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Homotopy groups of EhG24
C ∧ A1

Viet-Cuong Pham

Abstract

Let A1 be any spectrum in a class of finite spectra whose mod 2 cohomology

is isomorphic to a free module of rank one over the subalgebra A(1) of the

Steenrod algebra. Let EC be the second Morava-E theory associated to a

universal deformation of the formal completion of the supersingular elliptic

curve (C) : y2+y = x3 defined over F4 and G24 a maximal finite subgroup

of automorphism group SC of the formal completion of C . In this paper, we

compute the homotopy groups of EhG24
C ∧ A1 by means of the homotopy

fixed point spectral sequence.

Keywords: K(2)-local; Davis-Mahowald spectral sequence; Topological mod-

ular forms; Homotopy fixed point spectral sequence
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Introduction

A central problem in stable homotopy theory is to understand the homotopy groups

of the sphere spectrum localised at each prime p, π∗(S
0
(p)). A powerful tool for

computing the latter is the Adams spectral sequence, whose E2-term is given by

Ext∗,∗Ap
(Fp,Fp), the extension groups over the Steenrod algebra Ap. However, this

method only allows one to compute π∗(S
0
(p)) stem by stem. In the late 1950’s,

Toda in [Tod59] and in the 1960’s, Adams in [Ada66], in the study of the im-

age of J, showed the existence of infinite families of elements of π∗(S
0) living in

arbitrarily large stems. These were the first periodic families discovered, known

as the α-family, of the stable homotopy groups of the sphere. Adam’s work and

subsequent work by L. Smith, Toda and Miller-Mahowald-Wilson and others mo-

tivated and marked the beginning of chromatic homotopy theory.

In the early 1980’s, Ravenel published a series of conjectures which described

the global structure of the stable homotopy category. Most of the conjectures

were then resolved by Hopkins and his collaborators. In fact, the chromatic point

of view offers a promising tool to analyse π∗(S
0
(p)) in a systematic way by de-

composing it into smaller pieces. More precisely, let Ln and LK(n) denote the

Bousfield localisations with respect to the nth Johnson-Wilson theory E(n) and

nth-Morava K-theory, respectively (here the prime p is implicit in the notation).

We have the chromatic convergence theorem.

Theorem 1 (Hopkins-Ravenel, [Rav92]). Let X be a p-local finite spectrum.

There is a tower

... → LnX → Ln−1X → ... → L0X ∼= LHQX,

such that X is homotopy equivalent to its homotopy limit.

Furthermore, the chromatic fracture square asserts that Ln can be inductively de-

termined from the Bousfield localisation LK(m) with respect to the mth Morava

K-theory for 0 ≤ m ≤ n, via homotopy pull-back squares
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Theorem 2. [Rav92]. For any spectrum X and all positive integers n, the follow-

ing diagram is a homotopy pullback square

LnX //

��

LK(n)X

��
Ln−1X // Ln−1LK(n)X.

Therefore, in the chromatic approach to stable homotopy theory, it is crucial to

understand the K(n)-local homotopy category at all primes and all natural num-

bers n, referred to as the chromatic level. For this purpose, a general strategy is

to study the homotopy type of the K(n)-localisation of various finite spectra. A

central result of the theory is the work of Devinatz and Hopkins [DH04] which ex-

presses the K(n)-localisation of a finite spectrum X as the continuous homotopy

fixed point spectrum

LK(n)X ≃ EhGn

n ∧X

where Gn is the extended Morava stabiliser group, which is profinite, and En is

the nth Morava E-theory. More generally, for any closed subgroup F of Gn, the

continuous homotopy fixed point spectrum EhF
n can be formed.

The study of chromatic level one was a great success: the homotopy groups of

LK(1)S
0 have been completely computed at all primes and, at the prime 2, LK(1)S

0

detects essentially the image of J. Chromatic level two has also been thoroughly

investigated at odd primes. It started with the computation by Shimomura and his

collaborators of the L2 localisation of various finite spectra (see [SY95], [Shi97],

[Shi00], [SW02]). Later Goerss-Henn-Mahowald-Rezk in [GHMR05] proposed

a conceptual framework to organise the K(2)-local homotopy category at the

prime 3, in which the authors constructed a finite resolution of the K(2)-local

sphere using higher real K-theories. See [GHM04], [HKM13], [GH16] for fur-

ther investigations at n = 2 and p = 3 and [Beh12] for an exposition of L2S
0 at

p ≥ 5.

The situation of chromatic level two at the prime 2 turns out to be much more com-

plicated and we are only beginning to understand it better. Considerable effort has

recently been made to understand the K(2)-local homotopy category at the prime

2 by the community. In [BG18], Bobkova and Goerss established a finite reso-

lution of a spectrum related to the K(2)-local sphere at the prime 2 analogous to

that of [GHMR05], which realised an algebraic resolution of S1
2, a certain closed

subgroup of the second Morava stabiliser group, constructed by Beaudry [Bea15].

One reason why the latter is hard to deal with lies largely in the fact that the co-

homological properties of the group G2 are much more complicated at the prime
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2. However, one exciting feature of chromatic level 2 is its close relationship with

the theory of elliptic curves and modular forms, see Section 1. At chromatic level

2 and at the prime 2, we can choose the Morava E-theory to be the Lubin-Tate the-

ory associated to the formal group law of the elliptic curve C : y2 + y = x3 over

F4. We denote by EC and GC the corresponding Morava E-theory and Morava

stabiliser group. One of the main tools used to investigate the K(2)-local homo-

topy category is a certain finite resolution. There is a certain subgroup S1
C of GC ;

let G24 be the automorphism group of C and C6 be a cyclic subgroup of order 6
of G24 (see Section 1 for details).

Theorem 3. [BG18] There is a resolution of E
hS1C
C , in the K(2)-local homotopy

category at the prime 2, of the following form

E
hS1

C

C

δ0−→ E0
δ1−→ E1

δ2−→ E2
δ3−→ E3

where E0 = EhG24
C , E1 = E2 = EhC6

C and E3 = Σ48EhG24
C .

This resolution is commonly called the topological duality resolution. The spec-

trum E
hS1C
C is used to build the spectrum EhSC

C , where SC is the Morava stabiliser

group, via a certain cofiber sequence

EhSC
C → E

hS1
C

C
1−π
−−→ E

hS1
C

C ,

and EhSC
C only differs from LK(2)S

0 by the Galois action, i.e., there is a homotopy

equivalence

LK(2)S
0 ≃ (EhSC

C )hGal(F4/F2).

Thus, this theorem offers a useful instrument to study the homotopy type of

LK(2)X for finite spectra X at the prime 2. In particular, it produces a spec-

tral sequence, known as the topological duality spectral sequence, abbreviated by

TDSS, converging to π∗(E
hS1

C

C ∧X)

Ep,q
1

∼= πq(Ep ∧X) =⇒ πq−p(E
hS1C
C ∧X). (1)

By now, it should be clear that judicious choices of finite spectra become impor-

tant. Main players in this paper are finite spectra constructed by Davis and Ma-

howald in [DM81]. Let A1 denote a class of finite spectra whose mod 2 cohomol-

ogy is isomorphic, as a module over the subalgebra A(1) generated by Sq1, Sq2

of the Steenrod algebra A, to a free module of rank one on a class of degree

0. As shown in [DM81], the class A1 contains four different homotopy types,

which are distinguished by the structure of their mod-2 cohomology as mod-

ules over the Steenrod algebra. They are successively denoted by A1[00], A1[01],
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A1[10], A1[11], see Definition 3.2.1. The spectra A1[01] and A1[10] are Spanier-

Whitehead self-dual, i.e., D(A1[01]) ≃ Σ−6A1[01] and D(A1[10]) ≃ Σ−6A1[10]
and the spectra A1[00] and A1[11] are Spanier-Whitehead dual to each other, i.e.,

D(A1[00]) ≃ Σ−6A1[11] (here D(−) denotes the function spectra F (−, S0)). By

an abuse of language, we write A1 to refer to any of these four spectra and refer to

any of them as a version of A1. In particular, we use this notation in the statement

of results that are true for all versions. We emphasis, however, that all results are

a priori dependent on the version of A1 and this is the case. The spectrum A1 is

constructed via three cofiber sequences starting from the sphere spectrum. First,

let V (0) be the mod 2 Moore spectrum, i.e., the cofiber of multiplication by 2 on

the sphere. Next let Y be the cofiber of multiplication by η, the first Hopf element,

on V (0). Davis and Mahowald show that Y admits v1-self maps, v1 : Σ
2Y → Y .

Then A1 is the cofiber of any of these v1-self maps of Y . We note also that even

though Y admits eight v1-self maps, the associated cofibers only have four differ-

ent homotopy types.

One reason for working with A1 is the fact that it is the cofiber of a v1-self map

of periodicity 1, making a few computations simpler; this is in contrast with the

generalised Moore spectrum M(2, v41) which is the cofiber of a v1-self map of

periodicity 4 on the Moore spectrum V (0). The second one is that a sufficient

understanding of the homotopy type of LK(2)A1 might allow us to determine the

Gross-Hopkins duality formula for the K(2)-local homotopy category at the prime

2. In fact, the spectrum A1 can be considered as an analog of the Toda-Smith

complex V (1) at the prime 3 and as demonstrated in [GH16], computations of

the homotopy groups of LK(2)V (1) allows one to characterise the Gross-Hopkins

formula for the K(2)-local homotopy category at the prime 3. The third reason

is that A1 is a "small" finite spectrum of type 2 having only eight cells with the

top cell being in dimension 6, hence it is reasonable to expect that a study of the

homotopy type of A1 gives us valuable information about the homotopy groups

of S0, at least about the v2-periodic families of S0. More precisely, the authors of

[BEM17] show that A1 admits a v322 -self map. Let [(v322 )−1]A1 denote the associ-

ated telescope, i.e.,

[(v322 )−1]A1 = hocolim(A1 → Σ−192A1 → ... → Σ−192kA1 → ...).

We note that the homotopy type of this telescope is independent on the choice

of v2-self map of A1 by Nilpotence and Periodicity Technology, see [Rav92].

Suppose that x ∈ πt([(v
32
2 )−1]A1) is a nontrivial element. This means that the

composite

St+192k → Σ192kA1
v32k2−−→ A1

is essential for k ∈ N. This gives rise to a nontrivial element of π∗S
0 in stem
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192k + t− ik for some 0 ≤ ik ≤ 6.

Moreover, the K(2)-localisation of A1 might be used to detect nontrivial ele-

ments of the homotopy groups of [(v322 )−1]A1. In fact, the K(2)-localisation map

A1 → LK(2)A1 factors through [(v322 )−1]A1 → LK(2)A1. Ravenel’s Telescope

Conjecture predicts that the latter is a homotopy equivalence. As a key step to-

wards the study of π∗(LK(2)A1), as explained in the discussion following Theorem

3, we study the TDSS for E
hS1

C

C ∧A1.

In this paper, we study the homotopy fixed point spectral sequence, abbreviated

by HFPSS, for EhG24
C ∧A1, which constitutes an important part of the E1-term of

the TDSS:

H∗(G24, (EC)∗(A1)) =⇒ π∗(E
hG24
C ∧A1). (2)

Here are qualitative versions of the main results of the paper; see Theorem 5.3.19

and 5.3.20 for more precise statements.

There are classes

∆8 ∈ H0(G24, (EC)192), κ ∈ H4(G24, (EC)24), ν ∈ H1(G24, (EC)4).

Theorem 4. As a module over the ring F4[∆
±8, κ, ν]/(νκ), the E∞-term of the

HFPSS for EhG24
C ∧ A1[01] and EhG24

C ∧ A1[10] is a direct sum of 46 explicitly

known cyclic modules.

Theorem 5. As a module over the ring F4[∆
±8, κ, ν]/(νκ), the E∞-term of the

HFPSS for EhG24
C ∧ A1[00] and EhG24

C ∧ A1[11] is a direct sum of 48 explicitly

known cyclic modules.

One of the key ingredients, to this end, is a comparison between tmf ∧ A1 and

EhG24
C ∧ A1, where tmf denotes the connective spectrum of topological modular

forms. In fact, there is a homotopy equivalence (Theorem 5.1.2):

(∆8)−1tmf ∧ A1 ≃ (EhG24
C )hGal(F4/F2) ∧A1,

where ∆8 is the periodicity generator of π∗tmf . Based on the latter, we first anal-

yse the homotopy groups of tmf ∧A1 by means of the Adams spectral sequence,

abbreviated by ASS , then invert ∆8 to get information about the homotopy groups

of EhG24
C ∧A1. We note that in [BEM17], Batacharya, Egger, Mahowald also dis-

cuss the E2-term of the ASS for tmf ∧ A1; our method is, however, different

(compare to [BEM17]). Next, we summarise the contents of the paper.

In Section 1 and Section 2, we discuss some background and tools used in our
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computation. We recollect on Lubin-Tate theories and topological modular forms;

in particular, we sketch a proof of the relationship between topological modular

forms and homotopy fixed point spectrum EhG24
C . We give a generalisation of the

Davis-Mahowald spectral sequence, which is an important tool to analyse the co-

homology of various Hopf algebras. In Section 3, we discuss the Davis-Mahowald

spectral sequence for A1 and obtain the E2-term of the Adams spectral sequence

for tmf ∧ A1. In Section 4, we study some differentials in the later and then

extract some suitable information about π∗(tmf ∧ A1). In Section 5, we finally

study the homotopy fixed point spectral sequence for EhG24
C ∧ A1. We emphasise

that there are two different outcomes for the E∞-term of the homotopy fixed point

spectral sequence, depending on the version of A1, see Theorem 5.3.19 and 5.3.20.

Convention and Notation. Unless otherwise stated, all spectra are localised at

the prime 2. H∗(X) and H∗(X) denote the mod-2 cohomology and homology of

the spectrum X , respectively. Given a Hopf algebra A over a field k and M a A-

comodule, we will often abbreviate Ext∗A(k,M) by Ext∗A(M). In general, we will

write Cf for the cofiber of a map f : X → Y , except that we will write V (0) for

the Moore spectrum which is the cofiber of the multiplication by 2 on the sphere.

Acknowlegements. I would like to thank my PhD advisor, Hans-Werner Henn,

for suggesting this project and for guiding me through many stages of it and for

carefully reading earlier drafts of this paper. Special thanks go to Irina Bobkova

for many fruitful exchanges, to Agnès Beaudry and Paul Goerss for their interest

in this work and helpful conversations, to Lennart Meier for answering many of

my questions about topological modular forms and for suggesting I include the

proof of Theorem 1.2.3. I would also like to thank John Rognes for making avail-

able his course notes on "Adams spectral sequence", from which I learned many

details about the Davis-Mahowald spectral sequence.

1 Recollection on chromatic homotopy theory

1.1 Lubin-Tate theories

We recall some generalities on the deformation theory of formal group laws

and Goerss-Hopkins-Miller theory. Let FGL be the category whose objects are

pairs (k,Γ) where k is a perfect field of characteristic p and Γ is a formal group law

over k and morphisms between (k,Γ) and (k
′

,Γ
′

) are pairs (i, φ) where i : k
′

→ k

is a homomorphism of fields and φ : Γ
∼=
−→ i∗Γ

′

is a morphism of formal group

laws.
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Let (k,Γ) ∈ FGL with Γ of height n. A deformation of (k,Γ) to a complete

local ring R with maximal ideal m is a pair (F, ι) where F is a formal group law

over R and ι : k → R/m is a map of fields such that p∗F = ι∗Γ with p the

canonical projection R → R/m. A ⋆-isomorphism φ between two deformations

to R is an isomorphism between the underlying formal group laws which reduces

to the identity over R/m, i.e, φ ≡ x mod (m). This defines a functor from the

category of complete local rings Ringc,l to small groupoids Groupoid

DefΓ : Ringc,l → Groupoid

which associates to every complete local ring R the category of deformations of

(k,Γ) over R and ⋆-isomorphisms between them. By Lubin-Tate deformation

theory, DefΓ is co-representable, see [LT66]. That is, there exists a complete

local ring Ek,Γ, non-canonically isomorphic to W(k)[[u1, u2, ..., un−1]], such that

DefΓ(R) ∼= HomRingc,l
(Ek,Γ, R).

Here W(k) denotes the ring of Witt vectors on k. Over Ek,Γ lives a universal

deformation Γ̃ of Γ. Consider the graded ring Ek,Γ[u
±1] where |ui| = 0 for 1 ≤

i ≤ n− 1 and |u| = −2. Let MU be the cobordism spectrum. A famous theorem

of Quillen asserts that the coefficient rings MU∗ of MU supports the universal

group law. Thus, the formal group law u−1Γ̃(ux, uy) is classified by a map of

graded rings MU∗ → Ek,Γ[u
±1]. Define a functor from the category of pointed

spaces to that of graded abelian groups:

X 7→ MU∗(X)⊗MU∗
Ek,Γ[u

±1].

The formal group u−1Γ̃(ux, uy) satisfies the Landweber exact functor criterion,

see [Rez98]. By the Landweber exact functor theorem, the above functor is a

homology functor. Thus, it is represented by a ring spectrum E(k,Γ) with

(E(k,Γ))∗ ∼= W(k)[[u1, u2, ..., un−1]][u
±1].

The latter is known as a nth Morava E-theory or Lubin-Tate theory.

Example 1. Let (k,Γ) = (F2,Gm) where Gm is the multiplicative formal group

law, i.e, Gm(x, y) = x+ y+ xy. Then E(F2,Gm) ≃ KZ2, the 2-completed com-

plex K-theory and G(F2,Gm) = Z×
2 , the unit of the 2-adic integers. Furthermore,

the action of G(F2,Gm) on E(F2,Gm)∗ is determined by Adams operations.

The construction that associates to a formal group law (k,Γ) the Morava E-theory

E(k,Γ) defines a functor from FGL to Ho(Sp), the stable homotopy category.

Let us denote by G(k,Γ) the automorphism group of the pair (k,Γ). We note that

G(k,Γ) is a profinite group, see [Goe08], Section 7.2. By functoriality, the group

G(k,Γ) acts on E(k,Γ). This action is, however, defined only up to homotopy.

The Goerss-Hopkins-Miller obstruction theory lifts this action to structured ring

spectra.

8



Theorem 1.1.1. [GH04] The spectrum E(k,Γ) has an essentially unique struc-

ture of E∞-ring. Furthermore, G(k,Γ) acts on E(k,Γ) via E∞-ring maps.

1.2 Topological modular forms

An astute choice of Morava E-theory or equivalently a choice of formal group

law of height 2 will make the calculation easier. Let C be the supersingular elliptic

curve over F4 given by the Weierstrass equation y2 + y = x3. Denote by FC the

formal completion of C at the origin. The latter is a formal group law of height

2. We abbreviate E(F4, FC) by EC and G(F4, FC) by GC . Let SC denote the

automorphism group of FC . Let Gal denote the Galois group of F4 over F2. There

is a short exact sequence

1 → SC → GC → Gal → 1.

The image of SC in GC corresponds to the automorphisms of (F4, FC) fixing F4.

Since FC is defined over F2, Gal fixes FC , the above short exact sequence splits,

i.e., GC
∼= SC ⋊ Gal. The automorphism group of C has order 24 and these are

all defined over F4, more precisely,

Aut(C) = AutF4(C) ∼= SL2(Z/3) ∼= Q8 ⋊ C3 =: G24,

where Q8 is the quaternion group and C3 = 〈ω〉 is a cyclic group of order 3, see

[Sil09]. The groupQ8 has a representation 〈i, j|i4 = 1, i2 = j2, iji−1 = j−1〉. The

latter has 8 elements {1, i, j, k,−1,−i,−j,−k} where −1 denotes i2 = j2 = k2.

The group C3 acts on Q8 by permuting i, j and k := ij

ωiω2 = j, ωjω2 = k.

The elements ω and i correspond to the automorphisms ω(x, y) = (ξx, ξ2y) and

i(x, y) = (x+ 1, y + x+ ξ2), respectively.

Since C is already defined over F2, Gal acts on Aut(C). Denote by G48 the

semi-direct product G24 ⋊Gal. Moreover, the automorphism group Aut(C) of C
maps injectively to SC , and G48 maps injectively to GC . We view G24 and G48 as

subgroups of SC and GC , respectively.

The reasons for choosing the formal group law of the supersingular elliptic curve

C are two-fold. First, the geometric origin of G48 allows one to have an explicit

description of its action on π∗(EC), see [Bea17] for more details and further ref-

erences. Thus, it allows us to adequately compute the E2-term of various homo-

topy fixed point spectral sequences. Second, this choice of the Morava E-theory

9



enables us to compare the associated homotopy fixed point spectrum with the

spectrum of topological modular forms, hence providing us with more tools to

understand the formers.

Next, we recall the construction of the spectrum of topological modular forms

and show its closed relationship with the homotopy fixed point spectrum EhG24
C .

Let M, M(3) be the moduli stack of elliptic curves and elliptic curves with a full

level 3 structure over Z(2), respectively. As functors of points on Z(2)-algebras,

the former are described as follows. If R is a Z(2)-algebra, then

- M(spec(R)) is the groupoid of elliptic curves over spec(R) and isomor-

phisms between them.

- M(3)(spec(R)) is the groupoid of pairs (E, φ) consisting of an elliptic curve

E with an isomorphism of group schemes φ : Z/3 × Z/3 → E[3] over spec(R),
where E[3] is the subscheme of 3-torsion points of E and isomorphisms between

them.

