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Abstract. Characterization of chemical heterogeneities at the dendrite scale is of practical 
importance for understanding phase transformation either during solidification or during 
subsequent solid-state treatment. Spot analysis with electron probe is definitely well-suited to 
investigate such heterogeneities at the micron scale that is relevant for most solidified products. 
However, very few has been done about the statistics of experimental solute distributions 
gained from such analyses when they are now more and more used for validating simulation 
data. There are two main sources generating discrepancies between estimated and actual solute 
distributions in an alloy: i) data sampling with a limited number of measurements to keep 
analysis within a reasonable time length; and ii) uncertainty linked to the measurement process, 
namely the physical noise that accompanies X-ray emission. Focusing on the first of these 
sources, a few 2-D composition images have been generated by phase field modelling of a Mg-
Al alloy. These images were then used to obtain "true" solute distributions to which to compare 
coarse grid analyses as generally performed with a microanalyser. Resampling, i.e. generating 
several distributions by grid analyses with limited number of picked-up values, was then used 
to get statistics of estimates of solute distribution. The discussion of the present results deals 
first with estimating the average solute content and then focuses on the distribution in the 
primary phase.  

1.  Introduction 
In a previous work [1], a review of the basic understanding of microsegregation build-up and its 
effects on cast products was made, together with a description of the most usual ways to characterize 
it. At present time, this characterization of solutes distribution at the scale of dendritic grains makes 
most often use of automatic energy (EDX) or wave-length (WDX) dispersive micro-analyzers. The 
procedure generally followed consists in recording N spot analyzes along a regular grid on a 
metallographic section of the material to be characterized. In multicomponent alloys, correlation 
between the contents in different alloying elements (wi) should be analyzed to highlight the presence 
of minor phases [1-4] and separate primary phase from secondary phases as there can be non-
monotonous evolution for some solutes during multiphase deposits [3]. Then, data are sorted and a 
cumulative distribution may be plotted as the fraction of points fN giving a solute count lower (or 
higher) than a specified value wi for each of the identified phases. 

It is quite a usual practice in the solidification field to compare the function wi(fN) to the so-called 
Scheil's model or to profiles calculated accounting for solute diffusion during solidification [5-7]. 
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Solute distributions could as well be useful means to follow the effect of solid-state diffusion during 
heat treatments in the solid state that are generally designed to smooth out microsegregation [8, 9]. 

Very few has however been made concerning the confidence that can be put on the experimental 
distribution curves. Gungor [10] considered that each composition range used to sort the data could 
define an individual phase and applied "usual" statistics to the volume fraction estimate of each of 
these "virtual" phases. Actually, investigation of the statistical quality of any characterization 
methodology of chemical heterogeneities should best be checked on simulated images for which the 
distributions are known. Such studies have been performed first on very simple simulated 
microstructures [11-13]. Recently, more realistic images were obtained by phase field modelling on 
which systematic resampling was used to characterize statistics of grid analysis [14]. Since then, the 
proposed resampling technique has been used by Zollinger and Daloz on experimental chemical 
mapping of a ternary alloy [15]. The present work complements the previous study [14], it presents 
image generation and results from resampling, and finally discusses the best practice for 
microsegregation characterization. 

2.  Image generation 
The image generation procedure is the same as previously [14], i.e. 2-D images were calculated using 
the phase field software Micress [16, 17] applied to the solidification of a Mg-3Al (wt.%) alloy [18]. 
The only difference is that the number of grain nuclei was increased from 400 to 900. As before, the 
grains were implemented within a calculation domain of 6000x6000 cells with a cell size ∆x set at 2 
µm, thus leading to an average grain size of 400 µm. Periodic conditions were assumed at the outer 
boundaries of the domain.  

