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1  |  INTRODUCTION

With the development of economy, energy crisis and en-
vironmental problems have become increasingly prom-
inent. To cope with these challenges, the international 
maritime organization (IMO) and other bodies put for-
ward higher requirements for energy conservation and 

emission reduction in ships.1,2 With the development of 
battery management, charging technology, and power 
electronics technology, hybrid electric ship (HES) has be-
come a new solution to improve the fuel economy, reduce 
the pollution emissions and enhance the safety. Although 
the application of power battery makes HESs to use elec-
tric energy to improve the economy and reduce emissions 
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Abstract
In recent years, with the development of battery technology, hybrid electric ship 
(HES), as a promising solution to reduce the fuel consumption and emissions, has 
become a research hotspot. However, frequent use of the battery will accelerate 
the aging of the battery, and the replacement of scrapped battery will increase 
the cost of the ship. Therefore, it is necessary to consider delaying battery aging 
into the energy control strategy of HES. The equivalent consumption minimiza-
tion strategy (ECMS) is a feasible energy control strategy because it can be imple-
mented in real time. However, under the condition of uncertain initial state of 
charge (SOC) of the battery, ECMS cannot effectively reduce the fuel consump-
tion unless the equivalent factor (EF) is optimized in real time. In this paper, an 
adaptive equivalent consumption minimization strategy (A- ECMS) is proposed, 
which extracts the global optimal EF trajectory from the dynamic programming 
(DP) solution and uses the back propagation (BP) neural network to adjust the EF 
in real time. A trade- off between the fuel consumption and battery aging is made 
in the cost function by introducing a weight coefficient. Finally, the effectiveness 
and the adaptability of the proposed strategy are verified in MATLAB.
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adaptive equivalent consumption minimization strategy, battery aging, BP neural network, 
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in ships during voyage, coordinating the multiple energy 
sources to give a full play to their respective advantages 
makes the control of the HESs more complex than the tra-
ditional ships. Energy control strategy is one of the signif-
icant issues of HES control.

To ensure the reasonable distribution of energy, 
many energy management strategies have been pro-
posed. Common energy control strategies for HESs can 
be divided into rule- based (RB) control strategy and opti-
mization control strategy. The former is easy to be imple-
mented but cannot adapt to various cruising conditions. 
The latter can be divided into instantaneous optimization 
and global optimization. Instantaneous optimization in-
cludes the model predictive control (MPC) and the equiv-
alent consumption minimization strategy (ECMS). Global 
optimization includes dynamic programming (DP) and 
Pontryagin's minimum principle (PMP).3 Global optimiza-
tion can obtain the global optimal solution, but it cannot be 
controlled in real time due to the large amount of calcula-
tion. Instantaneous optimization can be used in real time, 
but its optimized performance is not as good as global op-
timization. In Ref. 4, a ship energy control strategy based 
on the logic threshold method is proposed, the authors 
divide the operating mode into two types corresponding 
to different combinations of energy sources. The proposed 
strategy does not need to establish a complex mathemat-
ical model and has good optimization performance. In 
Ref. 5, the authors extract the characteristic parameters of 
various sailing conditions of a ship and establish the stan-
dard sailing conditions. The control strategy determines 
which standard sailing condition the real- time sailing 
condition belongs to and makes the corresponding adjust-
ment by the established fuzzy pattern recognition model. 
In Ref. 6, an energy control strategy based on MPC is pro-
posed. The control strategy predicts the future ship load 
demand every minute and then uses the improved black 
hole algorithm to obtain the optimal solution to minimize 
the objective function in the prediction horizons. In Ref. 
7, authors propose an energy control strategy based on 
ECMS and MPC. MPC is utilized to predict the future ma-
rine load profile and adjust the equivalent factors in real 
time. ECMS is used to minimize the total equivalent fuel 
consumption. In Ref. 8, the multi- objective optimization 
problem including power- fluctuation compensation and 
hybrid energy storage system loss minimization is trans-
formed into a single- objective optimization problem by 
using the weighted- sum method, and then the global op-
timal solution is obtained by using dynamic programming 
(DP). The result of dynamic programming can provide a 
benchmark for the MPC strategy.

