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Abstract

The formation of pores in CMSX-4 nickel based superalloys is detrimental to the

service life of the material. A way to avoid the problem is to treat the superal-

loys under Hot Isostatic Pressing (HIP), which enables a large volume fraction

of pores to be annihilated. This paper aims to understand the contribution

of plastic activity related to the gliding of dislocations on the pore annihila-

tion. Simulations based on a phase-field model of dislocation are performed and

make it possible to consider the strong anisotropy of the CMSX-4 under HIP

conditions in conjunction to the strong elastic heterogeneity introduced by the

pore. For pores with a radius of few micrometers, it is shown that edge parts of

dislocation lines that present an extra half atomic plane oriented towards the

pore are stacked above and under it in the direction which is perpendicular to

their slip-planes, causing an increase of the number of dislocation along the four

octahedral directions of the FCC single crystal which intersect the pore center.

Results are streamlined within the isotropic elastic theory of dislocations. Ef-

fects of elastic anisotropy and dislocation reactions are also investigated in order
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to specify what would be the dislocation configuration around a pore in CMSX-4

under HIP conditions. Notably, the elastic anisotropy is shown to significantly

modify the arrangement of dislocations close to the pore equator. Simulations

also allow for the characterization of pore/dislocation interactions when dislo-

cations are involved in Low Angle Boundaries as experimentally observed.

Keywords: HIP, Superalloys, Dislocation, Pore, Voids, Phase-field

1. Introduction

The CMSX-4 is a single crystal nickel based superalloy used in aeronautics

to cast turbine blades [1, 2]. After solidification and homogenization treatments,

many pores are formed and act as nucleation sites for micro-cracks, ultimately

causing the material to fail [3, 4].5

The solidification pores are created during dendritic growth of single crys-

tals [5]. They are quite large, up to a maximum diameter of 100 µm, and have

irregular shapes [6]. Usually, they appear in Low Angle Boundaries (LABs) sep-

arating adjoined dendrites disorientated by about 1 to 2◦. The homogenization

pores are formed during the subsequent heat treatments. They are smaller, up10

to a maximum diameter of about 5-10 µm, and their shape is rather spherical

[7]. Generally, as it is shown in Fig. 1, they are located in interdendritic LABs

as well as in intradentritic LABs between mosaic blocks disorientated by about

0.1◦ or less.

In the present context, after its elaboration, the CMSX-4 is treated by Hot15

Isostatic Pressing (HIP), at a pressure of 103 MPa and temperature of 1288◦C,

which is close to the melting point. This procedure removes a large number of

pores, which results in a significant increase in the material life span [8].

At this temperature, the CMSX-4 is constituted of a single γ phase in which

several mechanisms are assumed for contributing to pore closure: dislocation20

glide [9], dislocation climb, vacancy diffusion [10]... These mechanisms are cou-

pled and occur at different space and time scales which makes an exhaustive

description of pore annihilation very difficult. As a consequence, pore closure
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100 μm

Figure 1: Pores in heat-treated single crystal of nickel-base superalloy CMSX-4. Cross section

of dendrite with (001) plane, contrasted in back-scattered electrons (BSE) in a scanning

electron microscope (SEM).

kinematics are experimentally quantified without a real insight on the control

parameters and only qualitative assertions are generally provided based on the25

aforementioned annihilation mechanisms.

To go beyond this, numerical simulations can be performed. For example, in

[11], the pore shape and its closure kinematics are investigated using Finite El-

ements Methods and a crystal plasticity model formulated at finite strain. Such

simulations allow for providing some qualitative results but fail to correctly re-30

produce the pore closure kinetics – which are an order of magnitude higher than

the experimental ones – as well as the shape of the closing pore – exhibiting

corners not observed in real context. These drawbacks may be related to both

the absence of “surface energy” in the pore surface description and the phe-

nomenological model of plasticity that does not account for the heterogeneity35

of the plastic flow related to transport effects. One of the motivations for this

work is to go beyond this.

