N

N

An end to end approach for brand recognition in
product titles with BI-LSTM-CRF

Mohamed Annis Souames, Larbi Abderrahmane Mohammedi

» To cite this version:

Mohamed Annis Souames, Larbi Abderrahmane Mohammedi. An end to end approach for brand
recognition in product titles with BI-LSTM-CRF. 2022. hal-03528324

HAL Id: hal-03528324
https://hal.science/hal-03528324

Preprint submitted on 17 Jan 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-03528324
https://hal.archives-ouvertes.fr

An end to end approach for brand recognition in product titles with
BI-LSTM-CRF

Mohamed Annis Souames
Industrial Engineering Department
National Polytechnic School
Algiers, Algeria
mohamed_annis.souames @g.enp.edu.dz

Abstract—The aim of this paper is to describe an end to end
approach using different deep learning architectures to detect
brand names in product titles from online stores and online
retailers such as Amazon, Ebay, etc. In this paper we developed a
named entity recognition model based on a Bi-LSTM architecture
with a conditional random field layer using Flair framework, we
also explain how the dataset was curated, cleaned and augmented
to improve the model performances. Finally, we compare the
trained model against few other models trained using the Spacy
framework. Our model gave a relatively high fl-score of 0.83
with a good generalisation to real world cases.

Index Terms—Named entity recognition, Bi-LSTM, CRF, Flair,
Spacy.

I. INTRODUCTION

Tagging brands in user generated content and more specif-
ically in product titles is important for several business ap-
plications and is mainly used in e-commerce to understand
customers shopping behaviour, search queries and to analyse
the performance of different brands in a shop.

However, this task is tedious and requires either manual
tagging by the user or the online store owner, or searching in
large databases for the brand name that appears in a product
title. This task can be automated to a large extent using named
entity recognition models that can tag entities in a given
document. For example, given the input : New Jean Zara Blue
Extra Slim, the model should be able to tag Zara as a brand
from that product title. This can be quite beneficial for different
use cases as described above but it is also quite challenging
to build a robust NER model given several challenges which
will be detailed in the following section.

II. CURRENT CHALLENGES

There is a number of challenges related to brand tagging in
product titles which we will detail in this section :

o Unstructured syntactic structure : Product titles are
highly unstructured pieces of information, there is no
universal structure for writing a product title, hence, the
same product might have different titles : ”Skinny Jean
Zara Brand New” is equivalent to “Zara Brand New
Skinny Jeans”.

o Brand names are complex : Brands do not share the
same word shape, some brands contain numbers, other
brands contain more than 3 words, and several brands do

Larbi Abderrahmane Mohammedi
Industrial Engineering Department
National Polytechnic School
Algiers, Algeria
larbi_abderrahmane.mohammedi @g.enp.edu.dz

not exist in the English dictionary as words, so we are
faced with another sub problem : brands are rare words.

o Data scarcity : There are several datasets for named
entity recognition but all of these datasets are either
related to news, literature or Wikipedia articles. Even
though some e-commerce datasets exists such as the
”Amazon Product Reviews” dataset curated by Jianmo
Ni [6] or few other datasets found on Kaggle website,
but all of them are not suitable for direct usage in named
entity recognition tasks.

In this paper we explain how we tackled these challenges
through data augmentation and deep neural networks.

III. DEFINITION & CONCEPTS

Before diving into our method, we will begin by defining
what is named entity recognition, bidirectional LSTM and
conditional random fields.

A. Named Entity Recognition

Sequence tagging or named entity recognition is an im-
portant natural language processing task where the goal is to
predict the class of each token as an entity, for instance, given
the input sentence : Ahmed loves Algiers, the sequence tagger
(also known as the named entity recognition model) should tag
Ahmed as a person and Algiers as a location.

It is essentially a classification problem where given a
sequential input and it’s corresponding annotation, the NER
model will learn and output a sequence of labels for each
token w; in a sentence of length N.

