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Abstract

In this paper, we study the asymptotic behavior of the solutions of nonlocal bistable reaction-

diffusion equations starting from compactly supported initial conditions. Depending on the

relationship between the nonlinearity, the interaction kernel and the diffusion coefficient, we

show that the solutions can either: propagate, go extinct or remain pinned. We especially focus

on the latter regime where solutions are pinned by thoroughly studying discontinuous ground

state solutions of the problem for a specific interaction kernel serving as a case study. We also

present a detailed numerical analysis of the problem.

Keywords: nonlocal coupling, pinning phenomena, threshold of propagation

MSC numbers: 35K57, 35B40, 45K05

1 Introduction

We investigate the long time behavior of the solutions of the following Cauchy problem{
∂tu = d (−u+K ∗ u) + f(u), t > 0 x ∈ R,

u(t = 0, x) = 1[−`,`](x), x ∈ R,
(1.1)

∗gregory.faye@math.univ-toulouse.fr
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where K ∗ u stands for the convolution on the real line with d > 0 and ` > 0 some parameters.

Throughout, the nonlinearity f will be assumed to be of bistable type in the sense that it satisfies

the following hypothesis.

Hypothesis 1.1. The function f : R → R is smooth and there exists some a ∈ (0, 1) such that

f(0) = f(a) = f(1) = 0 with f < 0 on (0, a) and f > 0 on (a, 1). We further assume that f ′(0) < 0,

f ′(1) < 0 and f ′(a) > 0 together with the condition that
∫ 1
0 f(u)du > 0.

The above equation (1.1) belongs to the class of reaction-diffusion equations which are widely used

to describe the spatio-temporal evolution of species under diffusion and demographic effects. Here,

the bistable nature of f traduces a strong Allee effect. The diffusion is nonlocal and models long-

range dispersal properties. The kernel K can be interpreted as the probability density of individuals

moving from position y to position x. Here, we have assumed that the environment is homogeneous

which explains the convolution term and ensures the translation invariance of the equation. A this

stage, we will make further natural assumptions on the kernel K.

Hypothesis 1.2. We require that the convolution kernel K satisfies

(i) K,K′ ∈ L1(R), with
∫
RK(x)dx = 1;

(ii) 0 ≤ K(x) = K(−x) < +∞ for all x ∈ R;

(iii)
∫
RK(x)|x|dx < +∞.

Under the above two hypotheses on f and K, the Cauchy problem (1.1) is well-posed in the sense

that there exists a unique solution u ∈ C 1
(
(0,+∞), L1(R) ∩ L∞(R)

)
∩C 0

(
[0,+∞), L1(R) ∩ L∞(R)

)
which is global and satisfies 0 < u(t, x) < 1 for all t > 0 and x ∈ R as a consequence of the compar-

ison principle which applies in this case. Our aim is thus to characterize the asymptotic behavior

of the solution u as a function of the diffusion coefficient d, the nonlinearity f , the kernel K and

the parameter ` which represents the initial implantation of the population. In the purely local

case, that is when the nonlocal diffusion is replaced by the Laplacian, it is well-known that a sharp

threshold occurs. More precisely, at given fixed d and bistable nonlinearity f , there exists a unique

critical value `∗ > 0 such that the following dichotomy holds:

• for all ` ∈ (0, `∗), the solution u goes extinct;

• for all ` > `∗, the solution u propagates across the full domain.

The interpretation of the above result is somehow intuitive. If initially, the mass of the population

is too small, due to the strong Allee effect, the population will go extinct. On the other hand, if the

initial mass is large enough, the population will survive and spread across the full domain. These

two results go back to the pioneer works of Kanel [15] and Flores [14] (for extinction) and Fife &

McLeod [13] (for propagation). The fact that there is a sharp threshold is a more striking result

and was only obtained recently by Zlatǒs [22], and later refined by Du & Matano [12], Poláčik
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(a) Extinction. (b) Stagnation. (c) Propagation.

Figure 1: Illustration of the different possible asymptotic behaviors of the solutions of the Cauchy

problem (1.1).

[18] and Muratov & Zhong [16, 17]. At the threshold, the solution converges towards a non trivial

steady state of the equation, often called a ground state. This scenario, which is unstable from

a dynamical systems point of view, reflects a sort of stagnation mechanism where the solution

neither propagates nor goes extinct. Obtaining quantitative estimates on the threshold value `∗

is a more delicate task and we refer to the recent work of Alfaro et al. [2] for some progress and

references therein.

Before proceeding with an informal summary of our main results, we properly define what we shall

refer to as extinction, propagation, and stagnation in the rest of the paper. We refer to Figure 1

for an illustration of these different asymptotic behaviors.

Definition 1.3. Assume that f and K satisfy Hypothesis 1.1 and 1.2 respectively. Let ` > 0 and

u` ∈ C 1
(
(0,+∞), L1(R) ∩ L∞(R)

)
∩ C 0

(
[0,+∞), L1(R) ∩ L∞(R)

)
be the solution of the Cauchy

problem (1.1).

• Extinction: If u` satisfies

u`(t, x) −→
t→+∞

0 uniformly in x ∈ R,

then we say that there is extinction for that given value of ` > 0.

• Propagation: If u` satisfies

u`(t, x) −→
t→+∞

1 locally uniformly in x ∈ R,

then we say that there is propagation for that given value of ` > 0.

• Stagnation: If u` satisfies

u`(t, x) −→
t→+∞

U(x) uniformly in x ∈ R\{±`},

where U > 0 is an even stationary ground state solution of (1.1) verifying 0 = d(−U + K ∗
U) + f(U) with U(±∞) = 0 with possible discontinuity points at x = ±`, then we say that

there is stagnation for that given value of ` > 0.
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Informal summary of main results. A natural question that we shall address in this present

work is to understand if such sharp thresholds of propagation persists when the diffusion is no longer

local but takes the form of nonlocal dispersal mechanism as expressed in (1.1). In a nutshell, our

results show that when the diffusion coefficient is large enough, then similar threshold phenomena

are expected than in the local setting. More precisely, we prove that extinction always occurs if the

diffusion coefficient is large enough (see Proposition 2.1), and that propagation occurs whenever

there exists a smooth traveling front solution with non zero wave speed (see Proposition 2.3). On

the other hand, for small diffusion coefficient, the picture is totally different from the local case. It

is possible to find regimes where extinction never occurs (see Proposition 4.1 and Proposition 4.2).

It is also possible to exhibit regimes where propagation never occurs (see Proposition 4.3). And

finally, lack of both propagation and extinction can be shown to happen for values of ` in intervals

rather than in singleton as in the local case (see Corollary 4.4). The lack of propagation is often

referred to as pinning in the literature. Such propagation failure was first studied by Bates et al. [4]

by proving the existence of discontinuous stationary fronts connecting u = 1 to u = 0 for bistable

nonlocal reaction-diffusion equations under Hypothesis 1.1 and Hypothesis 1.2. Such discontinuous

stationary interfaces turn out to be stable for the dynamics against bounded perturbations [4]. This

is in sharp contrast with the local case where stationary interfaces, which are necessarily smooth,

are always unstable due to the presence of an unstable eigenvalue of the linearized operator. The

transition between pinning and unpinning in this nonlocal context was investigated more recently

by Anderson et al. [3] who proved general universal asymptotic expansions of the wave speed of

the interfaces. Ground state solutions, which are stationary even positive solutions asymptotic to

u = 0 at infinity, will be central in proving some of our results and we dedicate efforts at deriving

quantitative properties of such solutions (see Section 3).

Disclaimer. When finalizing the current paper, we have been aware of two preprints [1, 21] estab-

lishing very close results to ours on the long time dynamics of solutions of the Cauchy problem (1.1).

In [21], the authors prove that there is a sharp threshold between extinction and propagation for

compactly supported kernels, and under an assumption on the nonlinearity which translates in our

setting to the large diffusion regime of Section 2 below. On the other hand, the purpose of [1] is to

derive quantitative estimates on the thresholds of propagation and extinction in the regime where

the initial condition is slightly above the unstable steady state of the nonlinearity and relate these

thresholds to the properties of the interaction kernels. Actually, [1] also derives propagation results

more general than our Proposition 2.3 (and that of [21]) since they do not require exponential lo-

calization of the kernel, but only some integrability condition of the traveling front at its end states.

In order to have a self-content presentation, we decided to keep our results in the regime of large

diffusion with somehow simpler proofs since we need the estimates on the parameters derived there.

The main novelty and originality of our work is also to investigate the regime of small diffusion

where stagnation can occur, which was left aside in [1, 21].
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Outline of the paper. In Section 2, we prove that extinction always occurs if the diffusion

coefficient is large enough, and that propagation occurs whenever there exists a smooth traveling

front solution with non zero wave speed. In Section 3, we study ground state solutions, which

are bounded stationary solutions, possibly discontinuous, for a specific interaction kernel. Next

in Section 4, we prove that in the regime of small diffusion, extinction cannot happen. We also

demonstrate that propagation cannot happen in some sub-region of the parameters within the

so-called pinning region. Finally, in Section 5, we present a numerical exploration of the problem.

2 Regime of large diffusion

2.1 Extinction for large diffusion

In this subsection, we prove that extinction occurs if the diffusion coefficient is large enough. This

is summarized in the following result.

Proposition 2.1 (Extinction). Assume that f and K satisfy Hypothesis 1.1 and Hypothesis 1.2

respectively. Let κ := sup
u∈(a,1)

f(u)
u > 0. If d > κ, then there exists `0 > 0 such that for all ` ∈ (0, `0)

the solution u` of (1.1) satisfies

u`(t, x) −→
t→+∞

0 uniformly in x ∈ R.

Proof. We consider the following linear problem{
∂tv = d (−v +K ∗ v) + κv, t > 0 x ∈ R,

v(t = 0, x) = 1[−`,`](x), x ∈ R,
(2.1)

whose solution v ∈ C 1
(
(0,+∞), L1(R) ∩ L∞(R)

)
∩ C 0

(
[0,+∞), L1(R) ∩ L∞(R)

)
satisfies

0 ≤ v(t, x) = e(κ−d)t1[−`,`](x) +

∫ t

0
e(κ−d)(t−s)K ∗ v(s, x)ds, t > 0 x ∈ R.