Theorem 1.2.1 (Goerss-Hopkins-Miller, see [DFHH14]). There is an E∞-ring

spectra-valued sheaf Otop on the affine étale site Aff ét
M of M such that

1. The sheafification of π0O
top is the structure sheaf of M.

2. If E : spec(R) → M is an étale morphism, then Otop(spec(R)) is a

spectrum associated to the formal completion of E at its origin via the

Landweber exact functor theorem.

Remark 1.2.2. The spectra constructed by point 2. of the previous theorem are

called elliptic spectra. They are even periodic spectra R whose formal group

law on π0(R) is the completion of an elliptic curve. These are E(2)-local, see

[DFHH14], Chapter 6, Lemma 4.2.

Let G := GL2(Z/3) denote the automorphism group of the constant group scheme

Z/3 × Z/3 over Z(2). Then G acts on M(3) by precomposition with the level

structure. The obvious forgetful functor gives rise to a finite étale morphism of

stacks (because 3 is invertible in Z(2)):

M(3) → M. (3)

Thus, one can evaluate Otop at M and M(3). Define

TMF = Otop(M) := holim
U∈Aff ét

M

Otop(U),

TMF (3) = Otop(M(3)) := holim
U∈Aff ét

M(3)

Otop(U).

10



The morphism of (3) is a Galois cover with Galois group G, or a G-torsor.As a

consequence of the fact that Otop satisfies descent, one obtains that

TMF ≃ TMF (3)hG. (4)

It is known that M(3) is affine over the ring Z(2)[ζ ] where ζ is a primitive third

root of unity, see [DR73], also [Sto14]. Furthermore, up to isomorphism, there

is a unique supersingular elliptic curve with a full level structure over F4. This

follows from the fact that there is a unique supersingular elliptic curve over F4 (up

to isomorphism) and that the automorphism group of the supersingular elliptic

curve C has order 48, which is equal to that of G, the automorphism group of

Z/3 × Z/3. In other words, the fiber of the morphism M(3) → M over the

supersingular locus of M is isomorphic to spec(F4), i.e., the following square is

a pullback of stacks

spec(F4) //

��

M(3)

��
spec(F4)//G48

// M

where the bottom is given by specifying a supersingular elliptic curve, for example

C. Therefore, by the construction of Otop, LK(2)O
top(M(3)) is the Lubin-Tate

theory associated to the paire (F4, FC), see [DFHH14], Chapter 12. This means

that there is a homotopy equivalence

LK(2)TMF (3)
≃
−→ EC . (5)

Note that G can be identified with Aut(C) = G48, such that the equivalence (5) is

equivariant with respect to the action of G on the source and of G48 on the target,

as follows. Suppose the the map spec(F4) → M(3) specifies the elliptic curve

C and a 3 level structure Z/3×2 Γ
−→ C. Then for any g ∈ G, there is a unique

φ(g) ∈ G48 making the following diagram commute

Z/3×3 Γ // C

Z/3×3

g

OO

Γ // C.

φ(g)

OO

Theorem 1.2.3. There is a homotopy equivalence

LK(2)TMF ≃ EhG48
C . (6)
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Proof. Since an elliptic spectrum is E(2)-local, TMF (3) is E(2)-local, being a

homotopy limit of E(2)-local spectra. Using the equivalence (4) and the fact that

K(2)-localisation commutes with homotopy limit in the category of E(2)-local

spectra, we obtain that

LK(2)TMF ∼= LK(2)(TMF (3)hG) ∼= (LK(2)TMF (3))hG ∼= EhG48
C .

A connective model of TMF . In [DFHH14] a connective ring spectrum tmf
was constructed together with a map of ring spectra tmf → TMF . There is an

element ∆8 ∈ π192tmf such that the latter map extends to a homotopy equiva-

lence

[(∆8)−1]tmf ≃ TMF, (7)

see [DFHH14]. The (co)homology of tmf , as a module over the Steenrod algebra

A (c.f Section 2 for a recollection on the Steenrod algebra), was known earlier by

Hopkins and Mahowald but its proof remained unpublished until [Mat16]:

Theorem 1.2.4. There is an isomorphism of modules over the Steenrod algebra:

H∗(tmf) ∼= A//A(2),

where A(2) is the subalgebra of A generated by Sq1, Sq2, Sq4. Equivalently,

there is an isomorphism of comodules over the dual A∗ of Steenrod algebra

H∗(tmf) ∼= A∗�A(2)∗F2,

where A(2)∗ is the dual of A(2).

2 The Davis-Mahowald spectral sequence

We introduce a generalisation of the Davis-Mahowald spectral sequence, which

is an useful tool for analysing Ext-groups over various Hopf algebras. Initially,

this spectral sequence was used by Davis and Mahowald in [DM82] to compute

Ext-groups over the subalgebra A(2) of the Steenrod algebra.

2.1 Construction of the Davis-Mahowald spectral sequence

Let k be a field of characteristic 2. We will later specialise to the case k = F2,

the field of two elements. Let (A,∆, µ, ǫ, η, χ) be a commutative Hopf algebra

over k with ∆, µ, ǫ, η, χ being coproduct, product, counit, unit, the conjugation,

respectively.
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Definition 2.1.1. Let E be the graded exterior algebra on a finite dimensional k-

vector space V with all elements of V having degree 1. An A-comodule algebra

structure on E is called almost graded if the natural embedding k ⊕ V → E is a

map of A-comodules.

This definition is motivated by the following examples which are of main interest

in this paper. Recall that the Steenrod algebra A is generated by the Steenrod

squares Sqi for i ≥ 0, subject to the Adem relations

SqaSqb =

⌊a
2
⌋∑

i=0

(
b− i− 1

a− 2i

)
Sqa+b−iSqi

for all a, b > 0 and a < 2b. Let A∗ denote the dual of the Steenrod algebra.

In [Mil58], Milnor determines the Hopf algebra structure of A∗. As a graded

algebra, A∗ = F2[ξi|i ≥ 1] where ξi is in degree |ξi| = 2i − 1. The coproduct is

given by the formula

∆(ξk) =

k∑

i=0

ξ2
k−i

i ⊗ ξk−i,

where ξ0 = 1. Let us denote by ζi the conjugate of ξi. Then we have

∆(ζk) =
∑

i+j=k

ζi ⊗ ζ2
i

j . (8)

An Hopf ideal of a Hopf algebra A is an ideal I such that ∆(I) ⊂ I ⊗A+A⊗ I .

If I is a Hopf ideal of A, then A/I inherits a structure of Hopf algebra from A
such that the natural projection A → A/I is a map of Hopf algebras.

Example 2. Let A(n)∗ be the quotient of A∗ by the Hopf ideal In generated by

(ζ2
n+1

1 , ζ2
n

2 , ..., ζ2n+1, ζn+2, ...). As an algebra,

A(n)∗ = F2[ζ1, ζ2, ..., ζn+1]/(ζ
2n+1

1 , ζ2
n

2 , ..., ζ2n+1).

It is dual to the subalgebra A(n) = 〈Sq1, Sq2, ..., Sq2
n

〉 of the Steenrod algebra

A. The canonical projection π : A(n)∗ → A(n − 1)∗ induced by the inclusion

In ⊂ In−1 of Hopf ideals is a map of Hopf algebras, hence induces on A(n)∗ a

structure of right A(n− 1)∗-comodule algebra:

(id⊗ π)∆ : A(n)∗ → A(n)∗ ⊗A(n)∗ → A(n)∗ ⊗A(n− 1)∗.

An easy computation shows that the group of primitives A(n)∗�A(n−1)∗F2 of this

coaction is given by

A(n)∗�A(n−1)∗F2 = E(ζ2
n

1 , ζ2
n−1

2 , ..., ζn+1)
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which is abstractly isomorphic to En = E(x1, ..., xn+1) where xi stands for

ζ2
n+1−i

i . Here and elsewhere in this paper, E(X) denotes the exterior algebra on

the k-vector space spanned by the setX . We see that the algebra E(x1, x2, ..., xn+1)
inherits a left A(n)∗-comodule algebra structure from A(n)∗, namely,

∆(xk) =

k∑

i=0

ζ2
n+1−k

i ⊗ xk−i, 1 ≤ k ≤ n+ 1

where x0 = 1 by convention. This means that En is an almost graded A(n)∗-
comodule.

Example 3. Let B(n)∗ be the quotient of A∗ by the Hopf ideal Jn generated by

(ζ2
n

1 , ζ2
n

2 , ζ2
n−1

3 , ..., ζ2n+1, ζn+2, ...), so that

B(n)∗ = F2[ζ1, ζ2, ..., ζn+1]/(ζ
2n

1 , ζ2
n

2 , ζ2
n−1

3 , ..., ζ2n+1).

Similarly to Example 2, the projection B(n)∗ → A(n− 1)∗ induced by the inclu-

sion of Hopf ideals Jn ⊂ In−1 defines a structure of right A(n − 1)∗-comodule

algebra on B(n)∗. A calculation shows that

B(n)∗�A(n−1)∗F2 = E(ζ2
n−1

2 , ζ2
n−2

3 , ..., ζn+1),

which is abstractly isomorphic to Fn := E(x2, ..., xn+1). The notation is chosen

to be coherent with that of Example 2. We see that Fn inherits a structure of left

B(n)∗- comodule algebra from that of B(n)∗, namely,

∆(xk) =

k∑

i=0,i 6=1

ζ2
n+1−k

i ⊗ xk−i, 2 ≤ k ≤ n+ 1

where x0 = 1. Thus, Fn is a almost graded B(n)∗-comodule.

Let E be an almost graded A-comodule exterior algebra on a finite dimensional

k-vector space V . We will construct an A-comodule polynomial algebra, called

the Koszul dual of E as follows. Let P be the graded polynomial algebra of V
with all elements of V having degree 1. Let us denote by Ei and Pi the subspace

of elements of homogeneous degree i for i ≥ 0 of E and P , respectively. Let us

also denote by E≤i the the direct sum
j=i⊕
j=0

Ej . Notice that P1 sits in a short exact

sequence:

0 → k → k ⊕ E1
p
−→ P1 → 0. (9)

The embedding k → k⊕E1 is clearly a map of left A-comodules. Thus P1 admits

a (unique) structure of left A-comodule such that p : k ⊕ E1 → P1 is a map of

A-comodules.
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Lemma 2.1.2. If P⊗n
1 is equipped with the usual structure of A-comodule of a

tensor product, then Pn admits a unique structure of A-comodule making the mul-

tiplication P⊗n
1 → Pn a map of A-comodules.

Proof. This map is surjective and its kernel is spanned by elements of the form

y1 ⊗ ...⊗ yn − yσ(1) ⊗ ...⊗ yσ(n)∗ where σ is a permutation of the set {1, 2, ..., n}.

Then, since A is commutative, we see that the kernel is stable under the coaction

of A. The lemma follows.

This lemma shows that P =
⊕
i≥0

Pi admits a left A-comodule algebra structure.

Now, let us define a cochain complex, called the Koszul complex,

(E ⊗ P, d) (10)

with

i) (E ⊗ P )−1 = k
ii) (E ⊗ P )m = E ⊗ Pm for m ≥ 0
iii) d : k = (E ⊗ P )−1 → E = (E ⊗ P )0 being the unit of E

iv) d(
n∏

j=1

xij ⊗ z) =
n∑

t=1

∏
j 6=t

xij ⊗ p(xit)z where xij ∈ E1, z ∈ Pm and p is the

projection of (9).

Remark 2.1.3. In other words, d : E≤n ⊗ Pm → E≤n−1 ⊗ Pm+1 is the unique

homomorphism making the following diagram commute

E⊗n
≤1 ⊗ P≤m

(
∑

σ

(Id⊗(n−1)⊗p)◦σ)⊗Id

//

µ⊗Id

��

E
⊗(n−1)
≤1 ⊗ P1 ⊗ Pm

µ⊗µ

��
E≤n ⊗ Pm

d // E≤n−1 ⊗ Pm+1,

(11)

where in the upper horizontal map, the sum is taken over all cyclic permutations

on n factors of E1 in the tensor product E⊗n
1 and p is the restriction on E1 of the

map of (9).

Proposition 2.1.4. The complex (E⊗P, d) is an exact sequence of A-comodules.

Furthermore, (E ⊗ P, d) has a structure of differential graded algebra induced

from the algebra structure of E and P .

Proof. Let x1, ..., xn be a basis of E1. As a cochain complex over k, (E ⊗ P, d)
is isomorphic to the tensor product of (E(xi) ⊗ k[yi], di) where yi = p(xi) for

1 ≤ i ≤ n. Here, each (E(xi) ⊗ k[yi], di) is defined in the same manner as

(E ⊗ P, d) is. It is not hard to see that the cochain complex (E(xi)⊗ k[yi], di) is
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exact. Hence, (E ⊗ P, d) is exact by the Künneth theorem. This proves the first

part.

Let us check that d is a map of A-comodules. In the diagram (11), the two vertical

maps are ones of A-comodules because E and P are A-comodule algebras. In

addition, they are surjective. It remains to check that the upper horizontal map is a

map of A-comodules. Or equivalently, each map E⊗n
≤1

(Id⊗(n−1)⊗p)◦σ
−−−−−−−−−→ E

⊗(n−1)
≤1 ⊗P1

is a map of A-comodules where σ is a cyclic permutation on n elements. This is

true because σ is a map of A-comodules as A is commutative and p is a map of

A-comodules by definition. The second part follows.

Finally, it is straightforward from the formula of d in (10.iv) that d satisfies the

Leibniz rule.

This lemma allows us to construct a spectral sequence of algebras converging to

ExtsA(k) see ([Rav86], Theorem A1.3.2).

Proposition 2.1.5. (1) There is a spectral sequence of algebras converging to

ExtsA(k) :

Es,t
1 = ExtsA(k, E ⊗ Pt) +3 Exts+t

A (k, k) . (12)

(2) If M is a A-comodule, then there is a spectral sequence converging to ExtsA(M)

Es,t
1 = ExtsA(k, E ⊗ Pt ⊗M) +3 Exts+t

A (k,M).

Furthermore, this spectral sequence is a spectral sequence of modules over that

of (12).

Terminology. We will call these spectral sequences the Davis-Mahowald spectral

sequences or DMSS for short, associated to the almost graded A-module algebra

E. The first grading s of the En-term is referred to as the cohomological grading

or degree and the second grading t is referred to as the Davis-Mahowald grading

or degree (or DM grading or degree for short).

In view of carrying out explicit computations of products in Ext∗A(k) and the ac-

tion of Ext∗A(k) on Ext∗A(M), we recall a double complex from which the above

spectral sequence is derived.

For each t ≥ 0, let (Cs(A,E ⊗ Pt), dv)s≥0 be the cobar complex whose coho-

mology is Ext∗A(E ⊗ Pt), i.e.,

Cs(A,E ⊗ Pt) = A⊗s ⊗E ⊗ Pt
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and dv : A
⊗s ⊗ E ⊗ Pt → A⊗s+1 ⊗ E ⊗ Pt is given by

dv(a1⊗...⊗as⊗m) = 1⊗a1⊗...⊗as⊗m+

s∑

i=1

a1⊗...⊗ai−1⊗∆(ai)⊗...⊗as⊗m

+ a1 ⊗ ...⊗ as ⊗∆(m),

where ai ∈ A for 1 ≤ i ≤ s and m ∈ E⊗Pt. We will abbreviate a1⊗ ...⊗as⊗m
by [a1|...|as|m]. By an abuse of notation, we will denote by dv the differentials

in the cobar complexes associated to E ⊗ Pt for different t. The fact that d :
E⊗Pt → E⊗Pt+1 is a map of A-comodules implies that the maps dh = Id⊗s⊗d :
Cs(A,E⊗Pt) → Cs(A,E⊗Pt+1) assemble to give a map of cochain complexes

dh : (Cs(A,E ⊗ Pt), dv)s≥0 → (Cs(A,E ⊗ Pt+1), dv)s≥0. Finally, it is easily

seen that the maps of cochain complexes assemble to form a double complex

(Cs(A,E ⊗ Pt), dv, dh)s,t≥0

E
dh //

dv
��

E ⊗ P1
dh //

dv
��

E ⊗ P2
dh //

dv
��

E ⊗ P3
dh //

dv
��

...

A⊗E
dh //

dv
��

A⊗ E ⊗ P1
dh //

dv
��

A⊗ E ⊗ P2
dh //

dv
��

A⊗E ⊗ P3
dh //

dv
��

...

A⊗2 ⊗E
dh //

dv

��

A⊗2 ⊗ E ⊗ P1
dh //

dv

��

A⊗2 ⊗E ⊗ P2
dh //

dv

��

A⊗2 ⊗ E ⊗ P3
dh //

dv

��

...

... ... ... ... ...

We can see that the spectral sequence associated to the horizontal filtration has E1-

term isomorphic to (As⊗k, dv)s≥0 which identifies with the cobar complex of the

trivial A-comodule k. Thus this spectral sequence degenerates at the E2-term and

the E∞ = E2-term identifies with ExtsA(k). Since there are no possible extension

problems, the cohomology of the total complex is isomorphic to ExtsA(k). Now,

the spectral sequence associated to the vertical filtration has E1-term isomorphic to

ExtsA(E⊗Pt). This spectral sequence is exactly the one appearing in Proposition

2.1.5.

Remark 2.1.6. The differential d1 : Ext0A(E ⊗ Pt) → Ext0A(E ⊗ Pt+1) is the

restriction of the derivation d in (10) on the A-primitives of E ⊗ Pt.

2.2 Naturality of the Davis-Mahowald spectral sequence

We notice that the above construction is natural in pairs (A,E) where A is a

commutative Hopf algebra and E is an almost graded left A-comodule exterior al-

gebra. This allows us to compare Davis-Mahowald spectral sequences associated
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to different pairs (A,E). We will make use of this property to reduce computa-

tions in a crucial way. Let us first define morphisms between such pairs.

Definition 2.2.1. Let (A,E) and (B,F ) be such that A and B are commutative

Hopf algebras, E and F are almost graded exterior comodule algebras over A and

B, respectively. A morphism between (A,E) and (B,F ) consists of f1 : A → B
and f2 : E → F where f1 is a map of Hopf algebras and f2 is a map of B-

comodule graded algebras with the B-comodule structure on E being induced

from f1.

Remark 2.2.2. The map f2 : E → F is determined by a map of B-comodules

k ⊕E1 → k ⊕ F1.

Proposition 2.2.3. A morphism between (A,E) and (B,F ) induces a map be-

tween the associated Davis-Mahowald spectral sequences.

Proof. Let P and Q be the Koszul dual of E and F , respectively. The map of

B-comodule algebras f2 : E → F induces a map of graded B-comodule algebras

P → Q such that the following diagram is commutative

k ⊕ E1
p //

f2
��

P1

��
k ⊕ F1

p // Q1.

Then one can check that the induced map E ⊗ P → F ⊗ Q is a map of Koszul

complexes. Therefore one obtains a map of double complexes (A⊗s⊗E⊗Pt) →
(B⊗s ⊗ F ⊗Qt), hence a map of spectral sequences.

Remark 2.2.4. Although we have only treated the ungraded situation so far, the

construction carries over verbatim to the graded one. More precisely, suppose that

A and E are graded algebras. We refer to this grading as the internal degree. We

require that the structural maps in the A-comodule structure of E to preserve the

internal degree. Then we see that the Koszul dual P of E is internally graded

and the Koszul complex is a graded cochain complex with respect to the internal

degree. It follows that the associated DMSS is tri-graded with the third grading

associated to the internal grading and the differentials preserve the internal degree.

We continue with Example 2 and 3.

Example 4. Recall that En is an almost graded A(n)∗-comodule. Let Rn denote

the Koszul dual of En. In particular, it follows from Proposition 2.1.5 that for any

graded left A(n)∗-comodule M , the DMSS converging to Ext∗,∗A(n)∗
(F2,M) has

E1-term isomorphic to

Es,t,σ
1

∼= Exts,tA(n)∗
(En ⊗ Rσ

n ⊗M),
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where s is the cohomological grading, t is the internal grading and σ is the Davis-

Mahowald grading. The change-of-rings isomorphism tells us that

Exts,tA(n)∗
(En ⊗Rσ

n ⊗M) ∼= Exts,tA(n−1)∗
(Rσ

n ⊗M),

see [Rav84], Appendix A1.3.13 for the change-of-rings isomorphism. This means

that the problem of computingExts,tA(n)∗
(−) can be reduced to two steps: first com-

puting Exts,tA(n−1)∗
(−), then studying the corresponding Davis-Mahowald spectral

sequence. We will demonstrate the efficiency of this method by carrying out ex-

plicit computations in the case n = 2 and some relevant M .

Example 5. Recall that Fn is an almost graded B(n)∗-comodule. Let Sn denote

the Koszul dual of Fn. The DMSS is the spectral sequence of algebras

Es,t,σ
1 = Exts,tB(n)∗

(Fn ⊗ Sσ
n) +3 Exts+σ,t

B(n)∗
(F2) .

By the change-of-rings theorem, the E1-term is isomorphic to Exts,tA(n−1)∗
(Sσ

n),

because Fn = B(n)∗�A(n−1)∗F2. Moreover, for any graded left B(n)∗-comodule

M , the DMSS for Exts+σ,t
B(n)∗

(F2) is a spectral sequence of modules over the above

spectral sequence

Exts,tB(n)∗
(Fn ⊗ Sσ

n ⊗M) ∼= Exts,tA(n−1)∗
(Sσ

n ⊗M) +3 Exts+σ,t
B(n)∗

(F2) .

