖𝑘

𝑓2
𝑘
𝑓2
𝑖

=
𝜖21
𝑓1

(
𝜖1 − 𝜖2

𝑓2
1𝑓

2
2

+
𝜖1 − 𝜖3

𝑓2
1𝑓

2
3

+⋯

)
+

𝜖22
𝑓2

(
𝜖2 − 𝜖1

𝑓2
2𝑓

2
1

+
𝜖2 − 𝜖3

𝑓2
2𝑓

2
3

+⋯

)

+
𝜖23
𝑓3

(
𝜖3 − 𝜖1

𝑓2
3𝑓

2
1

+
𝜖3 − 𝜖2

𝑓2
3𝑓

2
2

+⋯

)
+⋯

=
𝜖2 − 𝜖1

𝑓2
2𝑓

2
1

[
𝜖22
𝑓2

−
𝜖21
𝑓1

]
+

𝜖3 − 𝜖1

𝑓2
3𝑓

2
1

[
𝜖23
𝑓3

−
𝜖21
𝑓1

]
+

𝜖3 − 𝜖2

𝑓2
3𝑓

2
2

[
𝜖23
𝑓3

−
𝜖22
𝑓2

]
+⋯, (134)

and noting that

𝜖2
𝑖

𝑓𝑖
−

𝜖2
𝑘

𝑓𝑘
=

𝛾(𝜖2
𝑖
− 𝜖2

𝑘
) +

1

2
𝜖𝑖𝜖𝑘(𝜖𝑖 − 𝜖𝑘)(𝑇 − 𝑡)

𝑓𝑖𝑓𝑘
> 0, 𝑘 < 𝑖, (135)

we deduce that 𝑣′ > 0. Similarly, we have

𝑤′ = 2

(
𝑁∑
𝑖=1

𝜖𝑖𝐹𝑖

)(
𝑁∑
𝑖=1

𝜖𝑖𝐹
′
𝑖

)
,

𝑁∑
𝑖=1

𝜖𝑖𝐹
′
𝑖
=

1

2
𝛾𝐺2

𝑁∑
𝑖=1

𝜖𝑖

𝑁∑
𝑘=1

𝜖𝑖 − 𝜖𝑘

𝑓2
𝑘
𝑓2
𝑖

, (136)

and, observing again that

𝑁∑
𝑖=1

𝜖𝑖

𝑁∑
𝑘=1

𝜖𝑖 − 𝜖𝑘

𝑓2
𝑘
𝑓2
𝑖

=
𝜖2 − 𝜖1

𝑓2
2𝑓

2
1

[𝜖2 − 𝜖1] +
𝜖3 − 𝜖1

𝑓2
3𝑓

2
1

[𝜖3 − 𝜖1] +
𝜖3 − 𝜖2

𝑓2
3𝑓

2
2

[𝜖3 − 𝜖2] +⋯ > 0, (137)

we deduce that𝑤′ > 0. It follows that the derivative of the volatility is positive, which means that
the Samuelson’s effect holds true.

6 THE CASEWITH JUMPS

In the present section, we consider the case with jumps only and make the following assump-
tions:

(a) for every 𝑖 = 1, … ,𝑁, the demand forecast is perfect and 𝜎𝑖 = 0;
(b) the set𝐸 = {𝑔, 𝑏} ⊂ (0, +∞) consists of two states (𝑔 stands for good and 𝑏 for bad), with 𝑔 < 𝑏;
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AID et al. 549

(c) for every 𝑖 = 1, … ,𝑁, the Markov chain 𝛽𝑖 has state space 𝐸 = {𝑔, 𝑏}, initial state 𝑔 at time
𝑡 = 0 and intensity matrix given by

Λ𝑖 =

(
−𝜆

𝑔

𝑖
𝜆
𝑔

𝑖
𝜆𝑏
𝑖

−𝜆𝑏
𝑖

)
, (138)

where 𝜆𝑔
𝑖
and 𝜆𝑏

𝑖
are fixed strictly positive real numbers. In other words, each agent has an

intensity rate 𝜆𝑔
𝑖
to jump from the good state to the bad state and a 𝜆𝑏

𝑖
intensity rate to jump

from the bad state to the good state.

