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Correspondence Between One- and Two-Equation

Models for Solute Transport in Two-Region

Heterogeneous Porous Media

Y. Davit · B. D. Wood · G. Debenest · M. Quintard

Abstract In this work, we study the transient behavior of homogenized models for solute

transport in two-region porous media. We focus on the following three models: (1) a time

non-local, two-equation model (2eq-nlt). This model does not rely on time constraints and,

therefore, is particularly useful in the short-time regime, when the timescale of interest (t) is

smaller than the characteristic time (τ1) for the relaxation of the effective macroscale param-

eters (i.e., when t ≤ τ1); (2) a time local, two-equation model (2eq). This model can be

adopted when (t) is significantly larger than (τ1) (i.e., when t ≫ τ1); and (3) a one-equation,

time-asymptotic formulation (1eq∞). This model can be adopted when (t) is significantly

larger than the timescale (τ2) associated with exchange processes between the two regions

(i.e., when t ≫ τ2). In order to obtain insight into this transient behavior, we combine a

theoretical approach based on the analysis of spatial moments with numerical and analytical

results in several simple cases. The main result of this paper is to show that there is only

a weak asymptotic convergence of the solution of (2eq) towards the solution of (1eq∞) in

terms of standardized moments but, interestingly, not in terms of centered moments. The

physical interpretation of this result is that deviations from the Fickian situation persist in the

limit of long times but that the spreading of the solute is eventually dominating these higher

order effects.
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List of Symbols

Variables

bi j Closure mapping vector in the i-region associated with ∇〈c j 〉 j (m)

ci Pointwise solute concentration in the i-region (mol m−3)

〈ci 〉 Superficial spatial average of ci (mol m−3)

〈ci 〉i Intrinsic spatial average of ci (mol m−3)

〈c〉γω Weighted spatial average concentration (mol m−3)

c̃i Solute concentration standard deviation in the i-region (mol m−3)

Di Diffusion tensor in the i-region (m2 s−1)

Di j Dispersion tensor in the two-equation models associated with ∂t 〈ci 〉i and

1〈c j 〉 j (m2 s−1)

Di j Dispersion coefficient in the 1-D two-equation models associated with ∂t 〈ci 〉i and

1〈c j 〉 j (m2 s−1)

D
∞ Dispersion tensor of the one-equation time-asymptotic model (m2 s−1)

D
∞ Dispersion coefficient of the 1-D one-equation time-asymptotic model (m2 s−1)

exp Exponentially decaying terms (−)

h Transient effective mass exchange kernel (s−1)

h∞ Effective mass exchange coefficient (s−1)

j̃i Deviation of the total mass flux for region i (mol m−2 s−1)

Ji Average of the total mass flux for region i (mol m−2 s−1)

L Characteristic length of the field-scale (m)

ℓi Characteristic length of the i-region (m)

mi
n nth-order centered moment associated with 〈ci 〉i for the two-equation model

(mn mol)

m
γω
n nth-order centered moment associated with 〈c〉γω for the two-equation model

(mn mol)

m∞
n nth-order centered moment associated with 〈c〉γω for the one-equation

asymptotic model (mn mol)

M
γω
n nth-order standardized moment associated with 〈c〉γω for the two-equation

model (−)

M∞
n nth-order standardized moment associated with 〈c〉γω for the one-equation asymp-

totic model (−)

ni j Normal unit vector pointing from the i-region towards the j-region (−)

pk Three lattice vectors that are needed to describe the 3-D spatial periodicity (m)

Qi (x, t) Macroscopic source term in the i-region (mol m−3 s−1)

Qγω Weighted macroscopic source term (mol m−3 s−1)

R Radius of the REV, (m)

Si j Boundary between the i-region and the j-region (−)

Si j Area associated with Si j (m2)

ri Closure parameter in the i-region associated with 〈cγ 〉γ − 〈cω〉ω (−)

t Time (s)

t’ Non-dimensionalized time (−)

T Period of the oscillations (s)

vi Velocity at the microscale in the i-region (m s−1)



〈vi 〉 Superficial spatial average of vi (m s−1)

〈vi 〉i Intrinsic spatial average of vi (m s−1)

〈vi 〉i Norm of the intrinsic spatial average of vi (m s−1)

ṽi Velocity standard deviation in the i-region (m s−1)

Vi j Effective velocity in the two-equation models associated with ∂t 〈ci 〉i and

∇〈c j 〉 j (m s−1)

V ∞ Effective velocity of the one-equation time-asymptotic model (m s−1)

Vi Domain of the averaging volume that is identified with the i-region (−)

Vi Volume of the domain Vi (m3)

V Domain of the averaging volume (−)

V Volume of the domain V (m3)

Greeks

α Weighted mass transfer coefficient, h∞
(

1
Φγ εγ

+ 1
Φωεω

)

(s−1)

β∗
1 and β∗

2 Source terms in the closure problems (m s−1)

γ -region First region (−)

1V Velocity contrast between the γ and ω regions, Vγ γ − Vωω (m s−1)

1D Dispersion contrast between the γ and ω regions, Dγ γ − Dωω (m2 s−1)

Φi i − region volume fraction (−)

εi Darcy-scale fluid fraction (porosity) within the i-region (−)

ω-region Second region (−)

τ1 Characteristic time for the relaxation of the two-equation model effective param-

eters (s)

τ2 Characteristic time for the transition towards the one-equation asymptotic

regime (s)

µi
n nth-order raw moment associated with the 〈ci 〉i for the two-equation model

(mn mol)

µ
γω
n nth-order raw moment associated with the 〈c〉γω for the two-equation model

(mn mol)

µ∞
n nth-order raw moment associated with the 〈c〉γω for the one-equation asymp-

totic model (mn mol)

Subscript

i, j Indices for γ or ω (−)

1 Introduction

The physics of transport in porous media deals inevitably with multiscale heterogeneities

(Cushman 1997). A number of theoretical and numerical methods have been developed to

model these systems. The most direct approach is to solve the transport equations at the

sub-pore scale by directly computing solutions with sufficient resolution over an enormous

number of pores. Contemporary computational methods have begun to make this approach

possible. However, such detailed microscale solutions generally contain a substantial amount

of information that is of low value to most applications. To provide results with practical rel-

evance, tensor fields at the microscale can generally be filtered by eliminating the small-scale



Fig. 1 Schematic diagram highlighting the hierarchy of the main scales involved in solute transport in two-

region porous media. The macroscale is characterized by the length L; the support scale, associated with V ,

is characterized by the radius R; and the microscale (Darcy-scale) regions are characterized by lengths ℓγ

and ℓω . Throughout this paper, homogenization of microscale equations relies on the following inequalities:

L ≫ R ≫ ℓγ , ℓω

high frequency fluctuations. Various upscaling techniques have been developed for this pur-

pose, where one first averages the partial differential balance equations that apply at the

microscale, and then solves these averaged equations at a coarser scale of resolution. This

kind of approach always requires the solution of ancillary closure relations to provide repre-

sentations of how the small-scale correlations influence the solution at the macroscale. Such

techniques have been widely used to model transport problems in porous media and example

approaches include volume averaging (Whitaker 1999), ensemble averaging (Dagan 1989;

Cushman and Ginn 1993), moments matching (Brenner 1980), and multiscale asymptotics

(Bensoussan et al. 1978). An overview of upscaling methods has recently been provided by

Cushman et al. (2002).

In this article, we are interested in comparing the behavior of several different upscaled

models for describing solute transport via convection and diffusion in a discretely hierarchical

porous medium containing two different regions consisting of coarse and fine porous media

(see Fig. 1). In this figure, we have illustrated three characteristic scales in the sequence of

scales in the hierarchy: (1) the macroscale associated with the volume VM and the charac-

teristic length L; (2) the support scale associated with the volume of the averaging operator,

V , and the characteristic length R; and (3) the microscale associated with the size of a repre-

sentative volume of porous material within the coarse and fine regions and the characteristic

lengths ℓγ and ℓω.



