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Abstract: This paper implements an iterative linear DistFlow for the modelling of radial distribution grids. The method 

is intended for dynamic optimizations under gird constraints, and in the presence of distributed generation including 

storage units with time coupled constraints. It is demonstrated that traditional piecewise linearization for the losses 

estimation in conventional linear DistFlow can lead to significant errors. This is due in particular to the setting of static 

upper bounds for the active and reactive branch flows in the linearization process, which may differ greatly from the 

actual power. The proposed iterative approach addresses this shortcoming with successive runs of linear DistFlow and 

updates for the flows upper bounds, dynamically along the simulated horizon. The method is compared to conventional 

linear DistFlow as well as other relaxed formulations such as Second Order Conic Programming and Quadratic 

Programming. All the methods are discriminated with regard to a reference AC power flow, in terms of error for the 

voltages and losses profiles on different test systems. The proposed iterative procedure displays the lowest error for the 

line losses with five to forty times more accuracy than conventional linearized formulations. It also outperforms the Second 

Order Conic relaxation in terms of scalability with one month dynamic simulation (at 1h time step) run in 7 min with 30 

distributed units on a 69-bus system. The approach is further validated with typical uses cases for the operation, the sizing, 

and the siting of distributed assets consisting of solar generators and storage units. Especially, the procedure is coupled 

with a genetic algorithm in order to test different system configurations on a 90-bus system. The solutions are 

discriminated in terms of number of assets, installed capacities, connection bus(es), installation costs, system losses and 

system self-sufficiency. 

 

1. Nomenclature. 

Sets : 

t ∈ T set of time steps 

b ∈ B set of buses (B buses) 

l ∈ L set of branches (L lines) 

c ∈ C set of piecewise segments (K segments) 

b∈ Db(l)⊂B set of all the buses downstream a line l 

l∈ Dl(l)⊂L set of all the lines downstream a line l 

s(l),e(l) start/end buses of line l 

Operation Variables : 

p
l,t

 ,q
l,t

 active and reactive powers in line l at time t 

δp
l,t

 ,δq
l,t

 active and reactive powers in line l at time t 

Ib,t square current in line l at time t 

vb,t, Vb,t
  voltage and square voltage at bus b at time t  

p
l,k,t
+  , p

l,k,t
-  line l active (+/-) power in block k at time t  

q
l,k,t
+  , q

l,k,t
-  line l reactive (+/-) power in block k at time t 

Pb,t
st+, Pb,t

st-   charge/discharge of battery at bus b at time t 

SOCb,t
st  state of charge of storage at bus b at time t  

Pb,t

pv
 solar generation at bus b at time t 

Sizing Variables - (parameters for siting only) 

Pb

pvR
 rated solar generation at bus b (kWp) 

Pb
stR rated power of storage at bus b (kW) 

Eb
stR rated capacity of storage at bus b (kWh) 

Parameters : 

Pb,t
L  ,Q

b,t

L  active and reactive load at bus b at time t 

p
l,t

 , q
l,t

 line l active reactive power upper bound at time t 

 vb, vb, il  bus b voltage limits and line l current limit 

rl ,xl   resistance and reactance of line l  

 𝜂𝑏
bat  battery efficiency at bus b 

Pt
pvN

 normalized solar generation at time t 

C
PpvR

 cost of solar installation ($/kWp) 

C
PstR, C

EstR
 cost of battery installation ($/kW, $/kWh) 

αssr system self-sufficiency ratio 

v0 reference voltage (= 1 p.u.) 

Iteratively Updated Parameters 

p
l,t
k̅̅̅̅ , q

l,t
k̅̅ ̅̅  Upper bound flow in line l, time t and iteration k  

Vb,t
k . square voltage at bus b, time t at iteration k 

.*k upperscript for the optimal results at iteration k 

2. Introduction 

The benefits of distributed generation (DG) integrated 

into conventional power systems have long been identified - 

with losses and emissions reduction, improved voltage 

profiles and system reliability, as well as the opportunity to 

defer significant grid investments [1]. DG planning then 

refers to the optimal allocation of the resources in terms of 

type, size and site [2], which have been extensively addressed 

in the literature for the past two decades. One main technical 

challenge is that the considered systems have to be simulated 

a great number of times, and with different DG configurations 

before finding the best solution [3], which may lead to 
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prohibitive computational times. Especially, solving the non-

linear load flow equations over long time horizons may result 

in non-tractable problems as pointed out in [4] and [5]. In 

order to overcome that challenge, most of the solutions 

encountered in the literature (over 80 % of the reviewed 

papers in [6]) do not consider time-varying load, but limited 

numbers of load levels (‘snapshot mode’ as in [7], [8] or [9] 

as opposition to dynamic optimization). The optimal power 

flow (OPF) is then run independently for a small set of load 

values with ‘multi periods’ successive power flow using the 

full AC equations [10] that can be solved using 

metaheuristics such as differential evolutionary as in [11] or 

genetic algorithm as in [12]. However, the optimality cannot 

be guaranteed and the convergence may not be ensured for 

large scale problems with those methods. Convex relaxations 

such as Second Order Conic Programming (SOCP) [13] are 

oftentimes favoured, and computational times reduced 

with limited number of load levels considered in many cases 

That is justified by the implemented planning stratgies, which 

often consist in integrating the load flow analysis in meta-

heuristics (e.g. particle swarm optimization, genetic 

algorithm). Those algorithms generate great numbers of 

different DG configurations to evaluate ([10] [7]) and cannot 

afford long computation times for every tested scenario. 

However, such ‘snapshot’ or ‘multi-periods’ OPF can no 

longer be considered if DG resources include storage units. 

