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Abstract

This paper presents a robust model updating strategy for correcting finite element models
from datasets acquired in low-frequency dynamics. The proposed methodology is based on
the minimization of a modified Constitutive Relation Error (mCRE) made of two terms: (i) a
Hermitian data-to-model distance written in the frequency domain enriched with (ii) a CRE
residual accounting for model bias with strong mechanical content. An automated L-curve
based methodology is derived for tuning the relative weight of the two terms and improving
the algorithm robustness to noise level. An extended formulation of the mCRE in terms
of Power Spectral Density is also proposed: a data windowing preprocessing step ensures
statistical consistency of the updated parameters when dealing with noisy random processes.
The methodology is applied to two earthquake engineering examples. The performances of
the methodology are assessed using synthetic measurements from a plane frame subjected
to random ground acceleration. Actual measurements from the SMART2013 database are
next processed to observe the eigenfrequency drop of a reinforced-concrete structure submit-
ted to a sequence of gradually damaging shaking-table tests. In this last application, the
corrected model predictions are in good correlation with former data-driven subspace-based
identification results.
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Nomenclature

Model updating framework

M Model operator

(e) Set of model inputs

(y) Set of measurements to be compared to model predictions

Π ◦ Extraction operator for comparison between model and measurements

p Set of parameters to update of dimension N

p̂ Optimal parameter estimate obtained after model updating

P Parameter space, subset of RN

J Deterministic cost-function to minimize∣∣∣∣∣∣ • ∣∣∣∣∣∣ Data-to-model distance norm (non-necessary Euclidean)

G Tikhonov regularization term

α Weighting coefficient associated to the Tikhonov regularization

δ Signal-to-noise ratio

Reference dynamical problem

Ω Physical domain

∂Ω Boundary of the physical domain

∂1Ω Boundary of the domain where displacement is imposed

ud Displacement field imposed on ∂1Ω

∂2Ω Boundary of the domain where surface loads are applied

Fd Surface load applied on ∂2Ω

n Outer normal vector

fd Body forces applied in Ω

[0;T ] Time domain

u0 Initial displacement field

u̇0 Initial velocity field

u Displacement field

U [0;T ] Space of kinematically admissible displacement fields

σ Stress field

σe, σd Elastic and dissipative parts of the stress field

S [0;T ] Space of dynamically admissible stress fields

ε Linearized strain tensor

K Hooke’s elasticity fourth-order tensor

D Dissipation fourth-order tensor

ρ Volumic mass
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Finite element discretized problem

U Discrete nodal field associated to u⊕
FE assembly operator

K ,D ,M Stiffness, damping and mass FE matrices

F Discretized force vector

From time domain to frequency domain

t Time

ω Frequency pulsation

Y (ω) Continuous frequency counterpart of y(t) at pulsation ω

Yω Discrete Fourier Transform of y at pulsation ω

vj Window allowing to extract data from time segment j

Yj,ω Discrete Fourier Transform of (y.vj) at pulsation ω

J Number of time segments

Sxy (ω) Crossed-PSD matrix of signals x and y

H(ω) Transfer matrix

The modified Constitutive Relation Error in dynamics

ζ2 Constitutive Relation Error term

r Confidence into measurement coefficient

Π Frequency counterpart of projector Π

‖ • ‖ Hermitian model-to-data norm defined by the matrix Gy

e2
j,ω mCRE value at a given pulsation ω considering data from segment j

Dω Frequency bandwidth

∆f Frequency step

z(ω) Frequency weighting function

J0 mCRE normalization term

J̄ Normalized mCRE functional

β, ε1, ε2 Algorithm scalar thresholds

Other mathematical operations and notations

tr(•) Trace operator

•H Hermitian transpose

•† Moore-Penrose pseudo inverse

E Mathematical expectation operator

• : � Inner product between second-order tensors
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1. Introduction

1.1. Context

Control law synthesis and more generally dynamic systems stability and reliability assess-
ment require the development of robust and predictive models. Those models can be con-
structed directly from measurements (black-box modeling) or derived after in-depth physical
description of the phenomena involved (white-box modeling). In each case, a particular ef-
fort must be made to build those models and verify their domain of validity by experimental
comparison.

Civil engineering problems are no exception to the need of deriving robust models for
reliability assessment. In particular, in vibration-based damage detection or more generally
structural health monitoring (SHM) applications, either parametrized (finite element) models
or structured models (built from data-driven approaches) are used to follow the state of
structures in operational or laboratory conditions [1, 2].

For earthquake engineering purposes, in order to assess the vulnerability of civil engi-
neering structures to seismic hazard, the CEA/TAMARIS facility carries out dedicated tests
using shaking-tables moved by high-power hydraulic actuators on complete or partial struc-
tures at real or reduced scale [3, 4]. However, controlling the hydraulic actuators of the
tables is still a challenging task, where robust and predictive models must be derived for
enhanced performances.

Indeed, during seismic experiments on damaging specimens (such as reinforced-concrete
constructions), the modal signature, which is the key input-feature for linear control, can
face sudden changes. This imposes complex experimental protocols where test sequences
of increasing level are carried out and the input-drive sent to the servo-actuators must be
systematically corrected from one test to another to account for the observed frequency
drop [3, 5]. The ambition of this work is to make a first step towards the integration of
numerical models in the shaking-tables control strategy, and to develop a model updating
framework based on a offline/online update of the plant model for accurate control of the
actuators. More precisely, a robust strategy for updating linear structural Finite Element
(FE) models in low-frequency dynamics is described in this paper. A particular attention
is paid for considering the wider possible range of measurements as experimental reference
with a potentially low Signal-to-Noise Ratio (SNR) in order to broaden the scope of the
proposed methodology.

1.2. Model updating at a glance

Model updating techniques aim at correcting parameters p ∈ P of a mathematical model
M based on a set of observed outputs (y) obtained under a given set of inputs (e). Optimal
parameters p̂ are searched by minimizing a cost function J measuring the gap between
measurements and their associated model predictions :

p̂ = arg min
p ∈ P

J
(
M ((e) , p) ; (y)

)
(1)

As all inverse problems, model updating problems are subjected to ill-posedness (in the
Hadamard sense) and ill-conditioning issues especially because of measurement noise [6].
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Regularization techniques must be considered for guaranteeing uniqueness of the solution and
enforcing local ellipticity of the problem. Extensive literature reviews of validation/model
updating approaches can be found [7–10]. The different methods described therein may be
divided into two families as described below.

Deterministic methods (extensively reviewed in statics/quasi-statics in [9] and for nonlin-
ear transient dynamics in [8]) build the cost function to be minimized as a distance from the
response of the model to available measurements and overcome the ill-posedness issue using
a so-called Tikhonov regularization term [11], containing a priori information G(p). The
gap between model and data is measured using a (non-necessary Euclidean) norm

∣∣∣∣∣∣ • ∣∣∣∣∣∣
taking the entire amount of available data ((y) , (e)) into account. The cost function reads:

J (p) =
∣∣∣∣∣∣Π ◦M((e) , p)− (y)

∣∣∣∣∣∣2 + αG(p) (2)

where Π is a projection operator, whose non-zero terms allow to extract model predictions
at sensors location in order to compare them with the measured quantities, leading to the
data-to-model distance (Π ◦M(e(t), p)− y(t)) (also called prediction error). The weighting
coefficient α associated to the regularization term G(p) can be optimally calibrated using
various techniques such as the Morozov discrepancy principle [12], the L-curve method [13]
or the Arcangeli principle [14].

Alternatively to direct data-to-model comparison (2), experimental modal features can be
used as a reference for dynamics problems: the data-to-model distance then directly compares
experimental eigenfrequencies, modeshapes and damping ratios to those predicted by the FE
model. A modal analysis step is often performed in an experimental or operational context
to extract the reference modal signature (see [15] for stochastic subspace identification in
the time domain, [16] for frequency-domain techniques and [17] for a complete review). Such
features can take into account damage evolution, thermal effects or other environmental
effects in a long-time monitoring context. Sensitivity analysis methods, reviewed in [18–20]
and applied in [21–23] among many other works, are then carried out for localizing erroneous
areas and correcting associated physical parameters.