In this framework, for every 𝑖 = 1, … ,𝑁, the Riccati type system of Equation (16) becomes

𝑦′
𝑖,𝑔
(𝑡) =

1

𝛾𝑖
𝑦𝑖,𝑔(𝑡)

2 + 𝜆
𝑔

𝑖
𝑦𝑖,𝑔(𝑡) − 𝜆

𝑔

𝑖
𝑦𝑖,𝑏(𝑡), 𝑦𝑖,𝑔(𝑇) =

1

2

𝜂𝑖 𝑔

𝜂𝑖 + 𝑔
, (139)

𝑦′
𝑖,𝑏
(𝑡) =

1

𝛾𝑖
𝑦𝑖,𝑏(𝑡)

2 − 𝜆𝑏
𝑖
𝑦𝑖,𝑔(𝑡) + 𝜆𝑏

𝑖
𝑦𝑖,𝑏(𝑡), 𝑦𝑖,𝑏(𝑇) =

1

2

𝜂𝑖 𝑏

𝜂𝑖 + 𝑏
. (140)

We recall that the backward SDE (23), driven by the Markov chain 𝛽𝑖 , is such that

𝑌2,𝑖
𝑡 = 𝑦𝑖,𝛽𝑖𝑡

(𝑡). (141)

The case with𝑁 agents belonging to two groups
Suppose that there are two groups of agents, so that 𝑁 = 𝑁𝐼 + 𝑁𝐼𝐼 , for some 𝑁𝐼,𝑁𝐼𝐼 ∈ ℕ, and

𝜇𝑖 = 𝜇𝐼, 𝜂𝑖 = 𝜂𝐼, 𝜆𝑖 = 𝜆𝐼, 𝑖 = 1, … ,𝑁𝐼,

𝜇𝑖 = 𝜇𝐼𝐼, 𝜂𝑖 = 𝜂𝐼𝐼, 𝜆𝑖 = 𝜆𝐼𝐼, 𝑖 = 𝑁𝐼 + 1,… ,𝑁. (142)

Let 𝑦𝐼,𝑔, 𝑦𝐼,𝑏 (resp. 𝑦𝐼𝐼,𝑔, 𝑦𝐼𝐼,𝑏) denote the solutions to the system of Equations (139)–(140) with
coefficients 𝜂𝐼, 𝜆𝐼, 𝜂𝐼 (resp. 𝜂𝐼𝐼, 𝜆𝐼𝐼, 𝜂𝐼𝐼). Moreover, for every 𝑖 = 1, … ,𝑁, let 𝛽𝑖 be theMarkov chain
with starting point 𝑒𝑖0 at time 𝑡 = 0. Then, for all 𝑡 ∈ [0, 𝑇], it holds that

𝑌2,𝑖
𝑡 = 𝑦𝐼,𝛽𝑖𝑡

(𝑡), 𝑎𝑖𝑡 =
1

𝛾𝐼
(𝑇 − 𝑡)𝑌2,𝑖

𝑡 , 𝐷𝑖
𝑡 = 𝑑𝑖0 + 𝜇𝐼 𝑡, 𝑖 = 1, … ,𝑁𝐼,

𝑌2,𝑖
𝑡 = 𝑦𝐼𝐼,𝛽𝑖𝑡

(𝑡), 𝑎𝑖𝑡 =
1

𝛾𝐼𝐼
(𝑇 − 𝑡)𝑌2,𝑖

𝑡 , 𝐷𝑖
𝑡 = 𝑑𝑖0 + 𝜇𝐼𝐼 𝑡, 𝑖 = 𝑁𝐼 + 1,… ,𝑁. (143)

Now, let

𝑿̂𝑡 =
⎛⎜⎜⎝
𝑋̂1
𝑡

⋮

𝑋̂𝑁
𝑡

⎞⎟⎟⎠, 𝒙0 =
⎛⎜⎜⎝
𝑥10
⋮

𝑥𝑁0

⎞⎟⎟⎠. (144)
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550 AID et al.