Calculations were started at 904 K for a liquidus temperature equal to 904.41 K. Temperature 
evolution was modelled averaged over the calculation domain by the balance between heat extraction 
and latent heat release. The specific heat was set to 2.8 J.K-1.cm-3 for the liquid and 1.9 J.K-1.cm-3 for 
the (Mg) solid solution. A constant heat extraction rate of -30 J.cm-3 combined with a latent heat of 
650 J.cm-3 resulted in an initial decrease in temperature followed by a distinct recalescence during 
about 4 seconds. Driving force for growth ∆g (J.cm-3.K-1) was extrapolated from a thermodynamic 
calculation performed for the initial composition based on Calphad data [19]:  
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where w0 and wl are the nominal and liquid aluminium contents (wt.%), and mliq is the liquidus slope.  
Solute partitioning at the interfaces was extrapolated from the same thermodynamic calculation by: 
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where ws and ws,0 stand for solute content in the solid in equilibrium with liquid at, respectively, wl 
and the nominal content w0. The partition coefficient between (Mg) and liquid is equal to 0.273 at the 
time of nucleation and increases slightly during solidification. Diffusion of Al was simulated with a 
constant coefficient in the liquid (10-5 cm2.s-1) and temperature dependent in the solid phase 
(Dso=12 cm2.s-1 and Qs=144000 J.mol-1) giving a diffusion coefficient of 5.6 10-8 cm2.s-1 at the liquidus 
temperature. In order to have a significant change in solute concentration within the final images, all 
simulations were stopped after a solidification time of 14 s, the solid fraction being about 0.7. The Al 
concentration fields were then written out to generate images.  

Figure 1a shows the composition map for one grain and figure 1b the composition profile along the 
line A-B in figure 1a. When a nucleus has formed at the given undercooling, it grows with solute 



 
 
 
 
 
 

piling up away from the liquid/solid interface. This leads to the increase in the solid concentration 
from zero to about 100 µm in figure 1b. After some time, the growth rate decreases due to the 
recalescence and so does the pile-up, this corresponds to the solute decrease from 100 to 290 µm. 
Finally, when neighbouring solute fields in the liquid start interacting with each other, the 
concentration in the liquid increases and so does again the concentration in the solid, from 290 to 310 
µm. 

 

       
 

Figure 1. Mapping of the aluminium distribution in one grain (left column) and aluminium profile 
along the dendrite arm AB (right column). 

 
Interfacial energies and mobilities of the solid phase were defined with hexagonal anisotropy [18] 

and grain orientations were set randomly. Figure 2-a shows an image for which the nuclei have been 
implemented with a minimal distance (320 µm) between them leading to grains with nearly equal size 
(the image will be referred as ES for equal-size). Figure 2b presents a zoom on a second image when 
the nuclei have been implemented at random (labeled RM for random in the following). A zoom of 
each image is presented in figure 3. In both images, the liquid in the interdendritic areas is enriched in 
aluminium. It could as well be considered as a eutectic with unresolved microstructure. 
 

              
 

Figure 2. Images generated with 900 grains implemented: a) with geometrical constraint (left 
column); or b) randomly (right column). Note that the colour scale is not the same as in figure 1a. The 

side length is 1.2 mm. 
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Figure 3. Zoom of the images in figure 2. Note that the colour scale is not the same as in figure 1a. 
The side length is 350 µm.  

 
The chemical composition distribution of each image (6000x6000 cells) was drawn using classes 

0.1 wt.% Al in size. Figure 4a compares the distributions of the ES and RM images. They are quite 
similar with two main peaks corresponding to the primary and liquid phases at low and high 
aluminium contents respectively. The fact that the peak at low solute contents is doubled is somehow 
fortuitous with the side-peak at higher Al contents being related to the upper part of the recalescence 
stage in figure 1b. 
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Figure 4. Distribution (a) and cumulative distribution (b) of aluminium. Solid and interrupted lines 

correspond to ES and RM images.  
The dotted line in (b) is the profile calculated according to Scheil's model. 

 
The corresponding cumulative distributions are plotted in figure 4b. As expected, they show very 

limited difference between each other in agreement with the distribution in figure 4a. The peak 
associated to the primary phase is slightly narrower for the RM image in figure 4a, leading to a 
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Solute distributions could as well be useful means to follow the effect of solid-state diffusion during 
heat treatments in the solid state that are generally designed to smooth out microsegregation [8, 9]. 

