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Effect of Low-Temperature Plasma Jet on Thermal

Stability and Physical Structure of Type I Collagen
Valérie Samouillan, Nofel Merbahi, Mohammed Yousfi, Jean-Pierre Gardou, Florian Delaunay,

Jany Dandurand, and Colette Lacabanne

Abstract—This work is devoted to the characterization of type
I collagen treated by a low-temperature plasma jet generated in
ambient air to determine whether the resulting fibrous material
is structurally preserved or reinforced. The physical structure of
collagen is checked by differential scanning calorimetry (DSC),
which is a well suited technique to analyze thermal transitions
in proteins, such as denaturation. DSC is used to evaluate the
thermal stability of collagen after the plasma treatments while
Fourier transform infra red spectroscopy is used to check the
integrity of triple helical domain and to investigate the effects
of plasma treatments on the functional groups of collagen. It is
more particularly shown that the plasma treatment can stabilize
the collagen structure without altering the triple helical structure.
This observation is supported by 1) the shift observed toward
high-temperature range of the collagen denaturation and 2) the
stiffening of the chains by a cross-linking action when compared
to the control sample.

Index Terms—Denaturation, differential scanning calorimetry
(DSC), Fourier transform infra red (FTIR) spectroscopy, low-
temperature plasma jet, type I collagen.

I. INTRODUCTION

D EVELOPMENT of biomaterials used as substitutes of

the extracellular matrix for the replacement of cardio-

vascular tissues in associated pathologies or the realization

of skin substitutes is a great challenge of repair medicine.

Since two decades, detergent and enzymatic protocols have

been optimized to obtain non antigenic extracellular matrices,

preserving the main fibrillar proteins such as collagen and

elastin [1]–[3]. The most commonly utilized collagen, collagen

type I, is constituted by triple helices units stabilized by cova-

lent intermolecular cross-links [4]–[8]. The rich chemistry of

collagen allows engineers to alter physicochemical properties

such as porosity, crystallinity, and cross-link density, resulting

in predictable tissue ingrowth and biodegradable rates [9]. Nev-

ertheless, the durability of collagen-based bioprostheses must
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be improved by the mechanical stabilization of proteins, and

their preserving against proteolytic degradation is necessary to

a complete recellularization [10].

One of the best methods to preserve collagen is the cross-

linking of collagenic fibers in order to restitute the tridimen-

sional network of the protein generally impaired by the cellular

purification of tissues [11], [12]. This cross-linking can be

achieved by chemical methods (glutaraldehyde, widely used

in surgery or carboimides) or by physical methods, such as

dehydrothermal treatment or gamma rays or UV irradiation.

The main disadvantage of chemical treatment using aldehydes

for collagen cross-linking is the cytotoxicity and the calcifi-

cation of fibers, decreasing the durability of the bioprosthesis

[10], [13]. The physical treatments could have the advantage

to lead the formation of chemical bonds between collagen

macromolecules without the incorporation of any exogenous

molecules. For instance, UV treatments have been investigated

to cross-link collagen [14], although irradiation can cause both

stabilization and destabilization of the collagen structure [14]–

[16]. Under such a context, it seems interesting to investigate

the effects of nonthermal atmospheric pressure plasmas as they

are not yet used for the treatment of collagen fibers, but already

successfully used in various other biomedical applications. This

concerns plasma sterilization and decontamination of surfaces

[17], [18], tissues engineering and biomaterial treatment for

their functionalization [19], [20] and more recently plasma

medicine for blood coagulation, disinfection of living tissues

involving wound healing, and more generally the interaction of

plasmas with eukaryotic cells [21]–[24].

Therefore, the aim of this work is to analyze some effects of

atmospheric pressure nonthermal plasmas on collagen fibers.

We used more particularly a low-temperature plasma jet gen-

erated in ambient air [25] and producing various active species

(excited species, free radicals, charged particles, and photons

(covering a large spectrum from UV up to visible) that are in

contact with type I collagen fibers under both freeze-dried and

hydrated states.