For that purpose, the contribution of plastic activity related to the gliding

of dislocations on the pore annihilation is investigated by using a phase-field

approach developed in [12], which allows for the consideration of the plastic40

transport at the dislocation level. This phase field model, originally developed

for studying FCC materials with strong elastic heterogeneities and free surfaces,
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is used in the present work to characterize more rigorously pore/dislocations

interactions in the context of Ni-base superalloys during HIP, and also to per-

form simulations extended to more realistic reacting dislocations and specific45

initial dislocation arrangements reproducing Low Angle Boundaries (LABs).

More generally, this work aims to characterize interactions between dislocations

and a spherical pore when they are involved in face-centered cubic elastically

anisotropic materials under isostatic loading. Another reason for using a phase-

field approach in the present context is that it allows us to describe plastic50

activity by naturally considering the strong anisotropy of the CMSX-4 in con-

junction to the strong elastic heterogeneity introduced by the pore.

The paper is organized as follows. First, the interaction between a pore and

gliding dislocations belonging to one slip-system will be investigated. Straight

edge dislocations and loops are both considered in an isotropic material and in55

the anisotropic CMSX-4 crystal. Results will be streamlined within the theory of

elasticity. Then, reacting dislocations and a tilt LAB interacting with a pore will

be studied in order to identify the arrangement of dislocations gliding around a

pore in more realistic contexts. Finally, scenarios of dislocations inducing pore

closure will be proposed and discussed with respect to the obtained numerical60

results.

2. Pore interacting with dislocations that belong to one slip-system

2.1. Straight edge dislocations

The gliding of straight edge dislocations localized close to a pore is investi-

gated by calculating the stress-induced gliding force acting on them. The stress

field generated by a pore of radius Rp embedded in an infinite medium under

pressure p is derived from the classical theory of elasticity, by assuming that the

medium is elastically linear and isotropic [13, 14]. In the spherical coordinates

(O;−→er ,−→eθ ,−→eφ) with pore center as origin, it is found that the resulting stress

tensor σ can be partitioned as σ = σr + σhydro where σr is a purely radial
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tensor given by:

σr = σ


1 0 0

0 0 0

0 0 0


r,θ,φ

with σ =
3

2
p

(
Rp

r

)3

, (1)

and σhydro a purely hydrostatic tensor given by:

σhydro = σθθ


1 0 0

0 1 0

0 0 1


r,θ,φ

with σθθ = −p

(
1 +

1

2

(
Rp

r

)3
)
. (2)

For gliding dislocations, hydrostatic stresses do not contribute to the Peach-

Koehler force. Locally, the present problem is thus very similar to that of a

uniaxial tensile test along −→er under stress σ for which the gliding force per unit

line length is known to be [15]:

−→
F g = τ b −→n ×

−→
ξ . (3)

In this relationship,
−→
b (or the norm b) is the Burgers vector of dislocation, −→n

the unit vector perpendicular to its slip-plane and
−→
ξ the unit vector tangent to

its line direction. The important term is the resolved shear stress τ given by:

τ = −→n · σ ·
−→
b

b
= m σ, (4)

which quantifies the glide force on a dislocation in its slip-plane according to

the Schmid factor m = cosα cosβ defined with α as the angle between
−→
b and65

−→er , and β as the angle between −→n and −→er . This relationship shows that the

glide force on a dislocation is proportional to σ (that is rapidly decreasing with

r) and also that, for a given σ, gliding is promoted when m is maximized (that

it when α = β = 45◦ similarly to a uniaxial load).