Stochastic methods, in turn, use the Bayesian inference framework to describe uncertain-
ties on the parameter estimation [6, 10, 24]. The Bayesian approach aims at improving the
prior knowledge on the parameters probability density function (pdf) denoted using both
experimental data (y) and the prediction model M. The updating strategy is based on
the eponymous Bayes theorem, which builts the posterior pdf from the prior pdf and the
likelihood function. The prior pdf is generally chosen based on engineering judgment and
describes an initial guess of the parameters distribution in the absence of observations. The
likelihood function can be interpreted as a measure of how good the set of parameters p
applied to modelM succeeds in explaining the observations (y). Optimal parameters p̂ can
then be recovered based on classical Maximum Likelihood Estimation (MLE) principle, i.e.
such as maximizing the log of the likelihood function.

1.3. The modified Constitutive Relation Error (mCRE)

In this contribution, since low-SNR measurements may lack of richness to update FE
models properly, a cost function with enriched physical meaning and strong mechanical con-
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tent is chosen. Following the strategy proposed by Ladevèze and co-workers, a deterministic
energy residual is defined as a quadratic model-to-measurements distance written in the
frequency domain and enriched with a term based on the concept of Constitutive Relation
Error (CRE) [25]. The idea behind this enrichment is to improve the ellipticity properties of
the cost function by adding a term which relaxes unreliable parts of the model. Introduced
in the 1980s for the purpose of FE verification (and extensively developed in [26–32] among
many other references), the CRE concept was later adapted for model validation [33–37]
in structural dynamics to define a modified CRE (mCRE) residual to be minimized with
respect to the set of updated parameters. The mCRE functional reads:

mCRE(p) = CRE(p) +
r

1− r
∣∣∣∣∣∣Π ◦ (M((e) , p)

)
− (y)

∣∣∣∣∣∣2 (3)

with a scalar r for balancing the two terms. This energy-based residual offers interesting
advantages. It improves local convexity properties compared to classical least-square func-
tionals [9, 38–40]. Besides, the CRE part of the residual, computed over the whole structure,
allows to select the most erroneous areas in order to restrain the updating process to a few
parameters; this provides another additional regularization (in the Tikhonov sense), partic-
ularly when the number of parameters to update becomes important. The mCRE model
updating methodology has proved robustness and efficiency through a large number of ap-
plications involving defect detection [41–44], very noisy or even corrupted measurements
[38, 45–47], tolerance to incomplete boundary conditions [40, 48, 49], full-field material iden-
tification [50–52], acoustics [53, 54], wall-slab RC joint characterization [55], real-time model
updating and data-assimilation [56] or coupling with model order reduction techniques like
Proper Generalized Decomposition (PGD) [57]. Recently, a unified formulation of the mCRE
has been proposed (in the time domain) for the full updating of constitutive relations and
evolution laws in a nonlinear context [58].

Contrary to modal analysis techniques, the mCRE-based model updating algorithm is
not restrained to the processing of linear responses of structures. However, the knowledge of
the input signal is mandatory for the mCRE-based model updating methodology proposed
herein, contrary to operational modal analysis techniques applied to SHM that only take
advantage of output-only measurements. Besides, the explicit evaluation of a local model
error indicator, namely the CRE part of the residual, provides more insight on the validity
of the model itself compared to classical finite element model updating methods.

In this paper, a robust and automated mCRE-based model updating framework is derived
for considering low-SNR random processes as experimental reference. A particular attention
is paid to the weighting of the two terms defining the cost function to minimize (CRE residual
and data-to-model distance). Indeed, a preliminary numerical study (also presented in this
contribution) highlighted that an inappropriate choice of the weighting factor r could lead to
irrelevant results, especially when considering low-SNR measurements. A first contribution
is proposed for automatically tuning the weighting factor r based on the L-curve principle,
bringing the overall methodology more robustness with respect to measurement noise. How-
ever, the mCRE-based model updating algorithm in its initial frequency version may still
fail at identifying erroneous parameters or finding relevant optimal values, especially when
considering low-SNR datasets. A second improvement is then proposed in such situations
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under classical ergodicity conditions with an extension of the model updating strategy based
on (i) a preliminary PSD-type data preprocessing, (ii) an automated emphasis on the ex-
perimental eigenfrequencies, and (iii) a new formulation of the mCRE-based cost function
that guarantees convergence of data-to-model distance in terms of PSDs. The efficiency of
those improvements is illustrated using both synthetic measurements and actual test results
acquired during the SMART2013 shaking-table test-campaign during which a RC specimen
was submitted to a sequence of increasingly damaging ground motion tests. In these numer-
ical applications, a linear ”equivalent” updated model weighted by a restrained number of
parameters has been able to track the overall structural state and eigenfrequencies, which
are of major concern for adaptive control design prospects.

The paper is structured as follows. Section 2 presents the fundamentals of the proposed
mCRE-based model updating framework and recalls the reference problem to be solved.
The associated cost function is introduced and the way random processes are dealt with for
ensuring good accordance between data and corrected model predictions in terms of PSD is
explained, with particular attention on how the proposed choice of

∣∣∣∣∣∣ • ∣∣∣∣∣∣ defines a norm
on the PSD sequence of the prediction error. Section 3 gives more insights into the mini-
mization algorithm itself. Technical details on different ingredients such as modal projection,
control of the procedure, and choice of the parameters to update are explicitly given. Section
4 presents the results of the two numerical applications processed in this work. The first
earthquake-engineering-inspired academic example (plane frame submitted to Gaussian ac-
celeration loading) is first presented and enables a full discussion on the efficiency and limits
of the methodology with respect to measurement noise of known level. The results obtained
processing the SMART2013 database are then detailed: after a short contextualization and
description of the FE model borrowed from [3], updated parameters are given for the whole
set of testings. In both cases, particular attention is paid to the tuning of the weighting
factors of the algorithm with respect to measurements. The efficiency of the methodology
is particularly illustrated by the good correlation between the modal signature produced by
the corrected FE model and the modal identification results formerly obtained using data-
driven subspace-based algorithms [5]. Insights are also provided regarding the (appropriate)
choice of parameterization for optimal model updating. Conclusions and prospects are finally
drawn in Section 5.

2. Model updating framework based on the constitutive relation error

2.1. The reference problem

Let one consider a linear structure, within a domain Ω, at time t ∈ [0;T ] as shown in
Fig. 1. This structure is subjected to a given time-dependent displacement field ud on the
boundary ∂1Ω ⊂ ∂Ω and to surface and body loads, respectively denoted Fd and fd, applied
on ∂2Ω ⊂ ∂Ω and Ω, with ∂1Ω ∪ ∂2Ω = ∂Ω and ∂1Ω ∩ ∂2Ω = ∅.

The reference problem consists in finding, for all M ∈ Ω and t ∈ [0;T ], the displacement
field u(M, t) ∈ U [0;T ] and the stress field σ(M, t) ∈ S [0;T ] verifying:
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: Sensor location

𝜕2Ω

Figure 1: The structure and its environment.

Initial conditions ∀M, u(M, t0) = u0, u̇(M, t0) = u̇0 (4)

Kinematic boundary conditions ∀M ∈ ∂1Ω, ∀t, u(M, t) = ud(M, t) (5)

Equilibrium equations ∀M ∈ ∂2Ω, ∀t, σ(M, t).n = Fd(M, t) (6)

∀(M, t), ρ
∂2u(M, t)

∂t2
= ∇ ·σ + fd (7)

Constitutive relation ∀(M, t), σ(M, t) = K : ε(u(M, t)) +D : ε̇(u(M, t)) (8)

with ε(•) = 1
2

(
∇ •+∇T•

)
the linearized strain tensor, and K, D the fourth-order Hooke

and dissipation tensors, respectively. Consequently, the stress σ can be divided in an elastic
part σe and a dissipative part σd such that σ(M, t) = σe + σd.

The spaces where the solution fields are searched are said kinematically admissible for
U [0;T ] and dynamically admissible for S [0;T ]. U [0;T ] is defined as the set of vectors such that
for all t, u(t) ∈ H1(Ω) verifying the kinematic boundary conditions, whereas S [0;T ] is the
set of symmetric second-order tensors σ(t) ∈ L2(Ω) (∀t) verifying the equilibrium equations.
This (direct) problem is well-posed in the Hadamard sense i.e. the solution exists, is unique
and stable with respect to its input parameters.

2.2. Measurements in the frequency domain

Let one consider a set of sensors scattered over the structure as illustrated in Fig. 1.
Sensing devices classically acquire several types of measurements generally associated to
the unknown displacement field u or its time and space derivatives, although excitation
forces or actuator state variables may also be available. In practice, the dataset of observed
outputs (y) may contain any physical measured quantity deriving from a displacement field
at sensors location (displacements, velocities, accelerations, strain, etc.), whereas inputs (e),
if measured, are associated to the loading (imposed displacements, forces or accelerations).
Besides, in the context of low-frequency dynamics, the following model updating strategy will
be written in the frequency domain, so that the frequency complex counterparts of inputs
and outputs are introduced and denoted (E (ω)) and (Y (ω)) for all pulsation ω, respectively.