In such cases, time coupled constraints shall be embedded in 

dynamic optimization and the OPF is then integrated in the 

simulation of the system over a representative period (day, 

week, month, year) [5]. One way to leverage that complexity 

is to consider DC approximation for the flow equation [14] at 

the cost of extensive simplifications that are not relevant for 

planning problems in distribution networks. Simpler 

DistFLow equations for radial systems [15], and especially 

their quadratic (QDF) [16] or linearized (LDF) equivalent 

[17], are a good compromise which allows to run simulations 

over longer time horizons and are oftentimes used for 

distributed control strategies [18] or planning problems [19]. 

Typical linear DistFlow formulations estimate the line losses 

with a piecewise linearization (PWL) of the square function 

for the active and reactive branch flows as in [20] or [21]. 

However, the PWL accuracy is not systematically ensured 

and this paper shows that great errors can occur when 

comparing the results with a reference AC OPF. Indeed, the 

linearization depends on optimization parameters set to 

represent the upper bounds for the line flows (active and 

reactive). Those parameters are often deemed constant along 

the simulated horizons, and equal to the line ratings, which 

leads to strong losses overestimation when the actual flow 

does not meet this limit. The method proposed in this paper 

consists in an iterative LDF with successive updates for the 

optimization parameters in order to leverage the errors on the 

loss estimations. The main contributions and results of this 

paper are:  

 An iterative LDF, with its performances assessed in 

terms of voltage and losses error with a reference AC 

OPF and compared to references LDF, QDF and SOCP.  

 An improvement in a ratio from 5 to 40 compared to the 

loss estimations with conventional LDF. 

 A scalable method compared to conventional SOCP and 

QDF with up to one month simulation (at 1h time step) 

with 30 DG units on a 69-bus test system. 

 A successful integration of the method in typical DG 

planning problems with the operation, the sizing and the 

siting of PV + storage units. 

The rest of the paper is organized as follows – Section 3 

presents the reference models (LDF, SOCP and QDF) for 

comparison purposes, with a subsection dedicated to their 

identified limitations. The iterative LDF is then introduced in 

Section 4 along with modified formulations for DG planning 

studies. The method is validated over different test systems 

and applications in section 5 before conclusions are drawn in 

Section 6. 

3. Reference Models and Motivations 

All the implemented problems are written using 

YALMIP toolkit [22] in MATLAB 2018b and solved with 

CPLEX 12.10.0. on a 4 cores i5-825OU processor with 8 Go 

of RAM and up to 8 threads in parallel. 

3.1. Classical DistFLow Equations 

The original DistFlow formulation for radial systems 

is based on the iterative computation of the branch flows and 

node voltages from the slack bus down to the termination 

buses of the considered radial networks [15]. In (1) and (2), 

the classical equations are written with positive and negative 

contributions of the branch flows that may be directional in 

the framework of DG planning, due to local generation. Thus, 

every branch should supply or absorb the active and reactive 

power balance at all its downstream buses (set Db(l)), 

additionally to the losses of all the downstream branches (set 

Dl(l)) represented by the non-linear terms of (1) and (2). As 

an example, Fig. 1 illustrates the DistFlow equations from the 

perspective of line l1, and with the loss of all the downstream 

branches implicitly considered as additional loads at the end 

buses. The sets of all the downstream lines and buses for each 

branch capture the radial architecture of the network. The 

voltage drop along each branch is computed following (3) 

and considering the flow direction and the losses. As already 

mentioned, the power flow implemented in this paper is 

intended for dynamic optimization over a representative 

period, which explains the introduction of the temporal set T. 

Finally, in the absence of distributed generation (i.e. injection 

at the slack bus only), the bus power balances Pb,t ,Qb,t
are 

equal to the loads Pb,t
𝐿  ,Q

b,t

𝐿   

 

Fig. 1 DistFlow for Radial Networks 

to end bus (2)

to end bus (1)b3

l1
from slack bus

l2

l3

b2b1 b4

Db(l1)

Dl(l1)

*Time index not appearing for clarity 
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3.2. SOCP as a Comparison Model 

One classical approach to solve those equations for 

scheduling problems (i.e. dynamic optimization for multi-

periods OPF) is to perform a convex relaxation of the 

nonlinear terms in the form of a Second Order Conic Program 

[13] [23]. Typically, a variable Il,t representing the square of 

the line current is introduced, along with a variable for the 

square of the bus voltage Vb,t = vb,t
2. The losses and voltages 

drops are computed following (4) with the branch impedance. 

In the conventional SOCP formulation, the current equality 

constraint is converted into an inequality which is itself 

rewritten following second order cone constraint [24] ((5)). 

The relaxation requires that the objective function is convex 

and monotonically increasing with Il,t, which is the case with 

the objective being the loss minimization as any conventional 

OPF problem, indiscriminately on the active and reactive 

components (losses in per unit in (6)). Obvious additional 

constraints control the current and voltage limits ((7)). 

2 2
, , , ,

,

, , ( ),

.
   with   

.

l t l l t l t l t

l t

l t l l t s l t

p r I p q
I

p x I V





 



 (4) 

,2 2

, ,

, , ( ), ,

( ),

, ( ), 2

2.

  2.

l t

l t l t

l t l t s l t l t

s l t

l t s l t

p
p q

I I V q
V

I V


   



 (5) 

, ,: min . .l l t l l t

t T l L

obj r I x I
 

  (6) 

2 2 2

, ,   and   b b t b l t lv V v I i    (7) 

3.3. Quadratic DistFlow as a Comparison Model 

Another formulation considered in this paper as a 

comparison model consist in a quadratic Disflow (QDF). 