Comparison of DMSS. There is a morphism between (A(n)∗, En) and (B(n)∗, Fn)
given by the two projections

A(n)∗ → B(n)∗; ζi 7→ ζi

En → Fn; x1 7→ 0, xi 7→ xi for i ≥ 2.

This induces a map of spectral sequences

Exts,tA(n)∗
(En ⊗Rσ

n ⊗M)

��

// Exts,tB(n)∗
(Fn ⊗ Sσ

n ⊗M)

��

Exts+σ,t
A(n)∗

(M) // Exts+σ,t
B(n)∗

(M).

As was mentioned earlier, this comparison allows us to transfer some computa-

tions in the former SS to the latter which are simpler because all modules involved

in the latter are smaller. This observation will be made concrete in Section 3.
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3 The Davis-Mahowald spectral sequence for theA(2)∗-

comodule A1

The goal of this section is to describe the structure of Ext∗,∗A(2)∗
(H∗(A1)) as a mod-

ule over Ext∗,∗A(2)∗
(F2) for different A(2)∗-comodules A1 that will be recalled in

Subsection 3.2. To achieve a part of this goal, we will study the DMSS

Exts,tA(2)∗
(E2 ⊗ Sσ

2 ⊗ A1) +3 Exts+σ,t
A(2)∗

(H∗(A1))

as a spectral sequence of modules over the spectral sequence of algebras

Exts,tA(2)∗
(E2 ⊗ Sσ

2 )
+3 Exts+σ,t

A(2)∗
(F2).

We obtain then the structure of Ext∗,∗A(2)∗
(H∗(A1)) as a graded abelian group and

a partial action of Ext∗,∗A(2)∗
(F2) on it. However, there is an important action of

an element of Ext∗,∗A(2)∗
(F2) on some elements of Ext∗,∗A(2)∗

(H∗(A1)) that cannot be

seen at the E1-term of the DMSS. One way of understanding these exotic products

is to carry out computations at the level of double complexes: find representatives

of the cohomological classes in question in the double complexes from which the

DMSS is derived and carry out products at that level. It turns out that a brute-force

attack is messy. Instead, computations are simplified drastically by comparing the

DMSS associated to (A(2)∗, E2) to that of (B(2)∗, F2):

Exts,tA(2)∗
(En ⊗ Rσ

2 ⊗A1)

��

// Exts,tB(2)∗
(Fn ⊗ Sσ

2 ⊗ (1))

��

Exts+σ,t
A(2)∗

(H∗(A1)) // Exts+σ,t
B(2)∗

(H∗(A1)).

3.1 Recollections on the Davis-Mahowald spectral sequence for

the A(2)∗-comodule F2

To fix notation, we recollect some information relevant for our purposes. This ma-

terial was originally treated in [DM82] and reviewed in unpublished course notes

of Rognes [Rog12]. As we will specialise to the case n = 2, we will simplify

the notation by writing R,Rσ, S, Sσ for R2, R
σ
2 , S2, S

σ
2 from Example 2 and 3, re-

spectively.

Recall that R is a homogenous graded polynomial algebra on three generators,

say y1, y2, y3 and Rσ is its subspace of homogeneous elements of degree σ for
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σ ≥ 0. Let us first explicitly give the coaction of A(2)∗ on R = F2[y1, y2, y3] with

|y1| = 4, |y2| = 6, |y3| = 7. From Example 4, we have

∆(y1) = 1⊗ y1

∆(y2) = ξ21 ⊗ y1 + 1⊗ y2

∆(y3) = ζ2 ⊗ y1 + ξ1 ⊗ y2 + 1⊗ y3.

By the change-of-rings theorem, the E1-term of the DMSS for Ext∗,∗A(2)∗
(F2) is

isomorphic to Exts,tA(1)∗
(
⊕
σ≥0

Rσ). The coaction of A(1)∗ on R1 is induced from

that of A(2)∗ and hence is given by

∆(y1) = 1⊗ y1

∆(y2) = ξ21 ⊗ y1 + 1⊗ y2

∆(y3) = ζ2 ⊗ y1 + ξ1 ⊗ y2 + 1⊗ y3.

In particular, y1, y
2
2, y

4
3 are A(1)∗-primitives of R. Let R

′

σ denote the A(1)∗-
subcomodule {yi1y

j
2y

k
3 ∈ Rσ|k ≤ 3} of Rσ.

Lemma 3.1.1. As an A(1)∗-comodule, Rσ can be decomposed as

Rσ
∼=

⊕

i≡σ(mod4),i≤σ

R
′

i ⊗ F2{y
σ−i
3 }.

Therefore, ⊕

σ≥0

Rσ = (
⊕

σ≥0

R
′

σ)⊗ F2[y
4
3].

Proof. If one views F2{y
σ−i
3 } as a subvector space of Rσ−i, then the product of R

produces an isomorphism of vector spaces

⊕

i≡σ(mod4),i≤σ

R
′

i ⊗ F2{y
σ−i
3 }

∼=
−→ Rσ.

Since y43 is a A(1)∗-primitive of Rσ, this map is also a map of A(1)∗-comodules.

The lemma follows.

Let us denote Ext∗,∗A(1)∗
(R

′

σ) by Gσ, so that

Ext∗,∗A(1)∗
(R) ∼= (

⊕

σ≥0

Gσ)⊗ F2[v
4
2],

where v42 ∈ Ext0,24A(1)∗
(R4) represented by y43 ∈ R4. Determining the full multi-

plicative structure of Ext∗,∗A(1)∗
(R) is quite involved. Instead, we will work modulo
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(v42). This will suffice for us to obtain a set of algebra generators of Ext∗,∗A(1)∗
(R).

More precisely, since the product R
′

σ ⊗ R
′

τ → Rσ+τ factorises through R
′

σ+τ ⊕
(Rσ+τ−4 ⊗ F2{y

4
3}), we obtain a map

Gσ ⊗Gτ → Gσ+τ ⊕ (Gσ+τ−4 ⊗ F2{v
4
2}).

We will analyse the map Gσ ⊗Gτ → Gσ+τ which is the composite

Gσ ⊗Gτ → Gσ+τ ⊕ (Gσ+τ−4 ⊗ F2{v
4
2}) → Gσ+τ

where the second map is the projection on the first factor.

In what follows, we compute Gi for i ≥ 0 as modules over G0. For this, we

decompose R
′

i into smaller pieces, compute the Ext groups over A(1)∗ of these

pieces, then determine Gi via long exact sequences. Next, we study the pairings

Gσ ⊗Gτ → Gσ+τ ,

which allows us to determine a set of algebra generators of the E1-term. Finally,

we compute d1-differentials on this set of algebra generators. We do not intend

to describe completely the Ext∗,∗A(2)∗
(F2) but only a subalgebra in which we are

interested.

Since y1 is primitive, multiplication by y1 induces injections of A(1)∗-comodules

Σ4R
′

σ → R
′

σ+1.

Lemma 3.1.2. There are short exact sequences of A(1)∗-comodules

(a)

0 → H∗(Σ
12Cη) → R

′

2 → Σ8(A(1)∗�A(0)∗F2) → 0

where η : S1 → S0 is the Hopf map and the map H∗(Σ
12Cη) → R

′

2 sends

the generators of H12(Σ
12Cη) and H14(Σ

12Cη) to y22 and y23, respectively.

(b)

0 → Σ4R
′

1 → R
′

2 → Σ12V3 → 0

where V3 = H∗(S
0 ∪2 e

1 ∪η e
2).

Proof. For part (a), the map Σ12H∗(Cη) → R
′

2 described in the statement of

the Lemma 3.1.2 is a map of A(1)∗-comodules. Its quotient is isomorphic to

F2{y
2
1, y1y2, y1y3, y2y3} with the A(1)∗-comodule structure given by

∆(y2y3) = 1⊗ y2y3 + ξ21 ⊗ y1y3 + ξ2 ⊗ y1y2 + ζ2ξ
2
1 ⊗ y21

∆(y1y3) = 1⊗ y1y3 + ξ1 ⊗ y1y2 + ζ2 ⊗ y21
∆(y1y2) = 1⊗ y1y2 + ξ21 ⊗ y21
∆(y21) = 1⊗ y21.
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We can check that this module is isomorphic to Σ8(A(1)∗�A(0)∗F2) as A(1)∗-
comodules.

For part (b), the quotient of R
′

2 by Σ4R
′

1 is isomorphic to F2{y
2
2, y2y3, y

2
3} with

A(1)∗-comodule structure given by

∆(y22) = 1⊗ y22
∆(y2y3) = ξ1 ⊗ y22 + 1⊗ y2y3

∆(y23) = ξ21 ⊗ y22 + 1⊗ y23.

One can check that this quotient is isomorphic to Σ12V3.

Lemma 3.1.3. For every σ ≥ 3, there is a short exact sequence ofA(1)∗-comodules

0 → Σ4R
′

σ−1

×y1
−−→ R

′

σ → Σ6σV4 → 0

where V4 is H∗(V (0) ∧ Cη).

Remark 3.1.4. The spectrum V (0) ∧ Cη is homotopy equivalent to Y , introduced

in the Introduction (c.f Section 3.2 for a presentation of H∗(Y ).)

Proof. The quotient of R
′

σ byΣ4R
′

σ−1 is isomorphic to F2{y
σ
2 , y

σ−1
2 y3, y

σ−2
2 y23, y

σ−3
2 y33}

with A(1)∗-comodule structure given by

∆(yσ2 ) = 1⊗ yσ2
∆(yσ−1

2 y3) = ξ1 ⊗ yσ2 + 1⊗ yσ−1
2 y3

∆(yσ−2
2 y23) = ξ21 ⊗ yσ2 + 1⊗ yσ−2

2 y23
∆(yσ−3

2 y33) = ξ31 ⊗ yσ2 + ξ21 ⊗ yσ−1
2 y3 + ξ1 ⊗ yσ−2

2 y23 + 1⊗ yσ−3
2 y33.

It can be easily seen that this quotient is isomorphic to Σ6σV4.

Next we describe the Ext groups of some A(1)∗-comodules as basic steps towards

computing Gσ. These calculations are elementary and classical.

Proposition 3.1.5. There are classes h0 ∈ Ext1,1, h1 ∈ Ext1,2, v ∈ Ext3,7,
v41 ∈ Ext4,12 such that there is an isomorphism of algebras

G0 := Exts,tA(1)∗
(F2) ∼= F2[h0, h1, v, v

4
1]/(h

3
1, h0h1, h1v, v

2 − h2
0v

4
1).

See for example ([Rav86], Theorem 3.1.25).

Lemma 3.1.6. As a module over Exts,tA(1)∗
(F2),
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0 1 2 3 4 5 6 7 8 9 10

0
1
2
3
4
5
6

h0 h1

v
v41

Figure 1 – Ext∗,∗A(1)∗
(F2,F2) in the range 0 ≤ t− s ≤ 8.

(1) Exts,tA(1)∗
(H∗(V (0))) is generated by h0 ∈ Ext0,0, h1 ∈ Ext1,3 with the

following relations h0h
0 = vh0 = vh1 = 0 and h2

1.h
0 = h0h

1.

(2) Exts,tA(1)∗
(H∗(Cη)) is generated by {hi ∈ Exti,3i| 0 ≤ i ≤ 3} with h1h

i =

0, vh0 = h0h
2, vh1 = h0h

3.

(3) Exts,tA(1)∗
(H∗(S

0 ∪2 e
1 ∪η e

2)) is generated by h0 ∈ Ext0,0, h1 ∈ Ext1,3,

a1 ∈ Ext1,3, h2 ∈ Ext2,6, h3 ∈ Ext3,9 with h0h
0 = h1h

0 = h1h
1 =

h0a
1 = va1 = h1h

2 = vh2 = h1h
3 = vh3 = 0 and h0h

2 = h2
1a

1.

(4) Exts,tA(1)∗
(H∗(Y )) is generated by {hi| 0 ≤ i ≤ 3} with h0h

i = h1h
i =

vhi = 0.

See [Rav86], Theorem 3.1.27 for (1) and (4). The calculations for (2) and (3) are

also elementary, so that we omit the detail.

Remark 3.1.7. We use the same notation hi for i = 0, 1, 2, 3 to denote certain

generators of the above groups. This abuse of notation is justified by the fact that

these generators have close relationships which are described in the next lemma.

The context will clarify the use of the notation.

Consider cell inclusions V (0) → Y and S0 ∪2 e1 ∪η e2 → Y . The induced

homomorphisms in Ext over A(1)∗ are described as follows.

Lemma 3.1.8. (i)The homomorphism Ext∗,∗A(1)∗
(H∗(V (0))) → Ext∗,∗A(1)∗

(H∗(Y ))

sends the classes h0 and h1 to the non-trivial classes of the same name.

(ii) The homomorphism Ext∗,∗A(1)∗
(H∗(S

0 ∪2 e
1 ∪η e

2)) → Ext∗,∗A(1)∗
(H∗(Y )) sends

the classes h0, h1, h2, h3 to the non-trivial classes of the same name.

Proof. For part (i), consider the short exact sequence of A(1)∗-comodules

0 → H∗(V (0)) → H∗(Y ) → H∗(Σ
2V (0)) → 0
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1
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3
4
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h0
h1

Figure 2 – Exts,tA(1)∗
(H∗(V (0))) in the

range 0 ≤ t− s ≤ 4.

0 1 2 3 4 5 6

0
1
2
3
4

h0
h1

h2
h3

Figure 3 – Exts,tA(1)∗
(H∗(Cη)) in the

range 0 ≤ t− s ≤ 6.

0 1 2 3 4 5 6

0
1
2
3
4

h0
h1a1

h2
h3

Figure 4 – Exts,tA(1)∗
(H∗(S

0 ∪2 e
1 ∪η

e2)) in the range 0 ≤ t− s ≤ 6.

0 1 2 3 4 5 6

0
1
2
3
4

h0
h1

h2
h3

Figure 5 – Exts,tA(1)∗
(H∗(Y )) in the

range 0 ≤ t− s ≤ 6.

For degree reasons, the classes h0 and h1 of Ext∗,∗A(1)∗
(H∗(V (0))) do not belong to

the image of the connecting homomorphism

Exts−1,t
A(1)∗

(H∗(Σ
2V (0))) → Exts,tA(1)∗

(H∗(V (0))).

Therefore, they are sent to nontrivial classes of the same name inExt∗,∗A(1)∗
(H∗(Y )).

For part (ii), consider the short exact sequence of A(1)∗-comodules

0 → H∗(S
0 ∪2 e

1 ∪η e
2) → H∗(Y ) → Σ3F2 → 0

and the resulting long exact sequence

Exts−1,t
A(1)∗

(H∗(Σ
3F2))

∂
−→ Exts,tA(1)∗

(H∗(S
0 ∪2 e

1 ∪η e
2)) → Exts,tA(1)∗

(H∗(Y )).

For degree reasons, the classes h0, h2, h3 of Exts,tA(1)∗
(H∗(S

0 ∪2 e
1 ∪η e

2)) are not

in the image of the connecting homomorphism, and thus are sent to h0, h2, h3

in Ext∗,∗A(1)∗
(H∗(Y ), respectively. Next, for degree reasons, the classes h0h

1 and

h1a
1 are sent to 0 ∈ Ext∗,∗A(1)∗

(H∗(Y )). The only way for this to happen is that

the connecting homomorphism sends Σ31 ∈ Ext0,3A(1)∗
(F2,H∗(Σ

3F2)) to the sum

h1 + a1. It follows that h1 is not in the image of the connecting homomorphism,

and therefore is sent to h1 ∈ Ext1,3A(1)∗
(H∗(Y ))
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Lemma 3.1.9. H∗(Y ) has a structure of an A(1)∗-comodule algebra. The result-

ing structure on Ext∗,∗A(1)∗
(H∗(Y )) is that of a polynomial algebra.

Proof. It is not hard to see that H∗(Y ) is isomorphic to A(1)∗�E(1)∗F2 as A(1)∗-
comodules, where E(1)∗ is the Hopf quotient of A(1)∗ by the Hopf ideal (ζ1), i.e.,

E(1)∗ ∼= F2[ζ2]/(ζ
2
2). In particular, H∗(Y ) has the structure of a A(1)∗-comodule

algebra. As a consequence, Ext∗,∗A(1)∗
(H∗(Y )) is an algebra and is furthermore

isomorphic to Ext∗,∗E(1)∗
(F2) by the change-of-rings isomorphism. It is well-known

that the latter is a polynomial algebra on one variable.

We now compute Gσ := Ext∗,∗A(1)∗
(R

′

σ). We denote by αs,t,σ the non-trivial class

of Exts,s+t
A(1)∗

(R
′

σ) whenever there is a unique such one.

Proposition 3.1.10. As a module over G0, G1 = Ext∗,∗A(1)∗
(R

′

1) is generated by

α0,4,1 ∈ Ext0,4A(1)∗
(R

′

1) and α1,8,1 ∈ Ext1,9A(1)∗
(R

′

1) with the relations h1α0,4,1 = 0

and vα0,4,1 = h2
0α1,8,1.

Proof. Consider the short exact sequence of A(1)∗-comodules

0 → Σ4F2 → R
′

1 → Σ6H∗(V (0)) → 0.

The connecting homomorphism

∂ : Exts,t−6
A(1)∗

(V (0)) → Exts+1,t−4
A(1)∗

(F2)

of the resulting long exact sequence sends h0 to h1 and h1 to 0. The latter follows

from degree reasons and the former from the following map of short exact se-

quences of A(1)∗-comodules and the naturality of the connecting homomorphism

0 // Σ4F2
// R1

// Σ6H∗(V (0)) // 0

0 // Σ4F2
//

OO

H∗(Σ
4Cη) //

OO

Σ6F2
//

OO

0.

It follows that G1 is v41-periodic on the following generators (Figure 6)

What remains to be established is the multiplication by h0 on the generator of

bidegree (s, t−s) = (2, 8). This is done by a similar consideration of the connect-

ing homomorphism associated to the short exact sequence of A(1)∗-comodules

0 → Σ4Cη → R
′

1 → Σ7F2 → 0.
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0
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5
6

Figure 6 – G1 - The red part is the contribution of Ext∗,∗A(1)∗
(Σ4F2) and the black

part from Ext∗,∗A(1)∗
(Σ6H∗(V (0))).

Proposition 3.1.11. As a module over G0, Ext
∗,∗
A(1)∗

(R
′

2) = G2 is generated by

αs,t,2 ∈ Exts,s+t where (s, t) ∈ {(0, 8), (0, 12), (1, 14), (2, 16), (3, 18)}with

h1αs,t,2 = 0, vα0,8,2 = h3
0α0,12,2

vα0,12,2 = h0α2,16,2, vα1,14,2 = h0α3,18,2.

Proof. The short exact sequence in part (a) of Lemma 3.1.2 gives rise to the long

exact sequence

→ Exts,t−12
A(1)∗

(H∗(Cη)) → Exts,tA(1)∗
(R

′

2) → Exts,t−8
A(0)∗

(F2) → Exts+1,t−12
A(1)∗

(H∗(Cη)) →

Combining that Exts,tA(0)∗
(F2) ∼= F2[h0] and the description of Exts,tA(1)∗

(H∗(Cη)),
we see that the connecting homomorphism is trivial for degree reasons.

8 9 10 11 12 13 14 15 16 17 18 19

0
1
2
3
4
5
6

Figure 7 – G2 - The red part is the contribution of Exts,tA(0)∗
(F2,F2) and the black

one of Exts,tA(1)∗
(H∗(Cη))

What remains is to establish the v41-multiplication on the class α0,8,2 of bidegree

(0, 8). Consider the long exact sequence associated to the short exact sequence in
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part (b) of Lemma 3.1.2

Exts−1,t
A(1)∗

(Σ12V3)
∂
−→ Exts,tA(1)∗

(Σ4R
′

1) → Exts,tA(1)∗
(R

′

2). (13)

One can check that the class Σ4α0,4,1 ∈ Exts,tA(1)∗
(Σ4R

′

1) is not in the image of ∂,

and so is sent to α0,8,2 ∈ Exts,tA(1)∗
(R

′

2). For degree reasons, we see that v41Σ
4α0,4,1

is not in the image of ∂, thus v41α0,8,2 is nontrivial in G2. This completes the proof.

8 9 10 11 12 13 14 15 16 17 18 19

0
1
2
3
4
5
6

Figure 8 – G2 -The red part is the contribution of G1 and the black one of

Ext∗,∗A(1)∗
(V3).

Remark 3.1.12. We can make a complete calculation of the connecting homomor-

phism of (13), which results to the chart Figure-8.

Lemma 3.1.13. As a module over G0, Ext
∗,∗
A(1)∗

(R
′

3) = G3 is generated by αs,t,3

of Exts,s+t where (s, t) ∈ {(0, 12), (0, 16), (0, 18), (1, 20), (2, 22), (3, 24)} with

h1αs,t,3 = 0, vα0,12,3 = h3
0α0,16,3, vα0,16,3 = h2

0α1,20,3, vα0,18,3 = h0α2,22,3,

vα1,20,3 = h0α3,24,3.