8



Taking the measurements as additionnal boundary conditions overspecifies the above me-
chanical reference problem, that becomes ill-posed. Indeed, one shall remark that, from an
experimental point of view, the knowledge of the frequency complex amplitudes of inputs and
outputs (E (ω)) and (Y (ω)) is subjected to uncertainties because of measurement noise, fi-
nite nature of the recordings, sampling process, sensors offset or miscalibration, anti-aliasing
filters, etc. Furthermore, when studying systems submitted to stochastic inputs, random
signals, viewed as discrete-time sequences, do not have finite energy and hence do not pos-
sess a discrete-time Fourier transform (see e.g. [59]). However, they usually have a finite
average Power Spectral Density (PSD). Under stationarity assumption, and introducing a
unit window v of length T such that xT (t) = v · x (t), the PSD matrix of a random signal
x(t), denoted Sxx (ω), can be defined for all ω as:

Sxx (ω) , lim
T→+∞

E

(
1

T

∫ +∞

−∞

[
XT (ω)

][
XT (ω)

]H
dω

)
(9)

where XT is the Fourier transform of xT , and E () and •H denote the mathematical expec-
tation and Hermitian transpose operators, respectively. Defining in practice a correct win-
dowing (number of segments, type and length of the windows for apodization, zeropadding,
etc.) might not be an easy task and could add uncertainty to a quantity (the PSD matrix)
that, by nature, can only be estimated in a statistical manner.

An example of the windowing used for the SMART2013 application can be seen in Fig.
2. Let us simply assume here for the sake of generality that when dealing with random

processes, a given set of J possibly overlapping windows
{
vj
}J
j=1

is used for the computation

of the PSD matrices. Once applied to the input and output time-series, this windowing step
provides an ensemble of complex values denoted (Ej,ω) and (Yj,ω).

Figure 2: Acceleration time histories measured during the SMART2013 shaking-table testing campaign
(Run #6) and 60%-overlapping Blackman windows defined for computing the PSD matrix of the measured

outputs.

2.3. Model updating problem including both CRE and measurements

This section explains how the cost function to minimize is constructed from the less
reliable data and equations of the reference problem. The complete problem is presented here
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assuming random inputs and thus some data windowing. Note that the classical deterministic
mCRE-based model updating problem found in former literature works can be recovered as
a particular case where only one unitary window is processed.

The key point here consists in splitting the data and equations that are considered as
reliable from those considered as unreliable. Tab. 1 presents the separation made for the
present study. The CRE construction lies into the distinction between reliable and unreliable
quantities when considering the whole set of equations defining the reference mechanical
problem. This separation is non-unique and deeply relies on the case study: for instance,
the loading could be considered as unreliable with the rest of the measurements (see [37] for
an example of such an application and [60] for a complete discussion on the possibility and
limitations of considering the loading as fully unknown).

Reliable Unreliable

Model and eqs.

• Geometry

• Elastic part of the constitutive
relations (8)

• Kinematic boundary conditions (5)
• Equilibrium equations (6 - 7)
• Dissipative part of the constitutive
relations (8)

Experimental data
• Identified pulsations ω

• Measured outputs (y)→ (Yj,ω)

A

• Sensors position and orientation
• Measured inputs (e)→ (Ej,ω)

Table 1: Distinction between reliable and unreliable information on a single segment j at pulsation ω for
the considered problem.

A solution s = (u, σe, σd) verifying the reliable equations is then declared admissible.
Assuming that the system is studied on a single segment j at pulsation ω, the corresponding
admissibility space will be denoted Sad

j,ω in the following. As doubt is put on the constitutive
relations, the energetic norm of the distance between the kinematically and dynamically
admissibility spaces defines a measure of how consistent the solution s = (u, σe, σd) is with
respect to the mechanical problem. Therefore, the degree of non-verification of the (assumed
unreliable) constitutive relations defines the CRE, or model error, denoted ζ2 and defined
as a linear combination of two terms:

� the CRE associated with the elastic behavior:

ζ2
elas(s) =

1

2

∫
Ω

(
σe −K : ε(u)

)
: K−1 :

(
σe −K : ε(u)

)
dΩ (10)

� the dissipation error:

ζ2
diss(s) =

1

2

∫
Ω

(
σd −D : ε̇(u)

)
: D−1 :

(
σd −D : ε̇(u)

)
dΩ (11)

In this work, according to Tab. 1, it is chosen to update only structural stiffness prop-
erties, meaning that only the elastic part of the constitutive relations is assumed subject
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to caution. Practically, ζ2 = ζ2
elas in the following. Indeed, for correcting FRFs in low-

frequency dynamics, a current practice consists in updating stiffness parametrization first to
update eigenfrequencies, before updating damping parameters for correcting the narrowness
of the resonant peaks in a second step. Indeed, the correction of frequency response func-
tions consists in a two-stage scheme where stiffness properties are firstly updated alone for
correcting eigenfrequencies. Damping properties are updated in a second stage to correct
the narrowness of the resonant peaks. Although only stiffness properties are updated in this
work, please note that an analogous formulation can be written when casting doubt on the
dissipative part of the constitutive relations, the mCRE being a well-suited functional for
updating damping properties too [35].

In the model identification framework, the extension of the concept of energy residual
from the CRE on the less reliable measurements leads to the so-called modified Constitutive
Relation Error (mCRE) written as

∀j,∀ω e2
j,ω(s) , ζ2

j,ω(s) +
r

1− r
‖ΠUj,ω − Yj,ω‖2 (12)

This energy-based residual is composed of two terms: the CRE itself ζ2
j,ω(s) measuring the

degree of non-verification of the elastic part of the constitutive relations and a model-to-data
distance from the predictions Uj,ω to the measurements Yj,ω.

The projection operator Π is the frequency counterpart of Π, previously introduced in
(2). As measurements derive from the displacement field and its time derivatives, the non-
zero coefficients are integer powers of iω for extracting the measured components of Uj,ω at
corresponding sensor positions and directions. The Hermitian norm involved in the distance-
to-measurement term is defined such that ‖•‖2 = 1

2
(•)H [Gy ](•) using a symmetric positive-

definite matrix Gy of appropriate dimension. The choice of Gy is not critical, however special
care should be taken for guaranteeing that ‖•‖2 is homogeneous to ζ2 and equivalent in level.
In this work, Gy is constructed from the initial stiffness operator condensed on the sensors
locations using classical Guyan reduction [35, 61]. The tuning factor r ∈]0; 1[ enables one to
give more or less confidence to the measurements; close-to-unit values can be specified when
measurements are considered reliable whereas close-to-zero values concern more corrupted
recordings or having higher noise level. The choice of this tuning parameter is usually set to
a default value of r = 0.5 in many applications [34–37, 46, 55, 62] with satisfactory results.
The sensitivity of r with respect to the measurements was already illustrated in [36], with
the conclusion that r = 0.5 is a convenient value for most cases.

In summary, on each segment j and each pulsation ω, a solution living in the admissibility
space Sad

j,ω and verifying the less reliable data and equations as closely as possible is searched.
The reformulated problem thus reads as a constrained minimization problem (Pj,ω) that
consists in seeking a solution ŝ such that:

(Pj,ω) ŝ(p) = arg min
s ∈ Sad

j,ω

e2
j,ω(s; p) (13)

Once the solution ŝ(p) of (Pj,ω) is computed for each couple (j, ω), the value e2
j,ω(ŝ(p); p)

11



can be evaluated and the final cost function J to be minimized with respect to parameters
p reads:

J (p) ,
∫
Dω

z(ω) E
j

(
e2
j,ω(ŝ(p); p) dω

)
(14)

where z(ω) is a positive frequency weighting function defined over the frequency range Dω

which verifies
∫
Dω
z(ω) dω = 1. The complete model updating problem (P ) finally reads:

(P ) p̂ = arg min
p ∈ P

J (p) (15)

To highlight the strong nesting between problems (Pj,ω) and (P ) (due to the dependency of
the behavior operators into the set of parameters), the overall problem can be reformulated
as follows:

p̂ = arg min
p ∈ P

∫
Dω

z(ω) E
j

 min
s ∈ Sad

j,ω

e2
j,ω(s(p); p) dω

 (16)

2.4. Contributions for enhanced robustness with respect to ergodicity and measurement noise

In this work, a notable effort has been made for proposing automated tuning procedures
which enhance robustness of the mCRE-based model updating strategy with respect the
following aspects:

� Enhanced robustness with respect to measurement noise – An automated tuning pro-
cedure of the confidence into measurements coefficient r that naturally discriminates
low-SNR measurements is proposed herein. Indeed, the choice of r is crucial for pro-
viding relevant parameter estimates, as will be illustrated in Section 4. Besides, as
shown in Fig. 7, a unitary frequency weighting function (z(ω) = 1/‖Dω‖ ∀ω) leads
to a monotonic evolution of the mCRE (seen as a function of ω). Mostly because of
the (non-tempered) high values in the low-frequency range, the procedure may fail
at providing relevant identification results. A frequency weighting function based on
the frequency content of the considered measurements allows to automatically favor
the vicinity of the experimental modal eigenfrequencies, improving the sensitivity of
parameters and the quality of the provided estimates.