Most of the above energy control strategies only focus 
on achieving better fuel economy. In reality, excessive use 
of batteries to meet the load demand will lead to frequent 
deep charging and discharging of batteries, which may 

lead to significant battery degradation.3 In addition, the 
replacement of scrapped power batteries will increase the 
usage cost of the ship. It is necessary to consider the bat-
tery life when designing the ship energy control strategy. 
Reference 9 takes the battery aging into account when de-
signing the hybrid power system and energy control strat-
egy and adapts the mixed- integer linear- programming 
approach and hierarchical method to minimize the fuel 
cells degradation, the capital expenditure, and the oper-
ating expenditure. However, the control strategy includes 
constraints in the optimization model to limit battery 
aging and does not propose a specific battery aging model. 
Reference 10 establishes an accurate Li ion battery perfor-
mance degradation and life prediction model and applies 
the established model to optimize the sizes of the hybrid 
electric powertrain component of a HES. This research 
forms a foundation for energy management strategy devel-
opment of HES. In Ref. 11, the depth of discharge (DOD) 
is defined as key factor of the battery lifetime. A two- step 
multi- objective energy control strategy is proposed. In the 
first step of optimization, the hybrid energy storage sys-
tem including batteries and ultracapacitors capacitor is re-
garded as a whole, and the optimization goal is to reduce 
the fuel consumption and emissions. Then in the second 
step, by optimizing the energy distribution between the 
batteries and the ultracapacitors capacitor, the lifetime of 
the battery can be extended. However, using both batteries 
and ultracapacitors can bring disadvantages to ships, such 
as reduced cabin capacity, increased cost and weight, and 
further complex power systems.

It is worth noting that extending the battery life and re-
ducing the fuel consumption are contradictory. Reducing 
fuel consumption will inevitably accelerate the battery 
aging, and vice versa. Moreover, the designed energy con-
trol strategy should be able to be used in real time, and 
the control performance should be close to the global op-
timal solution. From these considerations, an adaptive 
equivalent consumption minimization strategy based on 
neural network considering the battery life is proposed in 
this paper. Firstly, when the initial SOC of the battery is 
known, the optimal weight coefficient, and the global op-
timal SOC trajectory of the battery and the global optimal 
power of the diesel generator (DG) can be obtained by BP. 
Secondly, extracting the global optimal equivalent factor 
(EF) trajectory from the global optimal SOC trajectory and 
the global optimal DG power. Thirdly, the BP neural net-
work is trained with the EF obtained in the second step. 
The trained BP neural network adjusts the EF in real time, 
which makes the performance of ECMS close to that of DP.

The main contributions of this paper are as follows:

1. In order to improve the economy of ship operation 
and reduce the cost of replacing batteries, an adap-
tive equivalent consumption minimization strategy 
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(A- ECMS) is proposed to reduce the fuel consump-
tion of HES while reducing the degradation of power 
battery life.

2. The neural network is used to output the equivalent 
factor in real time according to the current navigation 
state of the ship, so that the optimization performance 
of A- ECMS strategy can be close to that of DP.

3. Compared with the traditional control strategy (diesel 
engine only), the proposed A- ECMS strategy can save 5% 
fuel consumption and reduce the total cost by about 3%.

This paper is organized as follows. The HES mathemat-
ical model is given in Section 2. In Section 3, the global 
optimal solution is obtained by DP. The extraction of 
the global optimal EF is presented in Section 4. Then, A- 
ECMS is designed and implemented in Section 5. Finally, 
the conclusion is drawn in Section 6.

2  |  HES MODEL DESCRIPTION

In this paper, a series hybrid system is selected to study the 
energy optimization problem, the system structure of the 
HES is shown in Figure 1. The power system of the HES is 
composed of bottom physical system and top energy control 
system. The bottom physical system is mainly composed of 
power battery, diesel generator (DG), inverter, transformer, 
and load. The energy control system controls the power 
distribution between the power sources by monitoring the 
power demand, battery SOC, and DG power, then deter-
mines the DG power change for the next time step.