Under the most general conditions, the transport process applying at the macroscale is

specified by a differential balance equation that is time and space non-local; such transport

equations have been widely reported in the literature, and have been developed from a number

of different upscaling approaches (e.g., Koch and Brady 1987; Cushman and Hu 1995; Wood

2009). This behavior can be mathematically described via solutions of integro-differential

equations that involve convolutions of a memory kernel over space and time. These non-local

macroscale formulations are extremely important from a theoretical point of view and have

also been applied to the description of transport phenomena in heterogeneous porous media

(Cushman et al. 1995). However, there are also a number of computational and physical

issues that lower their practical value. For example, with most discrete numerical methods,

spatial convolutions lead to dense matrices that are much more complicated to invert than the

sparse matrices produced by purely local models (Wood 2009). Without additional approx-

imations regarding the evolution of the kernels, non-local models may not actually reduce

the information content as compared with the direct solution to the microscale problem.

To make these equations more tractable, various simplifications to the exact non-local

models have been considered (e.g., Chastanet and Wood 2008; Haggerty et al. 2004). These

simplifications often rely on conjectures about the time and space scales of the transport

processes with the general goal of localizing equations, i.e., transforming integro-differen-

tial formulations into systems of partial differential equations. The local models that result

from this procedure have more restricted domains of validity but are generally simpler to

solve; the difficulty being to determine the best compromise for a specific application. In this

paper, we will consider three approximations to the exact non-local description in the case of

two-region porous media: (1) a two-equation, non-local in time model (2eq-nlt); (2) a time

and space local two-equation model (2eq); and (3) an asymptotic in time one-equation model

(1eq∞). Each of these models is briefly described below.

The time non-local two-equation model examined here corresponds to the developments

by Moyne (1997); Souadnia et al. (2002) and Wood and Valdès-Parada (2012). The model

is specified by

Model 1: Two-equation, time non-local (2eq-nlt)

∂t 〈cγ 〉γ +
∑

j=γ,ω

∂t Vγ j · ⋆∇〈c j 〉 j

=
∑

j=γ,ω

∇ ·
(

∂t Dγ j · ⋆∇〈c j 〉 j
)

−
∂t h

Φγ εγ

⋆
(

〈cγ 〉γ − 〈cω〉ω
)

+ Qγ , (1)

∂t 〈cω〉ω +
∑

j=γ,ω

∂t Vωj · ⋆∇〈c j 〉 j

=
∑

j=γ,ω

∇ ·
(

∂t Dωj · ⋆∇〈c j 〉 j
)

−
∂t h

Φωεω

⋆
(

〈cω〉ω − 〈cγ 〉γ
)

+ Qω. (2)

In these equations, 〈ci 〉i refers to the intrinsic volume averaged concentration in the i-region.

The bracket notation 〈·〉 is here as a reminder that the concentrations appearing in this two-

equation model are defined as volume averages of the pointwise concentrations ci at the micro-

scale. The ⋆ operator refers to convolutions in time defined by e⋆ f (t) =
∫ t

0 e (τ ) f (t −τ)dτ .

The product A · ⋆B is the mixed contraction (·) /time convolution (⋆) between tensor fields

A and B. The macroscale parameter Φi is the volume fraction of the i-region, considered

constant in time and space; εi is the Darcy-scale volume fraction of fluid phase within the



i-region, considered constant in time and space; the macroscale parameters, Vi j and Di j , are

intrinsic velocities and dispersion tensors of the two-equation model (Vi j and Di j with i 6= j

are interphase coupling terms for the macroscale fluxes); the parameter h is a macroscale

mass exchange kernel; and Qi is a source term. In terms of the volume averaging theory, this

formulation refers to situations in which the concentration perturbations are well captured

by the two-equation spatial localization process; but which require a fully transient closure.

Effective parameters, Vi j , Di j , and h, are defined as integrals of mapping variables that solve

initial boundary value problems (IBVPs) at the microscale. Hence, in Eqs. (1) and (2), the

convolution kernels are generic functions and can be related to a specific porous medium

via computation of these IBVPs over a representative volume. In practice, if the topology of

the microscale problem is unknown, the kernels may be approximated by heuristic functions

(see Haggerty et al. 2000; Luo et al. 2008). We also remark that this local in space/non-local

in time approach is adapted to situations for which the non-locality in time is weakly cou-

pled with the non-locality in space and the temporal convolutions can be treated separately

from the spatial convolutions. This is the case, for instance, for a periodic mobile–immobile

system for which the time convolution will capture all the relaxation times for diffusion in

the immobile domain.

A second set of approximations leads to a formulation that is both local in time and space.

The particular model examined here corresponds to the developments of Ahmadi et al. (1998)

and Cherblanc (2003, 2007):

Model 2: Local two-equation (2eq)

∂t 〈cγ 〉γ +
∑

j=γ,ω

Vγ j · ∇〈c j 〉 j

=
∑

j=γ,ω

∇ ·
(

Dγ j · ∇〈c j 〉 j
)

−
h∞

Φγ εγ

(

〈cγ 〉γ − 〈cω〉ω
)

+ Qγ , (3)

∂t 〈cω〉ω +
∑

j=γ,ω

Vωj · ∇〈c j 〉 j

=
∑

j=γ,ω

∇ ·
(

Dωj · ∇〈c j 〉 j
)

−
h∞

Φωεω

(

〈cω〉ω − 〈cγ 〉γ
)

+ Qω. (4)

This model is valid when the characteristic times for the relaxation of the effective parameters

are very small compared to the macroscopic time of interest. In this case, the convolutions

disappear, i.e., we have ∂t A (t) · ⋆B (t) ≈ A (∞) · B (t), (cf. Sect. 4.1 and 4.2 in Chastanet

and Wood (2008) and Davit and Quintard (2012)). The relaxation of the convolution ker-

nels and the convergence of ∂t A (t) · ⋆B (t) towards A (∞) · B (t) are both controlled by

the characteristic times of the IBVPs discussed above. An attractive feature of this model is

the unique coefficient, h∞, whereby mass exchange processes between the two regions are

described. In this way, spatial heterogeneities may be accounted for by simply considering

a spatial distribution of h∞, see Kfoury et al. (2004, 2006). The disadvantage of this model

when compared with the (2eq-nlt) model is that it will fail to describe transport processes

in the short-time regime when the convolutions must be considered (Parker and Valocchi

1986; Landereau et al. 2001). Other possible descriptions are multirate mass transfer models

(Haggerty and Gorelick 1995), but we will limit our study to the fully non-local and fully

local two-equation descriptions, Eqs. (1)–(2) and (3)–(4).

The third, and last, set of approximations that we will consider leads to the one-equation

time-asymptotic formulation, as described by Quintard et al. (2001):



Model 3: Time-asymptotic, one-equation (1eq∞)

∂t 〈c〉γω + V∞ · ∇〈c〉γω = ∇ ·
(

D
∞∇〈c〉γω

)

+ Qγω. (5)

In Eq. (5), 〈c〉γω is the weighted average solute concentration over the regions (γ ) and (ω):

〈c〉γω ≡
Φγ εγ 〈cγ 〉γ + Φωεω〈cω〉ω

Φγ εγ + Φωεω

. (6)

V∞ is the solute weighted average velocity,

V∞ ≡
Φγ εγ 〈vγ 〉γ + Φωεω〈vω〉ω

Φγ εγ + Φωεω

, (7)

where 〈vi 〉i is the volume average velocity over the phase (i); D
∞ is the time-asymptotic

dispersion tensor (see Davit et al. 2010 for a detailed expression); and Qγω is the weighted

average source term. In the literature, this model has been derived using, at least, two differ-

ent techniques. Zanotti and Carbonell (1984) studied the asymptotic behavior of the spatial

moments of (2eq) in a semi-infinite medium and used the relationship D
∞ ≡ 1

2
lim

t→∞
d
dt

(

m
γω
2

m
γω
0

)

,

where m
γω
n is the nth-order centered spatial moment associated with 〈c〉γω, to derive an ana-

lytical expression for D
∞. A more direct one-step derivation can be obtained by averaging

over the two phases simultaneously and using a non-conventional perturbation decomposition

(see Davit et al. 2010).