By applying the previous formulas, the gliding force induced by the stress

field generated by the pore under pressure is finally found to be:

−→
F g =

3

2
pb

(
Rp

r

)3

m −→n ×
−→
ξ . (5)
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In what follows, we consider the face-centered cubic (FCC) dislocation slip-

systems that correspond to the crystallography of the CMSX-4 single crystal

under HIP conditions. To be more specific, let us assume straight edge dislo-

cations parallel to −→ez characterized by
−→
b = a0/2[110] (a0 is the FCC lattice

parameter) and −→n = [11̄1]/
√
3 in the (0;−→ex,−→ey) basis defined by −→ex =

−→
b /b and

−→ey = −→n . In this basis, the resolve shear stress corresponding to this slip-system

is:

τ(x, y) =
3

2
pR3

p

xy

(x2 + y2)
5
2

, (6)

such as plotted in Fig. 2.70
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Figure 2: Normalized resolved shear stress τ/p in the (0;−→ex,−→ey) basis defined by −→ex =
−→
b /b

and −→ey = −→n .

In this basis, −→n ×
−→
ξ = −−→ex and sign of the force is opposed to that of the

resolved shear stress (and ultimately the Schmid factor m). In Fig. 2, τ passes

from negative to positive values when the slip-plane is above the equatorial

plane of the pore (y > 0) indicating that there is a stable equilibrium position

for this type of dislocation, above the pore, along the (Oy) axis. On the contrary,75

resolved shear stress passes from positive to negative values under the equatorial

plane of the pore (y < 0) which indicates that there is an unstable equilibrium

position under the pore for this type of dislocation.
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This situation is highlighted in Fig. 3 where three distinct regions are iden-

tified. Region ¬ is related to y > Rp, where dislocations are dragged from their80

initial position to the (Oy) axis and where they adopt an equilibrium stacking

configuration. Region  is related to 0 < y < Rp, where dislocations reach the

pore and contribute to a transport of matter over the intersected pore surface.

Region ® is related to y < 0, where dislocations are repelled to infinity by the

pore-induced stress field.85
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x along [110]

1

2

3

Figure 3: Highlight on regions ¬,  and ® around the pore (in gray) related to the three

expected behaviors discussed in the text about dislocations (⊤) belonging to slip-system
−→
b =

a0/2[110] and
−→n = [11̄1]/

√
3 in the (0;−→ex,−→ey) basis defined by −→ex =

−→
b /b and −→ey = −→n .

Since the resolved shear stress decreases with the cube of r, it is not expected

to observe a significant effect on the movement of dislocations localized far

from the pore (typically, on the radial direction θ = 45◦ that maximizes the

Schmid factor, τ drops below p/1000 when r ≈ 10 Rp). Moreover, since the

resolved shear stress is proportional to the Schmid factor, it cancels out in the90

equatorial plane of the pore (y = 0) indicating that the movement of a straight

edge dislocation is not affected by the presence of a pore when its slip-plane

intersects the pore center. It is worth mentioning that the image force of the

dislocation (due to the pore surface) is not considered here and may invalidate
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this conclusion for parts of the line localized close to the pore.95

Now, if we consider a dislocation (⊥) presenting an extra half plane oriented

towards −→ey , a similar conclusion can be formulated but the stable position for

that type of dislocation is under the pore and not above it as in the other

case. Ultimately, this should lead us to a configuration shown in Fig. 4 in

which “plane to pore” straight edge dislocations (presenting an extra half plane100

oriented towards the pore) have a stable position under and above the pore along

the (Oy) axis while the “plane from pore” straight edge dislocations (presenting

an extra half plane oriented from the pore) are repelled.

y
 a

lo
n
g
 [
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]
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Figure 4: Final expected equilibrium arrangement of dislocations (⊤) and (⊥) around the

pore (in gray) by considering slip-system
−→
b = a0/2[110] and

−→n = [11̄1]/
√
3 in the (0;−→ex,−→ey)

basis defined by −→ex =
−→
b /b and −→ey = −→n .