� Enhanced robustness with respect to low-magnitude ergodic inputs – during shaking
table experiments, non-damaging broad-band ergodic tests are performed to identify
modal signature changes. Similarly to what is classically done for processing peri-
odograms for random processes, a data windowing extension of the mCRE functional
has been shown effective for preventing potential divergence of the model updating
algorithm and providing more stable estimates even when considering low-SNR mea-
surements.

Complete explanations about these contributions are given in the remainder of this section.
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2.4.1. L-curve methodology for an optimal confidence into the measurements

When processing low-SNR random measurements, the corrections provided by the al-
gorithm with a default value r = 0.5 may lead to inconsistent results (see applications in
Section 4). To circumvent this lack of robustness, an automated selection based on the L-
curve principle [13] is proposed in this paper to define an optimal value of r with respect to
measurement noise and in accordance with the a priori confidence one has into the quality
of the measurements. The L-curve principle states that the optimal value of r balances the
model and measurement error, in the following manner:

r̂ = arg min
r∈[0;1[


∣∣∣∣∣
∫
Dω

E
j

(
ζ2
j,ω(ŝ)

)
dω︸ ︷︷ ︸

Model error

−
∫
Dω

E
j

(
r

1− r

∥∥∥Π Ûj,ω − Yj,ω

∥∥∥2
)

dω︸ ︷︷ ︸
Measurement error

∣∣∣∣∣
 (17)

A pedagogical illustration of this procedure is available in Section 4.1.2 - Fig. 6.

2.4.2. Frequency bandwidth, frequency weighting

The model updating procedure is conducted on a given frequency bandwidth Dω =
[ωmin;ωmax] which contains the essential part of the mechanical energy of the system. For
seismic applications, ground motions usually have a significant frequency content up to
50 Hz, which implies that Dω ⊂ [0 Hz; 50 Hz]. Besides, one should note that the frequency
weighting function z(ω) can be used as a modulation function to favor frequencies deemed
to have the largest influence on the model updating procedure. In this work, we propose
an automated computation of z(ω) from experimental datasets, based on the fact that, for
low-frequency dynamics, the essential frequency content of the measurements is gathered
around experimental natural frequencies. In this work, a normalized version of the Complex
Mode Indicator Function (CMIF) [63] on transfer functions is used for frequency weighting
as explained in the following lines. One first needs to compute the transfer matrix H (ω)
from the crossed input/output PSD matrices

[[
Syy (ω) Sye (ω)

]
;
[
Sey (ω) See (ω)

]]
using one

of the three following formulas:

H (ω) =
[
Syy(ω)

] [
Sey(ω)

]†
(18)

H (ω) =
[
Sye(ω)

] [
See(ω)

]†
(19)

H (ω) = [Syy(ω) Sye(ω)] [Sey(ω) See(ω)]† (20)

where •† refers to the Moore-Penrose pseudo-inverse. The dominant singular value Σ1(ω)
of matrix H (ω) has the property of peaking in the vicinity of natural frequencies and can
be advantageously used for defining z(ω). This indicator based on the transfer matrix H
is called H−CMIF in what follows (owing to its similarities with classical CMIF). The
preliminary smoothing of the PSDs is therefore crucial for allowing the detection of resonant
peaks without misinterpretation due to the random nature of the signals. The efficiency of
this H−CMIF-based frequency weighting function is highlighted in the following numerical
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applications in Section 4, where some examples of H−CMIF used as weighting function are
shown (see Fig. 7 or 13).

In order to fulfill the condition
∫
Dω
z(ω) dω = 1, the H−CMIF weighting function z(ω)

is derived as

z(ω) =
Σ1(ω)∫

Dω
Σ1(ω)dω

(21)

2.4.3. Convergence to measurements in terms of PSDs

In the perspective of dealing with random processes, our claimed objective is to build a
cost function that, once minimized with respect to the model parameters p, would make the
model predictions converge to the measurements in terms of PSD. One could legitimately
ask if this desired requirement is met. Let us prove this claim and consider the integrated
and averaged model-to-measurements term, that reads:

∣∣∣∣∣∣Π ◦ (u)− (y)
∣∣∣∣∣∣2 =

∫
Dω

z(ω) E
j

(∥∥ΠUj,ω − Yj,ω

∥∥2
)

dω (22)

where the integral sign and mathematical expectation can be permuted if the realizations
on each segment j are statically decorrelated. As previously explained, the involved norm is
written using real symmetric positive-definite matrix Gy . Let thus introduce the prediction-

error sequence (η) =
(

G
1/2
y (Πu − y)

)
using the square root of matrix Gy . The distance term

reads:

∀j,∀ω
∥∥ΠUj,ω − Yj,ω

∥∥2
=

1

2
(ΠUj,ω − Yj,ω)H [Gy ] (ΠUj,ω − Yj,ω) (23)

Now taking the mathematical expectation of this last expression yields:

∀ω E
j

(∥∥ΠUj,ω − Yj,ω

∥∥2
)

= tr
(
Sηη(ω)

)
> 0 (24)

by definition of the PSD sequence, where tr (•) refers to the trace operator. Thus, if the
matrix Gy is symmetric, positive and definite, the following distance to measurements term:

∣∣∣∣∣∣Π ◦ (u)− (y)
∣∣∣∣∣∣2 =

∫
Dω

z(ω) tr
(
Sηη(ω)

)
dω (25)

obviously defines a norm on the PSD sequence
(
Sηη(ω)

)
ω∈Dω

which is exactly the property
that was looked for. Minimizing a weighted norm of the prediction error PSD matrix on the
whole frequency domain Dω with respect to p thus makes the model predictions converge to
the measurements.

Therefore, the preliminary data windowing and the extended averaging definition of the
model updating enable a better integration of random processes and bring an additional
statistical stability of the parameters with respect to measurement noise, as illustrated in the
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numerical applications in Section 4. Let us finally recall that the deterministic methodology
described in [34–36] can be recovered using a single segment with a single unitary rectangular
window.

3. Implementation of the model updating algorithm

As presented in the previous section, the mCRE-based model updating algorithm implies
the solution of two nested minimization problems. This section assumes FE discretization
of the continuous problem and details the solution scheme of (Pj,ω) and (P ) when optimal
stiffness parameters are sought in P . A general pseudo-code of the complete procedure is
also given at the end of this section (see Alg. 1). In the following, the (j, ω) subscripts are
omitted fo the sake of clarity as long as there is no ambiguity.

3.1. Solution of the problem (Pj,ω)

In a FE framework, the discretization of the reference problem leads to the assembly
of stiffness, damping and mass FE matrices, respectively denoted K ,D ,M . Likewise, any
vector describing mechanical states of the system is discretized by a vector of nodal values:
the classical kinematically admissible nodal field U and an auxiliary dynamically admissible
nodal displacement field V are thus introduced. V is associated to the discretized stress ten-
sor through a change of variables and verifying (in a FE sense) the constitutive relations (8)
and the dynamic equilibrium (7). The constitutive relation error ζ2 measures the reciprocity
gap between the two unknown nodal displacement fields U and V .

In this contribution, in the perspective of interpreting local stiffness variations as damage
pattern, the constitutive relation error ζ2 term involved in the definition of the cost function
(12) will only involve the elastic part of the constitutive relations. The discrete mCRE
functional thus becomes:

e2(U, V, p) =
1

2

(
U − V

)H
K (p)

(
U − V

)
+

1

2

r

1− r
(
ΠU − Y

)H
Gy

(
ΠU − Y

)
(26)

where one can notice that the stiffness matrix K (p) explicitly depends on the parameters
contained in p. The solution fields

(
U, V

)
∈ Sad must satisfy dynamical equilibrium, i.e.