The purpose of this work is to gain insight into the correspondence between these three

different models. More specifically, the contributions of this study are to

1. illustrate the transient behavior of all three models by studying analytical solutions to

the purely diffusive problem with periodic excitations in a “space-clamped” stratified

geometry.

2. examine the convergence of solutions for the two-equation (2eq) and one-equation

(1eq∞) models as time increases. In particular, we are interested in developing a con-

straint that indicates when one can use the one-equation time-asymptotic model (1eq∞)

given by Eq. (5) instead of the two-equation model (2eq) given by Eqs. (3)–(4). For the

expression of this constraint, we consider the propagation of a pulse through an infi-

nite one-dimensional porous medium. We will not study the influence of the boundary

conditions on the time-asymptotic regime (see discussions in Davarzani 2010).

The remainder of this article is organized as follows. In Sect. 2, we briefly outline the deri-

vation of the three macroscale models described above using the volume averaging theory.

In Sect. 3, we illustrate the frequency response of all three models by studying analytical

solutions to the purely diffusive transport problem. In Sect. 4, we analyze Eqs. (3)–(4) using

spatial moments and study their asymptotic behavior. We also compute the corresponding

spatial moments up to the sixth order and show that these numerical results support the

theoretical analysis.

2 Macroscale Models Derivation

2.1 Preliminaries and Definitions

In this section, we provide a brief presentation of the volume averaging technique and discuss

the derivation of the three models described above. The purpose here is to provide only an

outline; the details of these derivations can be found in the original papers referenced for

each of the three models.



For these developments, we consider two different regions (cf. Fig. 1) in which the solute

undergoes diffusion and convection: we can think of these two regions as being associated

with a binary distribution of coarse and fine porous media. We assume a continuity of the

concentrations and of the fluxes at the boundary between the coarse (γ ) and fine (ω) regions.

The microscale mass balanced equations take the form

γ -region : ∂t

(

εγ cγ

)

+ ∇ ·
(

εγ cγ vγ

)

= ∇ ·
(

εγ Dγ · ∇cγ

)

, in Vγ , (8a)

BC1 : cω = cγ , on Sγω, (8b)

BC2 : −nγω · εγ Dγ · ∇cγ = −nγω · εωDω · ∇cω, on Sγω, (8c)

ω-region : ∂t (εωcω) + ∇ · (εωcωvω) = ∇ · (εωDω · ∇cω), in Vω, (8d)

IC1 : cγ = 0, in Vγ at t < 0, (8e)

IC2 : cω = 0, in Vω at t < 0. (8f)

In these equations, ci (i = γ, ω) is the concentration in the i-region and we impose uni-

formly zero initial concentrations. In addition, the velocity field, vi , is assumed to be known

pointwise for the purposes of this study. This is correct if the flow problem, i.e., the total

mass and momentum balance equations can be solved independently, which is the case if the

component is a tracer. The reader may refer to Quintard and Whitaker (1998) for a derivation

of regional Darcy’s laws which may be used in conjunction with the equations derived in

this paper. Dγ is the Darcy-scale dispersion tensor. Si j is the interface between the i- and the

j-region, and Si j is the area of this interface; ni j is the corresponding normal unit vector point-

ing from i to j . We remark that these equations are based on the assumption that a continuum

description holds for representative volumes defined at a length scale that is smaller than ℓγ

and ℓω, i.e., Eqs. (8a)–(8f) already represent an average Darcy-scale description where the

averaging has been used to homogenize the pore-scale details. An important consequence of

this heterogeneous configuration is the appearance of the Darcy-scale porosities εi (i = γ, ω);

porosities that we will consider constant in time and space throughout this work.

To obtain a macroscopic model for mass transport, we average each microscopic equa-

tion over a representative region (REV) and use the following quantities: Vi represents the

i-region within the REV and Vi is the volume of Vi . The superficial averages of ci over

the volume V are given by 〈ci 〉 ≡ 1
V

∫

Vi
ci dV . The associated intrinsic averages for ci

are 〈ci 〉i ≡ 1
Vi

∫

Vi
ci dV . We define the constant volume fractions as Φi ≡ Vi

V
; with this

definition implying that 〈ci 〉 = Φi 〈ci 〉i .

2.2 Perturbation Analysis

During the averaging process, terms involving point values of cγ , cω, vγ , and vω appear in

the integrands. To treat these terms, one conventionally defines perturbation decompositions

for any property ϕi (where i indicates the region, so that i is either γ or ω) by ϕi = 〈ϕi 〉i + ϕ̃i .

Upon imposing the separation of length scales, ℓγ , ℓω ≪ R ≪ L , it is possible to show that

the volume averaged equations take the form (see Appendix A):

∂t

(

Φiεi 〈ci 〉i
)

+ ∇ ·
(

Φiεi 〈ci 〉i 〈vi 〉i
)

= ∇ ·






Φiεi Di ·






∇〈ci 〉i +

1

Vi

∫

Sγω

ni j c̃i dS













+
1

V

∫

Sγω

ni j · εi Di · ∇ c̃i dS − ∇ ·
(

Φiεi 〈c̃i ṽi 〉i
)

. (9)



Equation (9) represents a macroscopic description of the transport processes. However,

because unknown deviation quantities appear in the equation, the problem is not in a closed

form. In order to close the problem, we need to: (1) determine the IBVPs that the perturbations

satisfy; and (2) use the solutions of these IBVPs to obtain a closed form of Eq. (9).

The definition of the perturbations, c̃i ≡ ci − 〈ci 〉i , suggests that the set of equations

governing c̃i can be obtained by subtracting suitable multiples of Eq. (9) from Eqs. (8a) and

(8d). This operation leads to a problem of the form

∂t c̃i + ∇ · (c̃i vi ) − 〈∇ · (c̃i vi )〉i + ṽi · ∇〈ci 〉i = ∇ · (Di · ∇ c̃i ) − 〈∇ · (Di∇ c̃i )〉i , (10a)

BC1 : c̃γ − c̃ω = −
(

〈cγ 〉γ − 〈cω〉ω
)

, on Sγω, (10b)

BC2 : nγω ·
(

j̃γ − j̃ω

)

= −nγω ·
(

Jγ − Jω

)

, on Sγω, (10c)

where j̃i ≡ −εi Di ·∇ c̃i , Ji ≡ −εi Di ·∇〈ci 〉i , and 〈∇ ·(Di∇ c̃i )〉i = 1
Vi

∫

Sγω

ni ·Di ·∇ c̃i dS. To

ensure uniqueness of c̃i , we impose the zero initial condition c̃i (t = 0) = 0, the solvability

condition 〈c̃i 〉i = 0 and local periodicity.

At this point, Eq. (10) are still coupled with the macroscopic concentrations but in a

weaker sense. One can look for a solution of the form (see Moyne et al.; Souadnia et al.