Proof. The short exact sequence in Lemma 3.1.3 gives the long exact sequence

→ Exts,tA(1)∗
(Σ4R

′

2) → Exts,tA(1)∗
(R

′

3) → Exts,tA(1)∗
(Σ18V4) → Exts+1,t

A(1)∗
(Σ4R

′

2) →

For degree reasons, the connecting homomorphism is trivial, hence we obtain the

additive structure of G3 as in Figure 11. We need to establish the non-trivial h0-

multiplication on the generators {αs,18+2s,3| s ≥ 0}. Taking the v41-periodicity

into account, we reduce to show this property for the generators of

α0,18,3, α1,20,3, α2,22,3, α3,24,3.

For this, we can check that there are the following short exact sequences:

0 → Σ18H∗(Cη) → R3 → R3/Σ
18H∗(Cη) → 0
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Figure 9 – G3 - The red part is the contribution of G2 and the black one of

Exts,tA(1)∗
(V4)

and

0 → Σ4R2 → R3/Σ
18H∗(Cη) → Σ19H∗(Cη) → 0

where, as a sub A(1)∗-comodule of R3, Σ18H∗(Cη) is equal to F2{y1y
2
3+y32, y2y

2
3}

and the mapΣ4R2 → R3/Σ
18Cη is the compositeΣ4R2

×y1
−−→ R3 → R3/Σ

18H∗(Cη).
As a consequence, Ext∗,∗A(1)∗

(R3/Σ
18H∗(Cη)) sits in a long exact sequence

Exts−1,t
A(1)∗

(Σ19H∗(Cη))
∂
−→ Exts,tA(1)∗

(Σ4R2) → Exts,tA(1)∗
(R3/Σ

18H∗(Cη)) → .

Since ∂ is G0-linear, one only needs to compute ∂ on the two generators of

Ext0,19A(1)∗
(Σ19H∗(Cη)) and Ext1,21A(1)∗

(F2,Σ
19H∗(Cη)). Direct computations show

that ∂ act non-trivially on these classes. It follows that ∂ is a monomorphism and

so Exts,tA(1)∗
(R3/Σ

18H∗(Cη)) is v1-free on the generators depicted in Figure 10.

12 13 14 15 16 17 18 19 20 21 22 23 24 25

0
1
2
3
4
5
6

Figure 10 – Exts,tA(1)∗
(R3/Σ

18H∗(Cη)).

It follows immediately from the exact sequence

0 → Σ18H∗(Cη) → R3 → R3/Σ
18H∗(Cη) → 0
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Figure 11 – G3 -The red part is the contribution of Exts,tA(1)∗
(R3/Σ

18H∗(Cη)) and

the black one of Exts,tA(1)∗
(Σ18H∗(Cη)).

that Ext∗,∗A(1)∗
(R3) is as depicted in Figure 11. In particular, missing h0-extensions

are established.

Theorem 3.1.14. As a module over G0, we have

(a) For every σ ≥ 2, Ext∗,∗A(1)∗
(R

′

σ) = Gσ is generated by αs,t,σ ∈ Exts,t+s
A(1)∗

(R
′

σ)

where (s, t) ∈ {(0, 4σ), (0, 2j + 4σ)|2 ≤ j ≤ σ, (j, 6σ + 2j)|1 ≤ j ≤ 3}
with h1αs,t,σ = 0.

(b) For all pairs of triples (s1, t1, σ1) and (s2, t2, σ2) with σ1 ≥ 1 and σ2 ≥ 1
except for (2, 9, 1) and (3, 10, 1), we have that

αs1,t1,σ1αs2,t2,σ2 = αs1+s2,t1+t2,σ1+σ2 .

0
1
2
3
4
5
6

4σ 4σ + 4 4σ + 6 6σ

Figure 12 – Gσ for σ ≥ 2

Proof. (a) The statement for σ = 2 is Lemma 3.1.11. Let us prove the claim for

σ ≥ 3 by induction. The base case is Lemma 3.1.13.
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Suppose the claim is true for some σ ≥ 3. The long exact sequence associated to

the short exact sequence in Lemma 3.1.3 reads

→ Exts,tA(1)∗
(R

′

σ+1) → Exts,tA(1)∗
(Σ6σ+6V4) → Exts+1,t

A(1)∗
(Σ4R

′

σ) → .

Combining the additive structure of Exts,tA(1)∗
(Σ4R

′

σ) and that

Exts,tA(1)∗
(Σ6σ+6V4) ∼= Σ6σ+6F2[v1],

we obtain the additive structure of Gσ+1 as described in the lemma because the

connecting homomorphism vanishes for degree reasons. To establish the non-

trivial h0-multiplication on the generators {αs,2s+6σ+6,σ+1| s ≥ 0}, we use the

following identities

(i) Gσ+1 ∋ α0,4,1αs,2s+6t,σ 6= 0 ∀σ ≥ 1
(ii) α1,8,1αs,2s+6σ−6,σ−1 = αs+1,2s+6σ+2,σ ∀σ ≥ 2
(iii) α0,12,2αs,2s+6σ−6,σ−1 = αs,2s+6σ+6,σ+1 ∀σ ≥ 3.

These identities are the content of part (b). For the sake of the presentation, we

postpone the proof to (b); this is legitimate because, as we will see, the proof of (b)
only uses the additive structure of G′

σs. Let us show how these identities allow us

to conclude the proof of (a). Indeed, the classes αs,2s+6σ−6,σ−1 exist (non-trivial)

for all σ ≥ 3 and s ≥ 0. Therefore, we have that, for all σ ≥ 3,

h0αs,2s+6σ+6,σ+1 = h0α0,12,2αs,2s+6σ−6,σ−1 (multiplying both sides of (iii) by h0)

= α0,4,1α1,8,1αs,2s+6σ−6,σ−1 (because of (i))

= α0,4,1αs+1,2s+2+6σ,σ (because of (ii))

6= 0 (because of (i)).

(b) For every σ, τ ≥ 1, there is a commutative diagram of A(1)∗-comodules

R
′

σ ⊗ R
′

τ

��

µ //

��

Rσ+τ
// R

′

σ+τ

��
H∗(Σ

6σXσ)⊗ H∗(Σ
6τXτ )

��

µ // H∗(Σ
6σ+6τXσ+τ )

��
H∗(Σ

6σY )⊗ H∗(Σ
6τY )

µ // H∗(Σ
6σ+6τY )

.

Let us explain the maps in this diagram. The spectrum Xσ is V (0), S0 ∪2 e
1 ∪η e

2

or Y if σ = 1, 2 or σ > 2 respectively; and in each case the map R
′

σ → H∗(Xσ) is
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the projection appearing in the proof of Lemma 3.1.10, Lemma 3.1.2 or Lemma

3.1.3, respectively. The other vertical arrows are the inclusions of Xσ into Y.

The bottom horizontal arrow is the multiplication on H∗(Y ), described in Lemma

3.1.9, and the middle one is induced by the latter. The second upper arrow is the

projection on the factor R
′

σ+τ of the decomposition in Lemma 3.1.1.

The induced homomorphisms in Ext over A(1)∗ of all vertical arrows are stud-

ied in the proof of Lemmas 3.1.10, 3.1.11, 3.1.14 and Lemma 3.1.8, according

to which the classes αs,t,σ, where σ ≥ 1 and (s, t, σ) /∈ {(2, 9, 1), (3, 10, 1)}, are

sent non-trivially in a unique way to Exts,tA(1)∗
(H∗(Y )), hence their products are

non-trivial by Lemma 3.1.9. This proves (b).

Remark 3.1.15. Let us summarise what has been done so far. First, Lemma 3.1.1

implies that

Ext∗,∗A(1)∗
(R) ∼= (

⊕

i≥0

Gi)⊗ F2[v
4
2 ]

where v42 ∈ Ext4,28(F2, R4) represented by y43 . Next, Theorem 3.1.14 describes

completely the products between Gi’s modulo the ideal generated by (v42). It is

then straightforward to verify that Ext∗,∗A(1)∗
(R) is generated by the classes of

h0, h1, v, v
4
1, α0,4,1, α1,8,1, α0,12,2, α1,14,2, α3,18,2, α0,18,3, v

4
2. (14)

Let us describe the subalgebra of primitives.

Corollary 3.1.16. There is the following isomorphism of graded algebras

Ext0,∗A(1)∗
(R) ∼= F2[α0,4,1, α0,12,2, v

4
2, α0,18,3]/(α

2
0,18,3 = α3

0,12,2 + α2
0,4,1v

4
2).

Proof. The algebra Ext0,∗A(1)∗
(F2, R) is naturally identified with a subalgebra of

R = F2[y1, y2, y3]. Through this identification, α0,4,1, α0,12,2, v
4
2, α0,18,3 identify

with y1, y
2
2, y

4
3, y

3
2+y1y

2
3 , respectively. Thus F2[α0,4,1, α0,12,2, v

4
2, α0,18,3]/(α

2
0,18,3 =

α3
0,12,2+α2

0,4,1v
4
2) is isomorphic to the subalgebra of Ext0,∗A(1)∗

(F2, R) generated by

α0,4,1, α0,12,2, v
4
2, α0,18,3. On the other hand, it follows from Remark (3.1.15) that

α0,4,1, α0,12,2, v
4
2, α0,18,3 generate the whole subalgebra of primitives of Ext∗,∗A(1)∗

(R).
This concludes the proof of the lemma.

The differentials d1. Since the DMSS for F2 is a spectral sequence of algebras,

all d1-differentials can be determined on the set of algebra generators of (14).

Proposition 3.1.17. The d1-differential is multiplicative and on generators, it is

given as follows:

32



1) d1(h0) = 0
2) d1(h1) = 0
3) d1(α0,4,1) = 0
4) d1(α1,14,2) = 0
5) d1(α0,18,3) = 0
6) d1(v

4
1) = 0

7) d1(α0,12,2) = α3
0,4,1

8) d1(α1,8,1) = h0α
2
0,4,1

9) d1(v) = h3
0α0,4,1

10) d1(α3,18,2) = h3
0α0,18,3

11) d1(v
4
2) = α0,4,1α

2
0,12,2.

Proof. 1), 2), 4) For degree reasons, there is no room for a non-trivial d1-
differential on h0, h1, α1,14,2

3) It is easy to see that Ext1,4A(2)∗
(F2,F2) is non-trivial and that α0,4,1 is

the only class in the E1-term that can contribute to it. Therefore α0,4,1 is a

permanent cycle.

5) We see that h0α0,18,3 = α0,4,1α1,14,2. By the Leibniz rule, h0d1(α0,18,3) =
0. As h0 acts injectively on G3, it follows that d1(α0,18,3) = 0.

6) Since h2
0v

4
1 = v2, h2

0d1(v
4
1) = 2vd1(v) = 0. This follows because

d1(v
4
1) takes values in Ext4,8A(1)∗

(F2, R
′

1) on which h0 acts injectively.

7) We have thatα0,12,2 is represented by theA(2)-primitive [1|y22]+[x1|y
2
1] ∈

E⊗R2. By Remark 2.1.6, d1(α0,12,2) is represented by d([1|y22]+[x1|y
2
1]) =

[1|y31] ∈ E ⊗ R3, hence is equal to α3
0,4,1.

8) Because α0,4,1α1,8,1 = h0α0,12,2, the Leibniz rule implies that

α0,4,1d1(α1,8,1) = h0d1(α0,12,2) = h0α
3
0,4,1.

That α0,4,1 acts injectively on theE1-term implies that d1(α1,8,1) = h0α
2
0,4,1˙

9) The relation α0,4,1v = h2
0α1,8,1 implies that

α0,4,1d1(v) = h2
0d1(α1,8,1) = h3

0α
2
0,4,1

As α0,4,1 acts injectively on the E1-term, we obtain that d1(v) = h3
0α0,4,1.

10) The relation vα1,14,2 = h0α3,18,2 shows that

h0d1(α3,18,2) = α1,14,2d1(v) = α1,14,2h
3
0α0,4,1 = h4

0α0,18,3
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Therefore, d1(α3,18,2) = h3
0α0,18,3.

11) We check that v42 is represented by the A(2)-primitive [1|y43] + [x1|y
4
2]

in E ⊗ R4. By Remark 2.1.6, d1(v
4
2) is represented by [1|y1y

4
2], hence is

equal to α0,4,1α
2
0,12,2.

It turns out that the DMSS collapses at the E2-term because there is no room for

higher differentials. In particular, the classes α1,14,2, α0,4,1, α
2
0,12,2, v

8
2, α0,18,3 sur-

vive the spectral sequence converging to elements of Ext∗,∗A(2)∗
(F2,F2) in appropri-

ate bidegrees. Following [DFHH14], those elements are denoted by α, h2, g, w2, β,

respectively. Furthermore, h2, g, w2, β generate a subalgebra of Ext∗,∗A(2)∗
(F2,F2)

isomorphic to F2[h2, g, w2, β]/(h
3
2, h2g, β

4 − g3). The relation β4 = g3 is a con-

sequence of a d1-differential. In effect, the relation α2
0,18,3 = α3

0,12,2 + α2
0,4,1v

4
2

implies the relation β4 − g3 − h4
2w2 = 0 in Ext∗,∗A(2)∗

(F2). But α4
0,4,1v

8
2 gets hit by

the differential

d1(v
8
2α0,4,1α0,12,2) = v82α0,4,1d1(α0,12,2) = v82α

4
0,4,1.

Thus the relation β4 = g3 + h4
2w2 becomes β4 = g3.

3.2 The Davis-Mahowald spectral sequence for A1

The A(2)∗-comodule structure of A1. In [DM81], Davis and Mahowald con-

structed four finite spectra, whose mod 2 cohomology are isomorphic to a free

module of rank one over the subalgebra A(1) = 〈Sq1, Sq2〉 of the Steenrod

algebra A. Let us review the construction of these spectra and their module

structure over the subalgebra A(2) = 〈Sq1, Sq2, Sq4〉 of A. Recall that Y is

V (0) ∧ Cη. The A-module structure of H∗(Y ) is depicted in Figure 13. An ele-

0 21 3

Figure 13 – Diagram of H∗(Y ): the straight lines represent Sq1 and the curved

lines represent Sq2, the numbers represent the degree of the cell.

ment of Ext1,3A(1)(H
∗(Y ),H∗(Y )) can be represented by an A(1)-module M sitting

in a short exact sequence of A(1)-modules

0 → H∗(Σ3Y ) → M → H∗(Y ) → 0.
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It can be checked that M must be isomorphic either to H∗(Σ3Y ) ⊕ H∗(Y ) or to

A(1) as an A(1)-module. This means that

Ext1,3A(1)(H
∗(Y ),H∗(Y )) ∼= F2. (15)

The A(1)-module structure of A(1) is depicted in Figure 14. One can ask whether

0 1

2 3
3 4

65

Figure 14 – Diagram of A(1).

A(1) admits a structure of A(2)-module. If such a structure exists, then according

to the Adem relations Sq2Sq1Sq2 = Sq4Sq1+Sq1Sq4, there must be a nontrivial

action of Sq4 on the nontrivial class of degree 1. It is straightforward to verify that

the latter is the only constraint to put an A(2)-module structure on A(1). There

are also possibilities for Sq4 to act nontrivially on the classes of degree 0 and 2.

These give in total four different A(2)-module structures on A1. In other words,

the inclusion of Hopf algebras A(1) →֒ A(2) induces a surjective homomorphism

Ext1,3A(2)(H
∗(Y ),H∗(Y )) → Ext1,3A(1)(H

∗(Y ),H∗(Y ))

whose kernel contains 4 element. Therefore,

Ext1,3A(2)(H
∗(Y ),H∗(Y )) ∼= F⊕3

2 .

Next, one observes that restriction along A(2) ⊂ A induces an isomorphism

Ext1,3A (H∗(Y ),H∗(Y )) ∼= Ext1,3A(2)(H
∗(Y ),H∗(Y )),

because for any A-module M sitting in a short exact sequence

0 → H∗(Σ3Y ) → M → H∗(Y ) → 0

there can not be any non-trivial Sqk for k ≥ 8 on M . It is proved in [DM81] that

the four classes of Ext1,3A (H∗(Y ),H∗(Y )) that are sent to the unique non-trivial

class of Ext1,3A(1)(H
∗(Y ),H∗(Y )) are permanent cycles in the Adams spectral se-

quence and converge to four v1- self-maps of Y , i.e., the maps Σ2Y → Y inducing

isomorphisms in K(1)-homology theory. As a consequence, the cofibers of these

v1-self-maps realise the four different A-module structures on A(1). We will write

A1 to refer to any of these four finite spectra. Following [BEM17], we make the

following definition.
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Definition 3.2.1. We define by A1[i, j], i, j ∈ {0, 1} the version of A1 having the

non-trivial Sq4 on the generator of degree 0, respectively 2 if and only if i = 1,

respectively j = 1.

As a F2-vector spaces,

H∗(A1[ij]) ∼= F2{a0, a1, a2, a3, a3, a4, a5, a6}, (16)

where a0, a1, a2, a4, a5, a6 are duals to the generators of degree 0, 1, 2, 4, 5, 6 of

H∗(A1[ij]), respectively and a3, a3 are duals to the images of the generator of

degree 0 by Sq3, Sq3 + Sq2Sq1, respectively. By taking duals to the action of

A(2) on H∗(A1[ij]), we obtain

Proposition 3.2.2. The left coaction of A(2)∗ on H∗(A1[ij]) is given by

∆(a1) = [1|a1] + [ξ1|a0]
∆(a2) = [1|a2] + [ξ21 |a2]
∆(a3) = [1|a3] + [ξ1|a2] + [ξ21 |a1] + [ξ31 |a0]
∆(a3) = [1|a3] + [ξ21 |a1] + [ξ2|a0]
∆(a4) = [1|a4] + [ξ1|a3] + [ξ21 |a2] + [ξ31 |a1] + [ξ2|a1] + [ξ2ξ1|a0] + αi,j [ξ

4
1|a0]

∆(a5) = [1|a5] + [ξ21 |a3] + [ξ21 |a3] + [ξ2|a2] + [ξ41 |a1] + [ξ2ξ
2
1|a0]

∆(a6) = [1|a6] + [ξ1|a5] + [ξ21 |a4] + [ξ31 |a3] + [ξ31 |a3] + [ξ2|a3] + [ξ2ξ1|a2] +
βi,j [ξ

4
1 |a2] + [ξ2ξ

2
1 |a1] + [ξ51 |a1] + γi,j[ξ

6
1 |a0] + [ξ2ξ

3
1|a0] + λi,j[ξ

2
2 |a0], where

αi,j =

{
0 if (i, j) ∈ {(0, 0), (0, 1)}

1 if (i, j) ∈ {(1, 0), (1, 1)}

βi,j =

{
0 if (i, j) ∈ {(0, 0), (1, 0)}

1 if (i, j) ∈ {(0, 1), (1, 1)}

γi,j = 1 + αi,j

and

λi,j = αi,j + βi,j

Proof. The proof is a straightforward translation from A(2)-module structure to

A(2)∗-comodule structure using the formula of the duals of the Milnor basis in

[Mil58].

DMSS for A1. In what follows, we will apply in many places the shearing

homomorphism to find primitives representing certain cohomology classes, see

[ABP69], Theorem 3.1. In general, let C be a Hopf algebra with conjugation

χ and B be Hopf-algebra quotient of C. Given a C-comodule M , consider the

composite

C ⊗M
id⊗∆
−−−→ C ⊗ C ⊗M

id⊗χ⊗id
−−−−−→ C ⊗ C ⊗M

µ⊗id
−−−→ C ⊗M.
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When restricting to C�BM , this composite factors through (C�Bk)⊗M induc-

ing the shearing isomorphism of C-comodules

Sh : C�BM → (C�Bk)⊗M,

where C coacts on C�BM via the left factor and on (C�Bk) ⊗ M diagonally.

Combined with the change-of-rings isomorphism, we have the following isomor-

phisms:

Ext∗B(k,M) ∼= Ext∗C(k, C�BM) ∼= Ext∗C(k, (C�Bk)⊗M).

In particular, via these isomorphisms, a class x ∈ Ext0B(k,M) is sent to Sh(1⊗x).

Proposition 3.2.3. The E1-term of the Davis-Mahowald spectral sequence con-

verging to Exts,tA(2)∗
(H∗(A1)) is given by

Es,σ,∗
1

∼=

{
0 if s > 0
Rσ if s = 0.

As a module over F2[α0,4,1, α0,12,2, v
4
2](⊂ Ext∗,∗A(1)∗

(R)), E∗,∗,∗
1 is free module of

rank eight on the following generators of

1, y3, y
2
3, y

3
3, y2, y2y3, y2y

2
3, y2y

3
3. (17)

Proof. In effect, Es,σ,t
1 is equal to Exts,tA(1)∗

(Rσ⊗H∗(A1)) by definition. The coac-

tion of A(1)∗ on Rσ ⊗ H∗(A1) is the usual diagonal coaction on tensor products.

In addition, H∗(A1) is isomorphic to A(1)∗ as A(1)∗-comodules. By the change-

of-rings isomorphism, we obtain that

Exts,tA(1)∗
(Rσ ⊗ H∗(A1)) ∼= Exts,tF2

(Rσ) ∼= Rσ. (18)

The first part of the proposition follows.

For the second part, the action of Exts,tA(1)∗
(R) on Es,t,σ

1

Exts,tA(1)∗
(R)⊗ Exts

′,t′

A(1)∗
(R⊗ H∗(A1)) // Exts+s′,t+t′

A(1)∗
(R⊗ H∗(A1))

is induced by the multiplication on R:

R⊗ (R⊗ H∗(A1)) → R⊗H∗(A1).