In the case with jumps, Equation (75) for 𝑿̂ still depends on 𝒀̂1 through the following term:

𝛾̄ 𝐉 𝒃𝑡 =
1

𝑁𝐼

𝛾𝐼
+

𝑁−𝑁𝐼

𝛾𝐼𝐼

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

𝛾𝐼
𝑏𝑖𝑡

⋮
1

𝛾𝐼
𝑏
𝑁𝐼
𝑡

1

𝛾𝐼𝐼
𝑏
𝑁𝐼+1
𝑡

⋮
1

𝛾𝐼𝐼
𝑏𝑁𝑡

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (145)

Recalling estimate (58), we see that
∑𝑁

𝑖=1
𝔼[∫ 𝑇

0
|𝑏𝑖𝑡|2𝑑𝑡] is bounded by a constant, which is inde-

pendent of 𝑁. As a consequence, the quantity 𝛾̄ 𝐉 𝒃𝑡 can be neglected for 𝑁 large enough, there-
fore obtaining the following system of ordinary differential equationswith random coefficients (to
simplify notation, we still denote by the same symbol, namely 𝑿̂𝑡, the solution to such a system):

𝑑𝑿̂𝑡 =
1

2
𝐉

(
𝐈 −

𝛾̄

1 − 𝛾̄ 𝜃𝑡
(𝟏𝑁×𝑁 − 𝐀𝑡) 𝐉

)
(2𝚫𝑡 + 2 𝒂̃𝑡) 𝑑𝑡, 0 ≤ 𝑡 ≤ 𝑇, (146)

with 𝑿̂0 = 𝒙0, where 𝐈 denotes the identity matrix of order 𝑁, 𝟏𝑁×𝑁 denotes the 𝑁 ×𝑁 matrix
with all entries equal to 1, moreover

𝛾̄ =
1

𝑁𝐼

𝛾𝐼
+

𝑁𝐼𝐼

𝛾𝐼𝐼

, 𝜃𝑡 =
1

𝛾𝐼

𝑁𝐼∑
𝑖=1

𝑎𝑖𝑡 +
1

𝛾𝐼𝐼

𝑁∑
𝑖=𝑁𝐼+1

𝑎𝑖𝑡, 𝚫𝑡 =
⎛⎜⎜⎝
𝑌2,1
𝑡

(
𝐷1
𝑡 − 𝑋̂1

𝑡

)
⋮

𝑌2,𝑁
𝑡

(
𝐷𝑁
𝑡 − 𝑋̂𝑁

𝑡

)⎞⎟⎟⎠, 𝒂̃𝑡 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝜇𝐼𝛾𝐼𝑎
1
𝑡

⋮

𝜇𝐼𝛾𝐼𝑎
𝑁𝐼
𝑡

𝜇𝐼𝐼𝛾𝐼𝐼𝑎
𝑁𝐼+1
𝑡

⋮

𝜇𝐼𝐼𝛾𝐼𝐼𝑎
𝑁
𝑡

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

(147)
In addition, the 𝑁 ×𝑁 matrices 𝐀𝑡 and 𝐉 are defined as

𝐀𝑡 =

⎛⎜⎜⎜⎜⎝
𝑎1𝑡 𝑎1𝑡 𝑎1𝑡 ⋯ 𝑎1𝑡
𝑎2𝑡 𝑎2𝑡 𝑎2𝑡 ⋯ 𝑎2𝑡
⋮ ⋮ ⋮ ⋱ ⋮

𝑎𝑁𝑡 𝑎𝑁𝑡 𝑎𝑁𝑡 ⋯ 𝑎𝑁𝑡

⎞⎟⎟⎟⎟⎠
, 𝐉 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

𝛾1
0 0 0 0 ⋯

0 ⋱ 0 0 0 ⋯

0 ⋯
1

𝛾𝐼
0 0 ⋯

0 ⋯ 0
1

𝛾𝐼𝐼
0 ⋯

⋮ ⋮ ⋮ ⋯ ⋱ ⋯

0 0 0 0 ⋯
1

𝛾𝐼𝐼

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (148)