2002; Valdes-Parada and Alvarez- Ramirez 2011; Davit and Quintard 2012):

c̃i =
∑

j=γ,ω

∂t bi j · ⋆∇〈c j 〉 j − ∂tri ⋆
(

〈cγ 〉γ − 〈cω〉ω
)

, (11)

where the microscale fields, b and r , may be interpreted as spatial integrals of the corre-

sponding Green’s functions (see discussions in Wood 2009; Wood and Valdès-Parada 2012).

This mathematical structure for the fluctuations is conditioned by the source terms in Eq. (10)

and, therefore, by the localization approximations, ℓγ , ℓω ≪ R ≪ L , that have been made

previously.

On substituting Eq. (11) into Eq. (10), we can obtain a unit cell IBVP that can be used to

calculate the microscale fields, b and r (see Appendix B).

2.3 Macroscopic Models

We can now use Eq. (11) into Eq. (9) to eliminate unknown deviation concentrations from

macroscale equations. The result of this operation leads to Eqs. (1) and (2); see Moyne et

al.; Souadnia et al. 2002 for more details. Transient effective parameters are expressed as

integrals of the microscale fields, b and r , which are given in Appendix C.

To understand the correspondence between Eqs. (1)–(2) and (3)–(4), it is useful to con-

sider the transient behavior of the integrands and the relaxation of the convolution ker-

nels. For example, h (t) undergoes a transient regime and then reaches a stationary state,

i.e., after a given relaxation time τ1 (say, the smallest eigenvalue of the unit cell IBVP),

h (t) tends towards a constant exchange rate h∞ (more exactly, within the convolution,

h (t) may be approximated by u(t)h∞ where u(t) is the unit step function). Therefore,

∂t h ⋆
(

〈cγ 〉γ − 〈cω〉ω
)

≈ h∞δ (t) ⋆
(

〈cγ 〉γ − 〈cω〉ω
)

= h∞
(

〈cγ 〉γ − 〈cω〉ω
)

, where δ (t) is

the Dirac distribution. The relaxation time, τ1, is determined by the IBVP in the unit cell and

a similar approximation can be made for other effective kernels (see discussion in Moyne

1997; Souadnia et al. 2002).



Fig. 2 Schematic diagram illustrating the stratified space-clamped configuration with sinusoidal excitation.

The concentration field within the phase (ω) is uniform (space clamped) and sinusoidal, cω = sin (ωt). For

simplicity, we will also consider the case Φγ = 1.0 which corresponds to the limit lω → 0, i.e., the phase

(ω) can be treated as a boundary condition

To derive the one-equation time-asymptotic model, Eq. (5), two techniques have been pre-

viously used. Zanotti and Carbonell (1984) used an asymptotic analysis of the first two cen-

tered spatial moments of (2eq) in a semi-infinite medium. A more direct one-step derivation

can be obtained by averaging over the two phases simultaneously and using a non-conven-

tional perturbation decomposition (see Davit et al. 2010). However, both approaches do not

provide clear limitations for the validity of this approximation. In the approach devised by

Zanotti and Carbonell (1984), higher order spatial moments have been neglected and it is

unclear how this may affect solutions. With the other approach, constraints are expressed

in terms of scaling constraints of the concentration perturbations; constraints which are not

necessarily straightforward to interpret in real applications.

To gain insight into the nature of these constraints, we develop in Sect. 3 analytical solu-

tions in a simple case and illustrate the transient behavior of the models. In Sect. 4, we use

the framework proposed in Zanotti and Carbonell (1984) to study higher order moments in

a one-dimensional situation.

3 Convergence of Solutions of the (2eq-nlt), (2eq) and (1eq
∞) Models: An Example

for the Case of Pure Diffusion

In this section, our goal is to gain insight into the long-time behavior of the three different

models presented above. In the general case, solutions to these equations require numerical

computations. To simplify our study, we will focus on analytical solutions in the case of

pure diffusion in a “space-clamped” stratified medium (see detailed description in Fig. 2).

Stratified geometries have been used extensively as model systems (cf., literature cited

throughout this paper) because they capture the physics of the problem while allowing dimen-

sional reduction. Furthermore, we will focus on the relatively simple case of a sinusoidal

excitation, so that the macroscopic signal is fully characterized by the period of the oscil-

lations, T ≡ 2π
ω

. We remark that this problem is not necessarily of particular importance

to applications but it does allow to gain insight into the long-time behavior of the models.



Without loss of generality, we also fix εγ = Φγ = 1.0 so that we can treat the phase ω as a

boundary condition (lω → 0 in Fig. 2).

3.1 Models

The microscale diffusion problem boils down to the one-dimensional parabolic equation,

∂t c
micro
γ = Dγ

∂2cmicro
γ

∂x2
, (12)

with −l < x < +l, zero initial concentration, and the boundary conditions x = ±l main-

tained at sin (ωt) for t ≥ 0. With regard to the macroscopic models, Eq. (1) takes the form:

d〈c⋆
γ 〉γ

dt
+ d

dt
h ⋆ 〈c⋆

γ 〉γ =
d

dt
h ⋆ sin (ωt). (13)

Equation (3) may be written as:

d〈cγ 〉γ

dt
+h∞〈cγ 〉γ = h∞ sin (ωt), (14)

Equation (5) corresponds to the local mass equilibrium situation,

〈c∞
γ 〉γ = sin (ωt). (15)

In these equations, we have used the superscripts ⋆ and ∞ to denote the non-local and

asymptotic models, respectively.

3.2 Analytical Solutions

Since we have imposed a spatially uniform concentration on the boundary, the non-local

model is exact and 〈c⋆
γ 〉γ can be determined via direct integration of the analytical solu-

tion to Eq. (12); a solution which can be found in Carslaw and Jaeger (1946). Discarding

exponentially decaying terms, this operation yields

〈c⋆
γ 〉γ =

t→∞
C sin(ωt + D), (16)

with C =
√

(〈A sin (χ)〉γ )2 + (〈A cos (χ)〉γ )2, D = arctan
(

〈A sin(χ)〉γ
〈A cos(χ)〉γ

)

, χ = arg
{

cosh kx(1+i)
cosh kl(1+i)

}

, A =
√

cosh 2kx+cos 2kx
cosh 2kl+cos 2kl

and k =
√

ω
2Dγ

. For the solution of the local two-

equation model, we apply Laplace transforms to Eq. (14) and obtain,

〈cγ 〉γ =
t→∞

h∞
√

h2
∞ + ω2

sin

(

ωt − arctan

(

ω

h∞

))

. (17)

For our purposes, we also need to determine a characteristic time (τ1) for the relaxation

of h (t) and the corresponding asymptotic value for the exchange rate, h∞. Equation (63)

may be written as h = 1
2l

∫ +l

−l
Dγ

∂rγ

∂x
dx with rγ solution of the following partial differential

equation,

∂trγ = Dγ

∂2rγ

∂x2
− h, (18)



with the boundary condition rγ = 1 on Sγω. To facilitate solution, we decompose rγ into

rγ = 1 − Rγ ⋆ ∂
∂t

h where Rγ solves

∂t Rγ = Dγ

∂2 Rγ

∂x2
+ 1, (19)

with the boundary condition Rγ = 0 on Sγω. The solution of Eq. (19) is (see Carslaw and

Jaeger 1946)

Rγ =
l2

2Dγ

[

1 −
x2

l2
−

32

π3

∞
∑

n=0

(−1)n

(2n + 1)3
cos

(2n + 1) πx

2l
e−Dγ (2n+1)2π2 t/4l2

]

, (20)

and the expression of h is derived from
〈

Rγ

〉γ
⋆ ∂t h (t) = 1, e.g., by Laplace transform inver-

sion procedures. We can now extract the smallest eigenvalue in Eq. (20) to obtain τ1 = 4l2

π2Dγ

and the stationary part of Eq. (20) yields h∞ = 3Dγ

l2 .