To quantify the effect of the plasma treatment on the proper-

ties of type I collagen, we chose to combine two suitable pro-

tein characterization methods: differential scanning calorimetry

(DSC) and Fourier transform infra red (FTIR) spectroscopy.

DSC is a powerful technique providing direct measurements of

thermodynamic characteristics and, unlike the other methods, is

efficiently applicable to collagen solutions, fibers, and tissues.

It is widely used in collagen research to infer the level of

cross-linking within a given sample through elucidation of its

denaturation temperature. Furthermore, FTIR spectroscopy is



Fig. 1. Overview on the right side on the experimental setup up for plasma jet in ambient air with the spectroscopic coupled ICCD camera and electric
(oscilloscope) tools for measurements NB. (a) The treated collagen is schematically displayed at distance d from the plasma jet). (b) The left side picture shows a
finger exposed to the low-temperature plasma jet (the temperature of the top of the jet does not exceed 27 ◦C).

a useful method to monitor changes in secondary structures

of a protein, in particular variation in the amide A, amide B,

amide I, II, and III regions.

II. EXPERIMENTAL SETUPS AND METHOD OF ANALYSIS

A. Overview on Low-Temperature Plasma Jet

There are in the literature many devices developed to produce

a low-temperature plasma jet more particularly for biomedical

applications as emphasized in the review of Laroussi [26].

A plasma jet allows a remote treatment very practical for in

vivo treatment where it is dangerous to put the living tissue

inside the zone of plasma generation. A plasma jet is also very

interesting for biomaterial treatment more particularly when it

is needed for instance to immerse the biomaterial in water for

a treatment under hydrated mode. There are many examples

of plasma jet devices for instance plasma needle [27], plasma

pencil [28], plasma brush [29], and other setups of plasma jets

driven by various power supplies (dc, ac, or RF sources). Such

plasma devices generally produce low-temperature plasmas

using various gas compositions and designs of the electrode

configuration. This allows the launching of the plasma outside

the generation zone with the help of a continuous gas flow. The

low-temperature plasma jet used in the present work for the

collagen treatment has been the subject of a patent [25].

The measured plasma temperature on the top of the jet, that has

a length of about 1 cm, does not exceed 27 ◦C. The plasma jet

is generated directly in the ambient air at atmospheric pressure

and launched by itself without any system of gas inlet feed.

This means that it is easily transportable because there is neither

gas bottle nor gas pumping. It is a low-temperature plasma

generated by a specific corona discharge design giving a natural

repetitive discharge current with a frequency of about 20 kHz

under a high-voltage dc power supply. Fig. 1 shows an overview

on the experimental setup involving schematically the plasma

jet power supply, the tools of measurements (monochromator

for spectroscopy and oscilloscope for electric data). Fig. 1 also

displays a schematic view of the plasma jet and the treated

collagen placed at a distance d from the plasma. Fig. 2(a) shows

the instantaneous discharge current with a peak of about 11 mA

that corresponds to a dissipated power of about 100 mW. The

UV-visible spectrum corresponding to the light emission of

the top of the air plasma jet is shown in Fig. 2(b) and (c).

This shows the classical emission bands of nitrogen such as

the second positive system of N2(C3πu)v → N2(B3πg)
′

v
from

about 290 nm up to 440 nm corresponding to the different

vibration states v and v′ (for instance at the peaks at 315.93 nm,

337.13 nm, 357.69 nm, 375.54 nm, and 380.49 nm). The first

positive system N2(B
3
∏

g) → N2(A3Σ
+
u ) which is apparent in

the visible-near infrared (between about 600 nm up to 900 nm)

range indicates the formation of the metastable N2(A
3Σ+

u )
states. The detection of the first negative system (FNS) of

N+
2 (B2Σ

+
u ) → N+

2 (X2Σ
+g) around 390 nm is synonymous of

high electron energies leading to the ion formation. However,

the presence of positive nitrogen ion is probably very low due to

the very small intensity of the FNS emission. There are also the

oxygen emissions at for instance 759 nm coming from the band

O2(b
1Σ+

g v = 0) → O2(X3Σ
−

g , v = 0) and the atomic line of

the triplet state of O at 777.47 nm. An atomic line of nitrogen

for N 4P−
4 S0 is also observable. However, the NOγ bands due

to the emission of NO(A2Σ+)v → NO(X2
∏

)′v synonymous

of dissociation of molecular nitrogen and oxygen leading to

NO formation, are not observable between about 200 nm up

to 290 nm due to the quenching of NOγ bands by the molecular

oxygen following the reaction:

NO(A2Σ+) + O2 → NO(X2
∏

) + O2 with a rate coeffi-

cient that is 1000 times higher than the NO(A2Σ+) quenching

by N2.

The same remark is true for the OH(A2Σ+) →
OH(X2

∏
3/2) emission bands between about 300 nm up

to 320 nm coming from the dissociation of water vapor

impurities present in ambient air and not observed due to the

quenching by molecular oxygen following the reaction:

OH(A2Σ+) + O2 → OH(X2
∏

3/2) + O2 with a rate coef-

ficient that is roughly 10 times higher than the OH(A2Σ+)
quenching by N2.

This overview on plasma jet spectrum means that the excited

species present at the top of jet are at least those involved by the

emission bands such as N2(C3πu)v, N2(B3πg)
′

v
, O2(b

1Σ+
g v =

0), O2(X
3Σ−

g , v = 0), N2(A
3Σ+

u ), O and N. Due to the kinetics



Fig. 2. (a) Instantaneous current of the corona discharge generating the
plasma jet in ambient atmospheric pressure air. (b) Spectrum in the 200 nm–
450 nm range collected in the top of the plasma jet. (c) Spectrum in the
600 nm–1000 nm range collected in the top of the plasma jet.

of formation of such excited species, it is obvious that we

have also another metastable states of molecular nitrogen and

oxygen, and also dissociation products of air such as atomic

nitrogen N and even atomic hydrogen. There are also other

species in the present ambient air plasma jet that are active

during the collagen treatment but they are not always detectable

in the optical emission spectrum of Fig. 2 due to mainly

the quenching processes or to emission outside the present

wavelength range (for instance specific atomic lines of nitrogen

are in the VUV range below 200 nm).

B. Treated Collagens

Commercial insoluble type I collagen (Fluka Chemie AG,

Switzerland) was extracted from bovine Achilles tendon and

available in the form of air-dried fibers. The type I collagen is

considered under two states:

– Freeze-dried state: Collagen fibers were compressed into

pellets (thickness 0.5 mm, diameter 10 mm), and each

face of the pellet was exposed to the plasma jet during

5, 10, and 60 min at ambient temperature (20 ◦C).

These times were found after preliminary tests to be

representative of short and long exposure times.

– Hydrated state: 80 mg of collagen fibers was placed in

7 mL of deionized water, equilibrated for 1 h so that

the fibers are swollen and subsequently exposed to the

plasma jet during 10, 20, 45, and 90 min under stirring at

ambient temperature (20 ◦C). As in the dehydrated state,

these times were found to be representative of short and

long exposure times.

A set of samples were then carefully put on absorbent

paper to remove excess water before thermal analysis. Another

set of samples were freeze-dried again before further thermal

analysis.

C. Setups of DSC and FTIR Spectroscopy

The DSC phase transition thermograms were recorded with

a Pyris Diamond differential scanning calorimeter from Perkin

Elmer. The temperature and energy scales were calibrated using

the manufacturer’s instructions with mercury, indium, and tin as

standards. Samples of 5 mg of weight were sealed in aluminum

pans. Empty pans were used as references. Thermal analysis is

performed to get insight into the denaturation phenomenon of

collagen, occurring in the [40 ◦C; 80 ◦C] temperature range in

the hydrated state and in the [180 ◦C; 230 ◦C] in the dehydrated

state [8]. That is why investigations in the hydrated state were

performed between 10 ◦C and 90 ◦C with 10 ◦C/min heating

rates, in hermetic pans. Investigations of the dehydrated state

were performed between 30 ◦C and 250 ◦C with 10 ◦C/min

heating rates, in nonhermetic pans. Determination of transition

parameters was performed with Origin software.