NER systems expect an annotated input with IOB
scheme,where B-ENTITY is the beginning of an entity, I-
ENTITY is used when the token is inside an entity, O is used to
tag a token as others. For instance : Annis Lives in New York
would have the following annotation : B-PER O O B-LOC
I-LOC.

In our case, we are only interested in the "BRAND” entity,
so we will have 3 possible labels for each token : "B-BRAND”,
”I-BRAND” and ”O” to denote when a token is not a brand.
Given that most of product titles have only one brand and
other tokens are not interesting, we will have more ”O” labels
than other labels, therefore this classification task is highly
imbalanced and the general metric for evaluation in this case
is the fl-score.

B. Bidirectional LSTMs

Recurrent neural networks have been used extensively in
natural language processing tasks because they can keep a
memory of historical informations (for instance : previous
words) at each step t.

Long Short Term Memory cells are a special type of
gated recurrent neural networks that work well with finding
dependencies in a long sentence, the hidden state & at a given
step ¢, denoted h; is computed in this manner :

hy = f(Wxz: + Whhi—1) (D
ye = 9(Wyhy) 2

Where W,,, W, W, are the weight matrices learned by the
model and f, g are the activation functions.

By stacking two layes of LSTMs : one receiving information
from past input features h;_; (the forward LSTM) and the
second getting information from the future input features f;1
we get a bidirectional LSTM network that can learn current
features h; based on historic and future informations. The
bidirectional LSTMs have been used in the recent years for
sequence tagging tasks and yielded good results [4].

C. Conditional Random Fields

Conditional random fields are a special type of Markov
random fields that can take into account neighboring tags to
predict a given tag and give some consistency, for instance, a
CRF model can learn that it’s more likely that B-BRAND will
be followed either by I-BRAND tag or by O tag rather than a
second B-BRAND tag. CRF combined with word features such
as the word shape, N gram features, previous tags, next tags,
etc, have been used several times in the past for named entity
recognition and resulted in higher accuracy compared to other
classical classification approaches such as SVM, Decision
trees or other models.

Mathematically, the conditional random field compute a
conditional probability distribution :

exp(score(x,y))

P(yle) = 3)
5, eap(score(w,)
Where score is the log of potentials ¢; in the CRF :
score(z,y) = Z logo; 4)

D. BI-LSTM-CRF

An important model in sequence tagging that has been used
recently is the combination of a BI-LSTM network with a final
CRF layer, the BI-LSTM part is used to learn features for
each token using historic informations and future informations,
while the CRF layer is trained to learn a good tagging strategy
by taking into context neighboring tags, this combination
outperforms simple BI-LSTM architectures or vanilla CRF
models in named entity recognition tasks scoring an f1 score
of 88.83 on the CoNLL 2003 dataset (used for named entity
recognition benchmarks) [4].

B-BRAND

J
g
)

Pelikan

CRF Layer

Forward LSTM

Backward LSTM \

o
)

Blue

o
)

Pencil

Fig. 1. An example of a BI-LSTM Network with a final CRF Layer

IV. OUR METHOD

In this section, we will discuss the data set used to train the
model, the data cleaning process, the main transformations
applied to augment the data and the models that were trained.

A. Data curation

We tried multiple data sets before finding the ”Amazon
Product Reviews” data set curated by Jianmo Ni [6] which has
over 1 million products. However, we only downloaded data
for office supplies, computers, food & drinks and industrial
tools. We ended up with over 150k products after joining all
the products for each category.

B. Data Cleaning

We cleaned the data by removing the products with brands
having special characters such as "+, @, #, etc.” We, also
replaced the HTML encoding codes found in the title by their
textual representation such as “& to &”.

Initially, using this dataset, the fl score was over 80%, but
the models we tested were over-fitting on titles having brands
as their first word. We found that our dataset was imbalanced,
more than 80% of the products included had the brand at the
beginning of the title, thus, we decided to augment the data by
shifting brands positions strategically, the data augmentation
process is discussed below.

C. Data augmentation

We implemented a logic to sample the data, which shifts
the position of the brand from the beginning to the end or
the middle.