3.3 Results

To plot solutions, we fix l = 0.5 and the time t is non-dimensionalized with T = 2π
ω

,

i.e., t ′ = t
T

= ω
2π

t . Results are presented in Fig. 3 for different ratios τ1
T

= 2l2

π3Dγ
ω, after

relaxation of the exponentially decaying terms. Figure 4 shows the behavior of the phases

and amplitudes of the three models with varying τ1
T

. These results illustrate two specific

transient behavior. First, it shows that Eq. (15) is only valid in the strict limit τ1
T

→ 0, when

the phases and amplitudes of all three models converge to a unique value. Second, it shows

that the solution of Eq. (13) converges towards the solution of Eq. (14) when τ1 ≪ T . More

generally, this suggests that Eqs. (3) and (4) represent a good approximation of Eqs. (1) and

(2) under the condition that T ≫ τ1 where τ1 can be estimated via

τ1 ≡ O

(

sup

{

lγ

〈vγ 〉γ
,

lω

〈vω〉ω
,

l2
γ

Dγ

,
l2
ω

Dγ

})

, (21)

and T via

T ≡ O

(

inf
{

T〈cγ 〉γ , T〈cω〉ω , T∇〈cγ 〉γ , T∇〈cω〉ω , T∇2〈cγ 〉γ , T∇2〈cω〉ω
})

. (22)

In these equations, Tϕ is the characteristic time associated with ϕ.

To overcome the short-time limitations of the local two-equation model, one could use an

exchange coefficient, h∞, that depends on the frequency of the oscillations, ω, in Eqs. (3) and

(4), i.e., without convolutions. For instance, such an approach was proposed in the case of

transient dispersion in porous media and is discussed in Davit and Quintard (2012). Equating

amplitudes and phases of Eqs. (16) and (17) yields the following values for the exchange rate:



(a) (b)

(c) (d)

Fig. 3 (Color online) Plots of
〈

c⋆
γ

〉γ
(red line 2eq non-local),

〈

cγ

〉γ
(blue squares 2eq local) and

〈

c∞
γ

〉γ
(green

circles 1eq) as functions of t ′ = t
T

, for various ratios
τ1
T

. Here, we have used l = 0.5 and εγ = Φγ = 1.0.

These plots were obtained in MAPLE™ by using the analytical solutions given in Eqs. (16), (17) and (15).

They show that: (1) Eq. (15) is only valid in the strict limit
τ1
T

→ 0; and (2) (red line 2eq non-local) may be

approximated by (blue squares 2eq local) when τ1 ≪ T

hamplitude (ω)

ω
≡

√

(〈A sin (χ)〉γ )2 + (〈A cos (χ)〉γ )2

√

1 − (〈A sin (χ)〉γ )2 − (〈A cos (χ)〉γ )2
, (23)

and,

hphase (ω)

ω
≡ −

〈A cos (χ)〉γ

〈A sin (χ)〉γ
. (24)

To illustrate the behavior of these expressions, we have plotted
hamplitude

ω
and

hphase

ω
as func-

tions of τ1
T

in Fig. 5. Results show that
hamplitude

ω
and

hphase

ω
only overlap in the strict limit



Fig. 4 (Color online) Plots of the amplitude and phase of
〈

c⋆
γ

〉γ
(red line 2eq non-local),

〈

cγ

〉γ
(blue squares

2eq local) and
〈

c∞
γ

〉γ
(green circles 1eq) as functions of the ratio

τ1
T

= ω 2l2

π3Dγ
. Here, we have used l = 0.5

and εγ = Φγ = 1.0. These plots were obtained in MAPLE™ by using the amplitude and phase of analytical

solutions given in Eqs. (16), (17) and (15). Similarly to Fig 3, they show that: (1) Eq. (15) is only valid in the

strict limit
τ1
T

→ 0; and (2) (red line 2eq non-local) may be approximated by (blue squares 2eq local) when

τ1 ≪ T

Fig. 5 (Color online) Plots of hphase/ω (red circles) and hamplitude/ω (blue squares) as functions of
τ1
T

=
ω 2l2

π3Dγ
. These plots were obtained in MAPLE™ by using analytical solutions given in Eqs. (24) and (23).

They show that h∞ cannot be adjusted to the frequency of the oscillations because hphase/ω ≃ hamplitude/ω

only in the low-frequency limit when two-equation models are not necessary and the one-equation asymptotic

model can be used.



τ1
T

→ 0, where two-equation models are not needed and the asymptotic formulation can be

adopted. This shows that it is not possible to recover the phase and the amplitude of the signal

simultaneously and that the exchange rate, h∞, cannot be adjusted to the frequency of the

oscillations.

4 Convergence of Solutions of the (2eq) and (1eq
∞) Models: Spatial Moments Analysis

In this Section, we consider the convergence of the solution of the (2eq) model to the solution

of (1eq∞) with increasing time. Our analysis will focus primarily on the spatial moments of

the two models, with our goal being to show that the properly conditioned moments of the

two models converge as time grows.

4.1 Preliminaries and Definitions

Moments are mathematical tools that can be used to analyze the shape of spatial/temporal sig-

nals. They have been used for a variety of purposes, including studies of solute breakthrough

curves in soils, e.g., in Stagnitti et al. (2000); the behavior of fractional advection–diffusion

equations (see Zhang 2010); mixing in heterogeneous porous media (see Chiogna et al. 2011);

model parameter estimations from column experiments, e.g., in Young and Ball (2000); and

analytical solutions in dual-permeability media in Xu and Hu (2004).

Here, our study is based on developments performed by Zanotti and Carbonell (1984)

who used spatial moments to study the asymptotic behavior of (2eq) for the propagation of a

pulse in an infinite medium. An interesting conclusion from this analysis is that the distance

between the spatial signals, 〈cγ 〉γ and 〈cω〉ω, tend towards a constant Ω in the long-time

limit, not towards 0. This result suggests that the macroscopic concentration fields, 〈cγ 〉γ
and 〈cω〉ω, are two separate entities, even in the asymptotic regime and this is unclear how a

single macroscopic concentration, 〈c〉γω, may be used to describe solute transport. To study

this phenomenon, we will use the following spatial moments (see for example Govindaraju

and Bhabani 2007):

1. Raw spatial moments for intrinsic average concentrations of the (2eq) model:

µi
n (t) ≡

+∞
∫

−∞

xn〈ci 〉i dx . (25)

2. Raw spatial moments for the weighted average concentration of the (2eq) model:

µ
γω
n (t) ≡

+∞
∫

−∞

xn〈c〉γωdx . (26)

3. Centered spatial moments for intrinsic average concentrations of the (2eq) model:

mi
n ≡

+∞
∫

−∞

(

x − µi
1

)n

〈ci 〉i dx . (27)



4. Centered spatial moments for the weighted average concentration of the (2eq) model:

m
γω
n ≡

+∞
∫

−∞

(

x − µ
γω

1

)n 〈c〉γωdx . (28)

5. Standardized spatial moments for the weighted average concentration of the (2eq) model:

M
γω
n ≡

m
γω
n

(

m
γω

2

)
n
2

. (29)

The corresponding spatial moments for the (1eq∞) model will be denoted by the superscript

∞: µ∞
n , m∞

n , and M∞
n . We will also use the following functional,

δn ≡
∣

∣

∣

∣

∣

m
γω
n − m∞

n
(

m∞
2

) n
2

∣

∣

∣

∣

∣

, (30)

to measure deviations of the (2eq) model from the (1eq∞) model.