In summary, if a pore already exists in a given system, “plane to pore”

straight edge dislocations gliding into different slip-planes should stack under105

and above the pore in a direction corresponding to the normal of their slip-

planes. Conversely, if dislocations already exist and adopt the arrangement

exposed in Fig. 4, they would form a tilt Low Angle Boundary (LAB) such

as described by a simple Read and Shockley model [16] which may favor the

formation of a pore at locations where LABs are joined and where the stable110
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configuration exposed in Fig. 4 turns out to be recovered. In both cases, this is

the stable arrangement of straight edge dislocations that must be expected in

the vicinity of a pore.

To go beyond this 2D-like analysis, 3D dislocation dynamics simulations are

needed. This will enable us to address the question of more realistic 3D dis-115

location configurations (curvature effects) and to include the effect of elastic

anisotropy, the elastic interactions between dislocations and the image force in-

duced by pore surface. To do this, a phase-field model of dislocations (PFMD)

that we have recently developed and which is exposed in detail in [12] is con-

sidered. This model is briefly recalled in Appendix A.120

2.2. Dislocation loops

The PFMD is now used to numerically investigate arrangements of disloca-

tion loops in the vicinity of a pore. We consider the situation represented in

Fig. 5 with slip-system
−→
b = a0/2[110] and

−→n = [11̄1]/
√
3 which corresponds

to s = 1 in Tab. A.2.125

In these simulations, a cubic system of (100d)3 FCC voxels is considered

with a pore of radius Rp = 15d at its center (spherical cavity in which the

elastic coefficients are fixed at zero). The physical distance between two cubic

numerical nodes is set at d = 672.53a0 = 247.63 nm leading to a pore radius of

Rp = 3.71 µm and a total cubic system size of 24.76 µm side 1. In a first simula-130

tion, a elastically isotropic material is considered that can easily be compared to

the system of subsection 2.1. In a second simulation, the elastically anisotropic

CMSX-4 under HIP conditions is investigated using the data exposed in Fig. 1

In the isotropic system, the bulk modulus K = 169.93 GPa is that of the

CMSX-4, while an effective shear modulus µ =
√
C ′ C44 = 32.32 GPa is con-135

sidered. This shear modulus corresponds to that of the Scattergood and Bacon

approximation [18], which allows for reproducing the effective FCC anisotropic

1The choice of these values is arbitrary but consistent with the experimental data. It is

due to technical and numerical operating conveniences.
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Figure 5: (a) Dislocations loops (in blue) around a pore (in gray) corresponding to the slip

system
−→
b = a0/2[110] and

−→n = [11̄1]/
√
3 (green axis). Tangent vectors

−→
ξ (in red) indicate

line orientation of the loops. (b) Side view of the loops in the (0;−→ex,−→ey) basis defined by

−→ex =
−→
b /b and −→ey = −→n like in subsection 2.1. Angles α and β involved in the Schmid factor

(see Eq. (4)) are represented with subscripts tp and fp for the “plane to pore” and “plane

from pore” edge components respectively. (See colors on-line)

behavior of dislocations in an effective elastically isotropic medium (see de-

tails in Appendix B.2 of [19]). In that respect, the {111} shear modulus

µ111 = (2C ′ + C44)/3 = 33.17 GPa (quantifying the shear stress response to140

a shear strain acting on a {111} plane) could also have been used as it is here

coincidentally very close to µ. Periodic boundary conditions (PBCs) are sys-

tematically considered.

The initial condition considered in both simulations is shown in Fig. 6a. This

corresponds to the annotated simplified scheme presented in Fig. 5. It consists145

of five dislocation loops per periodic cell with a radius of R = 45d = 11.14 µm

from slip-system s = 1, initially stacked and centered along the [11̄1] axis which

intersects the pore center.