By positivity of v and the fact that
∫
RK(x)dx = 1, we have that

‖v(t)‖L1(R) = ‖v(t = 0)‖L1(R)e
κt = 2`eκt, t > 0,

by integration of (2.1). As a consequence, using the boundedness of K, we get that

v(t, x) ≤ e(κ−d)t +
2`‖K‖L∞(R)

d
eκt, t > 0 x ∈ R. (2.2)

We define

t0 :=
1

κ− d
ln
a

2
> 0, and `0 :=

1

2

d

‖K‖L∞(R)
e−dt0 .

Evaluating (2.2) at t = t0, we obtain that

0 ≤ v(t0, x) ≤ a, x ∈ R.
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The final step of the proof consists in checking that the solution{
∂tw = d (−w +K ∗ w) + f(w), t > 0 x ∈ R,

w(t = 0, x) = γ, x ∈ R,
(2.3)

with 0 < γ < a satisfies

w(t, x) −→
t→+∞

0 uniformly in x ∈ R.

This easily follows from the fact that the solution w of the above Cauchy problem (2.3) is constant

in space and that the solution of the ODE problem w′ = f(w) with w(0) = γ ∈ (0, a) converges

asymptotically to zero because of the bistability property of f .

To conclude the proof, one let ` ∈ (0, `0) and uses the solution v(t, x) of (2.1) as a super-solution

to obtain that

0 ≤ u`(t0, x) ≤ v(t0, x) ≤ a

2
+
a

2

`

`0
< a, x ∈ R.

The uniform convergence to zero then follows by comparing the solution for t ≥ t0 to the problem

(2.3).

As a consequence of the above Proposition 2.1, when d > κ we can define

0 < `∗0 := sup

{
` > 0 | lim

t→+∞
u`(t, ·) = 0 uniformly in R

}
.

When the nonlinearity is given by the cubic fa(u) = u(1− u)(u− a) we have the explicit formula

κ = dext(a) := (1−a)2
4 with 0 < a < 1/2. In this setting, our numerics suggest that the condition

d > dext(a) is sharp within the class of exponentially localized kernels. For the specific choice

K(x) = e−|x|/2, we prove in the forthcoming section that when d is small enough, extinction no

longer occurs.

2.2 Propagation outside the pinning region

In this subsection, we prove that when the nonlocal equation (1.1) has traveling front solution with

non zero wave speed then propagation always occurs if the mass of the initial condition is large

enough. Our method of proof relies on the one developed by Fife & McLeod [13] in the case of

local diffusion. In order to be able to apply their arguments, we need to ensure that traveling front

solutions with non zero wave speed exponentially converge towards their end states. This is the

technical reason for introducing the following assumption.

Hypothesis 2.2. We suppose that the convolutional kernel K satisfies Hypothesis 1.2 and that

there exists λ0 > 0 such that ∫
R
eλ0|x|K(x)dx < +∞.
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By a traveling front solution, we refer to the couple (U, c) with c ∈ R and profile U solution of{
−cU ′ = d (−U +K ∗ U) + f(U), on R,

U(−∞) = 1, U(+∞) = 0,
(2.4)

such that u(t, x) = U(x − ct) is an entire solution to (1.1). Existence, uniqueness and qualitative

properties of traveling front solution (U, c) to (2.4) with bistable nonlinearities has been investigated

in various studies [3, 4, 6, 7, 9], and we especially refer to [4] for the first results on the existence,

uniqueness, stability and regularity of such traveling front solutions. In the proof of our main

result, the regularity property of traveling front solutions will play an important role. As noticed

in [4], unlike the local case, discontinuous traveling front solutions may exist with zero wave speed

c = 0 even though
∫ 1
0 f(u)du > 0. Following [4], a sufficient condition to ensure that the wave

speed is non zero, and thus that the corresponding profile U is smooth, is to further assume that

the map u 7→ u− f(u)
d is strictly monotone on [0, 1]. We will see that this map and its monotonicity

properties will also play an important role in the forthcoming section when studying stationary

ground state solutions (see Section 3). Note that when the wave speed is non zero, then its sign is

given by the sign of
∫ 1
0 f(u)du, such that in our case, when non zero, the wave speed will always by

positive. Using the result of [9], under Hypothesis 2.2, if there exists some traveling front (U∗, c∗)

solution of (2.4) with c∗ > 0, then U∗ converges asymptotically towards its end states at ±∞ at an

exponential rate.

Proposition 2.3 (Propagation). Assume that f and K satisfy Hypothesis 1.1 and Hypothesis 2.2

respectively. Assume that there exists (U∗, c∗) solution of (2.4) with c∗ > 0. Then, there exists

`1 > 0 such that for all ` ≥ `1, the solution u` of (1.1) satisfies

u`(t, x) −→
t→+∞

1,

locally uniformly on R.

Proof. The idea is to construct a subsolution for (1.1) in the form of the superposition of two-

counter propagating traveling front solutions, as done in [13] in the local case. For completeness,

we reproduce the argument here. We want to construct a subsolution u(t, x) which can be written

u(t, x) = U+(t, x) + U−(t, x)− 1− q(t),

with U±(t, x) := U∗(±x − c∗t − ζ(t)) where q(t) > 0 and ζ(t) > 0 will be chosen appropriately.

First, we define the functional

N (w(t, x)) := ∂tw(t, x)− d (w(t, x) +K ∗ w(t, x))− f(w(t, x)), (2.5)

for a given function w ∈ C 1
(
(0,+∞), L1(R) ∩ L∞(R)

)
∩ C 0

(
[0,+∞), L1(R) ∩ L∞(R)

)
. Then, we

compute

N (u(t, x)) = −ζ ′(t)
(
U ′∗(ξ−(t, x)) + U ′∗(ξ+(t, x))

)
− q′(t) + f(U+(t, x)) + f(U−(t, x))− f(u(t, x)),
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where we denoted ξ±(t, x) := ±x− c∗t− ζ(t) and used the fact that U∗ is a traveling front solution.

Our aim is to prove that N (u(t, x)) ≤ 0 for all t > 0 and x ∈ R. We are only going to prove that

N (u(t, x)) ≤ 0 for all t > 0 and x ≥ 0, the estimate for x ≤ 0 being handled similarly.

Let q0 > 0 be small enough such that a < 1− q0 < 1. There exist µ > 0 and δ > 0 such that

f(u)− f(u− p) ≥ µp,

for 1− δ ≤ u ≤ 1 and 0 ≤ p ≤ q0. Here, we have used the fact that f ′(1) < 0. In the region where

1− δ ≤ U+(t, x) ≤ 1 and 0 ≤ 1− U−(t, x) + q(t) ≤ q0 we have that

f(U+(t, x))− f(U+(t, x)− (1− U−(t, x) + q(t))) ≤ −µ(1− U−(t, x) + q(t)).

Let us remark that the inequality 0 ≤ 1 − U−(t, x) + q(t) ≤ q0 will hold if 0 ≤ q(t) ≤ q0
2 and ζ(t)

large enough. Indeed, if ζ(t) is large enough then 1− U−(t, x) ≤ q0
2 and 0 ≤ 1− U−(t, x) + q(t) ≤

q0/2 + q0/2 = q0. Finally, let us note that U ′∗(ξ±(t, x)) < 0 and that one can find a constant

b > 0 such that f(U−(t, x)) ≤ b(1 − U−(t, x)). Summarizing, we see that for t > 0, x ≥ 0,

1− δ ≤ U+(t, x) ≤ 1, 0 ≤ q(t) ≤ q0
2 and ζ(t) large enough one has

N (u(t, x)) ≤ (b− µ)(1− U−(t, x))− q′(t)− µq(t),

provided that ζ ′(t) < 0. We now use the fact U∗ asymptotically converges towards its rest states

at an exponential rate to get the existence of ν > 0 and α > 0 such that

1− U−(t, x) ≤ αeν(−x−c∗t−ζ(t)),

for ζ(t) large enough. Then, we let 0 < µ0 < min(µ, νc∗) and q(t) = q0
2 e
−µ0t. With that specific

choice for q(t), we get that that for t > 0, x ≥ 0, 1− δ ≤ U+(t, x) ≤ 1 and ζ(t) large enough with

ζ ′(t) < 0 one has

N (u(t, x)) ≤ 0.

A similar argument also holds in the range 0 ≤ U+(t, x) ≤ δ and 0 ≤ q(t) ≤ q0
2 using this

time the fact that f ′(0) < 0. In the range where δ ≤ U+(t, x) ≤ 1 − δ, we use the facts that

U ′∗(ξ−(t, x)) + U ′∗(ξ+(t, x)) ≤ −β < 0 for some β > 0 and

f(U+(t, x))− f(U+(t, x)− (1− U−(t, x) + q(t))) ≤ C(1− U−(t, x) + q(t)),

for some constant C > 0. We obtain with q(t) = q0
2 e
−µ0t

N (u(t, x)) ≤ βζ ′(t)− q′(t) + b(1− U−(t, x)) + C(1− U−(t, x) + q(t)),

≤ βζ ′(t) + C1e
−µ0t + C2e

−νc∗t,

for two positives constants C1,2 > 0. We set ζ(t) solution of

βζ ′(t) + C1e
−µ0t + C2e

−νc∗t = 0,
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starting from ζ(0) = ζ0 > 0. We can select ζ0 > 0 large enough such that the inequalities

1− U−(t, x) ≤ αeν(−x−c∗t−ζ(t)) ≤ q0
2

hold for all t > 0.

The last part of the proof now consists in being able to compare the solution u` with the subsolution

u(t, x). More precisely, we will have that u(t, x) will be a subsolution if we can ensure that u(t =

0, x) ≤ 1[−`,`](x) for all x ∈ R. At time t = 0, we have

u(t = 0, x) = U∗(x− ζ0) + U∗(−x− ζ0)− 1− q0
2
≤ 1− q0

2
≤ 1, ∀x ∈ [−`, `].