Very few has however been made concerning the confidence that can be put on the experimental 
distribution curves. Gungor [10] considered that each composition range used to sort the data could 
define an individual phase and applied "usual" statistics to the volume fraction estimate of each of 
these "virtual" phases. Actually, investigation of the statistical quality of any characterization 
methodology of chemical heterogeneities should best be checked on simulated images for which the 
distributions are known. Such studies have been performed first on very simple simulated 
microstructures [11-13]. Recently, more realistic images were obtained by phase field modelling on 
which systematic resampling was used to characterize statistics of grid analysis [14]. Since then, the 
proposed resampling technique has been used by Zollinger and Daloz on experimental chemical 
mapping of a ternary alloy [15]. The present work complements the previous study [14], it presents 
image generation and results from resampling, and finally discusses the best practice for 
microsegregation characterization. 

2.  Image generation 
The image generation procedure is the same as previously [14], i.e. 2-D images were calculated using 
the phase field software Micress [16, 17] applied to the solidification of a Mg-3Al (wt.%) alloy [18]. 
The only difference is that the number of grain nuclei was increased from 400 to 900. As before, the 
grains were implemented within a calculation domain of 6000x6000 cells with a cell size ∆x set at 2 
µm, thus leading to an average grain size of 400 µm. Periodic conditions were assumed at the outer 
boundaries of the domain.  

Calculations were started at 904 K for a liquidus temperature equal to 904.41 K. Temperature 
evolution was modelled averaged over the calculation domain by the balance between heat extraction 
and latent heat release. The specific heat was set to 2.8 J.K-1.cm-3 for the liquid and 1.9 J.K-1.cm-3 for 
the (Mg) solid solution. A constant heat extraction rate of -30 J.cm-3 combined with a latent heat of 
650 J.cm-3 resulted in an initial decrease in temperature followed by a distinct recalescence during 
about 4 seconds. Driving force for growth ∆g (J.cm-3.K-1) was extrapolated from a thermodynamic 
calculation performed for the initial composition based on Calphad data [19]:  
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where ws and ws,0 stand for solute content in the solid in equilibrium with liquid at, respectively, wl 
and the nominal content w0. The partition coefficient between (Mg) and liquid is equal to 0.273 at the 
time of nucleation and increases slightly during solidification. Diffusion of Al was simulated with a 
constant coefficient in the liquid (10-5 cm2.s-1) and temperature dependent in the solid phase 
(Dso=12 cm2.s-1 and Qs=144000 J.mol-1) giving a diffusion coefficient of 5.6 10-8 cm2.s-1 at the liquidus 
temperature. In order to have a significant change in solute concentration within the final images, all 
simulations were stopped after a solidification time of 14 s, the solid fraction being about 0.7. The Al 
concentration fields were then written out to generate images.  

Figure 1a shows the composition map for one grain and figure 1b the composition profile along the 
line A-B in figure 1a. When a nucleus has formed at the given undercooling, it grows with solute 



 
 
 
 
 
 

the average grain size (400 µm) for both the RM and ES images. It is seen that σgrid decreases rapidly 
for ∆L/D varying from 0.1 to 0.25, and then presents oscillations which level off slowly as the grid 
spacing increases, i.e. as the "measurements" get less and less correlated. At that stage, i.e. when ∆L/D 
is higher than 1.5-2, the curves have more or less reached the expected random value σ0=0.22. 
Although the differences between ES and RM curves are not pronounced, they confirm the spatial 
correlations that can exist between grid spacing and microstructure size [13, 14]. In order to avoid bias 
due to such correlations, the grid spacing to be used should be at least twice as large as the grain size. 
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Figure 5.  Evolution with grid spacing of the standard deviation of the average aluminium content 

estimated from 1000 grids of 100 points each. 
 