In order to understand how these moments can be used to describe the asymptotic behavior

of the two-equation model, we briefly review below their physical interpretation. The raw

spatial moments characterize the shape of the signal in a fixed referential. For example, the

first-order moment corresponds to the mean position and the second-order moment describes

the net spreading. If the mean position is transient, µ1 (t), the second-order moment will

account for the spreading relative to the mean and for the spreading due to the movement of

the mean. With dispersion effects, one is only interested in the spreading relative to the mean

which is the information captured by the second-order centered moments, m2. More gener-

ally, centered moments, mn , describe the shape of the signal in the referential moving with

µ1 (t). We can further rescale centered moments with the second-order moment to obtain

standardized moments that may be used to measure the relative importance of higher order

moments compared with the spreading. Following this idea, we can characterize differences

between solutions and convergence properties using the definition given in Eq. (30).

4.2 Assumptions

To simplify the analysis, we will use the following assumptions:

1. The domain is treated as an infinite medium in which we assume that there is no mass

in the system at t < 0.

2. We consider only the case where the initial condition is specified by a delta inpulse, i.e.,

Qγ (x, t) = Qω(x, t) = δ(x)δ(t). The goal of this assumption is only to simplify the

results; more complex initial conditions can be found from such a solution by simple

convolutions.

3. We assume that Vγω ≪ Vγ γ , Vωγ ≪ Vωω, Dγω ≪ Dγ γ , and Dωγ ≪ Dωω. Physically,

Vi i and Di i contain the leading order terms; Vi j and Di j are often neglected, e.g., for the

mobile–immobile models (see Coats and Smith 1964).

Note that the goal of hypotheses 2 and 3 is primarily to facilitate the presentation of the theo-

retical analysis. Although the results are not presented in this paper, we studied numerically

(similarly to what we present in Sect. 4.6) the effect of these hypotheses, and did not observe

a significant (qualitative) modification of the results for typical 1D problems.



4.3 Spatial Moments Analysis of the Two-Equation Local Model (2eq)

The easiest way to determine the spatial moments of Eqs. (3) and (4) is to compute them

directly from analytical solutions to the transport problem. However, there is no analyti-

cal solution for the general form of the two-equation model, so an alternative approach is

required. A balance equation for the moments themselves can be determined by multiplying

Eqs. (3) and (4) by xn and integrating by parts to obtain the following result

dµ
γ
n

dt
= n (n − 1) Dγ γ µ

γ

n−2 + nVγ γ µ
γ

n−1 −
h∞

Φγ εγ

(

µ
γ
n − µω

n

)

for n ≥ 2, (31)

dµω
n

dt
= n (n − 1) Dωωµω

n−2 + nVωωµω
n−1 −

h∞
Φωεω

(

µω
n − µ

γ
n

)

for n ≥ 2, (32)

with µ
γ

0 = µω
0 = 1, µ

γω

1 = V ∞t and,

V ∞ ≡
Φγ εγ Vγ γ + ΦωεωVωω

Φγ εγ + Φωεω

. (33)

This leads to the following expression for the weighted central second-order moment:

1

2
m

γω

2 = −
3

2

Φγ εγ Φωεω
(

Φγ εγ + Φωεω

)2
Ω2 + D

∞t + exp, (34)

with

D
∞ ≡

∑

i, j=γ,ω

Φiεi

Φγ εγ + Φωεω

Di j +
Φγ εγ Φωεω

(

Φγ εγ + Φωεω

)2

1V 2

α
. (35)

In these equations, we have used 1V = Vγ γ − Vωω, Ω = 1
α
1V where Ω represents the

shift/distance between the two signals at long times (see Fig. 6 and Zanotti and Carbonell

1984), and

α ≡
Φγ εγ + Φωεω

Φγ εγ Φωεω

h∞. (36)

Fig. 6 (Color online) Schematic diagram illustrating the transition from the pre-asymptotic to the asymptotic

regime. The picture shows that the net spreading,
√

2D∞t , will eventually dominate higher order deviations

from normality, δn ≪ 1 ∀n ≥ 2 for t ≫ 1
h∞ in an infinite medium



For simplicity, we have also grouped exponentially decaying terms of the form tme−kαt ,

where m and k are positive integers, into the unique notation exp. We remark that, on con-

sidering the time-infinite limit of Eq. (34), we have reached the same conclusions than in

Zanotti and Carbonell (1984) and have found an equivalent expression for D
∞.

For centered moments, an analytical calculation up to the sixth order leads to the following

conclusion, ∀n ≥ 2:

m
γω
n = (n − 1)!!

(

2D
∞t

) n
2 + O

(

t
n
2 −1

)

+ exp for n even, (37)

m
γω
n = O

(

t
n−1

2

)

+ exp for n odd, (38)

with (n − 1)!! =
∏

i;0≤2i<n−1

(n − 1 − 2i). A formal derivation of these relationships is rather

tedious, so that we briefly outline below a methodology that may be used to prove these results.

The first step towards solution is to extract µ
γ
n (µω

n ) from Eq. (31) (Eq. (32) respectively),

which yields

µω
n = µ

γ
n +

Φγ εγ

h∞

dµ
γ
n

dt
−

Φγ εγ

h∞

[

n (n − 1) Dγ γ µ
γ

n−2 + nVγ γ µ
γ

n−1

]

, (39)

µ
γ
n = µω

n +
Φωεω

h∞

dµω
n

dt
−

Φωεω

h∞

[

n (n − 1) Dωωµω
n−2 + nVωωµω

n−1

]

. (40)

Then, we may uncouple Eqs. (31) and (32) by substituting Eq. (39) into Eq. (32) and Eq. (40)

into Eq. (31). The result of these operations can be expressed as a second-order ordinary

differential equation on µ
γω
n and then on m

γω
n (i.e., by considering the moving frame

with velocity V ∞) that may be used to perform a recurrence analysis and demonstrate

Eqs. (37)–(38).

For the standardized moments, it is thus straightforward to show that:

M
γω
n = (n − 1)!! + O

(

1

t

)

+ exp for n even, (41)

M
γω
n = O

(

1
√

t

)

+ exp for n odd. (42)

4.4 Spatial Moments Analysis of the One-Equation Time-Asymptotic Model (1eq∞)

Following a similar technique, the moments of the one-equation model can be determined

by multiplying Eq. (5) by xn and integrating by parts to obtain the following relationship:

dµ∞
n

dt
= n (n − 1) D

∞µ∞
n−2 + nV ∞µ∞

n−1, n ≥ 2, (43)

with µ∞
0 = 1 and µ∞

1 = V ∞t . A similar approach was used by Luo et al. (2008) to determine

the temporal moments. To calculate these moments, we could also use the relationship given

by Aris (1958). From these equations, by considering the frame moving with µ
γω

1 , we can

determine the centered moments,

m∞
n = (n − 1)!!

(

2D
∞t

) n
2 for n ≥ 2 even, (44)

m∞
n = 0 for n ≥ 2 odd. (45)



The standardized moments, defined in Eq. (29), are:

M∞
n = (n − 1)!! for n ≥ 2 even, (46)

M∞
n = 0 for n ≥ 2 odd. (47)

In particular, we have the skewness of the Gaussian signal, M∞
3 = 0, and the kurtosis,

M∞
4 = 3.

4.5 Theoretical Analysis of the Convergence

From Eq. (34), we can obtain the first constraint for the validity of the one-equation approx-

imation. We require that t ≫ 1
α

in order to relax the exponentially decaying terms. Equiv-

alently, we will write this constraint as t ≫ 1
h∞

by assuming Φγ εγ ∼ Φωεω and avoid the

simpler case where the volume fraction weighting simplifies the analysis.

Even when these exponential terms are relaxed, we see, from Eqs. (37)–(38) and Eqs. (44)–

(45) that centered moments of Eqs. (3)–(4) do not converge towards those of Eq. (5). This is

particularly clear when considering the behavior of odd-order centered moments, which are

non-zero for the two-equation model, Eq. (38), and zero for the one-equation model, Eq. (45).