The final configuration corresponding to the isotropic system is presented in

Fig. 6b. It is found that the “plane to pore” edge parts of a loop are dragged150

along the
−→
b direction [110] from their initial position to a location of their slip-
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CMSX-4 (HIP) param. a0 = 0.368 nm

Burgers vector b = a0/
√
2 = 0.260 nm

Pore radius Rp = 3.71 µm

Pressure (HIP) p = 103 MPa

Temperature (HIP) T = 1288◦C

Bulk modulus K = 164.93 GPa

Shear moduli C ′ = 15.05 GPa

C44 = 69.40 GPa

Zener anisotropy ratio A = C44/C
′ = 4.61

Table 1: CMSX-4 data under HIP conditions [17]

plane which is the closest to the pore surface. This results in the stacking of the

“plane to pore” edge components under and above the pore along the [11̄1] cubic

direction which corresponds to the normal −→n of their slip-plane. Conversely,

the “plane from pore” parts of the loops are observed to move away from the155

pore until a circular shape is finally adopted. When loops are far from the pore,

they are seen to collapse as well as the equatorial loop that vanishes in the final

stage.

Similar qualitative observations can be asserted in the CMSX-4 simulation

shown in Fig. 6c. What differs from the isotropic case is that the loops adopt160

a “peanut” shape much less symmetrical than in the isotropic case. Another

important difference is that the equatorial loop finally stays in the system and

forms two smaller loops with lines that intersect pore surface at its equator,

at two locations where purely edge and screw character are identified. This

generates two surface steps on the pore equator.165

In both simulations, the behavior of the “plane to pore” parts of the loop is

comparable to that of the straight edge dislocations studied in 2.1: under the

stress field induced by the pore in the system under pressure, a force is generated

on the dislocation lines that brings the “plane to pore” edge parts of the loops
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to a point of their slip-plane which the closest to the pore surface (the point170

passing through normal −→n 1 = [11̄1]/
√
3 intersecting the pore center). However,

the behavior of the “plane from pore” parts of the loops is different since they

are observed to be placed at an equilibrium finite distance of the pore instead

of being repelled far from it.

This difference of behavior is actually due to the line-tension of loops that175

tends a curved dislocation to become straight under its own stress field, or here

a dislocation loop to collapse. It is a curvature effect. On the contrary to

what happens with straight edge dislocations, the repelling force on the “plane

from pore” parts of the loop can now be compensated by the force induced

by line-tension. This results in equilibrium loop shapes that emerge from this180

competition.

The line tension can be estimated with the formula:

−→
F LT =

−µb2

4πD

2− ν

1− ν

(
ln

(
2D

r0

)
− 1

)
−→n ×

−→
ξ , (7)

that gives the corresponding force per unit length on a dislocation line element

[15, 20, 21]. In this case, the loop is assumed to be circular with diameter D, the

medium homogeneous and elastically isotropic with shear modulus µ = 32.32

GPa and Poisson ratio ν = 0.41 2, while r0 << D is the size of the dislocation185

core taken to be r0 = 2a0 = 0.736 nm (see Tab. 1).

For loop diameters D of size comparable to the pore radius Rp, the line-

tension related stress amplitude σLT =
∣∣∣−→F LT

∣∣∣ /b is about 4 MPa. In both

simulations, it is thus assumed that loops experience a more-or-less constant

average value of σLT ≈ 4 MPa. In that respect, the loops are not expected190

to collapse in regions where the pore-induced resolved shear stress τ is higher

than this finite value of line-tension related stress amplitude. The 4 MPa τ -

contours have been numerically extracted in Figs. 6d and 6e, for the isotropic

and anisotropic CMSX-4 respectively. To do this, the resolved shear stress τ

2ν is calculated with the bulk modulus K and the shear modulus µ according to ν =

(3K − 2µ)/(2(3K + µ)).
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given by Eq. (4) has been numerically calculated by considering the involved195

slip-system s = 1 with the elastic and geometrical parameters of the simulations.

It is worth mentioning that for the isotropic case where the stress tensor σ is

known (see subsection 2.1), Eq. (4) gives the exact analytical solution.