Furthermore, there exists `1 > 0 such that for all |x| ≥ `1 there holds U∗(x− ζ0) + U∗(−x− ζ0)−
1− q0

2 ≤ 0 since U∗(+∞) = 0. As a consequence, for all ` ≥ `1 we have u(t = 0, x) ≤ 1[−`,`](x) for

all x ∈ R. Then the comparison principle gives that

U∗(x− c∗t− ζ(∞)) + U(−x− c∗t− ζ(∞))− 1− q(t) ≤ u(t, x) ≤ u`(t, x), t > 0, x ∈ R,

and the local uniform convergence follows.

As a consequence of the above Proposition 2.3, we can define

0 < `∗1 := inf

{
` > 0 | lim

t→+∞
u`(t, ·) = 1 locally uniformly in R

}
,

whenever the assumptions of that proposition are satisfied. Using the analysis in [4], it is possible

in the case of the cubic nonlinearity fa(u) = u(1−u)(u−a) to derive an explicit condition on (d, a)

for the existence of traveling front solutions with non zero wave speed. It is given in [3] and reads

d > dpin(a) :=
1

3

(
1− a+ a2 −

√
1− 2a

)
, 0 < a < 1/2.

Combining this bound with the one obtained in the case of extinction in the previous section, we

have proved the existence of a threshold phenomenon for (1.1) whenever d > max {dpin(a), dext(a)}
in the case of the cubic nonlinearity fa(u) = u(1− u)(u− a) with 0 < a < 1/2 that is

0 < `∗0 ≤ `∗1 < +∞.

Our numerics suggest that this threshold is sharp when d ≥ 1
4 that is

0 < `∗0 = `∗1 < +∞, if d ≥ 1

4
and 0 < a < 1/2,

whereas it is not sharp when d < 1
4 , that is

0 < `∗0 < `∗1 < +∞, if max {dpin(a), dext(a)} < d <
1

4
and 0 < a < 1/2.

We refer to Section 5 for further details.
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3 Ground states – A case study

Ground states for (1.1) are bounded stationary profiles U in L2(R) solutions of{
0 = d (−U +K ∗ U) + f(U), on R,

U(±∞) = 0, U > 0 on R.
(3.1)

Note that the existence of solutions of (3.1) for general nonlinearity f and kernel K satisfying

Hypothesis 1.1 and Hypothesis 1.2 was proved by Chmaj & Ren [8] using variational techniques by

studying the following energy functional defined on L2(R)

E (u) :=
d

4

∫
R2

K(x− y)(u(x)− u(y))2dxdy +

∫
R
F (u(x))dx,

with F (u) := −
∫ u
0 f(v)dv. It is also not difficult to check that (1.1) is the L2 gradient flow of the

above functional. Depending on d and the nonlinearity f , it was already noticed in [8] that solutions

of (3.1) can be discontinuous, see also [3, 4]. This is in total contrast with the local diffusion case

where it is well-known [5] that ground states are smooth whenever the nonlinearity f is. In what

follows, we will go beyond the results of existence of Chmaj & Ren [8] and completely characterize

all possible ground states of (3.1) in the case where the kernel K is fixed to K(x) = e−|x|/2 and

for any bistable nonlinearity satisfying our running Hypothesis 1.1 and such that the function g

defined below is monotone on a maximum of 3 intervals. This specific choice for K will enable us

to recast our nonlocal problem to local one such that phase plane analysis techniques can be used.

We apply our results to the cubic fa(u) = u(1 − u)(u − a) with 0 < a < 1/2 for which we can

derive closed form formulas. We finally note that due to the symmetry of K and the translation

invariance of (3.1), we only look for ground states that are even (possibly discontinuous) functions

on R.

3.1 Reformulation of the problem when K(x) = e−|x|/2

As explained above, we can reformulate (3.1) as a higher order dynamical system when K(x) =

e−|x|/2. We set V = K ∗ U and remark that our specific choice of K implies that the equality is

equivalent to V − V ′′ = U . This can be easily seen by noticing that the Fourier symbol of K is

K̂(ξ) = (1 + ξ2)−1 for ξ ∈ R. As a consequence, the nonlocal equation on U can be written as{
0 = d (−U + V ) + f(U),

V − V ′′ = U,
on R.

We denote g(u) := u− f(u)
d defined on R which has the same regularity as f and satisfies g(0) = 0

and g(1) = 1 with g′(0) > 0 and g′(1) > 0. When g′ > 0 on [0, 1], then the first equation of the

above system gives that U = g−1(V ) such that we are let to study the second order dynamical

system

V − V ′′ = g−1(V ), on R,
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Figure 2: We illustrate a typical situation where both Hypothesis 1.1 and Hypothesis 3.2 are

satisfied for f and g with β < γ.

subject to V (±∞) = 0 and V > 0. In that case, phase plane analysis [5, 8] gives the existence

of a unique, smooth, even, ground state solution V which is monotone on R+. Indeed, the above

system is Hamiltonian with conserved Hamiltonian

H(V, V ′) =
1

2
V ′2 + G(V ), with G(V ) := −1

2
V 2 +

∫ V

0
g−1(w)dw.

The ground state V is then found as the unique homoclinic solution parametrized by

H(V, V ′) = 0.

Let us remark that the condition g′ > 0 on [0, 1] is always satisfied when d is large enough. This

can be summarized in the following result.

Lemma 3.1. Assume that d > ‖f ′‖∞, then there exists a unique, smooth, even, ground state

solution V of (3.1) which further satisfies V ′(x) < for all x > 0.

When g is no longer invertible on [0, 1], it is possible that it may have several intervals of strict

monotonicity. Since g′(0) > 0 and g′(1) > 0, the function g is at least strictly monotone on two

intervals near u = 0 and u = 1. In what follows, we assume that g is strictly monotone on a

maximum of 3 intervals. A consequence of this assumption will be that discontinuous ground

states of (3.1) will have only two points of discontinuity at ±x0 for some x0.

Hypothesis 3.2. We assume that g(u) := u− f(u)
d , defined on R, is monotone on a maximum of

3 intervals on [0, 1]. In other words, there exist 0 < β ≤ γ < 1 such that

g′(u) > 0 for u ∈ [0, β) ∪ (γ, 1], g′(u) < 0 for u ∈ (β, γ),

with g′(β) = g′(γ) = 0.

11



Under the above assumption, we denote by g−1− and g−1+ the respective inverses of g on [0, β[ and

]γ, 1] such that we are eventually let to study two problems

V − V ′′ = g−1− (V ), and V − V ′′ = g−1+ (V ).

To obtain a ground state, we will glue the trajectories of the solutions of each problem, and when

β < γ, we typically expect to have discontinuous profiles. The case when β = γ is degenerate and

will be treated in a second time. So, from now on, we assume that β < γ.

The key point of our analysis is that both systems have a Hamiltonian which is conserved along

the trajectory of the solution and is given by

H±(V, V ′) =
1

2
V ′2 + G±(V ),

where

G−(V ) := −1

2
V 2 +

∫ V

0
g−1− (w)dw, and G+(V ) := −1

2
V 2 −

∫ 1

V
g−1+ (w)dw.

Since ground states satisfy the asymptotic condition V (±∞) = 0, they will necessarily satisfy

H−(V, V ′) = 0,

near infinity and this is the starting point of our analysis. We will distinguish different cases

depending on the sign of G− on its interval of definition. More precisely, since g−1− is defined on

the interval [0, g(β)[, we have that G− is also defined for all V ∈ [0, g(β)[, and we can proceed as

follows.

Case β < γ & G−(g(β)) < 0. If we suppose that G−(g(β)) < 0, then we necessarily have that

G−(V ) < 0, for all V ∈ (0, g(β)],

and the zero level set of H− in the half-plane v ≥ 0, denoted M−0 , can be parametrized as

M−0 :=
{

(v, w) ∈ R2 | w = ±
√
−2G−(v), 0 ≤ v ≤ g(β)

}
.

We emphasis that M−0 is composed of two symmetric curves in the half-plane v ≥ 0 intersecting

at the origin. By definition of β and γ, we always have g(γ) < g(β) when β < γ. Thus, for each

element (v0, w0) ∈ M−0 with g(γ) ≤ v0 ≤ g(β) and v0 > 0, we can look for an intersection with a

trajectory coming from the system defined near u = 1 through g−1+ , that is we solve for

H+(V, V ′) = H+(v0, w0) = G+(v0)− G−(v0).

In order to describe the geometry of the above level sets, we first need to understand if M−0
intersects W+

1 which is defined as the level set of H+ associated to the equilibrium point (1, 0)

restricted to the half-plane v ≤ 1. That is we solve for

H+(v, w) = H+(1, 0) = G+(1) = −1

2
, v ∈ [g(γ), 1],

12



which gives the parametrization

W+
1 :=

{
(v, w) ∈ R2 | w = ±

√
2 (G+(1)− G+(v)), g(γ) ≤ v ≤ 1

}
.

As a consequence, we need to characterize when the most extremal points onM−0 , which are given

by (g(β),±
√
−2G−(g(β))), can belong to W+

1 . That is, we look for solutions to

G+(g(β))− G−(g(β)) = G+(1) = −1

2
.

Using the specific form of G±, we can write the above equality as∫ g(β)

0
g−1− (w)dw +

∫ 1

g(β)
g−1+ (w)dw =

1

2
,

and upon denoting β̃ := g−1+ (g(β)) ∈ (γ, 1), we get∫ β

0
ug′−(u)du+

∫ 1

β̃
ug′+(u)du =

1

2
.

And an integration by part gives:∫ β

0
g−(u)du+

∫ 1

β̃
g+(u)du+ (β̃ − β)g(β) =

1

2
. (3.2)

The relation (3.2) is precisely the definition of the boundary of the so-called pinning region [3] (see

also [4]) which characterizes the existence of discontinuous monotone traveling front solutions. We

thus need to distinguish two sub-cases.

• Suppose that 0 < −G−(g(β)) < G+(1) − G+(g(β)). In this case, for each g(γ) ≤ v0 ≤ g(β)

and v0 > 0, the level set H+(v, w) = G+(v0) − G−(v0), in the half plane v ≥ v0, can be

parametrized as

M+
v0 :=

{
(v, w) ∈ R2 | w = ±

√
2 (G+(v0)− G−(v0)− G+(v)), v0 ≤ v ≤ v∗

}
,

where v∗ > v0 satisfies G+(v∗) = G+(v0)− G−(v0) and

G+(v0)− G−(v0)− G+(v) > 0, for all v ∈ (v0, v∗).