− ω2MU + iωDU + K (p)V = F (27)

The minimization of the mCRE (26) under dynamic equilibrium condition (27) is performed
using a classical Lagrange multiplier vector Λ and the augmented cost function reads:

L(U, V,Λ, p) = e2(U, V, p) + ΛH
[[
−ω2M + iωD

]
U + K (p)V − F

]
(28)

Thus, the stationarity of L with respect to the fields (U ,V ,Λ) leads to the solution of a
linear system:
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A

{
Λ̂

Û

}
= b with


A =

[
[K (p) + ıωD − ω2M ]

H r
1−rΠ HGyΠ

−KH(p) [K (p) + ıωD − ω2M ]

]
b =

{
r

1−rΠ HGyY

F

} (29)

and Λ̂ = Û − V̂ . The direct solution of the system (29) can be very costly in terms of
CPU resources. Indeed, the matrix A is of consequent size 2Nd× 2Nd (Nd being the number
of dofs) and (Pj,ω) must be solved for all couples (j, ω) each time the solution for a given
parameter set p has to be evaluated. A projection on a truncated modal basis made of the
L first eigenmodes is used to reduce the size and thus the computational cost of the solution
of (29). An appropriate choice for L can be made such that ωL � max(Dω) and L � Nd

(see [35] for additional details). In practice, a sufficiently rich and constant basis computed
in preamble of the model updating algorithm enables to avoid a complex dependency of the
solution fields

(
Û , V̂

)
into the parameters.

3.2. Solution of the problem (P )

Optimal parameters p̂ are obtained recursively as the limit of the sequence (p(k))k in an
iterative localization/correction algorithm for which an overall pseudo-code is given in Alg.
1 and key ingredients are detailed below.

The nonlinear minimization problem (P ) is solved using a classical BFGS minimization
algorithm [64–67] with supplied analytical gradient (the interested reader is refered to [37]
for a complete demonstration).

3.2.1. Description of the parameter space P
Because a sparse distribution of sensors is available and because one intends to provide

global corrections, a piecewise constant weighting of the Young modulus defined on a non-
overlapping subdomain decomposition of the structure Ω = ∪Nn=1Ωn is used. In practice, the
updated stiffness FE model reads:

K (p) =
N⊕

n=1

pnKn,0, pn > 0 ∀n (30)

with
⊕

referring to the FE assembly procedure and Kn,0 to the initial stiffness matrix of
subdomain n. In order to keep physical meaning, each parameter must satisfy pn > 0. They
can characterize any physical property that contributes globally to the FE stiffness matrix.
The subdomains are user-defined in the preliminary step of the model updating algorithm
and allow to reduce the number of updated parameters, which contributes to limit the ill-
posedness of the updating problem (see Section 4.2.4 for additional details). Note that the
direct weighting of FE stiffness submatrices allows to identify structural damage as stiffness
loss. This choice is based on the will to use a linear ”equivalent” model for identifying modal
signature changes.
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3.2.2. Localization of the most erroneous areas

At each iteration k, only a small amount of parameters is corrected. These parameters
are chosen based on the localization of the most erroneous subdomains (in the CRE sense).
Indeed, the nature of the FE operators allows to extract the CRE part of the cost function
per subdomain ζ2

n for n ∈ J1;NK. Using a threshold β ∈ [0; 1], one can determine if a given
subdomain n belongs to the most erroneous ones in the structure using the following criterion

ζ2
n ,

1

2
(Un − Vn)H Kn(p) (Un − Vn) > β max

n∈J1;NK

(
ζ2
n

)
(31)

with, e.g. β = 0.8. This guarantees that a restrained number of parameters is updated at
each correction step and brings regularization in the Tikhonov sense.

3.2.3. Monitoring of the algorithm - convergence criteria, computational effort

The FE mesh density and the size of the structure strongly depend on the studied prob-
lem, and therefore have much incidence on the mCRE numerical value. In order to robustly
assess the convergence of the method, a normalization term is defined at the first iteration
of the algorithm, leading to a normalized cost function J̄ :

J̄ (p) =
J (p)

J0

(32)

with J0 =
∑

j∈J1;JK

∑
ω∈Dω

[
1

2

(
U (0) + V (0)

)H
K
(
p(0)
)(
U (0) + V (0)

)]
The convergence can be assessed at the kth iteration according to two criteria based on the
normalized cost function value and on the stationarity of the optimal parameters:

J̄
(
p(k)
)
6 ε1 (33)∣∣p(k) − p(k−1)

∣∣ 6 ε2
∣∣p(k−1)

∣∣ (34)

Appropriate values for the thresholds ε1 and ε2 are between 10−6 and 10−4. They must be
defined jointly and consistently, depending on (i) the a priori assumed accuracy of the model
to update and (ii) the noise level in measurements (if known). Once one of the two previous
criteria is met, the algorithm is stopped assuming its convergence (see Alg. 1).

In terms of CPU time, the repetitive calls to the solution of system (29) (whose defini-
tion depends on ω and p) must be managed at best to restrain the computational resources
required for running the model updating algorithm. The computation of the CRE per sub-
domain, frequency and window can also be prohibitive. Hopefully, vectorized computation
of CRE, convenient storage of submatrices, parallelized loops on segments j ∈ J1; JK and
frequencies ω ∈ Dω, reduced basis for the Ax = b system and analytical gradient formulation
strongly limit the computational resources for the computation of mCRE, allowing the full
running of Alg. 1 in a couple of minutes on a personal laptop for the applications presented
in the next section.
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Algorithm 1: Pseudo-code of the complete mCRE-based model updating strategy.

Data: FE model including mesh and matrices K ,D ,M , subdomain decomposition
and associated initial parameter guess p(0) ∈ P , observed inputs (e) and
outputs (y).

Result: Updated set of parameters p̂.

Preamble & initialization
Data windowing and PSD-processing: Yj,ω ∀

(
j, ω
)
∈
(
J1; JK×Dω

)
;

Choice of the thresholds ε1, ε2, β ;
L-curve based methodology to define an optimal coefficient r̂ using (17) ;
Computation of the frequency weighting function z(ω) ;

Evaluation of the initial quality of the model: J (p(0)) and J0 ;

Model updating algorithm - Solution of problem (P )
while J̄

(
p(k)
)
6 ε1 and

∣∣p(k) − p(k−1)
∣∣ 6 ε2

∣∣p(k−1)
∣∣ do

Step 1: Localization of the most erroneous areas
Solution of problem (Pj,ω) ∀

(
j, ω
)
∈
(
J1; JK×Dω

)
;

Computation of ζ2
j,ω,n ∀

(
j, ω, n

)
∈
(
J1; JK×Dω × J1;NK

)
;

Identification of the most erroneous subdomains using (31) ;

Step 2: Correction
Minimization of J (p) : p(k+1) ← p(k) with respect to the identified parameters
from Step 1 (BFGS method with supplied gradient) ;

Step 3: Convergence assessment

Convergence criteria computation: J̄ (p(k+1)) and
∣∣∣p(k+1)−p(k)

p(k)

∣∣∣ ;

end

4. Numerical applications

In this section, numerical results are presented and discussed to assess the proposed
model updating strategy. An academic plane frame model is first updated based on low-
SNR measurements obtained under random ground motion. This application enables to
validate the whole procedure and the robustness of the methodology with respect to known
measurement noise level. Afterwards, the SMART2013 shaking-table test campaign database
is used for correcting the associated FE model borrowed from [3]. The quality of the proposed
corrections will be assessed by comparing the updated numerical eigenfrequencies with data-
driven subspace-based experimental identification results [5].

4.1. Application #1: Academic plane frame subjected to random ground acceleration loading

4.1.1. Description of the problem

We consider here the plane frame structure of Fig. 3 whose stiffness distribution is
assumed unknown. This structure is clamped to a rigid moving support (shaking-table).
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Figure 3: Plane frame model with sensors locations (yellow dots) and subdomains naming. The damaged
area W10 is highlighted in orange.

The stiffness reference field (the one to be identified) presents a defect in the wall W10
whereas the initial guess is uniform (see Tab. 2). The objective of this academic example is
to recover the stiffness distribution based on simulated measurements with noise of known
level coming from discrete sensors scattered over the structure (yellow dots in Fig. 3).

Healthy Damaged modulus Initial
reference in W10 guess

Young’s moduli [GPa] 33 20 30

Associated parameters [−] 1.1 0.67 1.0

Table 2: Material properties of the frame (actual configuration and initial guess).