However, by comparing Eqs. (41)–(42) with Eqs. (46)–(47) and considering the long-time

limit, we see that there is a convergence of solutions in terms of standardized moments. In par-

ticular, we have limt→∞M
γω

3 = M∞
3 = 0 for the skewness and limt→∞M

γω

4 = M∞
4 = 3

for the kurtosis. The physical interpretation of these results is that one never rigorously

obtains a normal distribution of the concentrations, but the spreading (the second-order cen-

tered moment) is eventually dominating higher order deviations from the Fickian situation

(higher order moments). This phenomenon is illustrated in Fig. 6.

To develop clear constraints that apply to any order, we define a metric, δn , that mea-

sures the normality of the signal. In conjunction with the constraint for the relaxation of the

exponential terms, t ≫ 1
h∞

, we require that, for n ≥ 2:

δn =
∣

∣

∣

∣

∣

m
γω
n − m∞

n
(

m∞
2

) n
2

∣

∣

∣

∣

∣

≪ 1, (48)

This constraint, for the second order, yields

3

2

Φγ εγ Φωεω
(

Φγ εγ + Φωεω

)2

Ω2

D∞ ≪ t. (49)

This inequality may be interpreted as the constraint
√

2D∞t ≫ Ω where
√

2D∞t is the

net spreading and Ω is the distance between the two signals (see the graphical representation

of this constraint in Fig. 6). In addition, the definition of D
∞, Eq. (35), supplies

D
∞ ≥

Φγ εγ Φωεω

α
(

Φγ εγ + Φωεω

)2
1V 2, (50)

which can be combined with Ω = 1
α
1V and Eq. (49) to obtain the following (order of

magnitude) sufficient condition for δ2 ≪ 1:

t ≫
1

h∞
. (51)



Fig. 7 (Color online) Log–log plots of δn for Φγ εγ = 0.7, Φωεω = 0.1, Vωγ = Vγω = Dωγ = Dγω = 0,

Vγ γ = 2, Vωω = 1, Dγ γ = 10, Dωω = 5 and h∞ = 1. These plots were obtained by computing numeri-

cally (MATLABTM, ode15s) Eqs. (31) and (32) to determine the corresponding values of δn up to the sixth

order. Results show that there are two different timescales for the evolution of the moments. For small times,

t ≪ 1/h∞, the dominant terms are the exponential parts. For longer times, t ≫ 1/h∞, δn tends towards zero

as O

(

1√
t

)

or O

(

1
t

)

This shows that the constraints associated with δ2 and exp are the same; although δ2 cor-

responds to a weak convergence of the form δ2 = O
(

1
t

)

. An identical analysis can be carried

out for higher order moments. It may be summarized as follows:

1. For n = 2k (k ∈ Z
+∗), there is correspondence between leading order terms, O

(

tk
)

,

of m
γω

2k and m∞
2k . Therefore, we have m

γω

2k − m∞
2k = O

(

tk−1
)

and m∞
2 = O (t) which

yields δ2k = O

(

tk−1

tk

)

= O
(

1
t

)

.

2. For n = 2k + 1 (k ∈ Z
+∗), m∞

2k+1 = 0 and m
γω

2k+1 = O
(

tk
)

, so that m
γω

2k+1 − m∞
2k+1 =

O
(

tk
)

. This yields δ2k+1 = O

(

tk

t
k+ 1

2

)

= O

(

1√
t

)

.

At any order, an analysis similar to that of the second order supplies the constraint t ≫ 1
h∞

;

with a convergence in O
(

1
t

)

for even-order moments and in O

(

1√
t

)

for odd-order moments.

Higher order analytical calculations are extremely tedious so that we will focus, in Sect. 4.6,

on a numerical confirmation of the behavior of δn up to the sixth order.

4.6 Numerical Analysis of the Convergence

Equations (31) and (32) were computed numerically to determine the values of δn up to

the sixth order. We used MATLAB™ environment with the ode15s solver to compute these

solutions; a relative tolerance of ≈ 2x10−14 was adopted for the solver. The moments com-

puted are presented in Fig. 7 for δn , up to sixth order, with Φγ εγ = 0.7, Φωεω = 0.1,

Vωγ = Vγω = Dωγ = Dγω = 0, Vγ γ = 2, Vωω = 1, Dγ γ = 10, Dωω = 5 and h∞ = 1.

The results are presented in a log–log graph; examination of the plots shows that there

are two different timescales for the evolution of the moments. For small times, t ≪ 1/h∞,

the dominant term is the exponential part. For longer times, t ≫ 1/h∞, δn monotonically

decreases to zero as O

(

1√
t

)

and O
(

1
t

)

; therefore, corroborating the theoretical results pre-

sented above.



5 Discussion and Conclusions

Upscaling techniques aim at filtering information from the microscale to obtain homoge-

nized descriptions of the transport phenomena. This filtering process usually takes the form

of constraints regarding the space and timescales of the transport processes. However, there

is no uniqueness of these constraints and the scaling must be adapted to the physical con-

figuration of interest. In this paper, we provided some insight into the transient behavior of

models that are specific to the description of solute transport in two-region porous media. We

focused on three deterministic formulations that have been previously developed, namely: the

two-equation time non-local model, the two-equation time local model and the one-equation

time-asymptotic model. Roughly speaking, we may think of these three models as approx-

imations of the exact non-local formalism; approximations that are particularly well suited

to the two-region problem: the two-equation time non-local model may be seen as second

order in space, non-local in time; the two-equation time local model as second order in space

and time; and the asymptotic model as first order in space and time.

In the first part of this study, we used the volume averaging theory to derive these three

models and discuss the assumptions that are made during upscaling. In the second part of

this study, we compared results obtained using the three different models via analytical solu-

tions to the purely diffusive transport problem. We focused on a “space-clamped” stratified

geometry with periodic Dirichlet boundary conditions. The timescale constraints associ-

ated with each formulation were discussed by comparing the period of the oscillations with

characteristic times of the partial differential equations. Finally, we studied the asymptotic

behavior of the spatial moments of Eqs, (3) and (4) for the propagation of a pulse through an

infinite/semi-infinite medium.

The primary result of this paper is to show that there is convergence of the solution of

Eqs. (3)–(4) towards the solution of Eq. (5) in terms of standardized moments, but not in

terms of centered moments. The physical interpretation of this result is that, in the asymp-

totic regime, higher order deviations from the Fickian situation are increasing at a slower

rate than the net spreading; but these deviations are not converging towards zero. This result

sheds light on the physics underlying the correspondence between these two models and

shows that convergence only occurs in a weak sense. It may also be useful to interpret more

general aspects of mass transport in heterogeneous porous media, such as the difference

between spreading and mixing. For example, Le Borgne et al. (2010) show that net spreading

may scale in a Fickian manner while mixing can persist to scale in a non-Fickian manner.

This phenomenon is reminiscent of the idea that, in the asymptotic regime, deviations from

the Fickian situation do not disappear, i.e., solutions do not converge in terms of centered

moments; but become small compared with the net spreading, i.e., solutions do converge in

terms of standardized moments.

Secondary results of this paper can be summarized as follows:

1. We have detailed the derivation of the above three models using the volume averaging

and moments matching techniques. We have discussed the domains of validity of the

models, as illustrated in Fig. 8.

2. We have defined a generic measure of higher order deviations from the asymptotic regime,

δn =
∣

∣

∣

∣

m
γω
n −m∞

n

(m∞
2 )

n
2

∣

∣

∣

∣

∀n ≥ 2, that may be used in a more general manner to compare the

behavior of a variety of different models.