We refer to Figure 3 for an illustration of the geometrical configurations of M−0 and M+
v0 in

the phase plane (v, w) ∈ R2 with v ≥ 0.

As a consequence, we have constructed a one parameter family of continuous solutions V

which are positive and even and satisfy the following properties. For each v0 ∈ [g(γ), g(β)]

with v0 > 0, the function V : R→ [0, v∗] is defined as

V (x) =

{
V−(x) if |x| ≥ x0,
V+(x) if |x| ≤ x0,

(3.3)

13



(a) Phase plane analysis.
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(b) Glued trajectory V (x).

Figure 3: Left: Illustration of the phase plane analysis and the gluing of trajectories in the case

β < γ & G−(g(β)) < 0 with g(γ) > 0 and 0 < −G−(g(β)) < G+(1) − G+(g(β)). In blue, we have

represented M−0 which corresponds to the zero level set of H− in the half-plane v ≥ 0. In red,

we have shown three trajectories joining the upper branch of M−0 to its lower branch. There is a

one-parameter family of parametrized curves M+
v0 for each v0 ∈ [g(γ), g(β)] which are bounded to

the left by M+
g(γ) and to the right by M+

g(β). Right: Illustration of a glued trajectory leading to

a solution V (x) of (3.3). Here, the blue part of the solution corresponds to the trajectory on M−0
while the red part is associated to the trajectory on M+

v0 . Note the continuity of the solution at

the gluing point ±x0.

where V− satisfies

H−(V−(x), V ′−(x)) = 0, |x| ≥ x0, with V−(±∞) = 0,

and V+ satisfies

H+(V+(x), V ′+(x)) = G+(v0)− G−(v0), |x| ≤ x0,

with the continuity condition

V−(±x0) = V+(±x0) = v0, and V ′−(±x0) = V ′+(±x0) = ±
√
−2G−(v0).

Here the point of continuity x0 for V is uniquely defined by

x0 =

∫ v∗

v0

dv√
2 (G+(v0)− G−(v0)− G+(v))

> 0. (3.4)

Indeed, by symmetry of V+, we define x0 > 0 such that{
V+(−x0) = v0,

V+(0) = v∗.
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Then, using the strict monotony of V+ on the interval (−x0, 0) we remark that

x0 =

∫ 0

−x0
dx =

∫ 0

−x0

dV+(x)

V ′+(x)
=

∫ v∗

v0

dv√
2 (G+(v0)− G−(v0)− G+(v))

.

Coming back to our original problem, for each v0 ∈ [g(γ), g(β)] with v0 > 0, the function

U : R→ [0, g−1+ (v∗)] defined out of V± as

U(x) =

{
U−(x) = g−1− (V−(x)) if |x| > x0,

U+(x) = g−1+ (V+(x)) if |x| < x0,
(3.5)

is a solution of (3.1) with precisely two points of discontinuity at ±x0 where

0 < lim
x→x+0

U(x) = g−1− (v0) < g−1+ (v0) = lim
x→x−0

U(x).

We refer to Figure 4 for an illustration of ground state solution in that case and its relation

to the solution V .

• Suppose that −G−(g(β)) ≥ G+(1) − G+(g(β)). In this case, there exists a unique vc ∈
(0, g(β)] ∩ [g(γ), 1) such that

G+(vc)− G−(vc) = G+(1),

by monotonicity of the map v 7→ G+(v) − G−(v) on (0, g(β)] ∩ [g(γ), 1). As a consequence,

we can proceed along similar lines as in the previous case, and we can construct ground state

solutions of the form (3.5) for each v0 ∈ [g(γ), vc) with v0 > 0. We refer to Figure 5 for a

visualization of the phase plane configuration in that case.

We have then proved the following result.

Lemma 3.3. Assume that g satisfies Hypothesis 3.2. Assume that β < γ and G−(g(β)) < 0.

Then, there exists a one parameter family of discontinuous ground state solutions of equation (3.1)

given by (3.5) which are even, positive, with precisely two points of jump discontinuity and smooth

otherwise. Furthermore, there is no other solution to (3.1).

Case β < γ & G−(g(β)) > 0. In the case when G−(g(β)) > 0, we denote by vm the positive

root of G− in the interval (0, g(β)) that is G−(vm) = 0 and G−(v) < 0 for all v ∈ (0, vm) with

vm ∈ (0, g(β)). As a consequence, the zero level set H− in the half-plane v ≥ 0, still denoted M−0 ,

can be parametrized as

M−0 :=
{

(v, w) ∈ R2 | w = ±
√
−2G−(v), 0 ≤ v ≤ vm

}
.

The manifold M−0 is a closed curve, since G−(vm) = 0, which is homoclinic to the origin. As a

consequence, it gives the existence of a smooth, even, positive function Vs : R→ [0, vm] solution of

V − V ′′ = g−1− (V ), on R,
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(a) Solution V (x).
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(b) Ground state U(x).

Figure 4: Illustration of the relationship between the solution V (x) and the ground state U(x) in

the setting of Lemma 3.3. The profile V is constructed by gluing the solutions of the two problems

V − V ′′ = g−1− (V ) (blue part of the solution) and V − V ′′ = g−1+ (V ) (dark red part of the solution)

via a phase plane analysis. The ground state solution is then defined out of V by using g−1± on each

branch as given in formula (3.5). Unlike V , the ground state solution U has now two discontinuity

points at ±x0.

which satisfies Vs(±∞) = 0. In turn, this gives the existence of a smooth, even, positive function

Us : R → [0, g−1− (vm)] solution to (3.1) also verifying Us(±∞) = 0 which is given by Us(x) =

g−1− (Vs(x)) for all x ∈ R.

We now investigate if it is possible to construct discontinuous solutions following the same strategy

as in the previous case. In order to be able to intersect M−0 with a trajectory coming from the

system defined near u = 1 through g−1+ , it is necessary that g(γ) < vm, since in that case for any

0 < v0 ∈ [g(γ), vm], we can solve for

H+(V, V ′) = G+(v0)− G−(v0).

The above level set, in the half plane v ≥ v0, can be once again parametrized as

M+
v0 :=

{
(v, w) ∈ R2 | w = ±

√
2 (G+(v0)− G−(v0)− G+(v)), v0 ≤ v ≤ v∗

}
,

where v∗ > v0 satisfies G+(v∗) = G+(v0)− G−(v0) and

G+(v0)− G−(v0)− G+(v) > 0, for all v ∈ (v0, v∗).

Proceeding as above, we get the existence of discontinuous solution U of the form (3.5) constructed

from V− and V+ lying onM−0 andM+
v0 respectively. Finally, we note that as long as g(γ) ≥ vm no

discontinuous solutions with two points discontinuity can be constructed. In conclusion, we have

obtained the following result. These constructions are illustrated in Figure 6.
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Figure 5: Illustration of the phase plane analysis and the gluing of trajectories in the case β < γ &

G−(g(β)) < 0 with g(γ) > 0 within the pinning region −G−(g(β)) ≥ G+(1)−G+(g(β)). In blue, we

have represented M−0 which corresponds to the zero level set of H− in the half-plane v ≥ 0, while

in orange we have represented W+
1 which corresponds to the level set of H+ associated to (1, 0).

Note that M−0 and W+
1 intersect at two points given by (vc,±

√
−2G−(vc)) with vc ∈ (g(γ), g(β)).

In red, we have shown two trajectories joining the upper branch ofM−0 to its lower branch. There

is a one-parameter family of parametrized curves M+
v0 for each v0 ∈ [g(γ), vc) which are bounded

to the left by M+
g(γ) and to the right by W+

1 .

Lemma 3.4. Assume that g satisfies Hypothesis 3.2. Assume that β < γ and G−(g(β)) > 0. Then

there always exists a smooth, even, positive function Us : R→ [0, g−1− (vm)] solution to (3.1) which

is given by Us(x) = g−1− (Vs(x)) for all x ∈ R where Vs is the unique positive homoclinic orbit to the

origin of V − V ′′ = g−1− (V ). Furthermore, we have:

(i) if g(γ) > 0 and G−(g(γ)) ≥ 0, then there is no other solution to (3.1);

(ii) if g(γ) ≤ 0 or g(γ) > 0 and G−(g(γ)) < 0, then there is a one parameter family of discontin-

uous ground state solutions U of equation (3.1) which are even, positive, with precisely two

points of jump discontinuity and smooth otherwise, and there is no other solution.

Case β < γ & G−(g(β)) = 0. If we suppose that G−(g(β)) = 0, then we necessarily have that

G−(V ) < 0, for all V ∈ (0, g(β)).

As a consequence, we can proceed exactly as in the case where G−(g(β)) < 0 to prove the existence

of a one parameter family of discontinuous ground state solutions U of the form (3.5) which are

even, positive, with precisely two points of jump discontinuity and smooth otherwise. The main

difference is that now the zero level set of H− in the half-plane v ≥ 0, which is parametrized by

M−0 :=
{

(v, w) ∈ R2 | w = ±
√
−2G−(v), 0 ≤ v ≤ g(β)

}
,
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(a) Case G−(g(γ)) < 0. (b) Case G−(g(γ)) > 0.

Figure 6: Illustration of the phase plane analysis and the gluing of trajectories in the case β < γ &

G−(g(β)) > 0 with g(γ) > 0 depending on the sign of G−(g(γ)). In blue, we have represented M−0
which corresponds to the zero level set of H− in the half-plane v ≥ 0 which forms a homoclinic

trajectory to the origin, symmetric in w with extremal value at v = vm. On the left panel (a),

when G−(g(γ)) < 0, we have shown in red two trajectories joining the upper part of M−0 to its

lower part illustrating the fact that there is a one-parameter family of parametrized curves M+
v0

for each v0 ∈ [g(γ), vm] which are bounded to the left byM+
g(γ) and to the right by (vm, 0). On the

right panel (b), when G−(g(γ)) > 0, we have the strict ordering vm < g(γ) < g(β) and there is no

other possible trajectory than M−0 .

is a closed curve since G−(g(β)) = 0. This gives a homoclinic trajectory to the origin and thus

produces a solution Vs : R → [0, g(β)] to V − V ′′ = g−1− (V ) which satisfies Vs(±∞) = 0. At the

origin we have Vs(0) = g(β) such that Us(x) = g−1− (Vs(x)) is only continuous at x = 0 and smooth

elsewhere. This can be summarized as follows.