Now let r ∈ Ext0,∗A(1)∗
(R) ⊂ R and s ∈ R ∼= Ext0,∗A(1)∗

(R⊗H∗(A1)). By applying

the shearing isomorphism, the class s is represented by a unique element of the
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form s⊗ a0 +
∑

si ⊗ ai ∈ R⊗H∗(A1) where the ai are in positive degrees. The

action of r on s is then represented by rs ⊗ a0 +
∑

rsi ⊗ ai which represents

rs ∈ R ∼= Ext0,∗A(1)∗
(R ⊗ A1) via (18). In other words, the action of Ext0,∗A(1)∗

(R)

on Ext0,∗A(1)∗
(R⊗H∗(A1)) is given by the multiplication of the polynomial algebra

R. The proof follows from the fact that F2[α0,4,1, α0,12,2, v
4
2] is identified with the

subalgebra of R generated by y1, y
2
2, y

4
3.

Let us analyse the differentials in this spectral sequence. As the dr-differentials

decrease s-filtration by r − 1, i.e., dr : Es,σ,t
r → Es−r+1,σ+r,t

r and Es,σ,t
1 = 0 if

s > 0, the spectral sequence collapses at the E2-term and there are no extension

problems. Therefore,

E0,t,σ
2

∼= Extσ,tA(2)∗
(H∗(A1)).

We now turn our attention to the d1-differentials. As all elements of the E1-term

are in Ext0,∗A(1)∗
(R⊗H∗(A1)), we can apply the remark after Proposition 2.1.5. We

have determined the d1-differential on the classes α0,4,1, α0,12,2, v
4
2 in Proposition

3.1.17. By the Leibniz rule, it remains to determine the d1-differential on the

classes of (17).

Proposition 3.2.4. There are the following d1-differentials

1) d1(1) = 0,
2) d1(y2) = 0,
3) d1(y3) = 0,
4) d1(y2y3) = 0,
5) d1(y2y

2
3) = 0,

6) d1(y2y
3
3) = 0,

7) d1(y
2
3) = α2

0,4,1y2,
8) d1(y

3
3) = α2

0,4,1y2y3.

Proof. Parts 1− 4 follow from the sparseness of the E1-term.

5) The only nontrivial d1-differential that y2y
2
3 can support is

d1(y2y
2
3) = α2

0,4,1α0,12,21.

However,

d1(α
2
0,4,1α0,12,2) = α2

0,4,1d1(α0,12,2) = α5
0,4,11 6= 0.

This means that α2
0,4,1α0,12,2 is not a d1-cycle, and so cannot be hit by a d1-

differential. Therefore, y2y
2
3 is a d1-cycle.

6) Similarly, a nontrivial d1-differential on y2y
3
3 would be

d1(y2y
3
3) = α2

0,4,1α0,12,2y3.
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However,

d1(α
2
0,4,1α0,12,2y3) = α5

0,4,1y3 6= 0

by the Leibniz rule. Thus, y2y
3
3 is a d1-cycle.

7-8) It suffices to prove that ν2y2 = 0 and ν2y2y3 = 0 in Ext∗,∗A(2)∗
(H∗(A1))

because the differentials in part 7) and 8) are the only possibilities for the lat-

ter to occur. We will proceed using juggling formulas for Massey products, see

[Rav86], Section 4 of Appendix A1. In effect, the classes 1 and y3 being perma-

nent cycles by part 1) and part 3), they converge to classes in Ext0,0A(2)∗
(H∗(A1))

and Ext1,6A(2)∗
(H∗(A1)), respectively. By sparseness even at the level of the E1-

term of the DMSS, η1 = ηy3 = 0. Hence the Massey product 〈ν, η, yi3〉 with

i ∈ {0, 1} can be formed. We have that

ν2yi3 = 〈η, ν, η〉yi3 = η〈ν, η, yi3〉.

By sparseness of the DMSS, α2
0,4,1y

i
3 survives the DMSS and so ν2yi3 6= 0. It

follows that 〈ν, η, yi3〉 is nontrivial and must be equal to y2y
i
3. The fact that ν3 =

0 ∈ Ext3,12A(2)∗
(F2) allows us to do the following juggling

ν2y2y
i
3 = ν2〈ν, η, yi3〉 = 〈ν2, ν, η〉yi3.

However, the Massey product 〈ν2, ν, η〉 lives in the group Ext3,14A(2)∗
(F2) which

vanishes by Theorem 3.1.14. This concludes the proof of parts 7) and 8).

E2-term of the Adams SS. We describe Ext∗,∗A(2)∗
(H∗(A1)) as a module over

F2[h2, g, v
8
2]/(h

3
2, h2g) ⊂ Ext∗,∗A(2)∗

(F2).

We recall that g is represented by α2
0,12,2 in the DMSS for F2. We will denote by

e[s, t] where s, t ∈ N the unique non-trivial class belonging to Exts,s+t
A(2)∗

(H∗(A1)).

Proposition 3.2.5. As a module over F2[h2, g, v
8
2]/(h

3
2, h2g), Ext

∗,∗
A(2)∗

(H∗(A1)) is

a direct sum of cyclic modules generated by the following elements

e[0,0] e[1,5] e[1,6] e[2,11]

1 y2 y3 y2y3
(0) (h2

2) (0) (h2
2)

e[3,15] e[3,17] e[4,21] e[4,23]

y32 + y1y
2
3 y2y

2
3 y1y

3
3 + y32y3 y2y

3
3

(h2
2) (0) (h2

2) (0)

39



e[6,30] e[6,32] e[7,36] e[7,38]

y62 + y21y
4
3 y42y

2
3 + y1y2y

4
3 y62y3 + y21y

5
3 y42y

3
3 + y1y2y

5
3

(h2) (h2) (h2) (h2)

e[8,42] e[9,47] e[9,48] e[10,53]

y62y
2
3 + y21y

6
3 + y1y

3
2y

4
3 y72y

2
3 + y21y2y

6
3 y62y

3
3 + y21y

7
3 + y1y

3
2y

5
3 y72y

3
3 + y21y2y

7
3

(h2) (h2) (h2) (h2)

The second row in the table indicates a representative in the DMSS and the third

row the annihilator ideal of the corresponding generator.

Proof. As a corollary of Proposition 3.2.3, the E1-term of the DMSS for H∗(A1)
is isomorphic to a free module of rank 32 over F2[h2, g, v

8
2]. In particular, these

32 generators are h2-free. It turns out that one can choose these 32-generators

in such a way that there are exactly 16 h2-free towers that truncate 16 others by

d1-differentials. The question is how one can identify these 16 d1-cycles. For

this, we compute the d1-differentials on the following 32 generators of the E1-

term: {yi2y
j
3|0 ≤ i ≤ 3, 0 ≤ j ≤ 7}. Some of them are d1-cycles, for example

y2, y3. Whereas, some of them are not d1-cycle at first, but become so after adding

a multiple of h2, for example α0,12,2y2 + h2y
2
3 = y32 + y1y

2
3 . This procedure is

straightforward but lengthy, so we omit details here. It can be checked that the

generators listed in the table are d1-cycles. Finally, since g and v82 are d1-cycles,

Proposition 3.2.5 follows.

3.3 Two products

Now we turn our attention to the product between α ∈ Ext3,15A(2)∗
(F2) and e[4, 23] ∈

Ext4,27A(2)∗
(H∗(A1)). This product is not detected in the DMSS because α has σ-

filtration 1 in the DMSS whereas all non-trivial groups in the E∞-term of the

DMSS converging to Ext∗,∗A(2)∗
(H∗(A1)) are in σ-filtration 0. Therefore, we need

first to find a representative of α in the total cochain complex of the double com-

plex A(2)⊗∗
∗ ⊗E2⊗R and that of e[4, 23] in A(2)⊗∗

∗ ⊗E2⊗R⊗H∗(A1), then take

the product at the level of cochain complexes and finally check if this product is

a coboundary. It is tedious to carry out this procedure because any representative

of e[4, 23] contains many terms, and so it is not easy to check if the product is a

coboundary. Here, by a term of A(2)⊗∗
∗ ⊗E2⊗R∗ and A(2)⊗∗

∗ ⊗E2⊗R∗⊗H∗(A1),
we mean an element of the basis formed by the tensor products of a basis of A(2)∗,
E2, R∗ and H∗(A1) chosen to be the monomial basis and the basis of (16), re-

spectively. We will keep the same convention when working with B(2)∗, F2, S∗

instead of A(2)∗, E2, R∗. The following two lemmas simplify computations.

Lemma 3.3.1. The product of α and e[4, 23] is equal either to 0 or to ge[3, 15].
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Proof. This is trivial because ge[3, 15] is the only non-trivial class in the appro-

priate bidegree.

We recall from Section 2 that there is a map of pairs (A(2)∗, E2) → (B(2)∗, F2)
given by

A(2)∗ = F2[ζ1, ζ2, ζ3]/(ζ
8
1 , ζ

4
2 , ζ

2
3) → B(2)∗ = F2[ζ1, ζ2, ζ3]/(ζ

4
1 , ζ

4
2 , ζ

2
3)

ζi 7→ ζi i ∈ {1, 2, 3}

E2 = E(x1, x2, x3) → F2 = E(x2, x3)

x1 7→ 0, x2 7→ x2, x2 7→ x2.

The induced map on their Koszul duals is

R = F2[y1, y2, y3] → S = F2[y2, y3]

y1 7→ 0, y2 7→ y2, y3 7→ y3.

By an abuse of notation, we will denote by p these projection maps. The context

will make it clear which map is referred to.

Lemma 3.3.2. The map p∗ = Ext7,42A(2)∗
(H∗(A1)) → Ext7,42B(2)∗

(H∗(A1)) induced

by the projection A(2)∗ → B(2)∗ sends ge[3, 15] to a non-trivial element.

Proof. The projection A(2)∗ → B(2)∗ induces a morphism of the DMSSs. The

morphism of the E1-terms reads

Exts,tA(2)∗
(E2 ⊗ R⊗H∗(A1)) → Exts,tB(2)∗

(F2 ⊗ S ⊗ H∗(A1)).

By the change-of-rings isomorphism, this morphism identifies with the projection

p : R → S, which is surjective. The class ge[3, 15] is detected by y42(y
3
2 + y1y

2
3) ∈

R7, which maps to y72 ∈ S7 via p. By naturality, y72 is a permanent cycle in

the target DMSS. The only class in the E1-term which can support a differential

hitting y72 is y63 . y63 admits v42y
2
3 as a lift in the source DMSS. We have that

d1(v
4
2y

2
3) = d1(v

4
2)y

2
3+v42d1(y

2
3) = (α0,4,1α

2
0,12,2)y

2
3+v42(α0,4,1y2) = y1y

4
2y

2
3+y43y1y2.

This uses the Leibniz rule, Proposition 3.1.17 part 11), Proposition 3.2.4 part 7).

By naturality, the d1-differential in the target DMSS is equal to p(y1y
4
2y

2
3+y43y1y2),

which is equal to 0. Therefore, the image of ge[3, 15] is non-trivial.

Lemma 3.3.3. The product of α and e[4, 23] is non-trivial, hence equal to ge[3, 15]
if and only if the product of p∗(α) and p∗(e[4, 23]) is non-trivial.
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Proof. The map p : A(2)∗ → B(2)∗ induces the commutative diagram

Ext3,15A(2)∗
(F2)⊗ Ext4,27A(2)∗

(H∗(A1))

p∗

��

// Ext7,42A(2)∗
(H∗(A1))

p∗

��

Ext3,15B(2)∗
(F2)⊗ Ext4,27B(2)∗

(H∗(A1)) // Ext7,42B(2)∗
(H∗(A1)),

where the horizontal maps are the respective multiplications. The result follows

from the fact that p∗(ge[3, 15]) is non-trivial by Lemma 3.3.2.

Now let us compute the product of p∗(α) and p∗(e[4, 23]).

Lemma 3.3.4. In the total cochain complexes of B(2)⊗∗
∗ ⊗F2⊗S and of B(2)⊗∗

∗ ⊗
F2 ⊗ S ⊗H∗(A1), respectively :

i) p∗(α) is represented by [ξ2|1|y
2
2] + [ξ31 |1|y

2
2] + [ξ1|1|y

2
3] ∈ B(2)⊗F2⊗S2;

ii) p∗(e[4, 23]) is represented by [1|y2y
3
3|a0] + [1|y22y

2
3|a1] + [1|y32y3|a2] +

[1|y42|a3] ∈ F2 ⊗ S4 ⊗ A1.

Proof. A direct computation shows that these elements are cocycles of the total

differentials, which are not coboundaries. One way to prove that they represent

the right classes is to prove that they lift to cocycles in the total cochain complexes

of A(2)⊗∗
∗ ⊗ E2 ⊗ R and of A(2)⊗∗

∗ ⊗ E2 ⊗R ⊗H∗(A1), respectively.

It is easy to check that [ξ2|1|y
2
2] + [ξ31 |1|y

2
2] + [ξ1|1|y

2
3] + [ξ2|x1|y

2
1] + [ξ31 |x1|y

2
1] +

[ξ1|x2|y
2
1] + [1|1|y21y3] ∈ (A(2)∗ ⊗E2 ⊗ R2)⊕ (E2 ⊗ R3) is a lift for [ξ2|1|y

2
1] +

[ξ31 |1|y
2
1] + [ξ1|1|y

2
2].

For the other element, instead of finding a lift it suffices to show that p∗ induces

an isomorphismExt4,27A(2)∗
(H∗(A1))

∼=
−→ Ext4,27B(2)∗

(H∗(A1)), so that both are isomor-

phic to F2. This can be proved by a similar argument to that used in the proof of

Lemma 3.3.2. In effect, the non-trivial class of Ext4,27A(2)∗
(H∗(A1)) is detected by

y2y
3
3 in the DMSS. Via p∗, the latter is sent to y2y

3
3 which is the unique non-trivial

element of the E1-term of the target DMSS in the appropriate tridegree. For de-

gree reasons, y2y
3
3 is not hit by any differential. Therefore, y2y

3
3 survives the target

DMSS and it follows that Ext4,27A(2)∗
(H∗(A1))

∼=
−→ Ext4,27B(2)∗

(H∗(A1)) ∼= F2.

Set M = [ξ2|1|y
2
2] + [ξ31 |1|y

2
2] + [ξ1|1|y

2
3] and N = [1|y2y

3
3|a0] + [1|y22y

2
3|a1] +

[1|y32y3|a2] + [1|y42|a3]. We need to show that MN , which is a (dv + dh)-cocycle,

represents a non-trivial class in Ext7,42B(2)∗
(H∗(A1)). We see that MN is an element

in B(2)∗ ⊗ F2 ⊗ S6 ⊗ A1 and dv(MN) = 0. This means that MN represents a
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class in Ext1,42B(2)∗
(F2 ⊗ S6 ⊗H∗(A1)). However, the latter group is trivial because

by the change-of-rings theorem, Ext∗,∗B(2)∗
(F2, F2 ⊗ S ⊗H∗(A1)) is isomorphic to

S which is concentrated only in cohomological degree 0. There must be an ele-

ment P ∈ F2 ⊗ S6 ⊗ H∗(A1) such that dv(P ) = MN , and so dh(P ) represents

the same class in Ext7,42B(2)∗
(H∗(A1)) as MN does.

We recall the values of λi,j as introduced in Proposition 3.2.2: λ1,0 = λ0,1 = 1
and λ0,0 = λ1,1 = 0.

Lemma 3.3.5. P contains λi,j[1|x2|y
6
2|a0] as a term.

Proof. The product MN contains the term [ξ2|1|y
6
2|a3]. One can check that P must

contain the term [1|y62|a6], so that dv(P ) contains the term [ξ2|1|y
6
2|a3]. Using the

formula for the coaction of A(2)∗ on a6, one sees that dv(P ) contains the term

λi,j[ξ
2
2 |1|y

6
2|a0] which is not a term of MN . In order to compensate this term, P

must contain the term λi,j[1|x2|y
6
2|a0].

Lemma 3.3.6. A (dh + dv)-cycle in F2 ⊗ S7 ⊗A1 gives rise to a non-trivial class

in Ext7,42B(2)∗
(H∗(A1)) if and only if it contains the term [1|y72|a0].

Proof. It is shown in the proof of Lemma 3.3.2 that

Ext7,42B(2)∗
(H∗(A1)) ∼= F2

and that this group arises from

Ext0,42B(2)(F2 ⊗ S7 ⊗ H∗(A1)) ∼= F2{y
7
2} ⊂ S7.

Therefore, by the shearing homomorphism, the only element in F2⊗S7⊗H∗(A1)
that represents the non-trivial class of Ext7,42B(2)∗

(H∗(A1)) must contain the term

[1|y72|a0].

Proposition 3.3.7. The product αe[4, 23] is equal to λi,jge[3, 15].

Proof. αe[4, 23] is non-trivial if and only if dh(P ) represents a non-trivial class in

Ext7,42B(2)∗
(H∗(A1)). Lemma 3.3.5 shows that dh(P ) contains the term λi,j[1|y

7
1|a0].

Hence, lemme 3.3.6 concludes the proof.

The product between β ∈ Ext3,18A(2)∗
(F2) and e[3, 15] ∈ Ext3,18A(2)∗

(H∗(A1)) is easier

because both have σ-filtration 0 in the Davis-Mahowald spectral sequence.

Proposition 3.3.8. βe[3, 15] = e[6, 30].

Proof. the class β is represented by y32 + y1y
2
3 in R3 and e[3, 15] is represented by

[y32+y1y
2
3|a0] in R3⊗A1. So the product βe[3, 15] is represented by [y62+y21y

4
3|a0],

which represents e[6, 30] by Proposition 3.2.5.
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4 Partial study of the Adams spectral sequence for

tmf ∧A1

In this section, we establish some differentials as well as some structures of the

ASS for A1. These are essential bits of information allowing us to run the homo-

topy fixed point spectral sequence in the next section.

Recall that the ASS for tmf∧A1 which has E2-term isomorphic toExt∗,∗A(2)∗
(H∗(A1))

is a spectral sequence of modules over that for tmf , whose E2-term is isomorphic

to Ext∗,∗A(2)∗
(F2). We first recollect some known properties of the ASS for tmf ,

see [DFHH14], Chapter 13.

Theorem 4.0.1. (i) The class g ∈ Ext4,24A(2)∗
(F2) is a permanent cycle detect-

ing the image of κ ∈ π20(S
0) via the Hurewicz map S0 → tmf .

ii) There is the following d2-differential in the Adams spectral sequence for

tmf
d2(w2) = gβα.

(iii) There is the following d3-differential in the Adams spectral sequence for

tmf
d3(w

2
2(v

4
2η)) = g6.

(iv) The class ∆8 := w4
2 survives the Adams spectral sequence.

Proposition 4.0.2. In the ASS for tmf ∧ A1, there exists λ ∈ F2 such that the

following statements are equivalent:

i) d2(w2e[4, 23]) = λg2e[6, 30],
ii) d2(w2e[9, 48]) = λg4e[3, 15],
iii) d2(w2e[10, 53]) = λg5e[0, 0],
iv) d2(w2e[7, 38]) = λg4e[1, 5].

Proof. We will prove that i) ⇒ ii) ⇒ iii) ⇒ iv) ⇒ i). The charts of Figures

(16) and (17) will make the proof easier to follow. First, we observe that all of the

classes e[4, 23], e[7, 38], e[9, 48], e[10, 53] are permanent cycles, by sparseness.

i) ⇒ ii) Suppose d2(w2e[4, 23]) = g2e[6, 30]. Then d2(g
2w2e[4, 23]) =

g4e[6, 30] by g-linearity. It follows that there is no room for a non-trivial dif-

ferential on w2
2e[3, 15]. In order words, w2

2e[3, 15] is a permanent cycle. Because

of part iii) of Theorem 4.0.1, a gk-multiple of w2
2e[3, 15] must be hit by a dif-

ferential for some k less than 7. One can check that the only possibility is that

d2(w
3
2e[9, 48]) = g4w2

2e[3, 15]. Since w2
2 is a d2-cycle in the ASS for tmf , this

differential implies that d2(w2e[9, 48]) = g4e[3, 15].
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ii) ⇒ iii) Suppose d2(w2e[9, 48]) = g4e[3, 15]. Then the class w2
2e[0, 0] is

a permanent cycle, by sparseness. Again, a gk-multiple of w2
2e[0, 0] for some k

smaller than 7 must be hit by a differential. Inspection shows that the classes

w3
2e[10, 53] and w4

2e[1, 5] are the only ones that have the appropriate bidegree to

support such a differential. However, w4
2e[1, 5] is a permanent cycle, because

w4
2 and e[1, 5] are permanent cycles in their respective ASS. Thus, we have that

d2(w2e[10, 53]) = g5e[0, 0].
iii ⇒ iv) Suppose d2(w2e[10, 53]) = g5e[0, 0]. Then the class w2

2e[1, 5] is

a permanent cycle, as there is no room for a non-trivial differential on it. Then

gkw2
2e[1, 5] must be hit by a differential for some k less than 7. Inspection shows

that the only possibility is that d2(w
3
2e[7, 38]) = g4w2

2e[1, 5]. As w2
2 is a d2-cycle,

it follows that d2(w2e[7, 38]) = g4e[1, 5].
iv) ⇒ i) Suppose d2(w2e[7, 38]) = g4e[1, 5]. By g-linearity, we get that

d2(gw2e[7, 38]) = g5e[1, 5]. It follows by sparseness that w2
2e[6, 30] is a perma-

nent cycle. Then the class gkw2
2e[6, 30] is hit by a differential for some k less than

7. Inspection shows that the only possibility is that d2(w
3
2e[4, 23]) = g2w2

2e[6, 30].
Therefore, d2(w2e[4, 23]) = g2e[6, 30] by w2

2-linearity.