The comparison of Figs. 6b and 6c with Figs. 6d and 6e makes the correla-

tion between the dislocation configurations and the τ -contours very apparent.200

Both in the isotropic and anisotropic CMSX-4 systems, the line-tension does

not change the fact that the “plane to pore” parts of the loops are dragged

from their initial position to the point of their slip plane which is the closest

to the pore surface. In contrast, the remaining part of the loops tends to be

pushed forward towards positions where the resolved shear stress τ is not high205

enough to compensate the natural tendency of the loop to collapse on itself. As

a consequence, the loops adopt equilibrium shapes that strongly depend on the

material elastic properties. Notably, in the anisotropic CMSX-4 system exposed

in Figs. 6c and 6e, the fact that the equatorial loop does not entirely collapse

can be explained by the presence of regions where τ exceeds the line-tension210

related stress value in the equatorial (11̄1) slip-plane (see white arrow in Fig.

6e). As for the “peanut” shapes of the other loops, they can be explained by the

fact that the τ -contour turns out to be highly asymmetrical in the anisotropic

crystals.

Thus, the simulations reveal that the elastic anisotropy significantly modifies215

the arrangement of dislocations close to the pore equator. They also show that

the predominant effects come from the iso-anisotropic stress field generated by

the pore and this related to line-tension, and that the other effects coming from

the image forces and the extra stress field generated by the dislocations on each

other can be neglected. Furthermore, other simulations not shown here have220

been performed with only one dislocation loop gliding in various tested slip-

planes (including that intersecting pore equator) which have shown identical

final configurations.
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2.3. Influence of the parameters

Since the line-tension effects are correctly captured by the relationship given225

Eq. (7), this former is used to quantify the influence of the elastic, geometrical

and loading parameters on the equilibrium configuration of the loops.

In the (0;−→ex,−→ey) basis exposed in Fig. 5b, the equilibrium position of the

“plane from pore” edge part of a dislocation loop is the couple of points (x, y)

described by the parametric equation σLT (D = x) = τ(x, y) in which τ is the

resolved shear stress given by Eq. (6). Here, the “plane to pore” edge parts of

the dislocation loops are assumed to remain close to the (Oy) axis. In polar coor-

dinate, the equality σLT (D = x) = τ(x, y) becomes (r/Rp)
3L(x) = χ cos θ sin θ,

with the radial distance r, a function L(x) = [ln (2x/r0)− 1](2− ν)/[6π(1− ν)]

and the parameter:

χ =

(
p

µ

)(
Rp

b

)
. (8)

For positions 0.01Rp < x < 10Rp, we have L(x) = 1 ± 0.50 ≈ 1 such that the

equilibrium position is finally described by the polar equation:

r

Rp
≈
(
χ cos θ sin θ

)1/3
. (9)

By studying the variation of r with respect to θ, it is found that the maximal

equilibrium position of the “plane from pore” edge part of the loop xmax is for

θ = 26.6◦ and that the maximal vertical position of a dislocation slip-plane ymax

is for θ = 63.4◦ that both give:

xmax

Rp
=

ymax

Rp
= 0.66 χ1/3. (10)

As for the maximal radial position rmax, it is for θ = 45◦ that gives:

rmax

Rp
=
(χ
2

)1/3
. (11)

These formulas show that the range in which the dislocation loops are localized

with respect to Rp varies as χ1/3 which increases when the applied pressure

p and/or the pore radius Rp increase at the same order, or when the shear230

modulus µ decreases (Burgers vector b is considered constant for that type of

analysis).
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Equilibrium position, ymax, rmax and xmax given by Eqs. (9 – 11) are plotted

in Fig. 7 for different values of χ going from 10 to 160. The curve related to the

simulations is that for which χ = 45.41 ≈ 40. This figure graphically highlights235

the previous analytical results, showing that when a dislocation loop is placed

in slip-planes with y coordinates bigger than ymax, the “plane from pore” edge

part of the loop experiences a force δFLT > δFg that causes the loop to collapse.