Lemma 3.5. Assume that g satisfies Hypothesis 3.2. Assume that β < γ and G−(g(β)) = 0. Then,

there exists a one parameter family of discontinuous ground state solutions of equation (3.1) given by

(3.5) which are even, positive, with precisely two points of jump discontinuity and smooth otherwise

together with an even, positive solution which is smooth on (−∞, 0) ∪ (0,+∞) and continuous at

the origin. Furthermore, there is no other solution to (3.1).

When β = γ, we can reproduce the analysis conducted above and we obtain.

Lemma 3.6. Assume that g satisfies Hypothesis 3.2 and that β = γ. Then,

(i) if G−(g(β)) > 0, then there exists a unique smooth, even, positive ground state;

(ii) if G−(g(β)) = 0, then there exists a unique even, positive ground state which is smooth on

(−∞, 0) ∪ (0,+∞) and continuous at the origin;
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Figure 7: Illustration of the phase plane analysis and the gluing of trajectories in the case β < γ &

G−(g(β)) = 0 with g(γ) > 0. In blue, we have representedM−0 which corresponds to the zero level

set of H− in the half-plane v ≥ 0 which forms a homoclinic trajectory to the origin, symmetric in

w with extremal value at v = g(β). We have shown in red two trajectories joining the upper part

of M−0 to its lower part illustrating the fact that there is a one-parameter family of parametrized

curves M+
v0 for each v0 ∈ [g(γ), g(β)] which are bounded to the left by M+

g(γ) and to the right by

(g(β), 0).

(iii) if G−(g(β)) < 0, then there exists a unique even, positive ground state with precisely two

points of jump discontinuity and smooth otherwise.

Remark 3.7. Note that our Lemma 3.3, 3.4, 3.5 and 3.6 complement and precise [8, Proposition

3.2 and 3.3] by providing an exact characterization for each case and an analytical formula for the

point of discontinuity of discontinuous ground state solutions.

3.2 Further properties of x0

In this subsection, we gather some results regarding x0, the point of jump discontinuity of ground

state solutions, when it exists.

Lemma 3.8. Assume that g satisfies Hypothesis 3.2 and that β < γ. Assume that there exists a

one parameter family of ground state solutions with two jump discontinuities at ±x0, indexed by

v0 ∈ D for some bounded domain D ⊂ (0, g(β)]. Then we have:

(i) If g(γ) < 0, then x0 defined in (3.4) satisifies

lim
v0→0+

x0 = 0.

(ii) If g(γ) > 0, then there exists Cγ > 0 such that x0 defined in (3.4) satisifies

lim
v0→g(γ)+

x0 = Cγ .
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(iii) If G−(g(β)) < 0 and −G−(g(β)) ≥ G+(1)− G+(g(β)), then x0 defined in (3.4) satisifies

lim
v0→v−c

x0 = +∞.

(iv) The map x0 : D → R+ is continuous.

Proof. Recalling the definition of x0, and making explicit the dependence in v0, we have

x0(v0) =

∫ v∗(v0)

v0

dv√
2 (G+(v0)− G−(v0)− G+(v))

, v0 ∈ D,

where v∗(v0) is uniquely defined as G+(v∗(v0)) = G+(v0) − G−(v0). First, we remark that the

function v 7→ G+(v) − G+(v0) is smooth, strictly increasing on [v0, v∗] and positive. Following [19,

Chapter 3], we introduce the change of variable Ψ(t, v0) such that

G+(Ψ(t, v0))− G+(v0) =
t2

2
,

together with v0 = Ψ(0, v0) and v∗(v0) = Ψ(t∗(v0), v0) with t∗(v0) =
√
−2G−(v0). The map

t 7→ Ψ(t, v0) is thus positive increasing on [0, t∗(v0)] and smooth. Using this change of variable, we

obtain that

x0(v0) =

∫ √−2G−(v0)
0

∂tΨ(t, v0)√
−2G−(v0)− t2

dt =

∫ π
2

0
∂tΨ

(√
−2G−(v0) cos(θ), v0

)
dθ.

Note that ∂tΨ(t, v0) satisfies

∂tΨ(t, v0)
(
−Ψ(t, v0) + g−1+ (Ψ(t, v0))

)
= t, t ∈ [0,

√
−2G−(v0)].

(i) Since g(γ) < 0, we have that γ < g−1+ (0) < 1, and there exist some constant C0 > 1

(independent of v0) and ε0 > 0 such that

0 <
1

C0
≤ 1

−Ψ(t, v0) + g−1+ (Ψ(t, v0))
≤ C0, t ∈ [0,

√
−2G−(v0)],

for all v0 ∈ [0, ε0]. As a consequence, we have

0 < x0(v0) ≤ C0

√
−2G−(v0)→ 0, as v0 → 0.

(ii) Since 0 < g(γ) < 1, we have that there exist some constant C0 > 1 (independent of v0) and

ε0 > 0 such that

0 <
1

C0
≤ 1

−Ψ(t, v0) + g−1+ (Ψ(t, v0))
≤ C0, t ∈ [0,

√
−2G−(v0)],

for all v0 ∈ (g(γ), g(γ) + ε0]. As a consequence, we can pass into the limit in the integral and

obtain

lim
v0→g(γ)+

x0(v0) =

∫ π
2

0
∂tΨ

(√
−2G−(g(γ)) cos(θ), g(γ)

)
dθ := Cγ .

We readily obtain that

Cγ ≥
√
−2G−(g(γ))

C0
> 0,

since we are in the parameter regime where G−(g(γ)) < 0.
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(iii) We recall that vc ∈ (0, g(β)] ∩ [g(γ), 1) is uniquely defined via G+(vc) − G−(vc) = G+(1) and

that v∗(v0)→ 1 as v0 → v−c . We also have that G′+(1) = 0 and G′′+(1) < 0 so that

lim
v→1−

1− v√
2(G+(1)− G+(v))

=
1√
−G′′+(1)

6= 0.

As a consequence, we have that

x0(v0) =

∫ v∗(v0)

v0

dv√
2 (G+(v∗(v0))− G+(v))

−→ +∞, as v0 → v−c .

(iv) By the implicit function theorem, Ψ is continuous in its second argument. Furthermore since

for each v0 ∈ D and t ∈ [0,
√
−2G−(v0)] one has −Ψ(t, v0) + g−1+ (Ψ(t, v0)) 6= 0, we get that

v0 7→ ∂tΨ
(√
−2G−(v0) cos(θ), v0

)
is continuous uniformly in θ ∈ [0, π/2], which gives the

result.

3.3 Application to the cubic nonlinearity

In the specific case of the cubic nonlinearity fa(u) = u(1− u)(u− a) with a ∈ (0, 1/2), we can get

explicit formula and obtain a complete picture which is summarized in Figure 8. First, we readily

note that β and γ from Hypothesis 3.2 are well defined if and only if 1−a+a2
3 ≥ d, since in that case

they are given explicitly as

β =
1 + a−

√
(1 + a)2 − 3(a+ d)

3
, γ =

1 + a+
√

(1 + a)2 − 3(a+ d)

3
.

We have that β = γ precisely when d = 1−a+a2
3 , which corresponds to the blue curve in Figure 8.

Furthermore, g′ > 0 on [0, 1] whenever d > 1−a+a2
3 which corresponds to the region I. Below the

curve β = γ, we distinguish three different regions which are delimited by the curves G−(g(β)) = 0

and G−(g(γ)) = 0 which are respectively the green and red curves in Figure 8. We also note that

the functions G± can be expressed as

G±(v) = −v
2

2
+

3

4d
g−1± (v)4 − 2

3d
(1 + a)g−1± (v)3 +

1

2

(
1 +

a

d

)
g−1± (v)2.

Region II corresponds to the situation where β < γ and G−(g(β)) < 0 where Lemma 3.3 applies.

Region III corresponds to the situation where β < γ and G−(g(β)) > 0 with G−(g(β)) < 0 which is

the second case (ii) of Lemma 3.4 applies. The last region IV where β < γ and G−(g(β)) > 0 with

G−(g(β)) > 0 corresponds to the first case (i) of Lemma 3.4. Let us finally note that Lemma 3.6

holds on the curve β = γ and the point where G−(g(β)) = 0 separates the different cases. All

curves interest at unique point marked by the orange cross. Within region II, the boundary of the

pinning region (pink dashed curve), characterized by (3.2), rewrites as [3]:

d = dpin(a) =
1

3

(
1− a+ a2 −

√
1− 2a

)
, 0 < a < 1/2.
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Figure 8: Regions of application of our lemmas in the case of the cubic nonlinearity fa(u) =

u(1− u)(u− a) with a ∈ (0, 1/2) and d > 0. The boundary between each regions are given by the

blue curve, parametrized by β = γ, the dark red curve, parametrized by G−(g(γ)) = 0, and the

green curve, parametrized by G−(g(β)) = 0. Note that they all intersect at a unique point marked

by an orange cross. Lemma 3.1 applies in region I (blue), while Lemma 3.3 holds true in region II

(grey). Cases (i) and (ii) of Lemma 3.4 correspond respectively to regions IV (red) and III (green).

We also represented the boundary of the pinning region (pink dashed curve) given by d = dpin(a).

4 Regime of small diffusion

In section, we investigate the regime of small diffusion and prove several results regarding the non

extinction, non propagation and stagnation of the solutions of the Cauchy problem (1.1). Our

technique of proof relies on comparison principle and the construction of appropriate sub and

super-solutions using discontinuous ground state solutions found in the previous section.

4.1 Non extinction for small diffusion

In this subsection, we prove that there is always persistence of the solution in the special case

where K(x) = e−|x|/2 and when g verifies Hypothesis 3.2. First, we introduce some notations. By

definition of γ ∈ (0, 1) one has g′(γ) = 0 which reads equivalently as d = f ′(γ) > 0. On the other

hand, since f ′(1) < 0, there exists u+ ∈ (γ, 1) such that f ′(u+) = 0 and for all u ∈ (u+, 1] one has

f ′(u) < 0. Similarly, there exists u− ∈ (0, β) such that f ′(u−) = 0 and for all u ∈ [0, u−) one has

f ′(u) < 0.