For each time step, the power supplied by the power 
sources satisfies:

where PDG and PB are the DG and battery power, respec-
tively, PL is the HES load demand.

Diesel generator consists of diesel engine and genera-
tor. Under the assumption of rigid connection and without 

friction loss between the diesel engine and generator, the 
fuel consumption (FC) of the diesel generator can be ex-
pressed as:

where t is a t- th time interval, SFOC is the specific fuel oil con-
sumption, P is the DG power, Δt is the time step. The specific 
fuel oil consumption (SFOC) can be expressed as follows12:

where Prated is the rated power of DG, k1, k2, and k3 are the 
coefficients of the equation.

Power battery is one of the significant components of 
HES. The performance of power battery is closely related 
to the ship energy control strategy based on the battery 
SOC. The power battery SOC can be expressed as follows:

where PB is the battery power, Pdcha and Pcha are, respec-
tively, the discharging power and charging power of the bat-
tery, bt is the operating variable of the battery [“1” means 
discharge, “0” means charge]. EB is the energy capacity of 
the battery, nB is the charging/discharging energy efficiency, 
EB,max is the max energy capacity of the battery, SOC is the 
state of charge of the battery.

The decline of battery life is mainly manifested by the 
decrease of capacity and the increase of internal resis-
tance.13 In this paper, when studying the battery life, we do 
not consider the impact of the increase of internal resis-
tance, but only consider the impact of the attenuation of 
battery capacity. Battery life is generally defined as the 

(1)PDG + PB = PL

(2)FC(t) = SFOC × P(t) × Δt

(3)SOFC(t) = k1 ×

(
P(t)
Prated

)2
− k2 ×

(
P(t)
Prated

)
+ k3

(4)PB = Pdcha × bt − Pcha × (1 − bt)

(5)EB(t) = EB(t − 1) + nB × PB(t) × Δt

(6)SOC(t) =
EB(t)
EB,max

× 100%

F I G U R E  1  System structure of HES
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service time from 100% of the rated capacity to only 80% of 
the rated capacity after one full charge. Battery life is usually 
categorized as calendar life and cycle life. The loss of battery 
life during voyage is mainly determined by the loss of cycle 
life. There are many factors causing the degradation of 
power battery life, such as Ah- throughput, temperature, 
and depth of discharge. In order to calculate the effective 
life depletion due to the charge exchange within the battery, 
the effective Ah- throughput (Aheff) is defined as14:

where 𝜃 is the battery temperature, Ic is the C- rate defined as 
the ratio of the current to the nominal charge capacity:

where I is the battery current, QB is the capacity of the 
battery.

𝜎 is a severity factor, characterizing the relative life of 
a battery under rating conditions, which is defined as14:

where 𝛾(Ic, 𝜃, SOC) is the total Ah- throughput correspond-
ing to a given sequence of current, temperature, and SOC. Γ 
is the total Ah- throughput when the battery is subject to its 
nominal load cycle, which is expressed as:

where Inom is the current profile under nominal condi-
tions and EOL indicates the battery end of life. When Aheff 
is equal to Γ, it means that the battery will reach its end 
of life. Therefore, reducing Aheff is equivalent to reducing 
the degradation of battery life. It is important to note that 
the severity factor 𝜎(Ic, 𝜃, SOC) in this paper is obtained by 
the same method as in Ref. 15.

3  |  OPTIMIZATION PROBLEM 
FORMULATION AND SOLUTION

3.1 | Problem formulation

The energy control strategy for HESs is actually an optimi-
zation problem. When the load demand is known, the bat-
tery power is taken as the control variable u. By adjusting 

the battery power, the diesel generator can operate in the 
range of high efficiency, and the optimal operating range 
of the diesel generator is determined by the SFOC curve. 
In this paper, the proposed strategy considers minimizing 
the fuel consumption and prolonging the battery life as 
the optimization objective and discretizes the given voy-
age condition into N stages. Therefore, the essence of the 
proposed strategy is a multi- stage control problem with 
discrete time as the stage.