First, we split our data into three subsets A, Ao, A3 : A
contains products having brand in the beginning, A5 in the
middle and A3 at the end. As shown in the pseudo-code below

N = length(products)
for k< 1to N do

if products([k] has brandFirst then

productsFirst < products|k]
else
remaining Products < products|k]
end if
end for

Then, we applied a transformation to the products having the
brand in the beginning according to this logic :

groups = productsFirst.groupby('brand’)
for group in groups do
counter < 0
half Len < (int)group.shape[0]/2
for idx, row in group.iterrows () do
counter <— counter + 1
if counter < halfLen then
newStart Brand < row
else
toSample < row
end if
end for
end for

Now that we have our dataframe toSample, we just need
to shift the brand from the beginning to the middle and the
end. We transformed our product title into a list then we shift
it randomly to the middle or the end.

D. Modeling

In this project we used two well-known NLP frameworks :
spaCy and Flair to design and train NER models easily along
with Gensim to train custom word embeddings.

1) Word embeddings : Word2Vec was used as an em-
bedding algorithm with the Gensim library to train custom
embeddings on the product titles. We trained the model for 10
epochs and used an embedding dimension of 200, we trained
the embeddings for words that repeated at least two times
(min_count=2 in Gensim). Unfortunately, over 70% of the
tokens were unique and were replaced by a null vector instead.
The custom embeddings gave interesting results :

similarity (Dell, Lenovo) = 0.89
similarity (Staedtler, Pencil) = 0.71

The model learned linear relationships between products,
brands and different attributes. In this paper we used both
GloVe embeddings with 6 billion tokens and 300 dimension
as well as the custom embeddings we trained.

2) spaCy: spaCy is an industrial level NLP framework of-
fering several tools and pretrained models to achieve different
tasks such as named entity recognition. In this project, we
did not use a pretrained model due to the challenges with
the unstructured nature of product titles described above, we
decided to train a blank model using the standard architecture
with few adjustments to the model parameters. The spaCy
model is composed of different trainable components, the
tokenization and embedding component is : 1) tok2vec which
uses hash embeddings for prefix, suffix, normalized token and

the word shape features, it also accepts static pretrained word
embeddings as an additional input. 2) transformer : In this
case the embedding is done using a transformer architecture
such as BERT, or other transformer architectures, we did not
use these architectures due to the large model size and the
limited computation power available in our case.

The second component in spaCy is the ner component
which is based on a variant of LSTMs known as Stack-LSTM
and are used for dependency parsing [3]. The stack LSTM
learns transitions from different states (for instance : [NULL]
— [BRANDY]) and is well suited for named entity tasks.

It is worth noting that for spaCy we use a different format
for data than the IOB scheme, we use an offset format as the
following :

(
”Computer Dell Inspiron Intel 177,

“entities” [(8,11,BRAND)]

We generate a tuple for each title in our dataset, we then
convert the data in the offset format to a JSON file and a
spaCy binary file.

We trained two different spaCy models for 10 epochs with
a batch size of 32, one using only custom embeddings we
trained with Word2Vec as input, and the second using both our
custom word embeddings and the hash embedding network in
spaCly.

3) Flair: The Flair framework is a new NLP framework

built as a research project [1]. It can be used for text classifica-
tion, embeddings, sequence tagging (named entity recognition)
and different other tasks. The sequence tagger model in Flair
is based on a BI-LSTM architecture that can be supplemented
with a crf layer at the end of the network. The framework is
specifically good with named entity recognition and has a nice
high level API. Flair also accepts different embeddings such
as GloVe [5], FastText [2] and transformer based embeddings,
it also has custom pretrained embeddings known as Flair
Embeddings.
In our project we used a stacked embedding composed of
GloVe 6B tokens pretrained embeddings and two pretrained
Flair embeddings : one trained on news in a forward way and
the second trained also on news articles but in backward. The
three embeddings are then summed into one embedding that is
passed to the sequence tagger model (BI-LSTM + CRF) with
a batch size of 32 and a decaying learning rate.