The FTIR spectra were performed in the attenuated total

reflection infrared spectroscopy using a Nicolet 5700 FTIR

(Thermo Electron Corporation) equipped in ATR device with

diamond crystal. All spectra were recorded in absorption mode

between 4000 cm−1 and 450 cm−1 at 4 cm−1 interval and

64 accumulations. Spectra were performed in duplicate on

two series of treated samples to check the reproducibility

in the position of absorption bands (inferior to a deviation

of 1 cm−1). The background spectrum was subtracted and a

baseline correction was performed. Fourier-self-deconvolution

(FSD) of the infrared spectra that allows resolution of several

overlapping bands [30] was performed in the amid I–II re-

gions to find the position of the different bands using Omnic

software.



Fig. 3. DSC first scans (from 30 ◦C to 150 ◦C, 20 ◦C/min) of freeze-dried
collagens (control and plasma jet-treated collagens).

III. RESULTS AND DISCUSSION

The freeze-dried and hydrated collagens are treated by the

low-temperature plasma jet for increasing exposures times.

The main electric operating parameter of the plasma setup

(magnitude of dc voltage of the power supply) is varied within

a voltage range between about 8 kV up to 13 kV that allows

maintaining the corona regime generating our low-temperature

plasma jet. Under these conditions, no change has been ob-

served in the DSC thermograms of the treated collagen. Such

results was expected because in this voltage range, only the

length of plasma jet undergoes a small variation (10%), but

the plasma remains at the same low temperature (because the

spark regime, which can heat the plasma, appears only at higher

voltages).

A. Freeze-Dried Collagen Treated by Plasma Jet

Fig. 3 shows the DSC thermograms of control collagen and

collagen treated by the plasma jet for several time exposures.

Table I displays the corresponding denaturation temperatures

Td, defined as the maximum of the peak and the corresponding

enthalpies of denaturation ∆Hd computed from a series of

measurements. Calorimetric measurements of control collagen

show a broad endothermic phenomenon occurring between

50 ◦C and 150 ◦C due to the evaporation and vaporization of

residual bound water in collagen [31]. Another endothermic

event is observed above 200 ◦C attributed to the denaturation

of collagen. It is addressed to the rupture of hydrogen bonds

that maintain the secondary and tertiary structure of collagen

inducing the uncoiling of the triple helix in α chains of random

conformation, individually or covalently linked depending on

the degree of heating [32], [33]. The denaturation of the dry

protein occurs in the [180 ◦C; 250 ◦C] temperature range as an

endothermic peak [34], [35]. The denaturation parameters of

the collagen control (Td = 225 ◦C and ∆Hd = 7.05 J · g−1)

are similar to thermal parameters of pure freeze-dried collagen

generally observed in literature [36]. In this case, the value

of the denaturation enthalpy of collagen for hydration < 6%

(corresponding to less than one mole of water per tripeptide) is

TABLE I
DENATURATION PARAMETERS OF FREEZE DRIED COLLAGENS (CONTROL

AND PLASMA JET TREATED)

Fig. 4. DSC second scans (from −40 ◦C to 20 ◦C, 10 ◦C/min) of hydrated
collagens (control and plasma jet-treated collagens).

Fig. 5. DSC first scans (from 10 ◦C to 90 ◦C, 10 ◦C/min) of hydrated
collagens (control and plasma jet-treated collagens).

assigned mainly to the breaking of the direct hydrogen bonds

between alpha chains [36].

In the case of treated collagen, the DSC thermograms (Fig. 3)

show several changes. The denaturation becomes a complex

event, implying denaturing zones at lower and higher tempera-

ture when compared to the control collagen (Fig. 3 and Table I).

The destabilized zones could be attributed to the reduction of

collagen into polypeptides of different molecular weight [14].