In order to make Equation (7) suitable for global opti-
mization, it is discretized as:

Taking PDG as control variable x, SOC as state variable 
u, and introducing a weight coefficient 𝜆, the whole objec-
tive function can be expressed as:

where CE is the fuel consumption of the HES, which is 
determined by equation  (2), CB is the accumulated Ah- 
throughput, 𝜆 is the weight coefficient, Γ is the battery life 
which is subject to the nominal load cycle, Ca is the conver-
sion factor, which is defined as the ratio of battery replace-
ment cost and 1 L gasoline cost.

The constraints are as follows:

where PminDG  and PmaxDG  are the minimum and maximum out-
put power of the diesel generator, and H is the maximum 
change rate of diesel generator power, which is set to prevent 

(7)Aheff(t) =
∫

t

0
𝜎
(
Ic, 𝜃, SOC

)
× |I(𝜏)| d𝜏

(8)Ic =
I

QB

(9)𝜎(Ic, 𝜃, SOC) = Γ

𝛾(Ic, 𝜃, SOC)
=

∫
EOL
0

|| Inom(t)|| dt
∫
EOL
0 | I(t)| dt

(10)Γ =
∫

EOL

0
|| Inom(t)|| dt

(11)Aheff =

N∑
k=1

𝜎(Ic, 𝜃, SOC) × |I(k)|

(12)J =

N∑
k=1

[L(x(k),u(k))]

(13)
L(x(k),u(k)) = (1 − 𝜆) × CE(x(k),u(k)) + 𝜆 ×

CB(x(k),u(k))
Γ

× Ca

(14)CE(x(k),u(k)) = FC

(15)CB(x(k),u(k)) = 𝜎(Ic, 𝜃, SOC) × ||Ic(k)||

(16)PminDG ≤ PDG ≤ PmaxDG

(17)
||||
PDG(k) − PDG(k − 1)

Δk

|||| ≤ H

(18)Pmincha ≤ Pcha ≤ Pmaxcha

(19)Pmindcha ≤ Pdcha ≤ Pmaxdcha

(20)SOCmin
≤ SOC ≤ SOCmax
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the drastic change of diesel generator power within short 
time,6 in this paper, H = 1kW∕s. Pmincha  and Pmaxcha  are, respec-
tively, the minimum and maximum charging powers of the 
battery, Pmindcha and Pmaxdcha are the minimum and maximum dis-
charging powers of the battery, respectively, SOCmin and 
SOCmax are, respectively, the minimum and maximum states 
of charge of the power battery, which are set to protect the 
power battery from being used at too high or too low SOC.

3.2 | Dynamic Programming

Dynamic programming is usually used to solve multi- 
stage global optimization problems based on the Bellman 
optimal principle.16 The DP algorithm calculates the mini-
mum cumulative cost function from each k to the final 
state by recursive calling.17

The minimum cost function of the (N- 1)- th stage is:

The minimum cost function of the k- th stage is:

Combining the optimal control from each stage k into 
a sequence leads to the global optimal control strategy of 
dynamic programming:

3.3 | Optimization results under given 
voyage condition

In this section, the offline global optimization of HES energy 
control strategy under different initial SOC is realized with 
the goal of minimizing the weighted sum of the fuel con-
sumption and power battery degradation. The given voyage 
condition is obtained from the hybrid electric ship experi-
mental platform. The experimental platform is equipped 
with 16 lithium iron phosphate batteries having a total ca-
pacity of 100 Ah, which can be combined freely according 
to demand, two diesel generators with rated power of 60 kW 
and two propulsion motors having rated output power of 
70  kW, which can meet the simulation of most ship load 
conditions. The experimental platform is shown in Figure 2. 
The load power profile of given voyage condition as shown 
in Figure 3. The simulation parameters are shown in Table 1.

When the initial SOC is 40%, 50%, and 60%, respec-
tively, and the final value SOC is 60%, the optimization 
results corresponding to different weight coefficients 𝜆 are 
shown in Tables 2– 4.