One problem we faced with Flair is that we had to train it
for 40 epochs and since it uses PyTorch, the resulting model
has a size of around 300 MB. Besides, we can’t use our own
Word2Vec embeddings trained on product titles as opposed to
spaCy, we can however train our own Flair embeddings but
we did not in our case.

V. RESULTS

Table 1 shows the different models trained with spaCy and
Flair with their corresponding parameters and f1 score.

Framework Word embeddings Architecture Batch size Epochs Other parameters f1 score

spaCy Custom WE (Word2Vec) tm‘g;ff;‘g\fed 32 10 L\;V:Olggl 0.82

Multi Hash Embedding W = 128
spaCy Custom WE (Word2Vec) + Maxout Window Encoder 32 10 Lr __0 001 0.84

+ Transition based BI-LSTM -

GloVe W = 256

Flair + Flair embedding (news-forward) BI-LSTM + CRF layer 32 40 Lr=0.1 zdeca ing*) 0.84
+ Flair embedding (news-backward) - ying

TABLE T
TABLE 1. RESULTS OF THE DIFFERENT MODELS TRAINED WITH SPACY AND FLAIR (W IS THE WIDTH OF THE HIDDEN LSTM LAYER, LR IS THE
LEARNING RATE USED), *IN THE FLAIR MODEL, THE LEARNING RATE DECAYS AFTER 4 EPOCHS WITH NO IMPORVEMENT IN THE MODEL PERFORMANCE
BY AN ANNEALING FACTOR OF (.5, DURING THE LAST 5 EPOCHS, THE LEARNING RATE WAS 0.015.

We can see that the model built with Flair has the same
fl-score as the second one built with spaCy, however when
testing the model we noticed that Flair had a slightly better
generalization to real world examples. All models were shared
on the Github repository of the project.

Below are some examples tested with the trained flair model
(model N° 3) and the spaCy model (model N°2) (Figure 3
and 4):

Laptop Dell <B-BRAND> Inspiron X546

Black Pelikan <B-BRAND> Pencil 16mm

Battery Smart Energy by Energizer <B-BRAND>

Fijutsu <B-BRAND> DSLR Camera 156p

Genuine Paul <B-BRAND> Smith <I-BRAND> Men 's Belt-Leather Woven Plait Belt / BNWT / Sz :
Computer HP X80 Intel <B-BRAND> Xeon

Smart <B-BRAND> Watch <I-BRAND> Apple

36 '/ RRP : 110.00

Computer Big Hewelett-Packard <B-BRAND> Intel Xeon
24 Buttermilk oz Oroweat <B-BRAND> Bread ,

Black pencil Vertex <B-BRAND>

Wireless mouse MacTech <B-BRAND>

Smart Mouse Logitech <B-BRAND>

Brother <B-BRAND> Printer <I-BRAND> V167 Black Ink

Fig. 2. Some example titles not included in the dataset tested with the Flair
BI-LSTM+CRF model

Laptop Dell BRAND Inspiron X546
Black Pelikan BRAND Pencil 16mm
Battery Smart Energy by Energizer BRAND
Fijuisu BRAND DSLR Camera 156p
Genuine Paul Smith BRAND Men's Belt-Leather Woven Plait Belt/BNWT/Sz: 367RRP:110.00
Laptop HP X80 Intel Xeon
Smart Watch BRAND Apple
Computer Big Hewelett-Packard BRAND Intel Xeon
24 Buttermilk oz Oroweat BRAND Bread,
Black pencil Vertex BRAND
Wireless mouse MacTech
Smart Mouse Logitech BRAND

Brother BRAND Printer Inkjet

Fig. 3. Some example titles not included in the dataset tested with the spaCy
model (2nd model in Table 1)

A. Discussion

The Flair model, although trained for 40 epochs and has a
larger size than the spaCy model can generalise better than
the models trained with spaCy.

Alternatively, spaCy was faster to train and produced good
models with a lower memory overhead. It is worth noting that
both models (flair & spaCy) could detect unseen brands in the
dataset such as Vertex, Mactech, etc.