Proposition 4.1 (Non extinction). Let K(x) = e−|x|/2 and assume that g satisfies Hypothesis 3.2

and that β < γ with g(u+) < 0. Then, there exists ˜̀0 > 0 such that for all ` ∈ (0, ˜̀0) the solution
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u` of (1.1) satisfies

U(x) ≤ lim inf
t→+∞

u`(t, x) uniformly in x ∈ R\{±`},

where U is a discontinuous ground state of (3.1) with discontinuity points precisely at ±`.

Proof. We first remark that since u+ ∈ (γ, 1) is such that g(u+) < 0, one necessarily has that

g(γ) < 0. As a consequence, using Lemma 3.3 and Lemma 3.4, there exists a one parameter family

of discontinuous ground state solutions U of (3.1) indexed by v0 ∈ D for some bounded domain

D ⊂ (0, g(β)] with two jump discontinuities at ±x0(v0) which verifies, by Lemma 3.8,

lim
v0→0+

x0(v0) = 0 .

Since g(1) = 1 and g(u+) < 0, one gets the existence of u? ∈ (u+, 1) such that g(u?) = 0 by

continuity of g. As a consequence, using the fact that f ′(0) < 0 and the monotonicity properties

of f , there exist some small η ∈ (0,min((u? − u+)/2, u−/2)) and some constant c > 0 such that

f ′(u) < −c < 0 for each u ∈ (−η, u−/2)∪ (u?− η, 1). We refer to Figure 9 for an illustration of the

relative position between all the constants.

We then define

0 < ˜̀0 := sup
v0∈(0,g(η/2))∩D

x0(v0) .

For each ` ∈ (0, ˜̀0) there exist some v0 ∈ (0, g(η/2)) ∩ D such that ` = x0(v0) and a discontinuous

ground state U of (3.1) with discontinuity points precisely at ±`. We are going to prove that

u(t, x) = U(x)− δe−αt,

is a sub-solution for the Cauchy problem (1.1) for some well-chosen constants δ > 0 and α > 0.

Recalling the definition of N in (2.5), we first compute

N (u(t, x)) = δαe−αt + f(U(x))− f(U(x)− δe−αt)

= δe−αt
(
α+ f ′(ξ(t, x))

)
,

for some ξ(t, x) ∈ (U(x)− δe−αt, U(x)). We now want to ensure that f ′(ξ(t, x)) < 0 for each t > 0

and x ∈ R. We let δ ∈ (η/2, η). For |x| > `, we have that ξ(t, x) ∈ (U(x) − δe−αt, U(x)) ⊂
(−δ, g−1− (v0))) ⊂ (−η, u−/2), since for each v0 ∈ (0, g(η/2)) one has 0 < g−1− (v0) < η/2 < u−/4 <

u−/2. As a consequence, we get that f ′(ξ(t, x)) < −c < 0 for |x| > `. On the other hand, for

|x| ≤ `, we have ξ(t, x) ∈ (U(x) − δe−αt, U(x)) ⊂ (g−1+ (v0) − δ, 1). But for each v0 ∈ (0, g(η/2)),

one has that g−1+ (v0) > u? and so g−1+ (v0)− δ > u? − η since δ < η. As a consequence, we get that

f ′(ξ(t, x)) < −c < 0 for |x| ≤ `. We then set α = c/2 and we have proved that

N (u(t, x)) < 0,

for each t > 0 and x ∈ R. It only remains to check that U(x) − δ ≤ 1[−`,`](x) for all x ∈ R. The

inequality is trivially satisfied for any |x| ≤ `. For |x| > `, we have that U(x)− δ ≤ g−1− (v0)− δ <
η/2− δ < 0 since δ ∈ (η/2, η). Using the comparison principle, we get that

U(x)− δe−αt ≤ u`(t, x),
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Figure 9: Illustration of a function g satisfying Hypothesis 3.2 with β < γ and g(u+) < 0 such that

Proposition 4.1 applies. We refer to the proof of Proposition 4.1 for a precise definition of η > 0.

for each t > 0 and x ∈ R, and the conclusion of the proposition follows.

The above proposition shows that if ` > 0 is small enough, then the solution u` of the Cauchy

problem is always bounded below by a ground state solution with discontinuity points which are

exactly at ±`. In fact, if one relaxes this latter condition, we can actually prove that for all ` > 0,

the solution u` of the Cauchy problem is always bounded below by a ground state solution with

discontinuity points which are now at ±x0 with x0 ≤ `.

Proposition 4.2 (Non extinction). Let K(x) = e−|x|/2 and assume that g satisfies Hypothesis 3.2

and that β < γ with g(u+) < 0. Then, for all ` > 0 the solution u` of (1.1) satisfies

U(x) ≤ lim inf
t→+∞

u`(t, x) uniformly in x ∈ R\{±x0},

where U is a discontinuous ground state of (3.1) with discontinuity points at ±x0 with 0 < x0 ≤ `.

Proof. From our assumption, we know that there exist some small η ∈ (0,min((u?− u+)/2, u−/2))

and some constant c > 0 such that f ′(u) ≤ −c < 0 for each u ∈ [−η, u−/2] ∪ [u? − η, 1]. Finally,

there exists some ε0 > 0 such that for each v0 ∈ (0, ε0), one has that g−1− (v0) < u−/2. Now, for

each v0 ∈ (0, ε0), we denote Uv0 the discontinuous ground state solution with discontinuity points

precisely at ±x0(v0), and we let

u(t, x) = Uv0(x)− ηe−
ct
2 .

For |x| > x0(v0), we have that (Uv0(x) − ηe−
ct
2 , Uv0(x)) ⊂ [−η, g−1− (v0))] ⊂ [−η, u−/2], while for

|x| ≤ x0(v0), we have that (Uv0(x)−ηe−
ct
2 , Uv0(x)) ⊂ [g−1+ (v0)−η, 1] ⊂ [u?−η, 1]. As a consequence,

for any t > 0 and x ∈ R, one gets that N (u(t, x)) < 0.

We now let ` > 0. Since both x0(v0) → 0 as as v0 → 0 and g−1− (v0) → 0 as v0 → 0, one can

find some ε ∈ (0, ε0) such that for all v0 ∈ (0, ε) one has g−1− (v0) < η/2 and 0 < x0(v0) ≤ `. As
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a consequence, we have that Uv0(x) − η ≤ 1[−`,`](x) for all x ∈ R for each v0 ∈ (0, ε). Then, the

comparison principle gives that

Uv0(x)− ηe−
ct
2 ≤ u`(t, x),

for each t > 0 and x ∈ R, and the proof is complete.

4.2 Non propagation in the pinning region

In this subsection, we prove that there is non propagation of the solution in the special case where

K(x) = e−|x|/2 and when g verifies Hypothesis 3.2.

Proposition 4.3 (Non propagation). Let K(x) = e−|x|/2 and assume that g satisfies Hypothesis 3.2

and that β < γ with G−(g(β)) < 0 and −G−(g(β)) ≤ G+(1)−G+(g(β)). Let vc ∈ (0, g(β)]∩ [g(γ), 1)

such that G+(vc) − G−(vc) = G+(1) and assume that g(u+) < vc < g(u−). Then, for all ` > 0 the

solution u` of (1.1) satisfies

lim sup
t→+∞

u`(t, x) ≤ U(x) uniformly in x ∈ R\{±x0},

for some discontinuous ground state U of (3.1) with discontinuity points precisely at ±x0 with

x0 ≥ `.

Proof. Using Lemma 3.3, we know that there exists a one parameter family of discontinuous

ground state solutions Uv0 of (3.1) with discontinuity points precisely at ±x0(v0) for each v0 ∈
(max(g(γ), 0), vc). Here, we make explicit the dependence of U with respect to v0. Furthermore

Lemma 3.8(iii) ensures that the corresponding discontinuity points verify

lim
v0→v−c

x0(v0) = +∞.

Since we assume that vc < g(u−) and f ′(1) < 0 by hypothesis, there exists some δ > 0 such that

g−1− (vc) + δ < u− and f ′(1 + δ) < 0. Now since, g(u+) < vc, there exists some η > 0 such that

η+ u+ < g−1+ (vc) and εη > 0 such that for all v0 ∈ (vc − εη, vc) one has η+ u+ < g−1+ (v0). For each

v0 ∈ (vc − εη, vc), we let

u(t, x) = Uv0(x) + δe−αt,

where Uv0 is a discontinuous ground state of (3.1) with discontinuity points precisely at ±x0(v0)
for some well-chosen α > 0 and δ > 0 defined above. First, we compute

N (u(t, x)) = −δαe−αt + f(Uv0(x))− f(Uv0(x) + δe−αt)

= −δe−αt
(
α+ f ′(ξ(t, x))

)
,

for some ξ(t, x) ∈ (Uv0(x), Uv0(x)+δe−αt). For any |x| ≥ x0(v0), we have ξ(t, x) ∈ (0, g−1− (v0)+δ) ⊂
(0, g−1− (vc) + δ) since v0 < vc and g−1− is increasing on [0, β). As a consequence, one has that

f ′(ξ(t, x)) ≤ sup
u∈[0,g−1

− (vc)+δ]

f ′(u) := −m1 < 0, |x| ≥ x0(v0).
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On the other hand, when |x| < x0(v0), we have ξ(t, x) ∈ (g−1+ (v0), 1 + δ) ⊂ (η + u+, 1 + δ) since

v0 ∈ (vc − εη, vc). As a consequence, one has that

f ′(ξ(t, x)) ≤ sup
u∈[η+u+,1+δ]

f ′(u) := −m2 < 0, |x| < x0(v0).

And we then set α = 1
2 min(m1,m2) > 0 such that for all t > 0 and x ∈ R, one has

N (u(t, x)) > 0.

To conclude the proof, we let ` > 0. Since we have that Uv0 → 1 as v0 → v−c on any compact set,

there exists ε ∈ (0, εη) such that for all v0 ∈ (vc − ε, vc) one has

1 ≤ Uv0(x) + δ, x ∈ [−`, `],

such that for all x ∈ R one gets u`(t = 0, x) = 1[−`,`](x) ≤ Uv0(x) + δ, and the comparison principle

gives that

u`(t, x) ≤ Uv0(x) + δe−αt,

for each v0 ∈ (vc − ε, vc). The proof is thus complete.