with 𝐉 being a block diagonal matrix, with diagonal blocks given by 1

𝛾𝐼
𝐈𝑁𝐼

and 1

𝛾𝐼𝐼
𝐈𝑁𝐼𝐼

(where 𝐈𝑁𝐼

and 𝐈𝑁𝐼𝐼
denote the identity matrices of order 𝑁𝐼 and 𝑁𝐼𝐼 , respectively).

Now, by Equation (74), still neglecting the term 𝛾̄ 𝐉 𝒃𝑡, we see that the equilibrium price is
approximately given by

𝑃̂𝑡 ≃ 𝑃̃𝑡 ∶=
𝛾̄

1 − 𝛾̄ 𝜃𝑡
𝟏
⊺
𝑁 𝐉 (2𝚫𝑡 + 2 𝒂̃𝑡), 0 ≤ 𝑡 ≤ 𝑇. (149)
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AID et al. 551

Finally, by Equations (47) and (80), we obtain the approximate optimal trading strategies

𝑞̂𝑖𝑡 ≃ 𝑞𝑖𝑡 ∶=

⎧⎪⎨⎪⎩
1

2𝛾𝐼

(
2Δ𝑖

𝑡 + (𝑎𝑖𝑡 − 1)𝑃̂𝑡 + 2𝑎̃𝑖𝑡
)
, 𝑖 = 1, … ,𝑁𝐼,

1

2𝛾𝐼𝐼

(
2Δ𝑖

𝑡 + (𝑎𝑖𝑡 − 1)𝑃̂𝑡 + 2𝑎̃𝑖𝑡
)
, 𝑖 = 𝑁𝐼 + 1,… ,𝑁,

(150)

for all 0 ≤ 𝑡 ≤ 𝑇.

Numerical illustration
We consider that the two populations have the following features: first population,𝑁𝐼 = 100, 𝜆𝑔𝐼 =
0.1, 𝜆𝑏𝐼 = 0.1, 𝛽𝑔𝐼 = 6, 𝛽𝑏𝐼 = 7, 𝜇𝐼 = 0; second population, 𝑁𝐼𝐼 = 100, 𝜆𝑔𝐼𝐼 = 0.5, 𝜆𝑏𝐼𝐼 = 0.5, 𝛽𝑔𝐼𝐼 = 0,
𝛽𝑏𝐼𝐼 = 20, 𝜇𝐼𝐼 = 0. Both populations share the same market access cost of 𝛾 = 10 and the same
𝜂 = 10.
The idea behind this setting is that the number of market participants in an intraday electric-

ity markets like the German market is around 200 (see Balardy (2018)). We consider that half of
them have production with low potentially variable costs (population 𝐼) while the second half of
the population is made of producers with zero marginal cost but with high potential change in
their costs.
Figure 2 shows in (a) the functions 𝑦𝐼,𝑔, 𝑦𝐼,𝑏, 𝑦𝐼𝐼,𝑔 and 𝑦𝐼𝐼,𝑏, in (b) the approximated market

equilibrium price, and in (c) a measure of the trading activity given by 1

𝑁

∑
𝑖
|𝑞𝑖𝑡|.