In this section, the total cost is equal to the sum of cu-
mulative fuel consumption multiplied by fuel cost and cu-
mulative battery loss multiplied by battery cost:

where Ctol is the total cost, CE is the fuel consumption, WE is 
the fuel price of the day, CB is the Ah- throughput, and WB is 
the battery cost.

It can be seen from Tables 2– 4 that when the weight 
coefficient 𝜆 = 0, the control strategy only considers the 
fuel consumption, so the fuel consumption of the HES 
is the least under this coefficient, and the effective Ah- 
throughput is the most important. With the increase of 
weight coefficient, the control strategy tends to protect 
the battery, so the effective Ah- throughput gradually de-
creases and the fuel consumption gradually increases.

When the weight coefficient 𝜆 = 1, the control strategy 
only considers the battery life, so the effective Ah- throughput 
is the least important under this coefficient, and the fuel 
consumption of the HES is the most important. At this time, 
the power of HES is completely provided by the diesel gen-
erator. In addition, it can be inferred from Tables 2– 4 that no 
matter what the initial SOC is, when the weight coefficient 
𝜆 = 0.4, the total cost of the HES is the least. Therefore, 𝜆 = 
0.4 is taken as the optimal weight coefficient in this paper, 
and the global optimal SOC trajectory of the battery and the 
global optimal power of the diesel generator under this coef-
ficient are shown in Figures 4 and 5.

4  |  ECMS FOR HES

Although the DP can obtain the global optimal solution, 
but the DP calculation is complex, cannot be used in real 
time. The ECMS strategy only considers the current in-
stantaneous cost, so it can be applied to real- time control.

4.1 | ECMS- based optimization problem 
formulation

The objective of ECMS is to minimize the instantaneous 
total equivalent fuel consumption (Cequ), which is de-
scribed as the sum of the diesel generator fuel consump-
tion (CDG), and the converted equivalent fuel consumption 
from battery (CB). In this paper, since the battery life needs 
to be considered, the battery life loss (Clif) needs to be con-
verted into the total consumption (C).

(21)J∗N (x(N − 1)) = min
u(N)

[L(x(N − 1),u(N − 1))]

(22)J∗
k

(x(k)) = min
u(k)

[
L(x(k),u(k)) + J∗

k+1(x(k + 1))
]

(23)u∗ =
{
u∗(1),u∗(2) ,⋯, u∗(N − 1)

}

(24)

Ctol =

N∑
k=1

CE(x(k),u(k)) ×WE +

∑N
k=1 CB(x(k),u(k))

Γ
×WB

(25)
C(t) = (1−𝜆)×Cequ(t)+𝜆×Clif(t)

= (1−𝜆)×
(
CDG(t)+CB(t)

)
+𝜆×Clif(t)
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where 𝜆 is the optimal weight coefficient obtained in Section 
3, 𝜆 = 0.4.

The instantaneous fuel consumption of diesel genera-
tor can be expressed as:

(26)CDG(t) =
SFOC × P(t)

3.6 × 10−3

T A B L E  1  Simulation parameters

Diesel generator

Rated power 60 kW Rated speed 1500 rpm

Rated voltage 400 V efficiency 96%

Power battery

Energy 9.84 kWh Capacity 27.6 Ah

Rated voltage 356 V Max discharge power 40 kW

Max charge power 15 kW Max SOC 70%

Min SOC 30% Kind Lithium iron phosphate battery

F I G U R E  2  Hybrid electric ship 
experimental platform

F I G U R E  3  Load power profile
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The equivalent fuel consumption of battery can be ex-
pressed as:

where s is the equivalent factor (EF), Q is the low calorific 
value of fuel.

The battery life loss can be expressed as:

4.2 | Extraction of the global optimal EF

The equivalent factor (EF) is the decisive factor to de-
termine the performance of ECMS. For a given demand 
power and SOC, there is a one- to- one relationship be-
tween EF and the optimal DG power.18 Figure 6 shows 
the relationship between the total consumption and 
DG power when the demand power is 25 kW, SOC 
is 40% and the equivalent factors are 1, 2.5, and 4, 
respectively.