Nevertheless, the high enthalpy associated with destabilized

zones for a 5-min exposure is a feature of a triple helical

domain. The stabilized zones can be attributed to a cross-

linking of collagen. For a 10-min exposure, the total enthalpy is



TABLE II
QUANTIFICATION OF FREE WATER AND TOTAL WATER IN HYDRATED COLLAGENS (CONTROL AND PLASMA JET TREATED)

slightly greater than the enthalpy corresponding to the control

collagen, meaning that the stabilization is mainly entropic, such

as induced by an increase in the packing density of collagen

molecules in the fibers [17]. For a 60-min exposure time, the

shape of denaturation peaks and the low value of the associated

enthalpy suggest an important degradation of collagen triple

helical structure. The optimum time seems to be comprised

between 10 min and 60 min. By increasing exposure time to

the low-temperature plasma jet, peptide bond cleavage becomes

predominant. The relative proportion of these two competing

reactions (cross-linking and bond cleavage) is unknown but was

shown to depend on the water content and the oxygen tension

[14]. That is why similar experiments were also performed on

hydrated collagen.

B. Hydrated Collagen Treated by Plasma Jet

Figs. 4 and 5 display the DSC thermograms (first and second

scans) of control collagen (i.e., without plasma treatment) and

collagen treated by the plasma jet for gradual exposure times

(up to 90 min). The second scan, performed between −40 ◦C

and 20 ◦C, was used to evaluate free water quantity in collagens.

This experiment, that will be discussed in first, was posterior to

the analysis of the denaturation zone in order to minimize the

influence of calorimetric measures (here a cooling to −40 ◦C)

on the shape of denaturation.

Fig. 4 shows the large endotherm between 0 ◦C and 20 ◦C

of ice melting. In hydrated collagen, freezable water can be

quantified by dividing the area of the measured endotherm by

330 J · g−1 corresponding to the melting enthalpy of pure ice.

The total amount of water in the collagen sample was evaluated

by gravimetry. The quantification of freezable and total water is

computed on Table II. Since denaturation parameters are very

sensitive to the level of hydration of collagen fibers, we had to

check that all the collagens have been analyzed under similar

conditions. Some authors [36] showed that the denaturation

enthalpy of collagen was constant below 6 moles of water

per tripeptide of collagen (corresponding to 0.4 g of water/g

collagen), and that the denaturation enthalpy was constant

above 30 moles of water per tripeptide (corresponding to 1.9 g

of water per g of collagen). Since the levels of hydration in

the present study are largely superior to this last limit, we can

compare the denaturation parameters versus the exposure time

without hydration influence.

In Fig. 5, a complex endothermic peak addressed to the

denaturation phenomenon of hydrated collagen is detected for

all samples, splitting into two components or more for 10 min,

45 min, and 90 min of plasma exposure. Table III displays

the corresponding denaturation temperatures Td and the corre-

TABLE III
DENATURATION PARAMETERS OF HYDRATED COLLAGENS (CONTROL

AND PLASMA JET TREATED)

sponding denaturation enthalpies ∆Hd computed from a series

of measurements.

The denaturation parameters of control hydrated collagen

(Td = 78.3 ◦C and ∆Hd = 47.8 J · g−1) are close to thermal

parameters of pure freeze-dried collagen generally observed

in the literature [36]. The high enthalpy of unfolding collagen

immersed in water-when compared with the values found in the

dehydrated state-is thought to derive mainly from the breaking

of hydrogen bonds forming the hydration network around the

collagen molecules. These hydrogen bonds comprise intrachain

and interchain as in the dehydrated state but also intermolecular

water bridges. More precisely, hydroxyproline and hydroxyl

groups are exposed to the solvent and can support hydrogen-

bonds water bridges [14], [36], [37].

For 10 min of exposure time, the split of the denaturation

peak can be attributed to destabilized zones and stabilized ones,

showing in this case as in the dehydrated one the competition

between two antagonist processes: reduction into polypeptides

of various molecular weights and cross-linking of collagen. The

value of enthalpy indicates a conservation of the triple heli-

cal structure. Nevertheless, a qualitative comparison between

the two peaks shows that the destabilization mechanism is

dominant.