Similar to the problem formulation considered in [25], the 

bus voltage is simply set at the reference value for the loss 

computation in the SOCP equation (4), which then becomes 

convex and solvable with a quadratic programming solver. 

3.4. Linear DistFlow as a Comparison Models 

Typical linear DistFLow (LDF) equations can consist 

in neglecting the nonlinear terms that represent the losses as 

in [17] or [19]. At the same time, the voltage at each bus is 

assumed to be close to the reference voltage v0 with 

(vb,t - v0)2 ~ 0, and (3) is rewritten following (8). 

 ( ), ( ), , ,2. . .e l t s l t l l t l l tV V r p x q    (8) 

However, a quadratic formulation of the losses is 

sometimes still considered as the objective function of the 

considered optimization problems. Similar to [17] and [16], 

the aggregated losses are computed somewhat independently 

from the grid modelling itself, which does not adequately 

capture their impact on the voltage drops and line flows (for 

the upstream lines). More accurate linearized approaches are 

not new and consist in a piecewise linearization of the square 

for the active/reactive powers in (4) as in [20] or [21] (Fig.  

2). Piecewise linear segments are then introduced for the 

positive and negative contribution of the branch flows ((9)), 

and (10) computes the line square current with the 

contribution of every PWL block c. The slope coefficients as 

well as lower/upper bounds in each block depend on the 

maximum line power, with p
l,t

 , q
l,t

 respectively for the active 

and reactive flows. Similar to the SOCP, that linearization is 

valid as long as the approximated function is convex and 

integrated in the objective. Ultimately the losses are 

accounted in the voltage drop computation ((11)). 

, , , , , , , , , ,

, , , , , , , , , ,

  ,     ,   0 , /

  ,     ,   0 , /

l t l c t l t l c t l c t l c t

l t l c t l t l c t l c t l c t

l

c C c C

l

c C c C

p p p p p p p C

q q q q q q q C

     

 

     

 
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


   


 

 
 (9) 

 
   , , , , , , , ,

, 2

0

. .1
. 2. 1 .

l l c t l c t l l c t l c t

l t

c C

p p p q q q
I c

C Cv

   



  
   
 
 

  (10) 

    ( ), ( ), , , , ,2. . .e l t s l t l l t l t l l t l tV V r p p x q q       (11) 

 

Fig.  2 Conventional piecewise linearization of the square 

power flow for current/loss computation [20] or [21] 

3.4 Identified Limitations 

Preliminary tests of the reference models are run in 

this subsection. At first, the time horizon is increased while 

performing a load flow calculation on the IEEE 69-bus 

system and with no DG installed (Table 1). Both SOCP and 

LDF are quickly solved in “snapshot” mode (i.e. a single time 

step / single load level).  

,l tp

 
2

,l tp

,1,l tp

,2,l tp

, ,l k tp

c=1

c=2

c=C

 
2

/lp C

 
2

4 /lp C

 
2

2 /lk p C

 2. 1 . /lc Cp

lp
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Table 1 Computational times over different time horizons 

on the IEEE 69-bus system 

 snap. 1day 2days 3days 4days 7days 

SOCP 2 s 27 s 63 s 124 s 218 s - 

QDF 1 s 17 s 58 s 101 s 186 s - 

LDF < 1s 3 s 3 s 4 s 7 s 10 s 

Table 2 SOCP relaxation inequality value (5) for selected 

branches (in p.u.) on the IEEE 69-bus system 

Test 
line 

18-19 

line 

20-21 

line 

22-23 

line 

24-25 

w1 =1 , w2 = 1 –6.9.10-8 –6.1.10-8 –2.5.10-8 –0.7 

w1 = 0.3, w2 = 1 –4.4.10-8 –1.2.10-7 –1.9.10-8 –1.5.10-8 

 

Fig. 3: IEEE 69 bus system with distributed generation 

When the temporal set expands, the SOCP 

computation is significantly greater, with a stack overflow 

occurring for only one week long simulations - given the 

computational capabilities and software versions. With 

strictly linear equations, the LDF is run in some seconds in 

any case (Table 1). Besides those scalability concerns, the 

SOCP may suffer from an invalid relaxation of constraint (4). 

Indeed, as observed in [26], in case of modified objective 

function such as the maximum usage of local energy 

resources, the inequality in (5) is not satisfied with an equality. 

Thus, the obtained solution has no physical meaning despite 

its mathematical feasibility. Additional preliminary tests then 

consist in connecting PV systems to the IEEE 69-bus network 

(arbitrary at buses 18, 20, 22, 24 and 26) (Fig. 3). The SOCP 

objective is modified in order to integrate the PV curtailment 

∆p
b,t

pv
at every bus (12). Simulations are run over a single time 

step and while controlling the voltage profiles within the 

limits. Especially, two tests are performed with different 

values for the coefficients w1 and w2, which allow the 

arbitrage between the losses and the curtailed power. As in 

[26], with similar weights for the objectives, the obtained 

solution is physically infeasible (inequality value for line 24-

25) and appropriate parameter tunning shall then be 

considered.  

1 , 2 , ,: min . . .pv

b t l l t l l t

t T b B l L

obj w p w r I x I
  

 
   

 
    (12) 

 
Fig. 4 Overestimation of the PWL formulation for the square 

function with regard to the ratio actual flow / upper bound 

If the conventional LDF allows good scalability for 

long simulations, one major drawback lies on the piece-wise 

linearization whose accuracy strongly depends on the chosen 

values for the upper bounds of the flows p
l,t

 , q
l,t

. Oftentimes, 

those values are interpreted as the maximum apparent line 

power as in [20] or [21] - for both active and reactive power, 

positive and negative contributions. Therefore, those 

parameters are deemed constant along the simulated periods. 