On the contrary, closer to the pore, one gets δFLT < δFg and the collapse of the

loop is not permitted. In this case, the maximum loop diameter corresponds to240

xmax.

Ultimately, this leads to the configuration already observed in the isotropic

simulation and summarized in Fig. 8 where the “plane to pore” edge components

of the loops are stacked under and above the pore like in the case of straight

edge dislocations, but only in a close region where the stress field generated by245

the pore prevents a loop from collapsing. Also, loops that would be placed in

the equatorial plane of the pore must collapse because of the absence of a pore-

induced compensating force in this specific plane. Of course this analysis does

not apply to the anisotropic CMSX-4 case which has been observed to provide

slightly different results.250

The diagram exposed in Fig. 7 also allows us to identify a critical pore radius

Rcrit
p under which the resolved shear stress is not able to compensate the stress

related line-tension. This is when rmax/Rp = 1 for which Eq. (11) gives:

Rcrit
p ≈ 2

(
µ

p

)
b. (12)

With the current parameters, the arrangement of dislocation loops as it is shown

in Fig. 8 is not expected for small pores with a radius lower than Rcrit
p ≈ 160

nm. In general, Eq. (12) shows that Rcrit
p linearly decreases with the decrease

of shear modulus µ and the increase of applied pressure p.

In the next section, dislocation dynamics simulations are performed to go255

beyond these results that only involve one slip-system. Notably, one would want

to know if the dislocation reactions or some specific initial configurations can

change the final arrangement of dislocations such as identified thus far.
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3. Pore interacting with reacting dislocations and Low Angles Bound-

aries260

From this section, only the anisotropic CMSX-4 single crystal is investigated

as it is the material of interest. Of course, the obtained results may qualitatively

be particularized to the isotropic case.

3.1. Coplanar slip-systems

In this part, PFMD simulations are carried out with the aim of accessing265

the dislocation configuration of reacting coplanar dislocations. To do this, the

simulated system used in the previous section is reconsidered but with the initial

condition exposed in Fig. 9a. It consists of two loops of radius R = 30d =

7.43 µm andR = 45d = 11.14 µm from slip-systems s = 1 and s = 2 respectively,

introduced in the same (11̄1) slip-plane placed at 3.43 µm from the pore surface270

and centered along the [11̄1] cubic axis. In what follows, the loops are labeled

ss1 and ss2 according to the number of their slip-system found in Tab. A.2.

Intermediate and final dislocation configurations obtained in the anisotropic

CMSX-4 single crystal under external pressure p = 103 MPa are exposed in

Figs. 9b and 9c, respectively. In Fig. 9b, it is found that the “plane to pore”275

edge part of the loop ss1 is dragged from its initial position to the point of its

slip-plane which is the closest to the pore surface (the point belonging to the

[11̄1] axis intersecting pore center). At the same time, two other parts of this

loop react with loop ss2 to form dislocation lines of type ss3. In Fig. 9c, the

original lines ss1 and ss2 continue to merge under a coplanar junction making280

lines ss3 extend and finally meet in the final equilibrium configuration. In this

last state, the “plane from pore” components of loops ss2 and ss3 are both

repelled from the pore leading to an equilibrium shape for these loops that is

close to the “peanut” shape identified previously with one slip-system. Their

“plane to pore” parts are relocated to the [11̄1] axis intersecting the pore center285

leading to a final configuration where loops ss2 and ss3 are joined by a straight

edge dislocation ss1 at two triple nodes.
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The final loop configuration is emphasized in Fig. 10 where the triple node

formed and located on the [11̄1] axis intersecting the pore center coincides with

the edge character of all three slip-systems. At this node, the rule of disloca-290

tion reactions −
−→
b 3 =

−→
b 1 +

−→
b 2 is granted according to the line orientations

highlighted in the figure. Topologically speaking, this enables us to get a triple

node with emerging lines with edge character at the point which is the closest

to the pore surface and which belongs to their common slip-plane. Dislocation

lines emerging from this triple node are separated by an angle of 120◦. The295

other triple node differs from the first by presenting a line ss1 with a purely

edge character while dislocation lines ss2 and ss3 have a mixed character of 30◦

(angle between Burgers vector and the dislocation line).