For 20 min of exposure time, stabilized zones and destabi-

lized zones must be roughly formed in equal parts, giving rise

to a broad and complex denaturation peak.

For 45 min of exposure time, the cross-linking mechanism

appears to be the main phenomenon according to peak height

and area.

Finally, a special feature is noticed for 90 min of exposure

time. Contrary to the evolution at long exposure time reported

in the dehydrated case, a sharp and intense peak is detected

at 231 ◦C, corresponding to a highly stabilized collagen do-

main. The peak previously attributed to destabilized zones is

also shifted toward higher temperature, the temperature of the

peak maximum being analogous to the control collagen one.

Thereofore, the cross-linking mechanism is rather distinct from

that observed in the dehydrated state, and seems better to obtain

highly stabilized samples.



Fig. 6. (a) FTIR spectra of control and plasma-treated collagens in the
wavenumber range 4000–2000 cm−1. (b) FTIR spectra of control and plasma-
treated collagen in the wavenumber range lower than about 2500 cm−1.

C. FTIR Spectroscopy Analysis of the Treated

Freeze-Dried Collagen

The FTIR spectra of protein molecules can be correlated

directly to their backbone conformation. The identification

of the different absorption bands of the control sample was

performed using bibliographic data on collagen type I [38]–[40]

and general data on protein FTIR absorption bands [41].

Fig. 6(a) and (b) show the FTIR spectra of the freeze-dried

collagen samples decomposed in two wavenumber ranges for

a better clarity (4000 cm−1 to 2000 cm−1 and 2500 cm−1 to

400 cm−1). The amide A and B bands at 3300 cm−1 and

3075 cm−1 [Fig. 6(a)] are mainly associated with the stretching

vibrations of N-H groups. The amide I band at 1630 cm−1

[Fig. 6(b)] is dominantly attributed to the stretching vibra-

tions of peptide C = O groups. The amide II absorbance at

1540 cm−1 [Fig. 6(b)] arises from the N-H bending vibrations

coupled to C-N stretching vibrations. The amide III centered

at 1237 cm−1 [Fig. 6(b)] is assigned to the C-N stretching

and N-H bending vibrations from amide linkages, as well as

wagging vibrations of CH2 groups in the glycine backbone

and proline side chains [42]. In addition to the amide bands

largely exploited for the characterization of proteins, the 3000–

2800 cm−1 region [Fig. 6(a)] addressed to symmetric and

asymmetric stretching modes of CH, CH2 and CH3 shows

TABLE IV
IR ABSORPTION RATIO OF AMIDE III (AIII) AND 1454 cm-1

WAVENUMBER (A1454) IN THE CASE OF COLLAGEN TREATED BY

PLASMA FOR SEVERAL EXPOSURE TIMES AND COMPARED TO

CONTROL COLLAGEN (0 min).

important absorptions due to the high level of aliphatic side

chains in collagen.

The superimposition of the spectra of collagen control and

plasma-treated collagen indicates that the global positions of

the major amide bands do not change with the plasma treat-

ment, particularly the amide I band related to collagen triple

helix [43]. Moreover, the IR absorption ratio of amide III

to 1454 cm−1 (AIII/A1454 cm−1) is also considered to be

a measure of the preservation of integrity of collagen triple

helices [38], [44] when it is equal or higher than one; it falls

to 0.6 for denatured collagen [45]. Table IV shows that the

ratios for plasma-treated collagens slightly increase from 1 for

control collagen, indicating that the triple helix conformation is

not destroyed by the plasma treatment.

Since the amide I–II region consists of several bands strongly

dependent on secondary conformations, it was subjected to a

FSD in order to resolve the various underlying and overlapping

spectral features that contribute to this complex region. The

renormalized amide I–II regions and the corresponding FSD

traces of control collagen and 60-min treated collagen are

presented in Figs. 7(a) and (b).