However, the actual flows remain below those limits in most 

cases (i.e. p
l,t

/ p
l,t

≤ 1 for the active power) which may incur 

strong overestimations in the PWL for the square functions, 

as depicted in Fig. 4. Those errors naturally tend to decrease 

with greater numbers of PWL segments but remain important. 

Fig. 5 displays the actives losses for selected branch, on the 

IEEE 69-bus system with no DG (i.e. only loads). Especially, 

the LDF results are compared with a reference AC power 

flow run in MATPOWER. Following [27], the LDF is 

performed with two hypotheses in order to set the values for 

the upper bounds (run over a single time step). At first, both 

p
l,t

 and q
l,t

 are the same for all the branches and equal to the 

summation of the active and reactive loads over all the buses, 

penalized with a coefficient (α = 1.1) that allows to account 

for the losses (not known a priori). That “conventional” 

approach denoted as S0 in Fig. 5 considers the same ratings 

for each line while the branch immediately downstream the 

slack bus operates close to its limit. In that case, significant 

deviations (> 200 % for some branches) are observed with 

much greater estimated losses compared to a reference AC 

load flow. A second approach individually sets the limit for 

each branch as the summation of all the loads (active and 

reactive) located at the downstream buses. With no DG, this 

method denoted S1 in Fig. 5 sets p
l,t

 and q
l,t

 much closer to the 

actual flow, which leads to a small error in the loss estimation 

compared to the reference AC load flow. 

 
Fig. 5 Branch losses for different settings compared to a 

reference AC OPF on the IEEE 69 buses system 
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Fig. 6: Proposed successive LDF and optimization 

parameters update 

4. Proposed Iterative Linear DistFlow for DG planning 

4.1. Successive LDF 

The previous preliminary tests for the LDF showed a 

higher accuracy when the bounds for the active and reactive 

flows in the PWL formulation are closer to the actual values. 

However, when investigating the DG operation (i.e. not only 

loads), those values cannot be known a priori - i.e it is not 

possible to guess the line flow values similar to the previous 

method S1. Especially, the flow distribution depends on the 

optimal use of the distributed assets which is itself an output 

of the OPF. This paper proposes an iterative process in order 

to leverage this shortcoming while successively adjusting the 

parameter values for the flow bounds in the PWL. Especially, 

the parameters p
l,t
k̅̅̅̅ , q

l,t
k̅̅ ̅̅  are introduced with the subscript k 

denoting an update at every iteration. As illustrated in Fig. 6, 

this method is expected to refine the losses estimation along 

with the successive iterations, with decreasing deviations 

between the flow upper bounds and the estimated values (i.e. 

the outputs from the LDF at every iteration), which ultimately 

leads to smaller errors in the PWL and losses computation as 

previously discussed. In order to further improve the loss 

estimation, the bus square voltage profiles are similarly 

estimated at each iteration and injected in the computation of 

the line current ((10)). An iterative parameter Vb,t
k  in then 

introduced and updated at every step. It is important to remind 

that the parameter values are expected to changes at every 

time step of the simulated period when dynamic OPF are 

considered (i.e. time set T). Ultimately, the PWL constraints 

of the previous subsection are rewritten following (13) and 

(14). 

, , , , , , , , , ,
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

 

 
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 
   , , , , , , , , , ,

,
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. .1
. 2. 1 .

k k

l t l c t l c t l t l c t l c t

l t k
c Cs l t

p p p q q q
I c

C CV

   



  
   
 
 

  (14) 

The implemented procedure then relies on multiple 

runs of the described LDF – i.e. minimizing the objective (6) 

subject to constraints (1), (2), (7), (11), (14) and (13). The 

optimization returns the values for the bus voltages as well as 

the current, power flows and losses within each line all along 

the simulated horizon - i.e. Vb,t
*k, Il,t

*k, pl,t
*k, ql,t

*k , δpl,t
*k , δql,t

*k 

with the upperscript .*k denoting the LDF optimization output 

at iteration k. The iterative method then updates the values for 

the bus square voltage at every iteration. For the upper bounds 

flows, the update is based on optimal branch flows and the 

losses at all the downstream branches. Similar to the 

proposition of section 3.4, a penalty coefficient α (typically 

from in the range [1-1.5]) is introduced in order to ensure the 

convergence of the linear DistFLow at the next iteration. This 

coefficient adjusts the bounds for each line flow so that it can 

supply the losses for the downstream branches. Indeed small 

upper bounds may endanger the problem feasibility – e.g. in 

case of DG resources, the optimization at k+1 may result in a 

reverse flow, potentially greater in absolute value than the 

power computed at iteration k. The update process for the 

corresponding optimization parameters is given in (15) along 

with the initialization step (i.e. k=1). At the first iteration, the 

parameter for the bus voltage used in (13) is then set at the 

reference value. The upper bounds for the branch are 

conservatively set to high values corresponding to the 

summations of the bus loads (both active and reactive) 

penalized with α. 
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Fig. 7 Proposed algorithm 
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The procedure stops whenever a maximum number of 

iterations K is reached or when the difference between two 

successive updates for the voltages and flow parameters is 

below a threshold. That difference is computed as a 

normalized RMSE between two dimensions parameters N×T 

(N being either the set of lines or buses here) and is noted 

D(X,Y) ((16)). A threshold at ԑ = 1 % is defined, and the 

iterative procedure stops when, D(Vk
,V

k ) , D(pk̅̅ ̅̅ , pk+1̅̅ ̅̅ ̅̅ ) 

and D(qk̅̅ ̅̅ , qk+1̅̅ ̅̅ ̅̅ )  are below ԑ. The proposed procedure is 

finally summarized in Fig. 7 while detailing the LDF 

optimization problem successive updates.  