In a second step, it appeared of interest to characterize the standard deviation for each class of 

solute values. Figure 6 presents the standard deviation of the number of pixel values in each class 
(dots) evaluated again from 1000 grids of 100 points each obtained with a grid size equal to 800 µm. It 
is seen that its average value for each peak is of the same order as the standard deviation for the 
estimate of the phase fraction VV, either solid or liquid, namely VV.(1-VV).N-2, giving 4.6% for a grid 
of N=100 points.  

The same calculation was applied to each of the solute classes using the distribution values in 
figure 4a. This results in the estimates of the standard deviation shown with dots in figure 6. Such a 
procedure, which is exactly that suggested by Gungor [10] is seen to reproduce fairly well the standard 
deviation calculated by resampling. 

Finally, it is worth recalling that it has been noted previously that the observed scattering in the 
data associated with each solute class has little effect on the cumulative distribution estimated for 
either the primary or liquid phase [14]. In other words, the cumulative distribution in the primary 
phase may be fairly well established by recording as low as 100 values along a grid with an 
appropriate step size. The, most of the variance in the estimate of the average solute content is related 
to the variance in the estimate of the liquid (or solid) fraction. 
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Figure 6. Standard deviation of the number of values in each solute class estimated from 1000 
grids of 100 points each (solid line). Dots are the standard deviation using the distribution in figure 4a 

and assuming fully random distribution. 
 

4.  Discussion - conclusion 
Using resampling, it has been shown that analysis along regular grids gives better results than random 
sampling according to the variance estimate of the measurements [13,15]. However, the variance 
depends on the grid spacing, and Gungor [10] was the first to stress the need to use a large grid 
spacing, preferably much larger than the size of the grains. Such a condition relates to the need for 
measurements to be independent from each other on a statistical point of view. In particular, any 
microstructure space periodicity may induce correlation in the measurement that could strongly bias 
the results. This has been discussed previously [13] and it was found that such correlations are 
sufficiently smoothed out when the grid spacing is 2-3 times the grain size as illustrated again in figure 
5. In practice, a rough estimation of grain size or grain density can easily be obtained by quantitative 
optical or electron-scanning image analysis. 

The classical tools for statistical analysis can be then used when measurement points are 
uncorrelated. For instance, the variance of estimation of the volume fraction VV of a “phase” (liquid or 
eutectic areas, or regions within a given composition class) is obtained as VV.(1- VV).N-2, where N is 
again the total number of measurement points. Applied to the present work where VV=30%, the 
estimate of the liquid (eutectic) fraction from a grid of 100 points could vary in between 21 and 39 % 
at a 95% confidence level. For the same conditions, the estimate of the average solute content may 
vary in between 2.56 and 3.44 wt.% when the true value is 3 wt.%. These ranges of possible variation 
due to statistics appear quite large and much more measurements would be needed for accurate 
evaluation of such integral quantities. 

In contradistinction, the results presented above show it is quite feasible to estimate solute 
distribution in dendritic alloys by means of a limited number of local composition measurements, 
typically 100 measurement points, in agreement with previous works [11, 15]. This is certainly due to 
compensating effects between countings made on neighbour solute classes. However, physical noise is 
present in real microanalysis, that can be simulated by adding a noise following a normal distribution 
to each composition value picked up from the image [14]. As expected, this noise also exacerbates the 



 
 
 
 
 
 

negative curvature of the curve at low aluminium content that is already present in the original curve 
as a result of the size distribution of secondary and tertiary arms [6]. 

2-D cuts of real structures or of 3-D simulations should certainly lead to some slight increase of the 
variance, for both the average solute content and solute distribution [20]. However, these effects are 
not expected to change significantly the conclusions of this work as the unit cells for chemical 
heterogeneities will remain the grains. 

A last note should be made which is that, whatever the sorting method used, the present results 
show that cumulative distributions could at best indicate the solute segregation behavior, i.e. positive 
or negative segregation, but should definitely not be used for estimating partition coefficients. 
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