3. We have shown in Sect. 3 that h∞ cannot be made frequency-dependent and transient

effective kernels must be used with convolutions.



Fig. 8 (Color online) Schematic representation of the domains of validity of the different models for a pulse

in a dual-region infinite porous medium. This diagram illustrates three different domains: (1) for t ≪ τ1,

non-local formulations are required; (2) for t ≫ τ1, the two-equation local model can be used; and (3) for

t ≫ τ2, the one-equation time-asymptotic model can be used

In essence, this study extends the work of Zanotti and Carbonell (1984) and Moyne (1997);

Moyne et al.; Souadnia et al. (2002); Quintard et al. (2001) in that we solve the issue of higher

order moments that was not addressed in Zanotti and Carbonell (1984) and study the conver-

gence of the solutions of the two-equation and one-equation formulations. When compared

with more generic discussions of non-local transport theories with randomly varying fields

(see Koch and Brady 1987, 1988; Neuman 1993), the originality of this work is to explore in

more details the relationships between three localization procedures and models which are

specific to the two-region problem.

Future work will focus on:

– developing a broader comparison of these models with other descriptions, e.g., multirate

mass transfer.

– studying the influence of initial/boundary conditions upon these results.
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Appendix A

To develop equations governing mass transport at the macroscopic scale, we need to average

each Darcy-scale equation:

i-region : 〈∂t (εi ci )〉 + 〈∇ · (εi vi ci )〉 = 〈∇ · (εi Di · ∇ci )〉. (52)

To interchange derivatives and integrals, we use (1) the general transport theorem for sta-

tic interfaces (see Whitaker 1981 or Leibniz rule) and (2) the spatial averaging theorems

(see Howes and Whitaker 1985; Gray et al. 1993). These yield

i-region : ∂t

(

Φiεi 〈ci 〉i
)

+ ∇ ·
(

Φiεi 〈ci 〉i 〈vi 〉i
)

= ∇ ·






Φiεi Di ·






∇〈ci 〉i +

1

Vi

∫

Sγω

ni ci dS













+
1

V

∫

Sγω

ni · εi Di · ∇ci dS − ∇ ·
(

Φiεi 〈c̃i vi 〉i
)

. (53)



Further, we use the following decompositions ci = 〈ci 〉i + c̃i and 〈ci 〉i
x+y = 〈ci 〉i

x + y ·
∇〈ci 〉i

x + O
(

∇∇〈ci 〉i
x

)

where x is the vector pointing towards the position of the center of

the REV and y is the vector pointing inside the REV. We also neglect terms involving y

by imposing R ≪ L (Whitaker 1999), where L is a characteristic field-scale length. This

supplies

1

V

∫

Sγω

ni ci dS ≃ 〈ci 〉i
x







1

V

∫

Sγω

ni dS






+

1

V

∫

Sγω

ni c̃i dS. (54)

Using spatial averaging theorems for unity yields 1
V

∫

Sγω
ni dS = −∇Φi and since we

have assumed constant volume fractions, we can eliminate the first term in the right-hand side

of Eq. (54). A similar approximation applied to averaged fluxes and advective terms leads to

Eq. (9).

Appendix B

Upon substituting Eq. (11) into Eq. (10), we can collect separately terms involving ∇〈cγ 〉γ ,

∇〈cω〉ω and 〈cγ 〉γ − 〈cω〉ω. For all these problems, we consider only zero initial conditions

and local periodicity.

Collecting terms involving 〈cγ 〉γ − 〈cω〉ω yields

∂tri + vi · ∇ri = ∇ · (Di · ∇ri ) ± Φ−1
i ε−1

i h (t), (55a)

BC1 : rγ − rω = 1, on Sγω, (55b)

BC2 : nγω ·
(

εγ Dγ · ∇rγ − εωDω · ∇rω

)

= 0, on Sγω, (55c)

Periodicity : ri (x + pk) = ri (x), k = 1, 2, 3. (55d)

Using previous assumptions, we can write h (t) ≡ Φγ εγ 〈∇ ·
(

Dγ ∇rγ

)

〉γ = −Φωεω〈∇ ·
(Dω∇rω)〉ω. The symbol ± corresponds to the signs − in the region γ , + in the region ω. We

have used pk to represent the three lattice vectors that are needed to describe the 3-D spatial

periodicity. We also have the solvability condition, 〈ri 〉i = 0.

Collecting terms involving ∇〈cγ 〉γ yields

∂t biγ + vi ·
(

∇biγ − ri I
)

+ δiγ ṽi = ∇ ·
[

Di ·
(

∇biγ − ri I
)]

− 〈ṽiri 〉i ± Φ−1
i ε−1

i β∗
1,

(56a)

BC1 : bγ γ − bωγ = 0, on Sγω, (56b)

BC2 : nγω ·
[

−εγ Dγ ·
(

∇bγ γ − rγ I
)

+ εωDω ·
(

∇bωγ − rωI
)]

= nγω · εγ D
γ
, on Sγω,

(56c)

Periodicity : bi j (x + pk) = bi j (x), k = 1, 2, 3. (56d)

Here β∗
1 ≡ Φγ εγ 〈∇ ·

[

Dγ ·
(

∇bγ γ − rγ I
)]

〉γ = −Φωεω〈∇ ·
[

Dω ·
(

∇bωγ − rωI
)]

〉ω and

δi j ≡ 1 if i = j , δi j ≡ 0 if i 6= j .The symbol ± corresponds to the signs − in the region γ ,

+ in the region ω. We also have the solvability condition, 〈biγ 〉γ = 0.

Collecting terms involving ∇〈cω〉ω yields

∂t biω + vi · (∇biω + ri I) + δiωṽi = ∇ ·
[

Di · (∇biω + ri I)
]

+ 〈ṽiri 〉i ± Φiε
−1
i β∗

2, (57a)



BC1 : bγω − bωω = 0, on Sγω, (57b)

BC2 : nγω ·
[

−εγ Dγ ·
(

∇bγω + rγ I
)

+ εωDω · (∇bωω + rωI)
]

= −nγω · εωDω, on Sγω,

(57c)

Periodicity : bi j (x + pk) = bi j (x), k = 1, 2, 3. (57d)

where we have used β∗
2 ≡ Φγ εγ 〈∇ ·

[

Dγ ·
(

∇bγω + rγ I
)]

〉γ = −Φωεω〈∇ ·
[

Dω ·
(

∇bωω +
rωI

)]

〉ω. The symbol ± corresponds to the signs − in the region γ , + in the region ω. We

also have the solvability condition, 〈biω〉ω = 0.

Appendix C

Effective velocities, containing intrinsic averages of the microscale velocities, are given by

Vγ γ ≡ 〈vγ 〉γ − Φ−1
γ ε−1

γ β∗
1 − 〈ṽγ rγ 〉γ , (58)

Vωω ≡ 〈vω〉ω + Φ−1
ω ε−1

ω β∗
2 + 〈ṽωrω〉ω. (59)

Inter-region velocities are given by

Vγω ≡ −Φ−1
ω ε−1

ω β∗
2 + 〈ṽγ rγ 〉γ , (60)

Vωγ ≡ Φ−1
γ ε−1

γ β∗
1 − 〈ṽωrω〉ω. (61)

Dispersion tensors are given by

Di j ≡ Di ·






I +

1

Vi

∫

Sγω

ni bi j dS






− 〈ṽi bi j 〉i , (62)

and the first-order exchange coefficient reads

h ≡
1

V

∫

Sγω

nγω · εγ D
γ

· ∇rγ dS = −
1

V

∫

Sγω

nωγ · εωDω · ∇rωdS. (63)

With these definitions, effective parameters exhibit a time-dependence, even though we have

used the notations Di j , Vi j , and h instead of Di j (t), Vi j (t), and h (t).
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