The FE model is made of 192 elastic beam elements and built with the CEA FE simulation
software Cast3M© [68]. Relative time acceleration measurements in both x and y directions
are simulated using Fast Fourier Transforms and the frequency transfer matrix of the direct
dynamic problem formulated in terms of relative displacement X as follows:

M Ẍ + DẊ + KX = −M ΞÜd , X = U − Ud (35)

where Ξ is a matrix addressing the bi-axial acceleration ground motion to the associated
dofs and Üd the random ground acceleration input constructed as a 2D zero-mean white
Gaussian process. As the first four modes of the structure are below 20 Hz, a frequency
bandwidth Dω = [1 Hz; 20 Hz] with ∆f = 0.5 Hz has been chosen for the computation of all
forthcoming results in Section 4.1. In terms of CPU time, this choice of frequency sampling
and the call to a reduced basis made of the first 20 eigenmodes of the frame allowed to run
the whole model updating algorithm in less than one minute on a personal laptop.

In order to assess the robustness of the methodology with respect to measurement noise,
a white noise of known standard deviation is added to obtain noisy synthetic measurements.
As the definition of noise level may be unclear when considering relative measurements, and
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to avoid any ambiguity in the following sections, noisy synthetic acceleration data is obtained
as follows:

Ÿnoisy(t) = Ÿ (t) + δ std
(

Üd(t)
)
η (36)

where δ ∈ [0; 1] is the noise level, Üd the input ground acceleration and η a random vector
distributed normally with zero mean and unitary standard deviation. Therefore, the added
measurement noise standard deviation is equal to δ std(Üd).

An intuitive decomposition of the frame is chosen: 6 subdomains are defined {W10, W11,
W20, W21, F10, F20}, one per wall and per slab (see Fig. 3). The updated stiffness model
(30) is then made of N = 6 parameters, all initialized at 1 according to the chosen initial
guess (see Tab. 2).

4.1.2. Reference model updating results

When dealing with ideal unnoisy measurements, the model updating procedure con-
verges quickly to the expected (and assumed unknown) parameters as shown in Fig. 4-5,
illustrating the efficiency of the methodology to identify stiffness parameters from sparse
measurements and to improve the correlation with reference FRFs (see Fig. 5). Note that
the results of current section 4.1.2 are obtained using a default r = 0.5 value and a single
unit rectangular window (meaning no data windowing is performed).

Figure 4: Evolution of the stiffness parameters and associated mCRE-based functional in the model
updating algorithm.

4.1.3. Enhanced robustness with respect to measurement noise

As soon as the noise level δ increases, the classical mCRE-based model updating pro-
cedure without windowing may provide irrelevant parameter estimates, particularly due to
the fact that relative measurements are naturally of low amplitude (which implies low-SNR
data to process).

The results collected in Tab. 3 illustrate the effect of noise on updated parameters. The
model updating procedure with a default r = 0.5 value does not provide relevant corrections
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Figure 5: Experimental, initial and updated frequency response function (FRF) from a sensor located at
the top of the frame.

with respect to the reference parameters. However, the model updating algorithm with
an optimal r̂ value provides a parameter estimate closer to the reference one, showing the
relevance of the L-curve based metholodology proposed in 2.4.1. Fig. 6 in turn illustrates
how the optimal r̂ value (found at the intersection of the model error and measurement error
curves) automatically decreases when the noise level δ grows.

Table 3: Comparison of parameter estimation for low-SNR measurements (δ = 20%).

Subdomains
Expected Updated parameters

parameters r = 0.5 r̂ = 0.12

W10 0.67 0.3550 0.5832
W11 1.1 0.5832 0.9654
W20 1.1 0.9683 1.0630
W21 1.1 0.4586 0.9347
F10 1.1 1.3619 1.1536
F20 1.1 1.5656 1.1901

Secondly, the use of an H-CMIF based frequency weighting function permits to favor
automatically the eigenfrequencies of sollicitated modes. It is of crucial importance when
the noise level becomes important: this particularly helps to prevent spurious increases in
the mCRE frequency content between 0 Hz and 5 Hz (see Fig. 7).

Now that the algorithm enhanced capabilities for updating parameters from low-SNR
measurements have been illustrated, one must finally highlight that there may be a strong
dependency of the solution into the measurement noise from a statistical point of view. This
makes it worthwhile to extend the convergence of model predictions towards the measure-
ments in terms of PSDs. Indeed, when running multiple times the model updating algorithm
with different measurement noise realizations, one can observe an enhanced stability in the
parameter estimate when data is windowed. In Fig. 8, the width of each plotted interval
represents the maximal variability of updated parameters with respect to measurement noise.
It is thus clear that the data windowing preprocessing step enable the algorithm to provide
more stable estimates: increasing the amount of windows J in the data preprocessing step
is beneficial for increasing statistical stability. However, one shall note that the number of
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Figure 6: Optimal choice of r according to the L-curve based methodology for balancing model and
measurement errors depending on the noise level δ.

Figure 7: Natural emphasis of the mCRE frequency content on the experimental eigenfrequencies of
sollicitated modes to enhance the robustness of the minimization procedure with respect to measurement

noise.

segments cannot be indefinitely increased: statistical independence of data blocks must be
guaranteed for the averaging to be meaningful [59] and CPU time constraints may occur due
to the call to mathematical expectations. Noticing that reducing the time-length of windows
does not drastically provide much more accurate results, a compromise must then be found
between the data windowing choice and CPU time. In this work, 60%-overlapping Blackman
windows of time length up to 2 s have been used and always provided satisfactory results.
Finally, the comparison of the intervals between subdomains (for a given data windowing
configuration) shows the difference in sensitivity of the parameters to the mCRE functional:
one can therefore remark that the top walls W11 and W21 are less sensitive due to the fact
they do not store much mechanical energy compared to the other subdomains.
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Figure 8: Statistical variability of parameter estimates with respect to measurement noise. Based on 50
different 60 s-random ground motion inputs and a δ = 10% noise level, synthetic acceleration

measurements are processed by 3 mCRE-based model updating algorithms having different data
windowing: Alg. 1) Single unit rectangular window Alg. 2) Blackman-10 s data windowing, Alg. 3)

Blackman-5 s data windowing.

4.2. Application #2: correcting the SMART2013 RC model from acceleration time histories

4.2.1. The SMART2013 benchmark - FE model and processed measurements

In order to assess the vulnerability of RC structures subjected to torsional effects dur-
ing seismic ground motions, the SMART2013 experimental campaign was conducted in the
CEA/TAMARIS facility where a three-story 1/4 reduced-scale trapezoidal RC specimen
clamped on the six dofs Azalee shaking-table has been subjected to a sequence of seis-
mic tests. Equipped with eight 1000kN maximum capacity hydraulic MTS actuators, the
Azalee shaking-table can reproduce complex seismic loadings on large scale specimens. In
terms of mass, nearly 34 tons of additional masses were added to the 12 tons of the structure
to account for realistic floor loading and respect Cauchy-Froude’s similitude law (see Fig.
9).

The specimen is instrumented with more than 200 sensors including 64 capacitive ac-
celerometers of ±10 g range scattered over the RC specimen. 48 out of the 64 accelerom-
eters (pointed on Fig. 9 by orange circles) have been used as experimental reference for
correcting the FE model. Measurements are acquired at a sample frequency of 1000 Hz and
filtered with 400 Hz cut-off frequency anti-aliasing filters. A typical ±0.003 g white noise
level was observed on the accelerometers. More precisely, accelerations are recorded on cor-
ners of the trapezoid on each story (including soleplate level), while vertical accelerations
are measured in-between the masses at floor levels. The displacements and accelerations of
the eight hydraulic rods of the Azalee shaking-table are also measured, providing complete
and redundant access to the input imposed on the specimen.

A brief recap of the SMART2013 test campaign is given in Tab. 4. The test sequence
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consists in an alternation of bi-axial gradually damaging seismic inputs of increasing level and
of random ground motions with low acceleration level chosen such that the first eigenmodes of
the experimental system are excited but without adding further damage to the RC specimen.
Complementary information can be found in [3–5, 69].

Figure 9: The SMART RC specimen anchored to the Azalee shaking-table and the associated FE model
developed in Cast3M©. The orange circles on the mesh indicate the location of tri-axial accelerometers

used in the model updating strategy.

The FE model considered herein has been developed in the Cast3M© [68] FE framework
using multi-layered shell and Timoshenko multi-fiber beam elements (5362 nodes, 24202
elements, 20661 degrees of freedom – see Fig. 9) and fully decribed in [3, 4]. Note that,
following the conclusions drawn by [5], the Azalee shaking-table is not included in the
model; the structure will be assumed to be cantilevered to a moving rigid support.