Theorem 4.0.3. In the Adams spectral sequence for tmf ∧ A1[ij], there are the

following differential d2:
i) d2(w2e[4, 23]) = λi,jg

2e[6, 30],
ii) d2(w2e[9, 48]) = λi,jg

4e[3, 15],
iii) d2(w2e[10, 53]) = λi,jg

5e[0, 0],
iv) d2(w2e[7, 38]) = λi,jg

4e[1, 5].

Proof. By the Leibniz rule and part (ii) of Theorem 4.0.1,

d2(w2e[4, 23]) = d2(w2)e[4, 23] = gβαe[4, 23] = λi,jg
2e[6, 30],

where the last equality follows from Proposition 3.3.7 and Proposition 3.3.8.

Thus, the theorem follows from Proposition 4.0.2.

Proposition 4.0.4. There are the following d3-differentials in the Adams spectral

sequence for tmf ∧ A1

d3(w
2
2e[10, 53]) = g5e[9, 48]

d3(w
3
2e[1, 5]) = g5w2e[0, 0].

Proof. We can check from the chart that e[9, 48] and we[0, 0] are permanent cy-

cles. Then gle[9, 48] and gkwe[0, 0] must be targets of some differentials for some

l and k less than 7. Inspection of the E2-term shows that either

d2(w
2
2e[10, 53]) = g5we[0, 0] and d4(w

3
2e[1, 5]) = g5e[9, 48]
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gw2e[6, 32]

g5we[0, 0]

g5e[9, 48]

w3e[1, 5]

w2e[10, 53]

g4we[4, 21]

w3e[1, 6]

ν2w3e[0, 0]

g3we[8, 42]

g6e[6, 30]

g2w2e[3, 15]

g4we[4, 23]

g7we[2, 11]

νw3e[1, 5]

gw2e[7, 36]

g6e[6, 32]

Figure 15 – The Adams spectral sequence in the range 148 ≤ t− s ≤ 152

or

d3(w
2
2e[10, 53]) = g5e[9, 48] and d3(w

3
2e[1, 5]) = g5w2e[0, 0].

However, the former possibility is ruled out because of the Leibniz rule:

d2(w
2
2e[10, 53]) = d2(w

2
2)e[10, 53] = 2w2d2(w2)e[10, 53] = 0,

where the first equality follows from the fact that e[10, 53] is a permanent cycle,

by spareness.

Corollary 4.0.5. The Toda bracket 〈g5, e[9, 48], ν〉 can be formed and contains

only elements which are divisible by g.

For references on Toda bracket, see [Tod62], [Koc90].

Proof. In the E4-term of the ASS, the Massey product 〈g5, e[9, 48], ν〉 has coho-

mological filtration 27 and is equal to zero with zero indeterminacy. On the other

hand the corresponding Toda bracket can be formed with indeterminacy contain-

ing only multiples of g. We can check that all conditions of Moss’s convergence

theorem [Mos70] are met. This implies that the Toda bracket 〈g5, e[9, 48], ν〉 con-

tains an element detected in filtration 27 by 0, thus is a multiple of g. Therefore,

this Toda bracket contains only multiples of g.

Finally, we need to have control of the action of the class ∆8 = w4
2 ∈ Ext32,224A(2)∗

(F2)

on the E∞-term of the ASS for tmf ∧A1. This will allow us to compare π∗(tmf ∧
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A1) with π∗(E
hG24
C ∧A1) (see Corollary 5.1.4) and hence to discuss higher differ-

entials in the HFPSS for EhG24
C ∧ A1.

Proposition 4.0.6. The class w4
2 acts freely on the E∞-term of the ASS for tmf ∧

A1. As a consequence, the element ∆8 ∈ π192(tmf) acts freely on the homotopy

groups of tmf ∧ A1.

Proof. Using the description of the E2-term of the ASS for tmf ∧A1 in Theorem

3.2.5 and an elementary bidegree inspection, we can see that, if a class y is in an

appropriate bidegree to support a differential hitting a class of the form w4
2x for

some class x, then y is divisible by w4
2. Knowing that w4

2 is a permanent cycle

in the ASS for tmf , we conclude that, if a class x survives the Er-term, then the

multiple of x by all powers of w4
2 also survive that term. Therefore, the Proposition

follows by induction.

Proposition 4.0.7. For every element x ∈ π∗(tmf ∧ A1), the element ∆8x is

divisible by κ (resp. ν) if and only if x is divisible by κ (resp. ν).

Proof. The argument is similar to that used in the proof of Proposition 4.0.6. A

bidegree inspection shows that, if a class y ∈ Ext∗,∗A(2)∗
(H∗(A1)) is in an appro-

priate bidegree whose (exotic) product with g (resp. ν) might detect ∆8x, then y
is divisible by w4

2. We conclude the proof by using the fact that the class w4
2 acts

freely on the ASS for tmf ∧A1, by Proposition 4.0.6.
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Figure 16 – Adams spectral sequence for A1 in the range 0 ≤ t− s ≤ 48
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Figure 17 – Adams spectral sequence for A1 in the range 48 ≤ t − s ≤ 101. The arrows in bold are differentials for the

models A1[10] and A1[01] and the dashed arrows for the models A1[00] and A1[11]
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5 The homotopy fixed point spectral sequence for

EhG24
C ∧ A1

5.1 Preliminaries and recollection on cohomology of G24

The action of G24 on (EC)∗ ∼= W(F4)[[u1]][u
±1] is documented [Bea17], 2.4. Let

us recall this action.

Theorem 5.1.1. The action of G24 on W(F4)[[u1]][u
±1] is given by

ω(u−1) = ζ2u−1 ω(v1) = v1

i(u−1) =
−u−1 + v1
ζ2 − ζ

i(v1) =
v1 + 2u−1

ζ2 − ζ

j(u−1) =
−u−1 + ζ2v1

ζ2 − ζ
j(v1) =

v1 + 2ζ2u−1

ζ2 − ζ

k(u−1) =
−u−1 + ζv1

ζ2 − ζ
k(v1) =

v1 + 2ζu−1

ζ2 − ζ
.

Equations 6 and 7 give us a way to get access to the homotopy groups of

EhG24
C ∧ A1.

Theorem 5.1.2. There is a homotopy equivalence

[(∆8)−1]tmf ∧ A1 ≃ (EhG24
C )hGal ∧ A1,

where Gal denotes the Galois group Gal(F4/F2).

Proof. We have

[(∆8)−1]tmf ∧A1 ≃ TMF ∧A1 (Equation 7)

≃ L2(TMF ) ∧A1 (TMF is E(2)-local)

≃ L2(TMF ∧A1) (L2 is smashing)

≃ LK(2)(TMF ) ∧A1

≃ (EhG24
C )hGal(F4/F2) ∧ A1 (Equation 6).

The fourth equivalence is Lemma 7.2 of [HS99] applied to the K(2)-localisation

and A1, which is finite spectrum of type 2.

Corollary 5.1.3. There is a homotopy equivalence

Gal+ ∧ [(∆8)−1]tmf ∧ A1 ≃ EhG24
C ∧ A1.

Therefore,

W(F4)⊗Z2 (∆
8)−1(π∗(tmf ∧ A1)) ∼= π∗(E

hG24
C ∧A1).
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Proof. This is a consequence of Theorem 5.1.2 and Lemma 1.37 of [BG18].

Let us denote by

Θ : W(F4)⊗Z2 π∗(tmf ∧A1) → π∗(E
hG24
C ∧A1), (19)

given by pre-composing the isomorphism of Corollary 5.1.3 with the natural ho-

momorphism π∗(tmf ∧ A1) → π∗([(∆
8)−1]tmf ∧ A1). The following corollary

recapitulates the relationship between π∗(tmf ∧A1) and π∗(E
hG24
C ∧ A1).

Corollary 5.1.4. The homomorphism Θ is injective. Moreover, it remains injec-

tive after quotienting out by the ideal of π∗(S
0) generated by (κ, ν).

Proof. This follows from Theorem 5.1.2, Proposition 4.0.6 and Proposition 4.0.7.

We continue to recollect some necessary information about the HFPSS converging

to π∗(E
hG24
C ):

Hs(G24, (EC)t) =⇒ πt−s(E
hG24
C ). (20)

The elements η ∈ π1(S
0), ν ∈ π3(S

0), κ ∈ π20(S
0) are sent non-trivially to ele-

ments of the same name in π∗(E
hG24
C ) via the Hurewicz map S0 → EhG24

C . As the

latter factors through the unit map of tmf , the element κ6 = 0 in π∗(E
hG24
C )

because κ6 = 0 in π∗(tmf) (see [Bau08]). These elements are detected by

η ∈ H1(G24, (EC)2), ν ∈ H1(G24, (EC)4), κ ∈ H4(G24, (EC)24), respectively.

Furthermore, there is a class ∆ ∈ H0(G24, (EC)24) such that ∆8 is a permanent

cycle detecting the periodicity of EhG24
C .

The HFPSS for EhG24
C ∧A1 is a spectral sequence of modules over that of (20):

Hs(G24, (EC)tA1) =⇒ πt−s(E
hG24
C ∧ A1). (21)

In Section 5.2, we will compute H∗(G24, (EC)∗A1) as a module over a certain

subalgebra of H∗(G24, (EC)∗). Let π : (EC)∗ → F4[u
±1] be the quotient of (EC)∗

by the maximal ideal (2, u1). As the ideal (2, u1) is preserved by the action of

SC , the ring F4[u
±1] inherits an action of SC , and so of its subgroup G24. We

need the computation of the ring structure of H∗(G24,F4[u
±1]), which is due to

Hans-Werner Henn, see [Bea17], Appendix A.

Proposition 5.1.5. There are classes z ∈ H4(G24,F4[u
±1]0), a ∈ H1(G24,F4[u

±1]2),
b ∈ H1(G24,F4[u

±1]4), v2 ∈ H0(G24, (F4[u
±1])6) such that there is an isomor-

phism of graded algebras

H∗(G24,F4[u
±1]) ∼= F4[v

±1
2 , z, a, b]/(ab, b3 = v2a

3).
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Proposition 5.1.6. The homomorphism of graded algebras

H∗(G24, EC∗) → H∗(G24,F4[u
±1])

induced by the projection (EC)∗ → F4[u
±1] sends η to a, ν to b, κ to v42z, and ∆

to v42 .

5.2 On the cohomology groups H∗(G24, (EC)∗(A1))

We first determine (EC)∗(A1) using the cofiber sequences through which A1 are

defined. The cofiber sequence ΣS0 η
−→ S0 → Cη gives rise to a short exact

sequence of EC-homology

0 → (EC)∗ → (EC)∗(Cη) → (EC)∗(S
2) → 0,

since (EC)∗ is concentrated in even degrees. Hence, as an (EC)∗-module

(EC)∗(Cη) ∼= W(F4)[[u1]][u
±1]{e0, e2},

where e0 is the image of 1 ∈ (EC)0 and e2 is a lift of Σ21 ∈ (EC)2(S
2). Next, the

long exact sequence in EC-homology associated to Cη
2
−→ Cη → Y is the short

exact sequence

0 → (EC)∗(Cη)
×2
−→ (EC)∗(Cη) → (EC)∗(Y ) → 0

since multiplication by 2 on (EC)∗(Cη) ∼= W(F4)[[u1]][u
±1]{e0, e2} is injective.

Therefore

(EC)∗(Y ) ∼= F4[[u1]][u
±1]{e0, e2}.

Now A1 is the cofiber of some v1-self map of Y : Σ2Y
v1−→ Y → A1. The follow-

ing lemma describe the induced homomorphism in EC-homology of these v1-self

maps.

Lemma 5.2.1. The homomorphism (EC)∗(v1) is given by multiplication by u1u
−1.

Therefore,

(EC)∗(A1) ∼= F4[u
±1]{e0, e2}.

Proof. Let K(1) be the first Morava K-theory at the prime 2 such that K(1)∗ ∼=
F2[v

±1
1 ] where |v1| = 2 and BP be the Brown-Peterson spectrum at the prime 2.

There is a map of ring spectra BP → K(1) that classifies the complex orientation

of K(1). Recall that the coefficient ring of BP is given by

BP∗
∼= Z(2)[v1, v2, ...],
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where |vi| = 2(2i − 1), see [Ada74], Part II. The induced homomorphism of co-

efficient rings sends v1 to v1. The map BP → K(1) gives rise to the commutative

diagram

BP∗(Σ
2Y )

BP∗(v1) //

��

BP∗(Y )

��
K(1)∗(Σ

2Y )
K(1)∗(v1) // K(1)∗(Y )

By definition, a v1-self-map of Y induces in K(1)-homology multiplication by

v1. The above diagram forces, then for degree reasons, that BP∗(v1) is given by

multiplication by v1 ∈ BP2. Now, let c : BP → EC be the map of ring spectra

that classifies the 2-typification of the formal group law of EC . One can show

that the 2-series of the latter has leading term u1u
−1x2 modulo (2), see [Bea17],

Proposition 6.1.1. This implies that the induced homomorphism c∗ : BP∗ →
(EC)∗ sends v1 to u1u

−1 modulo 2. By naturality, (EC)∗(v1) is also given by

multiplication by u1u
−1.

We now describe the action of G24 on (EC)∗(A1). For any 2-local finite spectrum

X , the map c, introduced in the proof of Lemma 5.2.1, induces a map of ANSS

Exts,tBP∗BP (BP∗, BP∗X) //

��

Exts,t(EC)∗EC
((EC)∗, (EC)∗X)

��
πt−s(X) // πt−s(LK(2)X)

where (EC)∗EC stands for π∗(LK(2)(EC ∧ EC)). By Morava’s change-of-ring

theorem (see [Dev95]), one has

Exts,t(EC)∗EC
((EC)∗, (EC)∗) ∼= Hs

c(GC , (EC)t).

Now the map c induces a map of short exact sequences

0 // BP∗
×2 //

c∗

��

BP∗
//

c∗

��

BP∗/(2) //

c∗
��

0

0 // EC∗
×2 // EC∗

// EC∗/(2) // 0.

Therefore, we obtain the commutative diagram

Ext0,∗BP∗BP (BP∗, BP∗/2)

c∗

��

δBP // Ext1,∗BP∗BP (BP∗, BP∗)

c∗

��
H0

c(GC , EC∗/2)
δEC // H1

c(GC , EC∗),
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where δBP and δEC
denote the respective connecting homomorphisms. By [Rav86],

Theorem 4.3.6, one has that

Ext0,2BP∗BP (BP∗, BP∗/2) = Z(2){v1} and δBP (v1) = η ∈ Ext1,2BP∗BP (BP∗, BP∗),

where η is a permanent cycle representing the Hopf element η ∈ π1(S
0). By

naturality, δEC
(v1) = c∗(η). Therefore, as a cocycle in Mapc(GC , (EC)2), c∗(η)

is given by

GC → (EC)2, g 7→
g(v1)− v1

2
On the other hand, let us consider the short exact sequence

0 → EC∗ → EC∗(Cη) → EC∗(S
2) → 0

representing the class c∗(η), so that the connecting homomorphism sends Σ21 to

c∗(η). Thus, if e2 is a lift of Σ21 in EC∗(Cη), then c∗(η) is represented by the

cocycle

GC → (EC)2, g 7→ g(e2)− e2.

This implies that one can modify e2 so that

g(v1)− v1
2

= g(e2)− e2 ∀ g ∈ GC .

With this choice of e2, we see that EC∗(Cη) = EC∗{e0, e2} and the action of GC

on e2 is given by the formula

g(e2) = e2 +
g(v1)− v1

2
e0 (22)

Note that when determining (EC)∗(A1), we did not specify any lift e2 of Σ21.

From now on, we will fix e2 such that the formula of (22) holds.

Proposition 5.2.2. As an (EC)∗-module, (EC)∗(A1) is isomorphic to F4[u
±1]{e0, e2}

and the action of G24 is given by

ω(u−1) = ζ2u−1, ω(e0) = e0, ω(e2) = e2

i(u−1) = u−1, i(e0) = e0, i(e2) = e2 + u−1e0

j(u−1) = u−1, j(e0) = e0, j(e2) = e2 + ζ2u−1e0

k(u−1) = u−1, k(e0) = e0, k(e2) = e2 + ζu−1e0

Proof. The first part of the statement is the content of Lemma 5.2.1. The second

part follows from the action of G24 on v1 given in Theorem 5.1.1 and the formula

(22).
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Corollary 5.2.3. EC∗(A1) sits in a non-split short exact sequence of G24-modules

0 → F4[u
±1]{e0} → EC∗(A1) → F4[u

±1]{e2} → 0. (23)

Proof. This is immediate in view of the explicite description of the action of G24

on (EC)∗A1.

The cohomology group H∗(G24,F4[u
±1]{ei}) i ∈ {0, 2} is free of rank one as a

module over H∗(G24,F4[u
±1]). For i ∈ {0, 2}, we choose the generators e[0, i] ∈

H0(G24, (F4[u
±1]{ei})i) of these modules.

Corollary 5.2.4. The connecting homomorphism induced from the short exact

sequence (23) in Corollary 5.2.3

H∗(G24,F4[u
±1]{e2})

δ
−→ H∗+1(G24,F4[u

±1]{e0})

is H∗(G24,F4[u
±1])-linear and sends e[0, 2] to ae[0, 0] up to a unit of F4, where,

as a reminder, a ∈ H1(G24, (F4[u
±1])2).

Proof. That δ is H∗(G24,F4[u
±1])-linear is a well-known property of the connect-

ing homomorphism (See [Bro82], V.3). Next, since the short exact sequence in

Corollary 5.2.3 does not split, the connecting homomorphism δ sends e[2, 0] to a

non-trivial class and hence to ae[0, 0] up to a unit of F4.

Using the description of H∗(G24,F4[u
±1]) and the long exact sequence associated

to the short exact sequence of Corollary 5.2.3, we obtain the following description

of H∗(G24, (EC)∗(A1)):

Proposition 5.2.5. As a module over H∗(G24,F4[u
±]), there is an isomorphism

H∗(G24, (EC)∗(A1)) ∼= F4[v
±1
2 , z, a, b]/(a, b3){e[0, 0], e[1, 5]},

where e[0, 0] ∈ H0(G24, (EC)0(A1)) and e[1, 5] ∈ H1(G24, (EC)6(A1)).

−4 0 4 8 12 16 20 24
0
1
2
3
4

Figure 18 – Hs(G24, (EC)t(A1)) depicted in the coordinate (s, t-s))

The above proposition also gives the action of H∗(G24, (EC)∗) on H∗(G24, (EC)∗A1).
In effect, the action of EC∗ on EC∗(A1) factors thoughF4[u

±1] viaEC∗
π
−→ F4[u

±1].
As a consequence, the action of H∗(G24, EC∗) onH∗(G24, EC∗(A1)) factors through

the induced homomorphism in cohomology of G24. In particular, il follows from

Proposition 5.1.6 that the classes ∆, κ, ν act on H∗(G24, EC∗(A1)) as v42, v
4
2z, b do,

respectively.
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5.3 Differentials of the homotopy fixed point spectral sequence

for EhG24

C ∧ A1

The HFPSS for EhG24
C ∧A1 has the following features. The spectrum EC ∧A1

is a G24-EC-module in the sense that EC ∧A1 is an EC-module and the structure

maps are G24-equivariant. This guarantees that the HFPSS for EhG24
C ∧ A1 is a

module over that for EhG24
C . In particular, all differentials are κ-linear. This ele-

ment plays a central role here: the group G24 is a group with periodic cohomology

(see [Bro82], Chapter VI) and κ ∈ H4(G24, (EC)∗) is a cohomological periodicity

class. These features induce more structure on the HFPSS.

Definition 5.3.1. Let R be a ring spectrum and G be a finite group acting on R
by maps of ring spectra. The pair (G,R) is said to be regular if G is a group

with periodic cohomology and there exists a cohomological periodicity class u ∈
H∗(G,R∗) which is a permanent cycle in the HFPSS for RhG.

Lemma 5.3.2. Let (G,R) be a regular pair as in Definition 5.3.1 and X be a G-R
spectrum. Suppose u ∈ Hk(G,R∗) is a cohomological periodicity class which is a

permanent cycle in the HFPSS for RhG. Then the Er-term of the HFPSS for XhG

has the following properties:

(i) All classes of cohomological filtration at least k are divisible by u;

(ii) All classes of cohomological filtration at least r are u-free.

Proof. We will prove by induction on r that the Er-term of the HFPSS for XhG

has the properties (i) and (ii). The E2-term is isomorphic to H∗(G, π∗(X)).
We recall that the natural map from the cohomology to the Tate cohomology

ι : Hs(G, πtX) → Ĥs(G, πt(X)) is an epimorphism and is an isomorphism when

s > 0, see [Bro82], Chapter VI. Because G has periodic cohomology, we have

Ĥs(G, πtX) ∼= Ĥs(G, πtX)[u−1],

which means that the group Ĥs(G, πtX) is u-free and is divisible by u. Since

ι : Hs(G, πtX) → Ĥs(G, πt(X)) is an isomorphism when s > 0, all classes of

positive cohomological degree of Hs(G, πtX) are u-free.