The functions 𝑦𝑖,𝑒 captures the possible changes in marginal production costs. Indeed, recall
that

𝑃̃𝑡 =
𝛾̄

1 − 𝛾̄𝜃𝑡

𝑁∑
𝑖=1

2𝑦𝑖,𝛽𝑖𝑡
(𝑡)(𝐷𝑖

𝑡 − 𝑋̂𝑖
𝑡). (151)

We observe that at initial time, the population 𝐼𝐼 (red curves) enjoys a lower potential marginal
cost than population 𝐼 (blue curves). But, it experiences possible much larger change at terminal
time. Between 𝑡 = 0 and 𝑡 = 6, 𝑦𝐼𝐼,𝑔 and 𝑦𝐼𝐼,𝑏 are undistinguishable and thus, any jump that would
occur during this period will not trigger any change in the market price equilibrium nor in the
trading activity. But, passed 𝑡 = 8, a jump from the good state 𝑔 to the bad state 𝑏 will trigger a
large change in the potential marginal cost at maturity and thus, will put the players in a situation
where they suddenly need to readjust their positions, triggering thus large change in the trading
activity and in the price. This mechanism explains the dynamics of the approximated equilibrium
price shown on Figure 2b. During the first 60% of the period, the market price is stable, almost
constant. Then we observe increasing swings of prices: in the last 5% of the period, the price loses
and gains back 2 € in a few minutes. As a comparison, Figure 2d provides real trajectories of
intraday prices on EEX for three different hours of delivery, which are extracted from Deschatre
and Gruet (2021) with the courtesy of the authors. We clearly observe the increase of the volatility
price closer to maturity and the similarity between our model simulation (b) and the behavior of
the intraday price (d).
These phenomena of long period of inactivity followed by a period of frantic trading and expo-

nentially increasing trading activity closer tomaturity are highly documented in themathematical
finance literature on intraday electricity markets (see the references in the introduction). Thus,
our model succeeds in capturing some important features of the observed behavior of the intra-
day electricity price while providing an explanation based on the fundamentals. More generally, it
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552 AID et al.

F IGURE 2 (a) The functions 𝑦𝐼,𝑔, 𝑦𝐼,𝑏 , 𝑦𝐼𝐼,𝑔, and 𝑦𝐼𝐼,𝑏 , in (b) the approximated market equilibrium price and
in (c) a measure of the trading activity given by 1

𝑁

∑
𝑖
|𝑞̂𝑖𝑡|. Parameters value: 𝑁𝐼 = 100, 𝜆𝑔𝐼 = 0.1, 𝜆𝑏𝐼 = 0.1, 𝛽𝑔

𝐼 = 6,
𝛽𝑏
𝐼 = 7, 𝜇𝐼 = 0; 𝑁𝐼𝐼 = 100, 𝜆𝑔𝐼𝐼 = 0.5, 𝜆𝑏𝐼𝐼 = 0.5, 𝛽𝑔

𝐼𝐼 = 0, 𝛽𝑏
𝐼𝐼 = 20, 𝜇𝐼𝐼 = 0; 𝛾𝑖 = 𝛾 = 10, 𝜂𝑖 = 𝜂 = 10, 𝑑𝑖0 = 20. (d)

Intraday mid-prices on EEX market on August, 30th, 2017 for deliveries at 18, 19, and 20 h up to 1 h before
maturity, picture extracted from Deschatre and Gruet (2021) with the permission of the authors [Color figure can
be viewed at wileyonlinelibrary.com]

shows that an equilibriummodel of pure jumps affecting the production side succeeds in produc-
ing the Samuelson’s effect. Besides, the reasons of the equilibrium price increasing volatility are
consistent with the information flow argument of Samuelson (1965) and Hong (2000). In particu-
lar, it matches Hong’s explanation of the damping effect of a production shock far from maturity
compared to the same shock closer to delivery (see Hong (2000), p. 961).
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ENDNOTE
1 The cost of carry 𝑐𝑡 is the process defined by 𝐹𝑡(𝑇) = 𝑆𝑡𝑒

𝑟𝑡−𝑐𝑡 , where 𝑆𝑡 is the spot price, 𝐹𝑡(𝑇) is the futures price
for delivery at time 𝑇, and 𝑟𝑡 is the risk-free rate.
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