In spite of the huge numerical efforts made for modeling the experimental SMART2013
test-results, the recorded data itself has never been used for model updating purposes. Let
us however mention the preliminary work of [70] that assessed the potential of CRE on
simulated measurements to identify damage deliberately introduced into a simplified model
of the RC specimen. Anyway, the call to a model updating procedure makes sense when
observing the strong gaps between the predicted and the experimental eigenfrequencies (see
Tab. 5 and [3]).

4.2.2. Updating of the initial configuration - first results and comparison with classical fre-
quency least-square minimization

Knowing the large gap in terms of natural frequencies between model predictions and
available measurements (even at the beginning of the campaign, see Tab. 5), a single global
stiffness parameter is updated herein. Due to the fact that the seismic loading is bi-axial,
only the sensors measuring accelerations along x and y directions are considered in the model
updating strategy. The analysis of acceleration time series and associated single-window FFT
(see Fig. 10 and Tab. 4) confirms the low-frequency dynamics of the measurements and
therefore justifies the use of the extended mCRE-based model updating algorithm previoulsy
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Phase 1: SMART2008 inputs - PGA(x, y) = (0.2g, 0.2g) δ [%]
Run #6 Broad-band bi-axial signal (x+y) 0.02g RMS 22.6
Run #7 Seismic signal - 50% -
Run #8 Broad-band bi-axial signal (x+y) 0.02g RMS 29.0
Run #9 Seismic signal - 100% -

Phase 2: Northridge main shock signal - PGA(x, y) = (1.78g, 0.99g)
Run #10 Broad-band bi-axial signal (x+y) 0.02g RMS 23.8
Run #11 Seismic signal - 11% -
Run #12 Broad-band bi-axial signal (x+y) 0.02g RMS 31.1
Run #13 Seismic signal - 22% -
Run #14 Broad-band bi-axial signal (x+y) 0.02g RMS 26.1
Run #15 Seismic signal - 22% -
Run #16 Broad-band bi-axial signal (x+y) 0.02g RMS 28.5
Run #17 Seismic signal - 44% -
Run #18 Broad-band bi-axial signal (x+y) 0.02g RMS 28.0
Run #19 Seismic signal - 100% -

Phase 3: Northridge after-shock signal - PGA(x, y) = (0.37g, 0.31g)
Run #20 Broad-band bi-axial signal (x+y) 0.02g RMS 20.1
Run #21 Seismic signal 33% -
Run #22 Broad-band bi-axial signal (x+y) 0.02g RMS 26.0
Run #23 Seismic signal 100% -
Run #24 Broad-band bi-axial signal (x+y) 0.02g RMS 22.5

Table 4: Synthesis of the SMART2013 shaking-table test campaign and computation of noise level δ for
the bi-axial random tests.

described. Practically, the analysis of the frequency content of Fig. 10 enables to choose
Dω = [1 Hz; 30 Hz] with ∆f = 0.1 Hz. Note that the signal-to-noise ratio (SNR) for low-
PGA inputs of the SMART2013 database is so important (although intrinsic sensors noise
level is low) that a uniform frequency weighting function and a r = 0.5 default value lead to
non-physical or divergent results. The variations of the functional J̄ with respect to p and r is
plotted in Fig. 11 to illustrate once again the non-negligible impact of r on the parameter
estimate provided by the updating algorithm; the L-curve based methodology explained
in Section 2.4.1 is a necessary preliminary step to handle at best the whole SMART2013
recorded database considered in the model updating strategy. The addition of a normalized
H−CMIF frequency weighting function, as detailed in Section 2.4.2, enables to exploit at
best all the available information from measurements minimizing spurious noise effects.

One could legitimately wonder about the performance of the mCRE-based proposed
methodology when compared to classical Frequency Least-Square (FLS) minimization writ-
ten in the frequency domain: J̄FLS(p) =

∫
Dω
‖ΠUω(p)− Yω‖2 dω. Note that it is shown

mathematically in [40] that one can see the FLS minimization like a particular limit case
of the mCRE-based model updating algorithm with r → 1. The plot of both mCRE-
and FLS-based functionals in Fig. 12 illustrates the enhanced convexity properties of the
mCRE-based cost function. Therefore, it yields an easier convergence towards the optimal
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(a) Relative acceleration time series between the top of the
structure and the Azalee shaking-table.

(b) Relative acceleration single window FFT between the
top of the structure and the soleplate.

Figure 10: SMART2013 - Run #7: Relative measurements between the soleplate and a 3rd story sensor.

Figure 11: SMART2013 - Run #7 – Influence of the coefficient r on the model updating procedure. The
convexity of the mCRE functional is always guaranteed but the minimum value is significantly modified

with r (the white circles indicate the minimum of the cost function for a given r).

set of parameters. Besides, the computation of the updated eigenfrequencies based on the
corrected FE model in Tab. 5 shows that the mCRE-based algorithm provides much more
reliable results (in better match with experimental eigenfrequencies).

An additional quantitative appreciation of the model updating results on the whole fre-
quency range can be obtained by comparing the experimental reference to models in terms
of H−CMIF. Several normalized H−CMIFs are displayed in Fig. 13:

(i) Reference experimental H−CMIF computed from accelerometers (see (18-20)),
(ii) H−CMIF from the initial model (p = 1),

(iii) H−CMIF from the mCRE-based updated model with default r = 0.5,
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Figure 12: SMART2013 - Run #7 – Identification of a global stiffness parameter using the mCRE-based
model updating algorithm. An enhanced convexity shows the relevance of the methodology compared to a

frequency total least-square error (L2-norm between model and measurements).

Mode Experimental Initial mCRE updated FLS updated
number frequency Frequency Error Frequency Error Frequency Error

1 6.28 9.10 44.8 5.68 14.9 4.07 39.1
2 9.22 15.72 70.5 9.82 6.5 7.03 23.7
3 17.6 31.77 80.5 19.84 12.7 14.21 19.3

Table 5: Model updating results obtained for SMART2013 run #7 – Comparison of the first
eigenfrequencies (in [Hz]) and relative errors (in [%]) between experimental reference [5], initial model and

updated models from the mCRE-based and frequency least-square (FLS) model updating algorithms.

(iv) H−CMIF from the mCRE-based updated model with optimal r̂,
(v) H−CMIF from the FLS-updated model.

The numerical H−CMIFs (ii-v) above correspond to the dominant singular value of the trans-
fer function H computed using the FE matrices M ,D ,K . From these plots one can conclude
that the parameter estimates provided by the mCRE-based algorithms are more physically
relevant with respect to the expected frequency content; the corrected model H−CMIFs
get closer to the experimental reference, especially in the vicinity the two first eigenfrequen-
cies. The choice of a single parameter model is obviously too simplistic to perfectly recover
the experimental frequency content. A better adequacy with higher eigenfrequencies could
certainly be obtained by updating several parameters simultaneously, with risks of having
convergence issues. The choice of an optimal r̂ permits an improved estimation of the two
first eigenfrequencies, whose eigenmodes are essential in the low-frequency specimen dynamic
response.

Remark : Note that no data windowing has been performed previously considering that
run #7 time series cannot be assumed ergodic and stationary. The enhanced statistical
stability of data windowing will be observed in the next section when considering low-SNR
random measurements from even runs of the test-campaign.
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Figure 13: SMART2013 - Run #7: H−CMIF comparison between experimental reference and model
predictions before/after updating. The mCRE-based model updating algorithms provide more accurate

results than FLS minimization in terms of H−CMIF: a compromise is made for fitting at best the
experimental frequency peaks (marked with grey vertical lines).

4.2.3. Offline correction of the FE model towards the entire SMART2013 test-campaign

In what follows, the mCRE-based model updating procedure will be sequentially used
for correcting the FE model along the whole SMART2013 test campaign. In practice:

� the measurements from each run are consecutively processed by the model updating
algorithm, meaning that an updated parameter value is associated to each run ;

� when processing run #n, the final result from the previous run #(n − 1) is used as
initial guess in order to guarantee closeness to the ’optimal’ parameter value.

Due to the fact that damaging runs time series inputs cannot be assumed as ergodic
and stationary signals, the extended mCRE-based model updating algorithm with data
windowing (which favors data-model correlation in terms of PSD) is exclusively assessed on
the low-PGA runs. Two variants of the model updating algorithms are thus run:

(a) Model updating using a swingle unit-rectangular window for data windoing, which
is convenient for all testings and do not guarantee optimal stability with respect to
measurement noise.