Now suppose x is a class of Hs(G, πtX) with s ≥ k. Then the class u−1ι(x) ∈
Ĥs−k(G, πtX) has a pre-image y ∈ Hs−k(G, πtX) (because s− k ≥ 0), i.e.

ι(y) = u−1ι(x).

This implies that

ι(uy) = uι(y) = ι(x),

and thus since s > 0,

uy = x.
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Thus, the E2-term has the properties (i) and (ii). Suppose that the Er-term satis-

fies (i) and (ii). Let [x] ∈ Er+1 be a non-trivial class represented by x ∈ Er. Sup-

pose that x has its cohomological filtration s ≥ k. By the induction hypothesis,

there exists y ∈ Es−k,∗
r such that uy = x. We show that y is a dr-cycle. Because

x is a dr-cycle, we have by u-linearity that udr(y) = dr(uy) = dr(x) = 0. How-

ever, the cohomological filtration of dr(y) is at least r, and so it is u-free by the

induction hypothesis, and so dr(y) = 0. Therefore, [x] is divisible by u.

Now we prove that Er+1 has the property (ii). Suppose that [x] is u-torsion and

has its cohomological filtration at least r + 1. Without loss of generality, we can

assume that u[x] = 0. Then there exists y ∈ Er such that dr(y) = ux. The coho-

mological filtration of y is at least to r + 1 + k − r = k + 1, hence y is divisible

by u, i.e., there exists z ∈ Er such that uz = y, and then by u-linearity,

udr(z) = dr(uz) = dr(y) = ux.

However, dr(z)− x has cohomolgical filtration at least r+1, it must be u-free by

hypothesis (ii), hence is equal to zero, i.e., [x] is trivial in Er+1.

We conclude that the Er+1-term satisfies (i) and (ii), thus finishing the proof by

induction.

Corollary 5.3.3. Let (G,R) be a regular pair and X be a G-R spectrum. Suppose

u ∈ Hk(G,R∗) is a cohomological periodicity class which is a permanent cycle

in the HFPSS for RhG. Then we have, in the HFPSS for XhG,

1. At the Er-term, u-torsion classes are permanent cycles.

2. Any u-free tower is truncated by at most one other u-free tower by the

same differential. More precisely, if x is a class of cohomological filtration

less than k, then there exists at most one class y of cohomological filtration

less than k such that there exists an unique integer l and a unique integer r
such that dr(u

my) = um+lx for all non-negative integers m. Moreover, all

classes uix for i ∈ {0, 1, ..., m− 1} survive the spectral sequence.

3. Suppose some power of u is hit by a differential in the HFPSS for RhG.

Then any u-free tower consisting of permanent cycles is truncated by a

unique u-free tower. Moreover, the HFPSS has a horizontal vanishing

line.

4. Every element of π∗(X
hG) that is detected in filtration at least k is divisible

by u where u is an element of π∗(R
hG) detected by u.

Remark 5.3.4. This situation turns out to be abundant once the group in question

is a group with periodic cohomology. For example, all finite subgroups of GC

have these properties.
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We return to the HFPSS for EhG24
C ∧ A1. We will call the set {κlx|l ∈ N} as-

sociated to a class x in some page of the HFPSS the κ-family of that class. The

following proposition gives us the horizontal vanishing line of the HFPSS for

EhG24
C ∧ A1.

Proposition 5.3.5. The HFPSS for EhG24
C ∧A1 has a horizontal vanishing line of

height 23, i.e., Es,t
24 = 0 if s > 23. As a consequence, it collapses at the E24-term.

Proof. As κ6 = 0 in π∗(E
hG24
C ), the class κ6 must be hit by a differential which

is of length at most 23. This is because κ6 has cohomological filtration 24 and

all even differentials are trivial. Hence κ6 is trivial in the E24-term of the HFPSS

for EhG24
C . Next, because the E24-term of the HFPSS for EhG24

C ∧ A1 is a module

over that for EhG24
C , the class κ6 acts trivially on the E24-term of the HFPSS for

EhG24
C ∧ A1. Since all classes which are not a multiple of κ have cohomological

filtration at most 3, the HFPSS has the horizontal vanishing line of height 23.

Proposition 5.3.6. The following classes are permanent cycles

e[0, 0], e[1, 5], e[0, 6], e[1, 11], e[1, 15], e[1, 17], e[1, 21], e[1, 23].

Proof. Firstly, the class e[0, 0] is a permanent cycle because it detects the inclusion

S0 → A1 into the bottom cell of A1. Next, we recapitulate, in the following table,

the associated graded object with respect to the induced Adams filtration on the

groups π∗(tmf ∧A1)/(κ) in the following stems.

Dim 6 15 17 21 23

Value F2 ⊕ F2 F2 F2 F2 F2 ⊕ F2

By Corollary 5.1.4, the groups π∗(E
hG24
C ∧A1)/(κ) in these dimensions must have

order twice as big as the respective groups. Inspection in the E2-term of the HF-

PSS through dimensions from 0 to 23 and in cohomological filtration less than 4
show that the classes e[0, 6], e[1, 15], e[1, 21], e[1, 23] are permanent cycles.

Note that the groups π0(tmf ∧ A1) and π6(tmf ∧ A1) are annihilated by η. This

means that e[0, 0] and e[0, 6] detects two elements which are annihilated by η. It

follows that the Toda brackets 〈ν, η, e[0, 0]〉 and 〈ν, η, e[0, 6]〉 can be formed. By

juggling,

η〈ν, η, e[0, 0]〉 = 〈η, ν, η〉e[0, 0] = ν2e[0, 0]

and

η〈ν, η, e[0, 6]〉 = 〈η, ν, η〉e[0, 6] = ν2e[0, 6].

Observe that ν2e[0, 0] and ν2e[0, 6] are nontrivial and are detected in cohomolog-

ical filtration 2. Consequently, both 〈ν, η, e[0, 0]〉 and 〈ν, η, e[0, 6]〉 are nontrivial
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and are represented by classes in cohomological filtration at most 1. Therefore

e[1, 5] and e[1, 11] are permanent cycles.

The unique nontrivial element of π11(tmf∧A1)/(κ) is annihilated by ν2. This im-

plies that the class ν2e[1, 11] is the target of some differential. Since π17(E
hG24
C ∧

A1)/(κ) has order at least equal to 4, the class e[1, 17] must be a permanent cycle

representing the only element in dimension 17 of π∗(E
hG24
C ∧ A1)/(κ).

d3 − differentials

Proposition 5.3.7. As a module over F4[∆
±1, κ, ν]/(ν3), the term E2 = E3 is free

on the generators

e[0, 0], e[1, 5], e[0, 6], e[1, 11], e[0, 12], e[1, 17], e[0, 18], e[1, 23]. (24)

Proposition 5.3.8. The d3-differential in the HFPSS for EhG24
C ∧ A1 is trivial on

all of the generators of (24) with the exception of

i) d3(e[0, 12]) = ν2e[1, 5]
ii) d3(e[0, 18]) = ν2e[1, 11].

Proof. That e[0, 0], e[1, 5], e[0, 6], e[1, 11], e[1, 17], e[1, 23] are d3-cycles follows

from Proposition 5.3.6. For the two other classes, the proof of Proposition 5.3.6

implies that the elements Θ(e[1, 5]) and Θ(e[2, 11]) are detected by e[1, 5] and

e[1, 11], respectively. Moreover, the elements e[1, 5] and e[2, 11] are annihilated

by ν2 in π∗(tmf ∧ A1). It follows that, in the HFPSS, the classes ν2e[1, 5] and

ν2e[1, 11] must be hit by some differentials. The only possibilities are d3(e[0, 12]) =
ν2e[1, 5] and d3(e[0, 18]) = ν2e[1, 11].

0 4 8 12 16 20 24
0
1
2
3
4

Figure 19 – Differentials d3

Corollary 5.3.9. As a module over F4[∆
±1, κ, ν]/(ν3), the term E4 = E5 is a

direct sum of cyclic modules generated by the classes

e[0, 0], e[1, 5], e[0, 6], e[1, 11], e[1, 15], e[1, 17], e[1, 21], e[1, 23] (25)

with the relations

ν2e[1, 5] = ν2e[1, 11] = ν2e[1, 15] = ν2e[1, 21] = 0. (26)
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Proof. This is straightforward from Proposition 5.3.8 and from the fact that∆, κ, ν
are d3-cycles in the HFPSS for EhG24

C .

d5-differentials. We need the d5-differential, in the HFPSS for EhG24
C , d5(∆) = κν

(see [Bau08], Section 8.3).

24 28 32 36 40 44 48 52
0
1
2
3
4
5
6
7
8

Figure 20 – Differentials d5

Proposition 5.3.10. As a module over F4[(∆
8)±1, κ, ν]/(κν), E6 = E7 is a direct

sum of cyclic modules generated by the following classes for i ∈ 0, 2, 4, 6 with the

respective annihilator ideal:

generator ∆ie[0, 0] ∆ie[1, 5] ∆ie[0, 6] ∆ie[1, 11]
ideal (ν3) (ν2) (ν3) (ν2)
generator ∆ie[1, 15] ∆ie[1, 17] ∆ie[1, 21] ∆ie[1, 23]
ideal (ν2) (ν3) (ν2) (ν3)
generator ∆ie[2, 30] ∆ie[2, 32] ∆ie[2, 36] ∆ie[2, 38]
ideal (ν) (ν) (ν) (ν)
generator ∆ie[2, 42] ∆ie[3, 47] ∆ie[2, 48] ∆ie[3, 53]
ideal (ν) (ν) (ν) (ν).

Proof. Notice that, if x is a class in the E5-term, then d5(∆
2kx) = ∆2kd5(x) ∀k ∈

Z. This says in particular that the E6-term is ∆2-periodic. Next, if x is a d5-cycle

and is annihilated by νi, then d5(∆x) = κνx and d5(∆νi−1x) = 0. Together with

the fact that all of the generators of (25) are permanent cycles (Proposition 5.3.6),

it is straightforward to verify that the classes together with their annihilation ideal

given in the statement of the Proposition generate the E6-term as a module over

F4[(∆
8)±1, κ, ν]/(κν).

Remark 5.3.11. Since ∆8 is a permanent cycle in the HFPSS for EhG24
C , the HF-

PSS for EhG24
C ∧A1 is linear with respect to ∆8. Note that all κ-free generators in

the E7-term are of the form (∆8)kx where k ∈ Z and x is one of the generators

listed in Proposition 5.3.10. Then, by Corollary 5.3.3, these free κ-families pair
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up so that each non-permanent κ-family truncates one and only one permanent

κ-family. By ∆8-linearity, among these 64 generators, only half of them are per-

manent cycles and the others support a differential. It reduces the problem into

two steps: first identify all permanent κ-families, then identify by which κ-family

they are truncated.

0 4 8 12 16 20 24 28 32 36 40 44 48 52
0

2

4

Figure 21 – The E7-term for s ≤ 3 and t− s ≤ 54

Proposition 5.3.12. The generators

e[2, 30], e[2, 32], e[2, 36], e[2, 38], e[2, 42], e[3, 47], e[2, 48], e[3, 53]

are permanent cycles.

Proof. We give the proof for e[2, 30] and the other generators are proven in a sim-

ilar manner. In the E6-term, the Massey product 〈κ, ν, ν2e[0, 0]〉 can be formed.

Since d5(∆) = κν and ν3e[0, 0] = 0 ∈ E5, we see that

e[2, 30] = ∆ν2e[0, 0] ∈ 〈κ, ν, ν2e[0, 0]〉.

The indeterminacy consists of κE−2,8
6 + E0,26

6 ν2e[0, 0], where E−2,8
6 is in the E6-

term of the HFPSS for EhG24
C ∧A1 and E0,26

6 for EhG24
C . The latter are zero groups,

hence the indeterminacy is zero. Thus,

〈κ, ν, ν2e[0, 0]〉 = e[2, 30].

At the level of the homotopy groups of π∗(E
hG24
C ∧ A1) one can form the corre-

sponding Toda bracket 〈κ, ν, ν2e[0, 0]〉 because νκ = 0 in π∗(E
hG24
C ) and inspec-

tion in π∗(tmf ∧ A1) tells us that ν3e[0, 0] = 0. Furthermore, all hypotheses of

Moss’s convergence theorem are verified. Therefore, e[2, 30] is a permanent cycle

representing the Toda bracket 〈e[0, 0], ν3, κ〉. For the sake of completeness, we

record the Toda bracket expressions for the other elements

〈κ, ν, νe[1, 5]〉 = e[2, 32], 〈κ, ν, ν2e[0, 6]〉 = e[2, 36],

〈κ, ν, νe[1, 11]〉 = e[2, 38], 〈κ, ν, νe[1, 15]〉 = e[2, 42],

〈κ, ν, ν2e[1, 17]〉 = e[3, 47], 〈κ, ν, νe[1, 21]〉 = e[2, 48],

〈κ, ν, ν2e[2, 23]〉 = e[3, 53].
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We have already identified 16 out of 32 permanent cycles. The next 16 ones are not

the same for different versions of A1. The difference reflects the different behavior

of the d2-differential in the ASS for different models of A1 (see Proposition 4.0.3).

Proposition 5.3.13. In the HFPSS for all four versions of A1, the following 12
generators are permanent cycles :

∆2e[0, 0],∆2e[1, 5],∆2e[0, 6],∆2e[1, 11],∆2e[1, 15],∆2e[1, 17]

∆2e[1, 21],∆2e[2, 30],∆2e[2, 32],∆2e[2, 36], ,∆2e[2, 42],∆2e[3, 47].

The remaining four permanent cycles for A1[00] and A1[11] are

∆2e[1, 23],∆2e[2, 38],∆2e[2, 48],∆2e[3, 53],

whereas the remaining four permanent cycles for A1[10] and A1[01] are

∆4e[1, 15],∆4e[0, 0],∆4e[1, 5],∆4e[2, 30].

Proof. The graded associated object of the groups π∗(tmf ∧ A1)/(κ, ν), with

respect to the Adams filtration, in the following stems are given in the following

table:

Stem 48 53 54 59 63 65 69 78 80 84 90 95

Value F2 ⊕ F2 F2 ⊕ F2 F2 F2 F2 F2 F2 F2 F2 F2 F2 F2

In view of Corollary 5.1.4 and Corollary 5.3.3, inspection in the E7-term shows

that the following 12 classes are permanent cycles in the HFPSS for all four ver-

sions of A1.

∆2e[0, 0],∆2e[1, 5],∆2e[0, 6],∆2e[1, 11],∆2e[1, 15],∆2e[1, 17],

∆2e[1, 21],∆2e[2, 30],∆2e[2, 32],∆2e[2, 36], ,∆2e[2, 42],∆2e[3, 47].

Next, in the ASS for tmf ∧A1[00] and tmf ∧A1[11], there is no differential until

stem 96. Again, inspection in the E2-term shows that

π71(tmf ∧ A1[00])/(κ, ν) = π71(tmf ∧A1[11])/(κ, ν) ∼= F2

and

π86(tmf ∧ A1[00])/(κ, ν) = π86(tmf ∧A1[11])/(κ, ν) ∼= F2

It follows that the classes ∆2e[1, 23] and ∆2e[2, 38] are permanent cycles in the

HFPSS for EhG24
C ∧A1[00] and EhG24

C ∧ A1[11].

On the other hand, in the ASS for tmf ∧A1[10] and tmf ∧A1[01], Lemma 4.0.3
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and g-linearity imply that d2(g
2w2e[4, 23]) = g4e[6, 30] and d2(g

2w2e[7, 38]) =
g6e[1, 5]. Hence, w2

2e[3, 15] and w2
2e[6, 30] survive to the E∞-term, by sparseness.

It then follows that ∆4e[1, 15] and ∆4e[2, 30] are permanent cycles in the HFPSS

for A1[10] and A1[01].

For A1[00] and A1[11], the classes w2e[9, 48] and w2e[10, 53] do not support dif-

ferentials, by Lemma 4.0.3, hence persist to the E∞-term, by sparseness. They are

also not divisible neither by κ nor by ν. Lastly, both w2e[9, 48] and w2e[10, 53]
are annihilated by ν. The only classes in the HFPSS that match those properties

are ∆2e[2, 48] and ∆2e[3, 53], respectively. Thus, the latter are the last two of the

32 permanent cycles in the HFPSS for A1[00] and A1[11].

For A1[10] and A1[01], the classes w2e[9, 48] and w2e[10, 53] support nontriv-

ial d2 differentials. Thus w2
2e[0, 0] and w2

2e[1, 5] survive to the E∞-term. For

degree reasons, both w2
2e[0, 0] and w2

2e[1, 5] are not divisible either by κ or by

ν, and moreover their multiples by ν are not divisible by κ. In the HFPSS for

EhG24
C ∧ A1[10] and EhG24

C ∧ A1[10], ∆
4e[0, 0] and ∆4e[1, 5] are the only classes

verifying the respective properties, hence are permanent cycles.

Having determined all permanent κ-families, we consider differentials. We recall,

from Remark 5.3.11, that each permanent κ-family is truncated by one and only

one non-permanent κ-family. We can proceed as follows: take a permanent cycle,

say x; then locate all non-permanent classes that can support a differential killing

κnx for some n ≤ 6. Precisely, one of the following situations will happen:

1) There is no ambiguity: i.e., there is only one generator that can support a

differential killing κnx for some n ≤ 6, so this differential occurs.

2) There are two generators that can support a differential killing multiples of

x by different powers of κ. In order to decide, we inspect the κ-exponent of x
using the ASS.

3) There are two generators that can support a differential killing the multiple

of x by the same power of κ. In this case, inspection on the κ-exponent of x does

not help. We will treat each of the particularity case by case. Some Toda brackets

will be involved to resolve these cases.

A permanent cycle is said to be of type 1, 2, 3 respectively if its κ-family is as in

the situation 1, 2, 3 above respectively. The HFPSS for different versions of A1

do not behave in the same manner. It turns out the HFPSS for the versions A1[10]
and A1[01] behave in the same way and A1[00] and A1[11] in the same way. We

will treat the HFPSS for A1[10] and A1[01] in detail and then point out the changes

needed for A1[00] and A1[11].
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Differentials (continued) for A1[01] and A1[10]. The reader is invited to fol-

low the discussion of the differentials using Figures (22) to (25) below.

The d9-differentials

Proposition 5.3.14. There are the following d9-differentials:

(1) d9(∆
2e[1, 23]) = κ2e[2, 30]

(2) d9(∆
6e[1, 23]) = κ2∆4e[2, 30].

Proof. The classes e[2, 30] and ∆4e[2, 30] are of type 1 and the only possibilities

are d9(∆
2e[1, 23]) = κ2e[2, 30] and d9(∆

6e[1, 23]) = κ2∆4e[2, 30], respectively.

The d15-differentials

Proposition 5.3.15. There are the following d15-differentials:

(1) d15(∆
2e[2, 38]) = κ4e[1, 5]

(2) d15(∆
2e[2, 48]) = κ4e[1, 15]

(3) d15(∆
6e[2, 38]) = κ4∆4e[1, 5]

(4) d15(∆
6e[2, 48]) = κ4∆4e[1, 15].

Proof. It is readily checked from the chart that all e[1, 5], e[1, 15], ∆4e[1, 5],
∆4e[1, 15] are of type 1 and their κ-family is truncated as indicated in the propo-

sition.

The d17-differentials

Proposition 5.3.16. There are the following d17-differentials:

(1) d17(∆
2e[3, 53]) = κ5e[0, 0]

(2) d17(∆
4e[0, 6]) = κ4e[1, 21]

(3) d17(∆
4e[1, 17]) = κ4e[2, 32]

(4) d17(∆
4e[1, 21]) = κ4e[2, 36]

(5) d17(∆
4e[2, 32]) = κ4e[3, 47]

(6) d17(∆
6e[0, 6]) = κ4∆2e[1, 21]

(7) d17(∆
6e[1, 17]) = κ4∆2e[2, 32]

(8) d17(∆
6e[1, 21]) = κ4∆2e[2, 36]

(9) d17(∆
6e[2, 32]) = κ4∆2e[3, 47]

(10) d17(∆
6e[3, 53]) = κ5∆4e[0, 0]

(11) d17(∆
4e[1, 23]) = κ4e[2, 38]

(12) d17(∆
4e[2, 38]) = κ4e[3, 53]

(13) d17(∆
6e[0, 0]) = κ4∆2e[1, 15]

(14) d17(∆
6e[1, 15]) = κ4∆2e[2, 30].
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Proof. (1)-(10) All of the generators of

e[0, 0], e[1, 21], e[2, 32], e[2, 36], e[3, 47]

∆2e[1, 21],∆2e[2, 32],∆2e[2, 36],∆2e[3, 47],∆4e[0, 0]

are of type 1.

(11) e[2, 38] is of type 2. The differentials that can truncate its κ-family are

d17(∆
4e[1, 23]) = κ4e[2, 38] and d25(∆

6e[1, 15]) = κ6e[2, 38]. The latter

can not happen because the spectral sequence collapses at the E24-term.

Therefore, one must have that d17(∆
4e[1, 23]) = κ4e[2, 38].

(12) e[3, 53] is of type 2. Its κ-family can be truncated by d17(∆
4e[2, 38]) =

κ4e[3, 53] or d25(∆
6e[2, 30]) = κ6e[3, 53]. As above, there can not be

any d25-differential in the spectral sequence. Hence, one must have that

d17(∆
4e[2, 38]) = κ4e[3, 53].