 
 
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,

1
.

.
D , 100.

1
.
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n t n t

n N t T

n t
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N T

 

 








X Y  (16) 

4.2. DG Optimal Operation 

The main objective of the proposed approach is to run 

dynamic optimizations over various periods of time (e.g. day, 

week, months) and with the integration of DG units. In this 

section, typical solar generation coupled with storage units 

are considered. The formulation of the linear DistFlow is 

modified in order to model the DG operation. The active 

power balance at each bus is then written as in (17) in order 

to integrate PV and storage active flows while the reactive 

balance at each remains unchanged, equals to the reactive 

consumption. The solar generation is computed following (18) 

with the rated capacity Pb

pvR
 at each bus (if any) and a 

normalized daily profile Pt
pvN

 over the simulated period. 

Without any operating cost considered (e.g. energy bill, 

maintenance, etc), the objective to minimize is still the overall 

system losses ((6)). Conventional constraints are introduced 

in order to represent the storage operation and while 

discriminating the charge and discharge flows penalized by 

the system efficiency. Typical constraints are related to the 

maximum charge/discharge flows lower than the rated power 

Pb
stR of the storage at each bus (if any) ((19)). Finally, the state 

of charge SOCb,t
st  should remain within acceptable limits and 

return to its initial value at the end of the simulated period (i.e. 

energy conservation with a given rated capacity Eb
stR) ((20)). 

Such an approach could then be integrated in a bi-level 

optimization framework for optimal siting – i.e. one outer 

loop investigating different locations for given DG units and 

an inner loop optimizing their operation (i.e. the iterative 

modified LDF here) (Fig. 8a). 
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Fig. 8: Optimization frameworks for DG siting/sizing– a) DG 

optimal operation – b) DG optimal operation/size 

4.3. DG Optimal Operation and Size 

In the previous subsection, the values for the DG rated 

capacities (i.e. Pb

pvR
, Pb

stR, Pb

pvR
) where considered as known 

parameters while computing the optimal operation. In the 

framework of optimal DG sizing studies, those capacities 

shall be optimized at the same time as the operation and for 

different potential locations. Thus, this subsection proposes 

another version of the implemented linear DistFlow with the 

sizes and controls of DG units as variables of a single 

optimization problem. The objective function of the iterative 

LDF is modified in the form of a typical normalized weighted 

sum [28] in order to account for both system losses and 

installation costs ((21)). Especially, the rated power of the 

storage is sized independently from its capacity which is not 

commonly done in the literature where a battery capacity 

reflects its maximum charge/discharge (at 1 C-rate). The loss 

term is normalized with δp
l,t

0
 , δq

l,t

0
 (in p.u.) that corresponds 

to the losses for a base case scenario with no DG. The cost 

term is normalized with C0, as a maximum expected cost with 

upper bounds for the installed capacities. Finally, the weight 

wloss (in [0,1]) allows an arbitrage between the losses and the 

installation cost. Indeed, it is important to note that the loss 

term cannot be removed from the objective function at the 

expense of losing the convexity of the problem with regard to 

the linearization process. 
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The operating constraints for the storage are adapted 

similar to [29] in order to avoid any nonlinearity for the SOC 

computation. The rated power is limited by the storage 

capacity with (22). Then the state of charge is implicitly 

replaced by the amount of energy within the storage while 

multiplying the SOC constraints by the rated capacity ((23)).  
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In conventional planning problems (e.g. DG allocation, 

microgrid design), the objective is oftentimes to find a trade-

off between the operating costs and the capital expenditures. 

In the planning problem considered here there is no energy 

cost considered (e.g. for the energy imported from the 

upstream grid). Thus the operating expenses are implicitly 

represented by a constraint on the self-sufficiency ratio αssr 

((24)) as per defined in [29] and usually computed as the ratio 

between the energy imported at the Point of Common 

Coupling (PCC) and the total generation on site. Even though 

the consideration of that ratio does not capture the losses and 

is not straightforward in the presence of energy storage ([30]), 

it allows to capture the degree of autonomy for the considered 

system. 

  ,1pcc ssr L

t b t

t T t T b B

P P
  

     (24) 

Similar to the simulation of DG operation in the 

previous section, the modified procedure described here can 

be integrated in a bi-level optimization framework. An outer 

loop may investigate different locations and the proposed 

modified LDF optimizes the DG sizes and operation in each 

case (Fig. 8b). The outer loop could consist in an analytical 

method, exhaustive search or metaheuristics and is outside 

the scope of this paper. A genetic algorithm is considered here. 

5. Validation Runs and Applications 

5.1. Snapshot and Dynamic Power Flows 

At first, the iterative LDF is validated while running 

snapshot and dynamic OPF and with no installed DG. 

Generic IEEE case systems 33-bus, 69-bus and 85-bus are 

considered as well as a 90-bus distribution network in 

Cambodia. Table 3 presents the results obtained for different 

validation runs in a snapshot mode (i.e. single time step) and 

different numbers of PWL segments C. The method 

performances are considered with regard to the errors 

compared to the outputs of a reference AC power flow (run 

in MATPOWER here) and denoted with an upper script ‘.AC’. 

Especially the deviations for the voltage and losses are 

computed using the normalized RMSE in (16) with 

ΔV = D( |1-vb,t| , |1-vb,t
AC| ) , ΔδP = D( δpl,t , δpl,t

AC ) and 

ΔδQ = D( δql,t , δql,t
AC ). Note that the error for the voltage 

considers the deviation with regard to the reference at 1 p.u. 