It can be seen from Figure  6 that when the EF is 
small, the fuel consumption of the battery after conver-
sion is also small. The control strategy tends to use the 
power provided by battery, so the optimal DG power is 
small. With the increase of the EF, the fuel consumption 
of the battery after conversion increases, so the control 
strategy is more inclined to use the power provided by 
the DG.

According to the initial SOC and final SOC, the opti-
mal control solution under a given voyage condition has 
been obtained by DP algorithm in Section 3. Therefore, 
when an EF is selected at a certain time to make the cur-
rent optimal DG power value the same as the value solved 
by the DP, it can be considered as the instantaneous opti-
mal EF at that time. In this paper, the instantaneous opti-
mal equivalent factor is extracted by iterative calculation 
method. The equivalent factor starts from 1 and iterates 
with a 0.01 step size. The optimal DG power of ECMS at 
this time is calculated under different EFs. The EF which 
makes the DG power and SOC trajectory closest to the 
DP solution is selected as the instantaneous optimal EF, 
as shown below:

where 𝜔1 and 𝜔2 are the coefficients of the equation, PDG(s) 
and SOC(s) are the optimal DG power and SOC of ECMS 
under the corresponding EF, respectively, PDG,ref(t) and 
SOCDG,ref(t) are, respectively, the optimal DG power and 
SOC of DP at this time.

Taking the initial SOC = 60% as an example, the EF is 
extracted from the DP solution. Figures 7 and 8 show the 
simulation results of the optimized ECMS algorithm and 
DP algorithm.

As shown in Figures 7 and 8, the SOC trajectories of 
the optimized ECMS algorithm and DP algorithm are ba-
sically the same, and the difference of DG power between 
the two optimizations is also very small.

(27)CB(t) = s ×
PB(t)
Q

(28)Clif(t) =
𝜎(Ic, 𝜃, SOC) × |I(t)|

Γ
× Ca

(29)
s∗(t) = arg min

(
𝜔1 × (PDG(s) − PDG,ref(t)) + 𝜔2 × (SOC(s) − SOCDG,ref(t))

)

T A B L E  2  Initial SOC = 40%

𝝀

Effective Ah 
(Ah)

Fuel 
consumption (L)

Total cost 
(CNY)

0 35.49 6.67 44.56

0.1 31.80 6.68 44.42

0.2 26.49 6.69 44.21

0.3 24.19 6.70 44.18

0.4 23.03 6.71 44.15

0.5 17.94 6.77 44.27

0.6 8.71 6.93 44.81

0.7 6.97 6.97 44.98

1 6.58 7.03 45.35

T A B L E  3  Initial SOC = 50%

𝝀

Effective Ah 
(Ah)

Fuel 
consumption (L)

Total cost 
(CNY)

0 33.82 6.41 42.81

0.1 31.14 6.41 42.66

0.2 25.63 6.42 42.46

0.3 21.71 6.44 42.39

0.4 19.90 6.45 42.35

0.5 14.58 6.52 42.49

0.6 6.01 6.67 43.00

0.7 3.29 6.74 43.28

1 2.96 6.76 43.39

T A B L E  4  Initial SOC = 60%

𝝀

Effective Ah 
(Ah)

Fuel 
consumption (L)

Total cost 
(CNY)

0 35.46 6.15 41.22

0.1 31.35 6.15 41.01

0.2 24.90 6.16 40.76

0.3 21.21 6.18 40.72

0.4 17.69 6.21 40.68

0.5 12.10 6.28 40.82

0.6 5.26 6.40 41.24

0.7 2.75 6.47 41.55

1 2.05 6.52 41.82
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F I G U R E  4  Global optimal SOC 
trajectory of the battery
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F I G U R E  5  Global optimal power of 
the diesel generator
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F I G U R E  6  Relationship between the 
total consumption and DG power under 
different EF
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5  |  BP- BASED ADAPTIVE ENERGY 
MANAGEMENT STRATEGY

The EF obtained in Section 4 is based on the DP algorithm 
when the initial SOC is known. However, in the actual 
operation, the initial SOC is uncertain, so in this section, 
BP neural network is used to optimize the EF of A- ECMS 
algorithm in real time.