(b) Model updating of the random low-PGA runs (even runs from Tab. 4) using 60%-
overlapping Blackman-5 s data windowing (illustrated in Fig. 2).

Fig. 14 presents the evolution of the updated three first eigenfrequencies (squares)
compared to the experimental reference from [5] (connected circles) using a single parameter
stiffness model, whose estimated optimal values are also specified (right subplots). In both
cases, the model updating procedure provides relevant correcting actions, confirmed by the
proximity of the reference eigenfrequencies given by [5] (connected circles in Fig. 14). The
progression of damage can be related to the decreasing values of the updated parameter
throughout the different runs.

The study of the frequency drop highlights two stages in the test campaign where param-
eters remain globally constant: runs #6 to #12 (phase 1: SMART2008 inputs), and #20
to #24 (phase 3: after-shock analysis). One can remark in each of them that the enhanced
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(a) mCRE-based model updating results without data windowing.

(b) mCRE-based model updating results with data windowing for the broad-band low-PGA tests exclusively. 5 s-Blackman
windows have been used.

Figure 14: Correction of the SMART2013 FE model using mCRE-based model updating algorithms
during the entire test-campaign – tracking the modal signature and parameter estimate.

statistical robustness of data windowing (comparing Fig. 14a and 14b) confers a better
stability of the parameter estimate, as previously observed in the first application of this
paper. Anyway, one has to notice that a correctly updated (linear) stiffness FE model is
able to follow the state of a structure during the entire campaign, in which many nonlinear
phenomena occur.

4.2.4. Towards adaptive parametrization and subdomains refinement

Until now, the updating procedure has only been focusing on one global stiffness param-
eter, providing relevant tracking of the first eigenfrequencies drop, which is directly related
to the evolution of the overall damage state of the specimen. This global damage assessment
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is already promising for better control of shaking-table actuators. However, it is certain
that the corrections of the FE stiffness matrix proposed herein may lack of relevance for
local damage detection purposes as the overall weighting of the stiffness matrix does not
give access to any local information. Therefore, the feasibility of the identification of several
parameters naturally arises. Indeed, now that the model is globally updated, a next step
would consist in defining smaller subdomains in order to evaluate the damage state more
locally. It raises new problems, particularly regarding the relative accuracy of the algorithm
when identifying several parameters simultaneously and its capability to update accurately
all of them.

We now consider the FE model to be split in four subdomains whose stiffness FE sub-
matrices are obtained by assembling the elementary contributions of the elements belonging
to each one of them. They are displayed in Fig. 15.

Figure 15: Four-subdomains decomposition of the SMART2013 specimen FE model and associated
mechanical strain energy contributions per subdomain and per mode.

To the extent that the CRE distribution per subdomain and mechanical strain energy
are intrinsically related, a first preliminary analysis of the modal deformation energy contri-
butions per subdomain can be performed remarking that, if among all, certain subdomains
have a very low-energy contribution compared to the others, then it will be probably diffi-
cult to properly update the associated parameters properly. For the initial FE model, the
modal strain energies per subdomain are displayed in Fig. 15 for the first five eigenmodes.
One can notice that the contribution of the anchorage and 3rd floor subdomains are of less
importance compared to the global mechanical strain of the structure. Therefore, the lack
of sensitivity of the associated parameters may lead to an uncertain updated value.

To confirm this statement, a 2D map of the mCRE functional with respect to the 1st
and 2nd floor stiffness parameters has been plotted in Fig. 16 based on run #6 data. The
amount of possible couples of parameters that are relevant in the mCRE sense shows that
the algorithm will hardly be able to provide a consistent minimum value. Indeed, the mCRE
functional is sensitive to both parameters, but the lack of local information (i.e. the low
density of sensors) limits the capability of mCRE to identify parameters accurately, even
if they are selected as most sensitive. Although a large number of sensors are spread over
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the specimen, the experimental information they bring is unfortunately not rich enough to
locally quantify the damage state of the specimen, even if the model updating process is
restrained to the most sensitive areas.

Figure 16: 2D map of the mCRE functional J̄ with respect to the 1st and 2nd floor stiffness parameters
from Run #6 database. An isoline at 0.7% has been emphasized to show the (numerous) relevant set of

parameters in the mCRE sense.

To assess the choice of subdomains for the mCRE-based model updating, one can finally
conclude that a compromise must be done between:

(i) the dimension of the parameter space P ,
(ii) the richness and sparsity of available measurements,

(iii) and the heterogeneous sensitivity of subdomains with respect to the mCRE functional,

to avoid sub-optimal parameter estimates corresponding to local mCRE minima. The defi-
nition of an adaptive model updating strategy that exploits measurements at best to define
an optimal (and economous) parametrization is a research topic of interest for forthcoming
studies. Very few references have studied the coupling of adaptive processes with inverse
problems [71–74]. The strong asset of using mCRE in such a context is the possibility to
exploit the CRE as a local refinement indicator, as done for classical verification/validation
purposes [75].
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5. Conclusions

In this paper, a robust energy-based model updating framework from data acquired in
low-frequency dynamics was proposed. A strategy for correcting FE stiffness models by
exploiting at best a set of available measurements a posteriori was discussed. The model
updating methodology based on the so-called modified Constitutive Relation Error has been
(i) extended to random processes with a formulation of the cost function to be minimized
in terms of PSDs and (ii) tuned for an optimal integration of low-SNR measurements in
the algorithm. A L-curve based methodology has been implemented to automatically de-
fine an optimal balance between the model and measurement error and the H−CMIF has
been exploited as a frequency weighting function to naturally emphasize the experimental
eigenfrequencies of the tested structure. The first application of the implemented algorithm
for updating an academic plane frame model subjected to random ground motion validated
the robustness of the approach with respect to known noise level. The second applica-
tion was dedicated to the SMART2013 shaking-table test campaign database. Updating a
single-global stiffness parameter highlighted the possibility to recover the first eigenfrequen-
cies drops of a RC specimen submitted to a sequence of damaging seismic loadings; the
eigenfrequencies of the corrected FE model are in good correlation with former data-driven
subspace-based identification results.

The general model updating framework provided in this paper was applied to the earth-
quake engineering context but it is perfectly suited for many other applications involving
vibratory loadings and low-SNR measurements: vibration-based damage detection, ageing
of civil engineering structures, structural health monitoring, fatigue of mechanical compo-
nents, and more generally systems submitted to vibratory phenomena potentially coupled
with thermal evolution. Indeed, once reliable and unreliable quantities of the reference prob-
lem have been distinguished by engineering judgement, a mCRE-based cost-function can be
built and minimized following the methodology presented in this paper. In the perspective
of more accurate damage detection, a finer stiffness parametrization must be introduced.
Unfortunately, the algorithm has not been able to provide relevant results with more than
one subdomain in the SMART2013 case because of the sparse density of available recordings.
Forthcoming research work will be dedicated to extend the proposed mCRE-based model
updating algorithm to an adaptive model updating process as the CRE map can provide
local information regarding the intrinsic validity of the model itself. The possibility to use
the CRE as a parameter space refinement indicator will be the topic of a forthcoming paper.

Finally, the developed tools will be reinvested within a complete data-driven strategy
(see Fig. 17), where coupling with data assimilation techniques and adaptive model-based
control theory are projects for future works.
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Figure 17: Towards the introduction of a numerical updated model in shaking-table control strategies.
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[34] P. Ladevèze, A. Chouaki, Application of a posteriori error estimation for structural model
updating, Inverse Problems 15 (1999) 49–58. doi:10.1088/0266-5611/15/1/009.
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[36] A. Deraemaeker, P. Ladevèze, T. Romeuf, Model validation in the presence of uncertain
experimental data, Engineering Computations (Swansea, Wales) 21 (2004) 808–833. doi:

10.1108/02644400410554335.

[37] P. E. Charbonnel, P. Ladevèze, F. Louf, C. L. Noac’h, A robust CRE-based approach for
model updating using in situ measurements, Computers and Structures 129 (2013) 63–73.
doi:10.1016/j.compstruc.2013.08.002.
URL http://dx.doi.org/10.1016/j.compstruc.2013.08.002

[38] P. Feissel, O. Allix, Modified constitutive relation error identification strategy for transient
dynamics with corrupted data: The elastic case, Computer Methods in Applied Mechanics
and Engineering 196 (2007) 1968–1983. doi:10.1016/j.cma.2006.10.005.

[39] K. Hadj-Sassi, Une stratégie d’identification conjointe des parametres et de l’état de structuresa
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