The amide I region of control collagen results into five

components that are the signatures of the different confor-

mations of the protein at 1693 cm−1 (antiparallel β-sheets),
1679 cm−1 (β-turns), 1660 cm−1 (native triple helical confor-

mation), 1645 cm−1 (random coil), and 1632 cm−1 (β-sheets)
[39], [46]–[48]. For 60 min of plasma exposure, the FSD

trace confirms the integrity of triple helical conformation

(1660 cm−1), and none increase of the random coil conforma-

tion (1645 cm−1) as observed in denatured collagen [39]. The

main difference concerns the decrease of the absorption in the

1700 cm−1–1680 cm−1 region (that gradually decreases upon

the time of treatment, results not shown), suggesting a slight

modification of the secondary structure of treated collagen in

this case, with a diminution of the associated conformations

(antiparallel β-sheets and β-turns). Nevertheless, we must take

into account that the side chain C = 0 stretching of acid

residues (like aspartic acid and glutamic acid, as well as the

side chain C = N stretching of basic residue arginine) absorb

in the 1700 cm−1–1680 cm−1 region, and their contribution

is not negligible since their proportion is high in collagen.

Also, another possible hypothesis for the diminution of the

absorbance in this zone is the modification of these three kinds

of residues upon plasma treatment.

Another slight modification concerns the diminution and

disappearance of the small absorption band at 3004 cm−1,

addressed to the stretching of aromatic and vinylic C-H bonds.



Fig. 7. (a) Renormalized absorbance for amide I–II regions versus wavenum-
ber in the case of control and treated collagen during 2 × 60 min (60 mn
for each side). (b) Fourier-self-deconvolution (FSD) traces for amide I–II
regions versus wavenumber in the case of control and treated collagen during
2 × 60 min (60 min for each side).

Plasma treatment could have an effect of the C = C bond

of collagen residues such as tyrosine and phenylalanine. This

assertion is corroborated by the modification of the amide II in

the 1520–1505 cm−1 region, corresponding to the ring mode of

tyrosine and phenylalanine. It must be recalled that tyrosine and

phenylalanine are the main absorber of UV light that are shown

to decrease with UV radiation due to a possible aggregation of

the fibers [49].

As the low-temperature plasma jet generates radicals, exited

and ionized species and also UV emissions, cross-linking of

collagen in our experiments could be partly attributed to the UV

emissions of the plasma jet. However, this affirmation must be

considered with care because it has to be confirmed by a plasma

jet treatment of the collagen done with and without an UV filter.

Such a phenomenon was reported both with UVB [14] and

UVC [50] irradiation or with the presence of a photosensitizing

agent and laser irradiation in the visible spectra [51].

IV. CONCLUSION

The present work on the thermal denaturation of freeze-dried

and hydrated collagens brings us interesting information on

the effects of the low-temperature plasma jet treatment on the

triple helical structure and the stability of this protein. There

is a competition between reduction of collagen in polypeptides

and cross-linking mechanisms. In the case of the freeze-dried

state, the destabilization of the triple helical structure is the

main event for the longest exposure times. The feature is

distinct when collagen I fibers are exposed to the plasma jet in

the hydrated state. In this case, the cross-linking phenomenon

becomes predominant for the longest exposure times (between

45 min and 90 min). Therefore, it is clear that the plasma jet

treatment of freeze-dried fibers must be avoided. In addition, it

is shown from FTIR analysis slight modifications in absorption

bands synonymous to the preservation of the integrity of the

triple helical structure of collagen. This however underlines a

possible effect of plasma treatment on aromatic side chain and

polar side chain of collagen, and could constitute a first step

to elucidate the thermal stability enhancement of triple helical

structure with the plasma exposure.

The present exploratory work is a first step to determine the

effects of low-temperature plasmas generated in ambient air on

the preservation of the collagen structure and the enhancement

of triple helical stabilization. However, in the light of the

present work, it is clear that further investigations are needed to

investigate the effects of specific active species on the collagen

using other kinds low-temperature plasmas as for instance

rare gas-oxygen or rare gas-nitrogen mixtures. Last, it will

be very interesting to study in collaboration with biochemists,

the biocompatibility and the cellular adhesion and proliferation

of the collagenous biomaterials exposed to low-temperature

plasma jets.
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