4.3 Towards stagnation for small diffusion

We can combine Proposition 4.2 and Proposition 4.3 to obtain the following corollary which essen-

tially says that for small enough diffusion and parameters within the pinning region, solutions of

the Cauchy problem can neither go extinct nor propagate and are bounded above and below by

two different ground state solutions.

Corollary 4.4 (Stagnation). Let K(x) = e−|x|/2 and assume that g satisfies Hypothesis 3.2 and

that β < γ with G−(g(β)) < 0 and −G−(g(β)) ≤ G+(1) − G+(g(β)). Let vc ∈ (0, g(β)] ∩ [g(γ), 1)

such that G+(vc) − G−(vc) = G+(1) and assume that g(u+) < 0 < vc < g(u−). Then, for all ` > 0

the solution u` of (1.1) satisfies

U(x) ≤ lim inf
t→+∞

u`(t, x) ≤ lim sup
t→+∞

u`(t, x) ≤ U(x) uniformly in x ∈ R\{±x0,±x0},

for some discontinuous ground states U and U of (3.1) with discontinuity points precisely at ±x0
and ±x0 respectively with 0 < x0 ≤ ` ≤ x0.

5 Numerical illustrations

In this section, we present our numerical results which illustrate and complement our theoretical

findings of the previous sections. We first present the numerical scheme which we used in order to

numerically approximate the solutions of the Cauchy problem (1.1) and then present and comment

our numerical results. In particular, one of our main goal is to numerically compute the values
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of `∗0 and `∗1 with high accuracy for any given nonlinearity f , kernel K and coefficient diffusion

d > 0 satisfying our assumptions. In order to achieve this objective, we decided to use a high

order numerical scheme both in space and time which is presented in the first subsection. Most

interestingly, our numerical explorations allowed us to conjecture an analytical formula for the value

`∗1 in a well identified region of parameters for the special case of the cubic nonlinearity and the

exponential kernel function.

5.1 Numerical method

In order to numerically compute the solutions of the Cauchy problem (1.1), we use the splitting

method introduced by Descombes & Schatzman [11], which is formally of order 4 (see [10] and

references therein). This splitting method is obtained by applying a Richardson’s extrapolation to

the standard Strang’s method [20]. More precisely, let us first denote by St the flow associated to

(1.1), that is, to a given initial condition u0, the solution to (1.1) at time t > 0 is given by Stu0.
Next, we introduce two intermediate Cauchy problems. The first one is the following nonlocal

diffusion equation {
∂tv = d (−v +K ∗ v) , t > 0 x ∈ R,

v(t = 0, x) = v0(x), x ∈ R,
(5.1)

whose flow is denoted by Dt for t > 0. While the second one is given by{
∂tw = f(w), t > 0 x ∈ R,

w(t = 0, x) = w0(x), x ∈ R,
(5.2)

and we denote its flow by Rt for t > 0. We denote by Zt := Rt/2DtRt/2 for t > 0 the composition

of the flows generated by (5.1) and (5.2), which precisely corresponds to Strang’s method [20]. The

splitting method introduced in [11] and that we have used to produce our numerical simulations is

defined as

Yt :=
4

3
Zt/2Zt/2 − 1

3
Zt, t > 0.

We have used an explicit Runge-Kutta method of order 4 to solve the ODE problem (5.2), while

we have relied on a spectral method to solve the nonlocal diffusion equation (5.1) by noticing that

(Dtv0)(x) =
1

2π

∫
R

eiξxed(−1+K̂(ξ))tv̂0(ξ)dξ, t > 0, x ∈ R,

where K̂ and v̂0 denote the Fourier transform of K and v0 respectively. For K(x) = e−|x|/2 we have

the exact formula K̂(ξ) = (1 + ξ2)−1.

Regarding our time and space discretization, we typically used N = 214 points for the spectral

method and a time step of ∆t = 0.01. The spatial domain was set to [−10π, 10π] while the final

time of computation was adapted to the situation under investigation but never exceeded Tf = 500.

Our numerical findings are reported in the next section.
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Figure 10: For fixed a ∈ (0, 1/2), we report the long time behavior of the solutions u` of the Cauchy

problem for each d ∈ (0, 1/2) as ` > 0 is varied. The long time behavior is either extinction,

propagation or stagnation. We obtain sharp thresholds between each regime. In the legend of each

figure, `∗0 represents the onset for extinction while `∗1 is the onset for propagation. In all cases, we

have that whenever d ≥ 1/2, there is a sharp threshold between extinction and propagation with

`∗0 = `∗1 > 0. The pink doted line represents at each a the boundary of the pinning region, below

which no propagation can occur. We also remark that extinction only occurs above some threshold

value which is marked by a magenta star.

5.2 Results for the cubic nonlinearity and the exponential kernel

We report in this section our results obtained by direct numerical simulations of the Cauchy problem

(1.1) using the numerical algorithm depicted in the previous section. Throughout, we have set the

nonlinearity to be the cubic fa(u) = u(1− u)(u− a) with a ∈ (0, 1/2) as parameter, and the kernel

to be the exponential function K(x) = e−|x|/2. For each fixed a ∈ (0, 1/2) and d ∈ (0, 1/2), we have

solved (1.1) for each ` ∈ (0, `max) using different criteria to stop the computations to discriminate

between the different possible asymptotic behaviors: propagation, extinction or stagnation.
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Figure 11: A three dimension visualization of the results presented in Figure 10 with two different

views.

Numerical strategy to evaluate `∗0 and `∗1. To numerically compute `∗0, whose definition is

given by

`∗0 = sup

{
` > 0 | lim

t→+∞
u`(t, ·) = 0 uniformly in R

}
,

for each fixed a ∈ (0, 1/2) and d ∈ (0, 1/2), we ran our numerical scheme from t = 0 to some final

time t = Tf for all ` ∈ (0, `max) . For each ` > 0, we evaluated the maximum of the numerically

computed solution at the last time step. We then discriminated the precise value of ` for which there

is a transition from extinction, maximum being close to zero, to either propagation or stagnation,

maximum being strictly larger than the unstable steady state a. Note that if the solution were to

pass below a before the final time Tf , we stop the computation and declare that there is extinction

in that case. In all our figures, `∗0 is represented by blue circle. We adopted a similar strategy for

the computation of `∗1, whose definition is given by

`∗1 = inf

{
` > 0 | lim

t→+∞
u`(t, ·) = 1 locally uniformly in R

}
.

To discriminate more accurately between stagnation and propagation, we measured the mass of

the solution and declared propagation when we simultaneously had an increasing mass and a

corresponding solution with maximum being close to one at the final time on a fixed interval. In

all our figures, `∗1 is represented by red stars.

Sharp thresholds. In Figure 10, we show typical diagrams for values of the parameter a in

{0.1, 0.2, 0.3, 0.4}, while in Figure 11 we present a three dimension visualization of the results. In

each panel of Figure 10, we have represented by a doted pink vertical line the boundary of the

the pinning region, while the black doted vertical line is always at d = 1/4. We first observe

that `∗0 = 0 whenever d < dext(a) where dext(a) = (1−a)2
4 is represented by the purple star in the

figures, while 0 < `∗0 < +∞ for any d > dext(a). This numerically indicates that the condition of

Proposition 2.1 is sharp. On the other hand, a simple computation shows that if γ ∈ (a, 1) is the
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Figure 12: Numerically computed regions Rj , j = 1, · · · , 5, for the cubic nonlinearity and the

exponential kernel K(x) = exp(−|x|)/2. The boundary between regions R1 and R2 appear to be

given by d = 1/4 (black curve). The boundary between R2 ∪ R3 and R4 ∪ R5 coincides with the

boundary of the pinning region (pink curve) given by d = dpin(a). Finally, the boundary between

R2 ∪R4 and R3 ∪R5 coincides with the parametrized curve given by d = dext(a) (magenta curve).

Note that both curves intersect at a unique point (ac, dc) ' (0.3850, 0.9455). The three dashed lines

correspond to the three curves of Figure 8 associated to the existence of ground state solutions.

minimum of g, that is g′(γ) = 0, we get that g(γ) = 0 if and only if d = dext(a). As a consequence,

the condition g(u+) < 0 derived in Proposition 4.1 is not sharp, since our numerics indicate that

g(γ) < 0 (or equivalently d < dext(a)) is the sharp condition. Next we observe that for small

values of 0 < d < dpin(a) we have `∗1 = +∞, while for d > dpin(a) one gets 0 < `∗1 < +∞, with

dpin(a) = 1
3

(
1− a+ a2 −

√
1− 2a

)
for a ∈ (0, 1/2). As a consequence, we numerically corroborate

the condition of Proposition 2.3 which assesses that in order to have propagation one needs to be

in the region of parameter space where there exists a traveling front solution with non zero wave

speed: this is precisely characterized by the condition d > dpin(a) of being outside the pinning

region. We further note that, independently of the value of a ∈ (0, 1/2), and as long as d > 1/4,

there is a sharp threshold between propagation and extinction, that is 0 < `∗ := `∗0 = `∗1 < +∞,

with extinction for ` ∈ (0, `∗) and propagation for ` > `∗. We denote this region of parameter

space as R1 := {(a, d) | d > 1/4 and 0 < a < 1/2}. We remark that this is the usual result that

one obtains in the local diffusion case [12, 16, 22]. Below d < 1/4 several different situations can

happen.

Let us introduce ac ∈ (0, 1/2) solution of dpin(a) = dext(a), for which we have the approximation

ac ' 0.3850. For 0 < a < ac, we have that 0 < dpin(a) < dext(a) < 1/4 and:

• for dext(a) < d < 1/4, we have this time 0 < `∗0 < `∗1 <∞, such that for all ` ∈ (0, `∗0), there
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is extinction, for all ` ∈ (`∗0, `
∗
1) there is stagnation, and for all ` > `∗1 there is propagation.

We denote this region of parameter space as R<2 := {dext(a) < d < 1/4 and 0 < a < ac}.