Indeed, computing the error in terms of absolute voltage 

would be more optimistic while dividing by the whole 

magnitude where deviations between 0.95 p.u. and 1.05 p.u. 

are usually expected. The iterative LDF is also compared to 

the results obtained with conventional SOCP, LDF and QDF. 

For the classical LDF, both approaches S0 and S1 discussed 

in section 3.4 are considered in order to set the flows upper 

bounds in the PWL constraints (with 3 PWL blocks here). In 

snapshot mode, all the simulations for the investigated 

methods are run in less than 2 seconds. For the iterative 

modified LDF, significant errors occur with only one or two 

PWL segments for the loss linearization. However, for C 

greater or equal than 3 the obtained results are better (both in 

voltage and losses) than the outputs from conventional SOCP. 

The QDF is also systematically outperformed with regards to 

the errors on the losses. 

Table 3 Results for snapshot power flows 

 Iterative LDF 
SOCP 

LDF  

S0 

LDF 

S1 
QDF 

 C=2 C=3 C=4 C=5 

33-bus         

ΔV  (%) 1.0 0.5 0.6 0.6 0.7 3.8 0.2 0.9 

ΔδP (%) 10.8 1.2 1.6 1.1 2.3 46.4 7.0 8.0 

ΔδQ (%) 10.7 1.3 1.5 1.1 2.4 55.9 7.9 8.8 

Nb. iter. 3 3 3 3 - - - - 

69-bus         

ΔV (%) 1.1 0.4 0.6 0.5 0.6 2.1 0.1 1.1 

ΔδP (%) 10.6 1.7 2.1 1.3 2.6 26.6 9.2 10.6 

ΔδQ (%) 10.9 1.6 2.2 1.2 2.3 31.2 8.0 9.3 

Nb. iter. 3 3 3 3 - - - - 

85-bus         

ΔV (%) 1.6 0.8 1.0 0.8 1.3 4.5 0.1 1.9 

ΔδP (%) 9.1 2.8 2.9 2.9 4.1 36.2 11.9 13.3 

ΔδQ (%) 8.9 3.0 3.0 3.1 4.3 26.6 11.2 12.7 

Nb. iter. 3 3 3 3 - - - - 

90-bus         

ΔV (%) 0.9 0.3 0.5 0.4 0.4 2.7 0.1 0.7 

ΔδP (%) 12.0 0.4 2.7 0.8 1.2 60.1 5.6 6.7 

ΔδQ (%) 12.0 0.4 2.7 0.8 1.2 17.4 5.5 6.6 

Nb. iter. 3 3 3 3 - - - - 

Table 4 Iterations Results for Iterative LDF 

 1st iter 2nd iter 3rd iter 4th iter 

33 bus with C=1     

ΔV  (%) 18.63 4.7 3.1 3.0 

ΔδP (%) 284.3 99.6 62.7 59.3 

ΔδQ (%) 325.6 97.1 60.9 57.9 

33 bus with C=3     

ΔV (%) 3.9 0.7 0.5 - 

ΔδP (%) 46.5 1.9 1.2 - 

ΔδQ (%) 55.9 1.7 1.3 - 

As already observed in section 3.4, the conventional 

LDF considering the flows bounds as the maximum line 

power (i.e. LDF S0) displays significant errors in the losses 

estimation, on average 40 times greater than the iterative 

approach, which is not acceptable in the framework of DG 

planning studies. Adjusting those upper bounds closer to the 

actual flows (LDF S1) reduces those deviations even if the 

errors remain around five times greater than the values 

obtained with the proposed procedure. In addition, remind 

that no DG is considered in those first validation runs which 

allows to use S1 approach with a confident guess “a priori” 

for the flow distribution based on the bus loads. It will not be 

possible when DG are investigated with additional degrees of 

freedom in the OPF problem that could incur different line 

flows (e.g. potential reverse flows). The DG operation is itself 

one expected output of the OPF. 

Finally, it is important to note that increasing the 

number of PWL segments does not necessarily improve the 

performances of the iterative modified LDF which converge 

in only three iterations in most of the performed test runs. The 

successive improvements along the iterations are displayed in 

Table 4 for the 33 bus systems. Especially, for C = 3, the 

errors are greatly reduced right from the second iteration, with 

a value lower than the results from the traditional SOCP for 

the same system. 
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Fig. 9: Impact of α value on voltage and active losses errors 

for IEEE 33 and 69 buses systems 

An important parameter of the proposed iterative LDF 

is the penalty coefficient α that implicitly accounts for the 

expected losses within the system. A too small value would 

incur non convergence (e.g. for the 90 bus system and α = 1.1) 

as the overall branch flow shall allow to supply the losses. 

This parameter then needs to be tuned as displayed in Fig. 9 

with the errors (in voltage and active losses) computed using 

different values for α and C fixed to 3. A value of α = 1.5 is 

then set for all the simulations performed in the paper. As a 

further validation step, Fig. 10 displays the results obtained 

for the 33 bus system with the voltages and active losses 

ranked in decreasing order (respectively along with the buses 

and branches). At the first iteration, the iterative LDF tends 

to overestimate the losses. The rank of the most lossy 

branches compared to the reference AC load flow is not even 

respected (Fig. 10a). Running the iterative procedure allows 

to almost cancel the errors and to respect the rank of the 

lossiest branches. The rank of the buses with the lowest 

voltage is respected from the first iteration (Fig. 10b). A 

multi-periods load flow is then considered to check that the 

method can handle dynamic optimization. Fig. 11 displays 

the accuracy for selected buses and branches while running 

the iterative LDF on the 69-bus system with a daily load 

profile. The deviations are very small after three iterations 

with overall errors below 3 %. The accuracy of the iterative 

LDF is again better than the SOCP formulation which is run 

in around 30 seconds (3 seconds for the iterative LDF). It is 

important to remind that this accuracy is allowed by the 

definition of the PWL parameters all along the time set with 

no constant value that would correspond to the line ratings. 