5.1 | BP neural network

BP neural network was proposed by Rumelhart and 
McClelland in the1980s.19 It is a kind of multilayer 
feedforward network which is trained according to the 
error back propagation algorithm.20  The topological 
structure of a three- layer neural network is shown in 
Figure 9.

where X1,X2,⋯,XN are the input data of network, 
Y1,⋯,YJ are the predicted output data of network, 

K1,K2,⋯,KM are the hidden layer neurons. The number of 
neurons in the input layer, hidden layer and output layer is 
N, M, and J, respectively. The weight between the n- th neu-
ron in the input layer and the m- th neuron in the hidden 
layer is 𝜔nm, and the weight between the m- th neuron in the 
hidden layer and the j- th neuron in the output layer is 𝜔mj.

F I G U R E  7  Optimal SOC trajectory of 
DP and optimized ECMS
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F I G U R E  8  Optimal DG power of DP 
and optimized ECMS
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F I G U R E  9  Structure of a three- layer BP Network
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After determining the number of layers and the number 
of neurons in each layer, BP neural network calculates the 
error between the network output and the target output by 
learning the samples of the known target output, and adjusts 
the weights and thresholds of each layer according to the 
error. After repeated iteration, the error no longer decreases, 
and the training is terminated. Taking the three- layer BP 
network shown in Figure 9 as an example, the specific pro-
cess of weight and threshold adjustment is as follows:

The output of the m- th neuron in the hidden layer is 
calculated as:

where Hm is the output of the m- th neuron in the hidden 
layer, 𝜔nm is the connection weight between the n- th input 
layer and m- th hidden layer, Xn is the input of the n- th neu-
ron in the input layer, and am is the threshold value of the 
m- th neuron in the hidden layer. f  is the incentive function 
of the hidden layer.

The output of the j- th neuron in the output layer is cal-
culated as:

where Yj is the output of the j- th neuron in the output layer, 
𝜔mj is connection weight

between the m- th hidden layer and j- th output layer, bj 
is the threshold value of the m- th neuron in the output 
layer.

The network output error is calculated and the weights 
are updated as:

where Dj is the expected output, ej is the network output 
error, and 𝜂 is the learning rate.

The threshold is updated as:

5.2 | A- ECMS

According to the relevant information of ship voyage, the 
current battery SOC, load demand and ratio of the re-
maining miles to the total miles are selected as the input 
parameters of the BP neural network, and the output pa-
rameters of neural network are EF. The EF of instanta-
neous optimization is used in ECMS strategy to calculate 
the optimal control decision. The principle of A- ECMS 
algorithm based on BP neural network is shown in 
Figure 10.

The current battery SOC, load demand and ratio of 
the remaining miles to the total miles are the input for 
the neural network model, and the EF optimized by DP 
algorithm is used as the expected output for training. 
Through the fitted network, the EF can be modified in 
real time according to the current information of HES, 
and then the instantaneous optimal control can be 
achieved by ECMS.

The neural network controller is built on the 
MATLAB/Simulink platform, and the global optimal 
EFs extracted from seven different initial SOC condi-
tions are used to train the neural network. Taking the 
EFs under three different SOC initial conditions as ver-
ification samples to verify the trained neural network. 
As shown in Figure 11, the EF output by the neural net-
work is basically consistent with the actual optimal EF 
and their correlation coefficient is 0.84. Therefore, the 
trained neural network can be applied to the proposed 
A- ECMS strategy.

5.3 | Simulation

In order to verify the proposed strategy, the ECMS al-
gorithm and DP algorithm are used for optimization 
under a given voyage condition. The weight coeffi-
cient 𝜆 = 0.4 and the initial SOCs are 0.45, 0.55, and 
0.65, respectively. The battery SOC trajectory is shown 
in Figure  12. The DG power is shown in Figure  13. 
Table 5 shows the simulation results of the two energy 
control strategies and a base- case scenario (ie, diesel 
engine only, with non- optimal strategy) under different 
initial SOCs.