What'’s interesting is that both models fail at tagging Smart
watch Apple” because in our case, there are very few examples
of Apple (brand) products but there several food beverage
products which contain the word Apple (the fruit) such as
Apple juice or Apple pie, therefore, the model learned ”Apple”
as a fruit instead of a brand.

VI. IMPROVEMENTS

The models presented in this paper give satisfying results,
however they can be improved, we believe that using and fine
tuning a transformer model to generate the embeddings would
be more beneficial and could result in a higher fl score,
for instance, it would solve the problem of detecting Apple
as a fruit instead of a brand, since embeddings generated
by transformer models are contextual so the embedding for
Apple as a fruit and as a brand will be different.

A second way to improve the model accuracy is to get
cleaner data, even though we did extensive data cleaning,
there are some titles with different symbols, spelling errors,
etc. Using a higher quality data set could improve the model
performances.

Finally, the model can be supplemented with rule based
algorithms that check if the brand already exist in the data
set or in some database or both, there would be no need to
use the model in this case unless the brand can’t be found, in
this case the model will be used to infer the brand. Figure 4
explains how this solution could work conceptually.

VII. RELATED WORK

Several works are related to using BI-LSTM + CRF in
sequence tagging, [4] used several LSTM, BI-LSTM and BI-
LSTM-CRF based models for sequence tagging and compared
their performances. The problem of brand tagging in products
has been tackled either using CRF [8], BI-LSTM CRF and
deep word embeddings [7] combined with an LSTM neural

User input title ‘

1

Tokenize litle ‘

=

Check in a second
brand database or He Tokenin Yes | Outputthe token as
A datasetbrands unique()? | brand

Brand found in API No Run NER Model 1

similar to token ? (spaCy)
Voting Classifier
(Soft vofing)
Run NER Model 2
(Flair)
Yes
Output found brand Oulput result

Fig. 4. First we search the brand in the brand column in the dataset, if we
fail to find the brand, we search for it in a second API or database, if this
fails, we run two models in parallel and give the results to a voting system
that output the final result.

network used for classification. Furthermore, this task can be
considered as a subtask of product-attribute extraction, [9]
introduced several techniques such as BI-LSTM+CREF to tag
different attributes in product profiles.

VIII. CONCLUSION

In this paper we suggested an end to end approach for brand
tagging in product titles, from data curation to improving the
final solution, we hope that this work will help others gain
important insights in tagging brand names from unstructured
text and could lead to developing better and more accurate
techniques.

REFERENCES

[1] Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif Rasul, Stefan
Schweter, Roland Vollgraf, FLAIR: An Easy-to-Use Framework for State-
of-the-Art NLP

[2] Piotr Bojanowski, Edouard Grave, Armand Joulin, Tomas Mikolov, En-
riching Word Vectors with Subword Informations, 2015

[3] Chris Dyer, Miguel Ballesteros, Wang Ling, Austin Matthews, Noah A.
Smith Transition-Based Dependency Parsing with Stack Long Short-Term
Memory 2015

[4] Zhiheng Huang, Wei Xu, Kai Yu, Bidirectional LSTM-CRF Models for
Sequence Tagging, arXiv, 2015

[5] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff
Dean. 2013 Distributed representations of words and phrases and their
compositionality. In Proc. NIPS

[6] Jianmo Ni, Jiacheng Li, Julian McAuley, Justifying recommendations
using distantly-labeled reviews and fined-grained aspects, Empirical
Methods in Natural Language Processing (EMNLP), 2019

[7]1 Andrey KulaginEmail authorYuriy GavrilinYaroslav Kholodov, Deep Em-
beddings for Brand Detection in Product Titles, AIST 2019

[8] Sen Wu, Zhanpeng Fang, Jie Tang,Accurate Product Name Recognition
from User Generated Content, ICDM 2012 CPROD1

[9] Guineng Zheng, Subhabrata Mukherjee, Xin Luna Dong, Feifei Li, Open-
Tag: Open Attribute Value Extraction from Product Profiles, Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, London, UK, August 19-23, 2018

[10] spaCy, Industrial-Strength Natural Language Processing library
(https://github.com/explosion/spaCy)