 

Fig. 10: Results on the 33 bus system - a) bus voltage -b) 

branch losses 

 

Fig. 11: Daily load flow on the 69 bus system - a) bus voltage 

-b) branch losses 

5.2. DG Optimal Operation 

Following the previous validation runs and 

comparisons with reference models, this subsection 

investigates the use of the proposed iterative LDF for the 

operation of typical DG units (PV and storage). Daily 

emulations are run on the IEEE 69-bus populated with time 

series profiles for residential, commercial (buses 49, 50) and 

industrial loads (bus 61). Especially, significant DG 

capacities will be investigated in order to check the physical 

meaning of the obtained solution, rather than discuss the 

economical/technical relevance of the use case. A first run of 

the iterative LDF is performed while installing 300 kWp PV 

generators at buses 18, 20, 22, 24 and 26 (Fig. 3). As expected, 

the obtained results display overvoltage above 1 p.u. at bus 

18 (Fig. 12a) with the significant reverse flow in branch 17-

18 during sun hours (Fig. 12b). 1MW / 1.5MWh storage 

systems are then added to the PV units at the corresponding 

bus and the LDF is run while setting a maximum value of 1 

p.u. for the buses voltage. In this case the storage are operated 

so that the voltage at bus 18 remains well below this limit (Fig. 

12a) and while minimizing the system losses (i.e. LDF 

objective function) with limited reverse flow (Fig. 12b). A 

final simulation is performed with no reverse flow allowed. It 

can be seen that this binding constraint is well fulfilled (Fig. 

12b) with appropriate storage management. Typically, the 

storage units charge during the sun hours in order to avoid 

any reverse flow in the upstream grid and discharge at the end 

of the day in order to further limit the system losses while 

maximizing local energy usage (Fig. 12c&d). Overall, the 

feeder downstream bus 18 is operated in an islanded mode 

with no active import form the upstream network from 8 a.m. 

onward. Note that following the equations of section 4.2, the 

DG management only considers the active flows here. More 

accurate operating areas in the P-Q domain may be defined 

similar to [17] or [21]. The authors remind that the main 

objective of the presented applications here is to validate the 

physical meaning of the obtained results rather that discuss 

the considered scenarios in terms of installed capacities 

and/or technical-economic performances. 
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Fig. 12: DG operation on a IEEE 69 buses system - a) bus 

voltage (18) - b) branch flow (17-18) - c) storage SOC under 

reverse flow constraint - d) batteries power under reverse 

flow constraint 

5.3. DG Optimal Siting 

In this subsection, the proposed iterative LDF is 

integrated in a DG siting problem with the modified equations 

of Section 4.3. The test system considered is a low voltage 

(400 V) 90-bus system in Cambodia whose architecture is 

displayed in Fig. 13 with a main 150 A feeder and 68 points 

of delivery (POD) connected through 32 A lines. The 

objective is to find the best placement for a PV+Storage unit 

of given capacities ( Pb

pvR
= 10 kW , Pb

stR = 10 kW  and 

 Eb
stR = 50 kWh) and while optimizing the operation over a 

daily simulation. Without any DG (i.e. daily load profiles 

only) the system displays 12 kWh active losses over the 

simulated day with severe under voltages around 0.9 p.u. 

Fig. 13: Considered 90-bus system and optimal siting results 

 
Fig. 14: Active losses for different DG locations. 

Similar to the optimization architecture in Fig. 8a, an 

exhaustive search investigates all the potential locations for 

the DG units among the PODs (i.e. bus number 23 to 90) and 

the iterative LDF is run for every cases while operating the 

battery to minimize the losses and with respect to 

voltage/current limitations. The results illustrated in Fig. 14 

are given in terms of daily active losses for the different 

connection buses investigated. Especially, the obtained 

performances computed with the iterative LDF (run in 5 

minutes) are compared with the outputs from SOCP 

simulation (run in 1hour to investigate all the nodes). The 

outcomes are close and with the same rank for the most 

interesting buses in terms of loss reduction. In addition to its 

shorter computational time, the iterative LDF displays lower 

deviations compared to an estimation run with successive AC 

OPF along the simulated day. Also, the investigation of DG 

connection at all the nodes allows to partition the PODs in 

three different clusters in terms of loss reduction; 0-25 %, 25-

50 % reduction and 50-75 % reduction. The ‘best nodes’ are 

located downstream the main 150 A line, in an area with a 

significant amount of load and at PODs located at the end of 

short 32 A lines (Fig. 13). Also, for the considered system, it 

is interesting to note that the connection of DG units at some 

PODs tends to increase the active losses compared to a base 

case scenario with no distributed resources connected. 

Typically, those PODs are located close to the PCC and/or at 

the end of long 32 (high impedance lines).  

 
Fig. 15: Results before and after DG installation – a) 

connection bus voltage – b) upstream line power – c) 

upstream line current – d) PV+storage operation 
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Similar to the results analysis of section 5.2, Fig. 15 

displays time series profiles with DG connected at bus 65 in 

order to validate the physical meaning of the obtained results. 