• for dpin(a) < d < dext(a), we have `∗0 = 0 with 0 < `∗1 <∞, such that for all ` ∈ (0, `∗1) there

is stagnation, and for all ` > `∗1, there is propagation. We denote this region of parameter

space R3 := {dpin(a) < d < dext(a) and 0 < a < ac}.

• for 0 < d < dpin(a), we have `∗0 = 0 with `∗1 = ∞ such that there is only stagnation with

convergence asymptotically towards a ground state solution for each ` > 0. We denote this

region of parameter space as R<5 := {0 < d < dpin(a) and 0 < a < ac}.

On the other hand for ac < a < 1/2, we have that 0 < dext(a) < dpin(a) < 1/4 and:

• for dpin(a) < d < 1/4, we have this time 0 < `∗0 < `∗1 <∞, such that for all ` ∈ (0, `∗0), there

is extinction, for all ` ∈ (`∗0, `
∗
1) there is stagnation, and for all ` > `∗1 there is propagation.

We denote this region R>2 := {dpin(a) < d < 1/4 and ac < a < 1/2}.

• for dext(a) < d < dpin(a), we have 0 < `∗0 < ∞ with `∗1 = ∞, such that for all ` ∈ (0, `∗0)

there is extinction, and for all ` > `∗0, there is stagnation. We denote this region R4 :=

{dext(a) < d < dpin(a) and ac < a < 1/2}.

• for 0 < d < dext(a), we have `∗0 = 0 with `∗1 = ∞ such that there is only stagnation for each

` > 0. We denote this region R>5 := {0 < d < dext(a) and ac < a < 1/2}.

Finally, at a = ac, we have that 0 < dc := dext(ac) = dpin(ac) < 1/4 and:

• for dc < d < 1/4, we have 0 < `∗0 < `∗1 < ∞, such that for all ` ∈ (0, `∗0), there is extinction,

for all ` ∈ (`∗0, `
∗
1) there is stagnation, and for all ` > `∗1 there is propagation. We denote this

region R=
2 := {dc < d < 1/4 and a = ac}.

• for 0 < d < dc, we have `∗0 = 0 with `∗1 =∞ such that there is only stagnation for each ` > 0.

We denote this region R=
5 := {0 < d < dc and a = ac}.

As a consequence, we can partition the parameter space (a, d) into five different regions, denoted

Rj whose boundaries are given by the horizontal line d = 1/4 and the two curves d = dpin(a) and

d = dext(a). Here we have set R2,5 := R<2,5 ∪R=
2,5 ∪R>2,5. We refer to Figure 12 for an illustration

and to Table 1 for a summary of the possible asymptotic behaviors in each region.

An analytical formula for `∗1 in R2 ∪R3. In the region R2 ∪R3, that is for dpin(a) < d < 1/4

with 0 < a < 1/2 where 0 < `∗1 < ∞, we manage to derive an analytical formula for `∗1 which

is represented by the dark blue curve in Figure 10 and labelled x∗0. Since 0 < d < 1/4, we are

in the region of parameters where 0 < β < γ < 1 with g′(β) = g′(γ) = 0. Note also that

from Subsection 3.3 and Figure 8, the region R2 ∪ R3 is strictly contained within the region of

31



Region Propagation Extinction Stagnation

R1 yes yes no

R2 yes yes yes

R3 yes no yes

R4 no yes yes

R5 no no yes

Table 1: Overview of different types of possible asymptotic behaviors for the solutions of the Cauchy

problem (1.1) for the cubic nonlinearity and the exponential kernel K(x) = exp(−|x|)/2 for open

connected intervals of the parameter ` > 0. Regions are outlined in parameter space (a, d) in

Figure 12, below.

parameters where G−(g(γ)) < 0. As a consequence, using Lemma 3.3 and Lemma 3.5, for all each

(a, d) ∈ R2 ∪R3 such that G−(g(β)) ≤ 0, there exists a parameter family of ground state solutions

with points of discontinuity at ±x0(v0) for each v0 ∈ [g(γ), g(β)] and v0 > 0. In that case, we define

x∗0 := sup
v0∈[g(γ),g(β)], v0>0

x0(v0). (5.3)

On the other hand, using Lemma 3.4(ii), for all each (a, d) ∈ R2 ∪ R3 such that G−(g(β)) > 0,

there exists a parameter family of ground state solutions with point discontinuity at ±x0(v0) for

each v0 ∈ [g(γ), vm] and v0 > 0 where vm ∈ (0, g(β)) is solution of G−(vm) = 0. In that case, we

define

x∗0 := sup
v0∈[g(γ),vm], v0>0

x0(v0). (5.4)

In both cases, x∗0 > 0 is the largest right point of discontinuity of the family of discontinuous ground

state solutions. In fact, it is possible to extrapolate the value v∗0 > 0 at which the maximum is

attained. We first remark that in region R2∪R3 where G−(g(β)) ≤ 0, we always have that a ≤ g(β)

with equality along the curve d = a−a2. Next, we remark that the condition g(γ) = a is equivalent

to d = 1/4, such that for any (a, d) ∈ R2 ∪ R3 with G−(g(β)) ≤ 0, we have g(γ) < a ≤ g(β).

Furthermore, the map v 7→ v 7→
√
−2G−(v) defined on [0, g(β)] always has a unique maximum at

v = a since G′−(v) = −v+g−1− (v). We find that the maximum is achieved precisely for v0 > 0 which

maximizes v 7→
√
−2G−(v), that is v∗0 = a and x∗0 = x0(a) > 0. A similar argument applies to the

other case by noticing that we always have a ≤ vm since G−(vm) = 0.

Note that the value x0(v0) can be numerically computed by evaluating the integral formula (3.4),

and we have used a standard trapezoidal rule. In each panel of Figure 10, we have a remarkable

agreement between our numerically computed value of `∗1 by direct simulations of the long time

behavior of the solutions of the Cauchy problem (1.1) and our conjectured formula through the

expression of x∗0. This allows us to formulate the following conjecture.

Conjecture 5.1. Assume that K(x) = e−|x|/2 and that fa(u) = u(1− u)(u− a) with 0 < a < 1/2.

Let (a, d) ∈ R2 ∪ R3 such that 0 < `∗1 <∞ is well defined from Proposition 2.3. Let x∗0 > 0 be the
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Figure 13: Numerically computed values of ̂̀∗0 (light blue circles) and ̂̀∗1 (yellow stars) for the

Gaussian kernel K(x) = e−x
2/4/
√

4π for fixed a = 0.35 and the cubic nonlinearity. We also reported

the numerically computed values of `∗0 (blue circles) and `∗1 (red stars) for the exponential kernel

K(x) = e−|x|/2 for comparison. Both `∗0 and ̂̀∗0 become positive at the same value for d indicated

by the magenta star given by dext(a) with a = 0.35. On the other hand `∗1 and ̂̀∗1 become bounded

only for those values of d larger than dpin(a) with a = 0.35, indicated by the pink dashed vertical

line. We obtain that ̂̀∗0 = ̂̀∗
1 for all d ≥ 1/4. Note that for the Gaussian kernel the cusp between

the two curves ̂̀∗0 and ̂̀∗1 near d = 1/4 is more degenerate.

right point of discontinuity of the discontinuous ground state solution associated to v0 = a. Then

we have `∗1 = x∗0.

Remark 5.2. From the discussion above, we remark that the boundary between regions R1 and R2

given by d = 1/4 should instead be reinterpreted with the equivalent condition g(γ) = a.

5.3 Beyond exponential kernels

We also numerically studied the case of a kernel given by a Gaussian K(x) = e−x
2/4/
√

4π with

Fourier transform K̂(ξ) = e−ξ
2
, still with the cubic nonlinearity. We found that the regions Rj ,

j = 1, · · · , 5 remain unchanged. More precisely, if we denote by ̂̀∗0 and ̂̀∗
1 the thresholds for

extinction and propagation respectively in the case of the Gaussian kernel, then

• in region R1, we have 0 < ̂̀∗0 = ̂̀∗
1 <∞;

• in region R2, we have 0 < ̂̀∗0 < ̂̀∗1 <∞;

• in region R3, we have 0 = ̂̀∗
0 and 0 < ̂̀∗1 <∞;

• in region R4, we have 0 < ̂̀∗0 < +∞ and ̂̀∗1 =∞;

• in region R5, we have 0 = ̂̀∗
0 and ̂̀∗1 =∞.
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We refer to Figure 13 for a typical situation at the fixed value a = 0.35. In the Gaussian case,

determining the exact location in parameter space for which ̂̀∗0 = ̂̀∗
1 occurs is a much more delicate

task than in the exponential case. Indeed, the cusp between the two curves ̂̀∗0 and ̂̀∗1 is more

degenerate. Actually, we conjecture that the regions Rj are universal among the class of localized

kernels with normalized second moment 1
2

∫
R x

2K(x)dx = 1 and when f is given by the cubic

nonlinearity.

Conjecture 5.3. Assume that fa(u) = u(1 − u)(u − a) with 0 < a < 1/2. Let K satisfy Hy-

pothesis 1.1 and Hypothesis 2.2 with normalized second moment 1
2

∫
R x

2K(x)dx = 1. Let Rj,
j = 1, · · · , 5, be the regions defined above. Then we have:

(i) In region R1, there is a sharp threshold between extinction and propagation, that is 0 < `∗0 =

`∗1 <∞.

(ii) In region R2, there are two sharp thresholds between extinction and stagnation on the one

hand and between stagnation and propagation on the other hand, that is 0 < `∗0 < `∗1 <∞;

(iii) In region R3, there is a sharp threshold between stagnation and propagation, that is 0 = `∗0
and 0 < `∗1 <∞;

(iv) In region R4, there is a sharp threshold between extinction and stagnation, that is 0 < `∗0 <

+∞ and `∗1 =∞;

(v) In region R5, there is always stagnation, that is 0 = `∗0 and `∗1 =∞.

Proving such a conjecture is a major open problem that we leave for future work. We note that [21]

has proved Conjecture 5.3(i) when the kernel is compactly supported, and in a sub-region of R1,

namely the sub-region above the curve d = 1−a+a2
3 which corresponds to the region where g′ > 0

(indicated by the dashed blue lin in Figure 12).
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