As shown in Figures  12 and 13, the DG power dif-
ference between A- ECMS strategy based on BP neural 
network and DP strategy is small, the SOC trajectory is 
basically the same, and the final SOC of A- ECMS strat-
egy fluctuates near the target value. In order to facilitate 
quantitative improvement, the final SOC of all strategies 
is set at about 60% in this paper. From Table 5, it can be 
seen that the total cost of A- ECMS strategy is close to that 
of DP strategy. Compared with the base- case scenario, the 

(30)Hm = f

(
N∑
n=1

𝜔nmXn + am

)

(31)f (x) = (1+e−x)−1

(32)Yj =

M∑
m=1

Hm𝜔mj − bj

(33)

⎧⎪⎪⎨⎪⎪⎩

ej=Dj−Yj
𝜔mj=𝜔mj+𝜂Hmej

𝜔nm=𝜔nm+𝜂Hm

(
1−Hm

)
Xn

M∑
m=1

𝜔mjej

(34)

⎧⎪⎨⎪⎩

bj=bj+ej

am=am+𝜂Hm

(
1−Hm

)
Xn

J∑
j=1

𝜔mjej
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proposed A- ECMS strategy can save 5% fuel consumption 
and reduce the total cost by about 3%. It is worth noting 
that the optimization performance is not only related to 
the control strategy, but also related to the specific fuel oil 
consumption of the diesel generator. In addition, when 
the initial SOC = 45%, the total cost of the A- ECMS strat-
egy is less than the total cost of the DP strategy because 
the final SOC of the A- ECMS strategy does not fully reach 
the target value. Combined with Figure  12, Figure  13, 
and Table 5, it can be seen that the performance of the 
proposed A- ECMS strategy can be very close to the DP 
strategy.

6  |  CONCLUSIONS

This paper presents a real- time energy control strategy A- 
ECMS taking into account the fuel consumption and bat-
tery aging. The multi- objective optimization problem is 
transformed into a single- objective optimization problem 
by introducing a weight coefficient. In order to obtain the 
optimal weight coefficient, this paper uses DP algorithm 
to obtain the global optimal solution of multi- objective 
optimization problem under different weight coefficients 
in offline mode and obtains the optimal weight coefficient 
through comparison. For making the performance of the 

F I G U R E  1 0  Schematic diagram of A- ECMS

F I G U R E  1 1  EF output by neural 
network and the actual EF
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F I G U R E  1 2  Battery SOC trajectory 
of A- ECMS algorithm and DP algorithm
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F I G U R E  1 3  DG power of A- ECMS 
algorithm and DP algorithm
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Initial SOC Strategy
Effective 
Ah (Ah)

Fuel 
consumption 
(L)

Final 
SOC

Total cost 
(CNY)

45% DP 20.87 6.58 60% 43.21

A- ECMS 23.43 6.55 56% 43.15

Non- optimal 4.18 6.90 60% 44.36

55% DP 18.83 6.33 60% 41.51

A- ECMS 21.91 6.31 58% 41.52

Non- optimal 2.21 6.63 60% 42.54

65% DP 16.21 6.09 60% 39.85

A- ECMS 20.93 6.08 59% 40.00

Non- optimal 2.24 6.41 60% 41.14

T A B L E  5  Simulation results
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ECMS strategy, which can be used in real time, close to 
the global optimal solution, the global optimal EF is ex-
tracted from DP solution by iterative method. In order to 
maintain the performance of SOC when the initial SOC 
is uncertain, BP neural network is used to adjust the EF 
in real time according to the relevant information of ship 
voyage. The proposed strategy is simulated in MATLAB, 
and the results show that the performance of the proposed 
strategy is close to the global optimal solution in presence 
of initial SOC uncertainty, which not only reduces the fuel 
consumption but also extends the battery life. Future work 
will focus on improving the adaptability of the equivalent 
factor to different voyage conditions.
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