With DG capacities greater than individual load profiles, 

there is a strong reduction of the undervoltage (Fig. 15a) and 

the corresponding PODs ‘exports’ energy to the rest of the 

system (i.e. negative branch flow in Fig. 15b). This export is 

limited by the 23  A current limit (Fig. 15c), and is allowed 

by significant installed PV. The PV surplus is stored during 

the sun hours before the battery is discharged at the end of the 

day (Fig. 15d). Ultimately the overall system losses are lower 

while importing less energy from the upstream grid. 

5.4. DG Siting and Sizing Results 

As the last example for the application of the proposed 

iterative LDF, this subsection investigates the integrated 

siting, sizing and management of distributed resources. 

Following the architecture depicted in Fig. 8b, a genetic 

algorithm generates different sets of potential connection 

bus(es). In order to lower the combinatorial complexity for 

the considered 90-bus case, the candidate nodes are the ’best 

buses’(in terms of loss reduction) in each cluster previously 

identified. Ten potential buses per cluster are then selected 

and the genetic algorithm may investigate any combination 

among those 30 potential buses. In every case, the DG size 

and operation are optimized according to the modified 

equations in section 4.4. The objective is to perform an 

arbitrage between the installation cost and the system losses 

(parameter wloss in (21)) and while ensuring a given ratio of 

self-sufficiency ((24)). One day simulation is considered. 

 

Fig. 16: Siting/Sizing results – a) Optimal cost and 

connection bus(es) for different self-sufficiency – b) 

Cost/losses Pareto fronts for different number of connection 

buses and αssr = 0.5. 

The obtained results after several runs with different 

parameters are given in Fig. 16. Obviously, when greater self 

sufficiency is required, more DG capacities shall be installed, 

which incur increasing costs (Fig. 16a). As observed in the 

previous section, for the considered test system, the 

maximum line current (32 A), is a binding constraint which 

limits the size of the DG installed at the POD level. Thus, for 

higher self-sufficiency (αssr > 0.5) the installed PV and 

storage capacities shall be distributed among different PODs, 

up to four different buses necessary for a self-sufficient 

system (for the considered simulation period). Finally, all the 

tested configurations in the course of the genetic algorithm 

allow to investigate the impact of the number of connection 

buses. Thus for a given value of self-sufficiency (e.g. 

αssr=0.5), Fig. 16b identifies the best solutions losses/cost 

(Pareto front), while changing the value of the weight wloss 

and the number of connection buses. It is noticeable that 

distributing the capacities among greater numbers of buses 

(one to three in the example), allows to significantly reduce 

the system losses .with shorter distances between the local 

generation and PODs. Reduced costs are also observable. 

However, multiplying the number of equipment may lead in 

the same time to more complex control schemes. There 

should then be a trade-off between cost and complexity, 

which is outside the scope of the short study presented in this 

section. 

5.5. Scalability Tests 

The previous runs performed daily simulations for 

optimal operation, sizing and siting of the resources. The 

objective was the integration of the proposed iterative LDF 

into such problems rather that discuss the obtained 

performances. Especially, a single day simulation is not 

enough to represent the systems lifetime (e.g. seasonality 

effects, aging). Thus, a final set of simulations consists in 

scalability tests while increasing the length of the simulated 

period (i.e. the temporal set T) and the number of connected 

distributed resources on the IEEE 69-bus test system. The 

objective is to determine whether the proposed approach can 

run a longer simulation with the optimal operation of greater 

numbers of units. 

Table 5 Computational time in seconds for different 

scalability runs of the iterative LDF 

      T-day 

DG 
1 7 15 30 60 90 

1 7 35 93 92 237 590 

10 6 46 30 128 273 - 

20 6 46 40 129 319 - 

30 8 90 50 396 - - 

40 9 197 110 425 - - 

50 13 253 130 - - - 

The results displayed in Table 5 show that the iterative 

LDF allows simulations up to one month at an hourly time 

step and with more than 30 DG units (PV + Storage) - with a 

maximum computational time arbitrary set to 600 s. For the 

same stability test, the SOCP exceeds the 600 s limit with 

only three successive days simulated and less than 10 

distributed units. With the fully linear problem and the 
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available computation capabilities and software versions, the 

solving time is above the limit for around two million 

variables. It then defines a ‘solvable’ area that depends on the 

size of the system (B buses) the number of simulated time 

steps T and the amount of DG units N with 

T×(13×B+3×N)≤2.106. 

6. Conclusions 

This paper successfully implements an iterative linear 

DistFlow for grid modelling purposes in dynamic 

optimization. The proposed formulation is intended to be 

used for DG planning studies such as the optimal operation, 

siting and/or sizing and while considering long time horizons.  

The iterative LDF is compared with reference models such as 

LDF, QDF and SOCP while estimating the errors with a 

reference AC OPF. The iterative LDF displays the best 

performances with an accuracy on the loss estimation greater 

in a magnitude of five to forty compared to conventional LDF. 

When dynamic optimization is considered, the method 

outperforms the SOCP and QDF with much faster 

simulations (i.e. scalability results). However, one drawback 

of the method identified thus far is that the convergence may 

not be ensured due to the iterative process if binary variables 

(e.g. genset start/stop) are investigated. This should be part of 

further application studies. In the present paper, applications 

such as DG operation, siting and sizing on 69-bus and 90-bus 

test systems are given as illustrative studies. The iterative 

LDF is successfully run and coupled with a genetic algorithm 

to compute the optimal management/size of DG units with 

different constraints and objectives (i.e. losses, cost and self-

sufficiency). In particular, the obtained results show that 

greater numbers of DG units allow to adjust the trade-off 

between the cost of installation and system losses. Such 

problems shall be further investigated and discussed with the 

proposed method and the inclusion of seasonality, aging 

and/or uncertainties effects. 
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