(13) ∆2e[1, 15] is of type 3. In its κ-family, only κ4∆2e[1, 15] can be a tar-

get of differentials, d17(∆
6e[0, 0]) = κ4∆2e[1, 15] and d15(∆

4e[2, 48]) =
κ4∆2e[1, 15]. However, if d15(∆

4e[2, 48]) = κ4∆2e[1, 15] then the only

class that can truncate the κ-family of e[1, 23] is ∆6e[0, 0] and by a d25-
differential: d25(∆

6e[0, 0]) = κ6e[1, 23]. This contradicts the fact that

the spectral sequence collapses at the E24-term. Thus, one must have that

d17(∆
6e[0, 0]) = κ4∆2e[1, 15].

(14) ∆2e[2, 30] is of type 2. Its κ-family can be truncated by a d9-differential

on ∆4e[1, 23] or by a d17-differential on ∆6e[1, 15]. However, the former

possibility can not occur because of part (11). Therefore, d17(∆
6e[1, 15]) =

κ4∆2e[2, 30].

The d19-differentials

Proposition 5.3.17. There are the following d19-differentials:

(1) d19(∆
4e[1, 11]) = κ5e[0, 6]

(2) d19(∆
4e[3, 47]) = κ5e[2, 42]

(3) d19(∆
6e[1, 11]) = κ5∆2e[0, 6]

(4) d19(∆
6e[3, 47]) = κ5∆2e[2, 42]

(5) d19(∆
6e[1, 5]) = κ5∆2e[0, 0]

(6) d19(∆
4e[3, 53]) = κ5e[2, 48].

Proof. (1)-(4) All of the classes

e[0, 6], e[2, 42],∆2e[0, 6],∆2e[2, 42]

are of type 1.
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(5) The class ∆2e[0, 0] is of type 3 and its κ-family can be truncated either by

d17(∆
4e[3, 53]) = κ5∆2e[0, 0] or by d19(∆

6e[1, 5]) = κ5∆2e[0, 0]. Sup-

pose d17(∆
4e[3, 53]) = κ5∆2e[0, 0]. This would leave us with the differ-

ential d21(∆
6e[1, 5]) = κ5e[2, 48]. It would imply the Massey product in

the E22-term

〈κ5, e[2, 48], ν〉 = ν∆6e[1, 5]

with zero indeterminacy in the E22-term. All conditions of Moss’s con-

vergence theorem are met, the Toda bracket 〈κ5, e[2, 48], ν〉 could then be

formed and would contain an element represented by ν∆6e[1, 5]. This

contradicts Corollary 4.0.5. This contradiction proves that

d19(∆
6e[1, 5]) = κ5∆2e[0, 0].

(6) The class e[2, 48] is of type 2 and its κ-family is truncated either by

d19(∆
4e[3, 53]) = κ5e[2, 48] or by d21(∆

6e[1, 5]) = κ5e[2, 48]. However,

part (5) of Proposition 5.3.17 rules out the latter.

The d23-differentials

Proposition 5.3.18. There are the following d23-differentials:

(1) d23(∆
4e[2, 36]) = κ6e[1, 11]

(2) d23(∆
4e[2, 42]) = κ6e[1, 17]

(3) d23(∆
4e[2, 48]) = κ6e[1, 23]

(4) d23(∆
6e[2, 36]) = κ6∆2e[1, 11]

(5) d23(∆
6e[2, 42]) = κ6∆2e[1, 17]

(6) d23(∆
6e[2, 30]) = κ6∆2e[1, 5].

Proof. (1)-(5) All of the classes

e[1, 11], e[1, 17], e[1, 23],∆2e[1, 11],∆2e[1, 17]

are of type 1.

(6) The class ∆2e[1, 5] is of type 2. The two possibilities are d15(∆
4e[2, 38]) =

κ4∆2e[1, 5] and d23(∆
6e[2, 30]) = κ6∆2e[1, 5]. However, part (12) of

Proposition 5.3.16 rules out the former because the class ∆4e[2, 38] must

pair up with the class e[3, 38], by a d17-differential d17(∆
4e[2, 38]) =

κ4e[3, 53].

The above differentials from d9 to d23, together with the κ- and ∆8-linearity ex-

haust all differentials. In the statement of Theorem 5.3.19 and 5.3.20, we write

et−s for the permanent cycle e[s, t − s] in bidegree (s, t) listed in Proposition

5.3.10, for the sake of presentation.
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Theorem 5.3.19. As a module over F4[∆
±8, κ, ν]/(κν), the E∞-term of the HF-

PSS for EhG24
C ∧A1 for A1 = A1[10] and A1[01] is a direct sum of cyclic modules

generated by the following elements and with the respective annihilator ideal:

(0, 0) (1, 5) (0, 6) (1, 11) (1, 15) (1, 17) (1, 21) (1, 23)
e0 e5 e6 e11 e15 e17 e21 e23
(κ5, ν3) (κ4, ν2) (κ5, ν3) (κ6, ν2) (κ4, ν2) (κ6, ν3) (κ4, ν2) (κ6, ν3)

(2, 30) (2, 32) (2, 36) (2, 38) (2, 42) (3, 47) (2, 48) (3, 53)
e30 e32 e36 e38 e42 e47 e48 e53
(κ2, ν) (κ4, ν) (κ4, ν) (κ4, ν) (κ5, ν) (κ4, ν) (κ5, ν) (κ4, ν)

(0, 48) (1, 53) (0, 54) (1, 59) (1, 63) (1, 65) (1, 69) (2, 74)
∆2e0 ∆2e5 ∆2e6 ∆2e11 ∆2e15 ∆2e17 ∆2e21 ∆2νe23
(κ5, ν3) (κ6, ν2) (κ5, ν3) (κ6, ν2) (κ4, ν2) (κ6, ν3) (κ4, ν2) (κ, ν2)

(2, 78) (2, 80) (2, 84) (2, 90) (3, 95) (0, 96) (1, 101)
∆2e30 ∆2e32 ∆2e36 ∆2e42 ∆2e47 ∆4e0 ∆4e5
(κ4, ν) (κ4, ν) (κ4, ν) (κ5, ν) (κ4, ν) (κ5, ν3) (κ4, ν2)

(1, 105) (2, 110) (1, 111) (2, 116) (2, 120) (2, 122) (2, 126)
∆4νe6 ∆4νe11 ∆4e15 ∆4νe17 ∆4νe21 ∆4νe23 (∆4e30)
(κ, ν2) (κ, ν) (κ4, ν2) (κ, ν2) (κ, ν) (κ, ν2) (κ2, ν)

(1, 147) (2, 152) (1, 153) (2, 158) (2, 162) (2, 164) (2, 168) (2, 170)
∆6νe0 ∆6νe5 ∆6νe6 ∆6νe11 ∆6νe15 ∆6νe17 ∆6νe21 ∆6νe23
(κ, ν2) (κ, ν) (κ, ν2) (κ, ν) (κ, ν) (κ, ν2) (κ, ν) (κ, ν2).

The case of A1[00] and A1[11]. The analysis of the HFPSS for A1[00] and A1[11]
can be done in the same manner as that for A1[10] and A1[01]. All differentials are

identical except for 8 ones involving 16 of the generators of Proposition 5.3.10.

We will be content to point out all modifications, see Figures from 26 to 29.

d17(∆
4e[1, 15]) = κ4e[2, 30] instead of d9(∆

2e[1, 23]) = κ2e[2, 30],

d17(∆
6e[1, 23]) = κ4∆2e[2, 38] instead of d9(∆

6e[1, 23]) = κ2∆4e[2, 30],

d17(∆
4e[0, 0]) = κ4e[1, 15] instead of d15(∆

2e[2, 48]) = κ4e[1, 15],

d17(∆
6e[2, 38]) = κ4∆2e[3, 53] instead of d15(∆

6e[2, 38]) = κ4∆2e[1, 5],

d19(∆
4e[1, 5]) = κ5e[0, 0] instead of d17(∆

2e[3, 53]) = κ5e[0, 0],
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d19(∆
6e[3, 53]) = κ5∆2e[2, 48] instead of d17(∆

6e[3, 53]) = κ5∆4e[0, 0],

d23(∆
6e[2, 48]) = κ6∆2e[1, 23] instead of d15(∆

6e[2, 48]) = κ4∆4e[1, 15],

d23(∆
4e[2, 30]) = κ6e[1, 5] instead of d15(∆

2e[2, 38]) = κ4e[1, 5].

Theorem 5.3.20. As a module over F4[∆
±8, κ, ν]/(κν), the E∞-term of the HF-

PSS for EhG24
C ∧A1 for A1 = A1[00] and A1[11] is a direct sum of cyclic modules

generated by the following elements and with the respective annihilator ideals:

(0, 0) (1, 5) (0, 6) (1, 11) (1, 15) (1, 17) (1, 21) (1, 23)
e0 e5 e6 e11 e15 e17 e21 e23
(κ5, ν3) (κ6, ν2) (κ5, ν3) (κ6, ν2) (κ4, ν2) (κ6, ν3) (κ4, ν2) (κ6, ν3)

(2, 30) (2, 32) (2, 36) (2, 38) (2, 42) (3, 47) (2, 48) (3, 53)
e30 e32 e36 e38 e42 e47 e48 e53
(κ4, ν) (κ4, ν) (κ4, ν) (κ4, ν) (κ5, ν) (κ4, ν) (κ5, ν) (κ4, ν)

(0, 48) (1, 53) (0, 54) (1, 59) (1, 63) (1, 65) (1, 69) (1, 71)
∆2e0 ∆2e5 ∆2e6 ∆2e11 ∆2e15 ∆2e17 ∆2e21 ∆2e23
(κ5, ν3) (κ6, ν2) (κ5, ν3) (κ6, ν2) (κ4, ν2) (κ6, ν3) (κ4, ν2) (κ6, ν3)

(2, 78) (2, 80) (2, 84) (2, 86) (2, 90) (3, 95) (2, 96) (3, 101)
∆2e30 ∆2e32 ∆2e36 ∆2e38 ∆2e42 ∆2e47 ∆2e48 ∆2e53
(κ4, ν) (κ4, ν) (κ4, ν) (κ4, ν) (κ5, ν) (κ4, ν) (κ5, ν) (κ4, ν)

(1, 99) (2, 104) (1, 105) (2, 110) (2, 114) (2, 116) (2, 120) (2, 122)
∆4νe0 ∆4νe5 ∆4νe6 ∆4νe11 ∆4νe15 ∆4νe17 ∆4νe21 ∆4νe23
(κ, ν2) (κ, ν) (κ, ν2) (κ, ν) (κ, ν) (κ, ν2) (κ, ν) (κ, ν2)

(1, 147) (2, 152) (1, 153) (2, 158) (2, 162) (2, 164) (2, 168) (2, 170)
∆6νe0 ∆6νe5 ∆6νe6 ∆6νe11 ∆6νe15 ∆6νe17 ∆6νe21 ∆6νe23
(κ, ν2) (κ, ν) (κ, ν2) (κ, ν) (κ, ν) (κ, ν2) (κ, ν) (κ, ν2).

Remark 5.3.21. We emphasise that the relations given in Theorem 5.3.19 and

5.3.20 are only the relations in the E∞-term. In fact, we can see by sparseness

that, the annihilator exponents of κ are still true in π∗(E
hG24
C ∧A1). Whereas, there

are exotic extensions by ν, i.e., multiplications by ν that are not detected in the

E∞-term. These can be determined by two different methods: by using the Tate

spectral sequence as in [BO16], Section 2.3 or by computing the Gross-Hopkins

dual of EhG24
C ∧A1; however, we do not discuss this point here.

Using the structure of the E∞-term, we can read off the action of the ideal (κ, ν)
on π∗(E

hG24
C ∧A1). From this, we obtain the following Corollary.
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Theorem 5.3.22. We have

a) The map

Θ
′

: W(F4)⊗Z2 πk(tmf ∧ A1)/(κ, ν) → πk(E
hG24
C ∧ A1)/(κ, ν),

induced by Θ in (19), is an isomorphism for k ≥ 0, independent of the version of

A1.

b) The map

Θ : W(F4)⊗Z2 πk(tmf ∧ A1) → πk(E
hG24
C ∧ A1)

is also an isomorphism for k ≥ 0, independent of the version of A1.

c) Multiplication by ∆8 induces isomorphisms

πk(tmf ∧ A1) → πk+192(tmf ∧A1)

and

πk(tmf ∧ A1)/(κ, ν) → πk+192(tmf ∧A1)/(κ, ν)

for k ≥ 0.

Proof. For part a), Corollary 5.1.4 asserts that Θ
′

is injective. To show that the lat-

ter is surjective, it suffices to show that its source and target have the same order.

The order of the target can be seen from Theorem 5.3.19 and 5.3.20; in particular,

it has order 0 or 4 in all stems, except for the stems 48 and 53 modulo 192, in

which it has order 8. The remaining part of the proof is an inspection of the ASS

for tmf ∧ A1, together with the fact that Θ is injective, by Corollary 5.1.4, and

is linear with respect to κ and ν, to show that W⊗Z2 π∗(tmf ∧ A1) has the same

order as of π∗(E
hG24
C ∧ A1), in non-negative stems. Because of the dependance

of the structure of π∗(E
hG24
C ∧ A1) on the version of A1, we consider them sepa-

rately: we only give a detailed treatment for A1[00] and A1[11] and claim that the

treatment for A1[01] and A1[10] is completely similar. For the remaining part of

the proof, A1 will be A1[00] or A1[11].

By sparseness and part (i) of Theorem 4.0.3, all classes wl
2e[i, j] for l = 0, 1

and e[i, j], the classes in the table of Proposition 3.2.5 survive to the E∞-term of

the ASS for tmf ∧A1. Moreover, for degree reasons, these classes must converge

to non-trivial elements of π∗(tmf ∧ A1)/(κ, ν) in the appropriate stems. There-

fore, W⊗Z2 π∗(tmf ∧A1)/(κ, ν) has the same order as of π∗(E
hG24
C ∧A1) up to

stem 96 and in stem 101.

All of the classes

w2
2e[0, 0], w

2
2e[1, 5], w

2
2e[1, 6], w

2
2e[2, 11],
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w2
2e[3, 15], w

2
2e[3, 17], w

2
2e[4, 21], w

2
2e[4, 23]

are d2-cycles in the ASS and the d3-differentials on them can only hit g-multiple

classes. Thus, by ν-linearity and the fact that gν = 0 in Ext5,28A(2)∗
(F2), the classes

νw2
2e[0, 0], νw

2
2e[1, 5], νw

2
2e[1, 6], νw

2
2e[2, 11],

νw2
2e[3, 15], νw

2
2e[3, 17], νw

2
2e[4, 21], νw

2
2e[4, 23]

are d3-cycles and hence survive to the E∞-term, by sparseness. As above, these

classes must converge to non-trivial elements of π∗(tmf ∧ A1)/(κ, ν) in the ap-

propriate stems. It follows that W⊗Z2 π∗(tmf ∧A1)/(κ, ν) has the same order as

of π∗(E
hG24
C ∧ A1) for stems from 96 to 144.

Consider the classes

νw3
2e[0, 0], νw

3
2e[1, 5], νw

3
2e[1, 6], νw

3
2e[2, 11],

νw3
2e[3, 15], νw

3
2e[3, 17], νw

3
2e[4, 21], νw

3
2e[4, 23]. (27)

As above, these classes survive to the E4-term of the ASS for tmf ∧ A1. By

sparseness, νw3
2e[4, 23] survives to the E∞-term and converges to a non-trivial

element of π170(tmf ∧ A1)/(κ, ν). By sparseness, the other classes can only

support d4-differentials hitting the classes

g7e[1, 6], g7e[2, 11], g6e[6, 32], g7e[3, 17], g7e[4, 21], g7e[4, 23], g6e[9, 47],

respectively. However, the class gke[i, j] for (i, j) ∈ {(1, 6), (2, 11), (6, 32), (3, 17),
(4, 21), (4, 23), (9, 47)} is killed by a differential for a certain integer k less than 7,

hence g7e[i, j] for (i, j) ∈ {(1, 6), (2, 11), (6, 32), (3, 17), (4, 21), (4, 23), (9, 47)}
is killed by a differential on a certain g-multiple class. This means that

νw3
2e[0, 0], νw

3
2e[1, 5], νw

3
2e[2, 11], νw

3
2e[3, 15], νw

3
2e[3, 17]

survive to the E∞-term, hence, as above, to non-trivial elements of π∗(tmf ∧
A1)/(κ, ν). Next, the map Θ sends e[6, 32] and e[9, 47] to e[2, 32] and e[3, 47],
respectively. The latter are both annihilated by κ4, so that g4e[6, 32] and g4e[9, 47]
are hit by certain differentials in the ASS, hence g6e[6, 32] and g6e[9, 47] are

hit by differentials supported on g-multiple classes. As above, this implies that

νw3
2e[1, 6] and νw3

2e[4, 23] survive to non-trivial elements of π∗(tmf∧A1)/(κ, ν).
In total, we have proved that all classes of (27) converge to non-trivial elements

of π∗(tmf ∧ A1)/(κ, ν); as a consequence, W ⊗Z2 π∗(tmf ∧ A1)/(κ, ν) has the

same order as of π∗(E
hG24
C ∧A1)/(κ, ν) in stems from 144 to 192.
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Together with the fact that π∗(E
hG24
C ∧ A1)/(κ, ν) is ∆8-periodic, we conclude

that Θ
′

is a surjection, hence is an isomorphism.

For part b), there is a commutative diagram

W(F4)⊗Z2 π∗(tmf ∧ A1)
Θ //

��

π∗(E
hG24
C ∧A1)

��

W(F4)⊗Z2 π∗(tmf ∧A1)/(κ, ν)
Θ

′

// π∗(E
hG24
C ∧A1)/(κ, ν).

Part b) then follows from part a) and the fact that π∗(tmf ∧A1) is bounded below.

Part c) follows from part a) and part b) and the fact that ∆8 is invertible in

π∗(E
hG24
C ).
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The Figures (22) to (25) represent the HFPSS for EhG24
C ∧ A1[10] and EhG24

C ∧ A1[01] from the E7-term on. Each black

dot • represents a class generating a group F4 which survives to the E∞-term. Each circle ◦ represent a class which either

is hit by a differential or supports a differential higher than d5. We only represent the differentials on generators listed in

Proposition 5.3.10 but not those generated by κ-linearity.
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Figure 22 – HFPSS for A1[10] and A1[01] from E7-term with 0 ≤ t− s ≤ 48
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Figure 23 – HFPSS for A1[10] andA1[01] from E7-term with 48 ≤ t− s ≤ 96
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Figure 24 – HFPSS for A1[10] andA1[01] from E7-term with 96 ≤ t− s ≤ 144
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Figure 25 – HFPSS for A1[10] and A1[01] from E7-term with 144 ≤ t− s ≤ 197
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The Figures (26) to (29) represent the HFPSS for EhG24
C ∧ A1[00] and EhG24

C ∧ A1[11] from the E7-term on. Each black

dot • represents a class generating a group F4 which survives to the E∞-term. Each circle ◦ represent a class which either

is hit by a differential or supports a differential higher than d5. We only represent the differentials on generators listed in

Proposition 5.3.10 but not those generated by κ-linearity.
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Figure 26 – HFPSS for A1[00] and A1[11] from E7-term with 0 ≤ t− s ≤ 48
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Figure 27 – HFPSS for A1[00] andA1[11] from E7-term with 48 ≤ t− s ≤ 96
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Figure 28 – HFPSS for A1[00] andA1[11] from E7-term with 96 ≤ t− s ≤ 144
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Figure 29 – HFPSS for A1[00] and A1[11] from E7-term with 144 ≤ t− s ≤ 197

7
8



References

[ABP69] D. W. Anderson, E. H. Brown, Jr., and F. P. Peterson. Pin cobordism

and related topics. Comment. Math. Helv., 44:462–468, 1969. (Cited

on page 36.)

[Ada66] J. F. Adams. On the groups J(X). IV. Topology, 5:21–71, 1966.

(Cited on page 2.)

[Ada74] J. F. Adams. Stable homotopy and generalised homology. University

of Chicago Press, Chicago, Ill.-London, 1974. Chicago Lectures in

Mathematics. (Cited on page 52.)

[Bau08] Tilman Bauer. Computation of the homotopy of the spectrum tmf.

In Groups, homotopy and configuration spaces, volume 13 of Geom.

Topol. Monogr., pages 11–40. Geom. Topol. Publ., Coventry, 2008.

(Cited on pages 50 and 59.)

[Bea15] Agnès Beaudry. The algebraic duality resolution at p = 2. Algebr.

Geom. Topol., 15(6):3653–3705, 2015. (Cited on page 3.)

[Bea17] Agnès Beaudry. Towards the homotopy of the K(2)-local Moore

spectrum at p = 2. Adv. Math., 306:722–788, 2017. (Cited on

pages 9, 49, 50, and 52.)

[Beh12] Mark Behrens. The homotopy groups of SE(2) at p ≥ 5 revisited.

Adv. Math., 230(2):458–492, 2012. (Cited on page 3.)

[BEM17] Prasit Bhattacharya, Philip Egger, and Mark Mahowald. On the peri-

odic v2-self-map of A1. Algebr. Geom. Topol., 17(2):657–692, 2017.

(Cited on pages 5, 6, and 35.)

[BG18] I. Bobkova and Goerss P. G. Topological resolutions in K(2)-
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