To summarize, when two coplanar slip-systems are involved, it is shown

that the coplanar reactions do not change the fact that the “plane to pore” edge300

components of the loops are relocated to the point of their slip-plane which is the

closest to the pore surface, similar to what was shown with only one slip-system.

Here, it just turns out that a triple node with 120◦ emerging lines with edge

character is formed which is enabled by the topology of FCC dislocation reactions.

It is worth noticing that the current arrangement has been reproduced several305

times with other dissimilar initial conditions where two coplanar dislocations

from two distinct slip-systems were introduced. This demonstrates that the

configuration of Fig. 10 is really robust, confirming furthermore that what

happens is essentially driven by the stress field generated by the pore.

3.2. All slip-systems310

In this subsection, simulations involving all slip-systems are performed in

order to account for non coplanar dislocation reactions. In the initial condition,

the previous pore geometry and elastic parameters of CMSX-4 are reconsidered

with twenty-four circular dislocation loops of random radii and positions, arbi-

trary chosen from every slip-systems. Under an external pressure of p = 103315

MPa, the dislocations evolve and reach the final configuration exposed in Fig.

11a. In what follows, the loops are labeled with the number of their slip-system
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(ss1 to ss12) according to Tab. A.2.

At first sight, the tangled dislocation lines exposed in Fig.11a seems to be

quite complex. However, a closer look shows that the final dislocation config-320

uration can actually be rationalized with the mechanisms isolated beforehand:

(i) positioning of the “plane to pore” parts of dislocations at the point of their

slip-plane which is the closest to the pore surface and repelling of the “plane

from pore” parts to remote finite positions, (ii) adoption of a peanut shape for

the smaller loops, (iii) anchoring of loops at pore equator because of the strong325

elastic anisotropy and (iv) coplanar reactions forming triple nodes with 120◦

emerging lines with edge character, placed along the ⟨111⟩ direction intersect-

ing pore center. What is new is the formation of junctions and locks whose

marginal effects are commented further.

Point (i) is highlighted in Fig. 11b involving ss10 and ss11 where the “plane330

to pore” parts of the dislocations are found to be placed at the point of their slip-

plane which is the closest to the pore surface, while the “plane from pore” resting

parts are repelled to remote finite positions. Here, because of the PBCs, the

“plane from pore” parts of loop ss11 emerge on the other side of the simulated

box where they turn out to become attractive “plane to pore” parts, relative to335

the pore. This causes the loop to be pinned in the system at both its line parts

of edge character and so the final dislocation loop shape to be less affected by

line-tension effects. Similar configurations with loops ss6 could also have been

highlighted but have not been shown for the sake of brevity.

Point (ii) is illustrated in Fig. 11c involving ss2 and ss9. As opposed to340

the previous case, the loops are smaller causing their shapes to be closer to the

“peanut” shape already characterized in subsection 2.2, with the “plane to pore”

edge parts of the loops still placed at the points of their relative slip-plane which

is the closest to the pore surface. What is noticeable with these loops is that

they have reacted to form a glissile junction of type ss7 (pointed out with the345

letter [g]) which does not seem to affect their global final shape. Here, one has

to say that the glissile junctions are not able to glide in the actual formulation

of the PFMD. Hence, even though it seems reasonable to assert that it would

18



not significantly change the shapes and behaviors of dislocations as identified

until now, it is a fact that moving glissile junctions would have changed the final350

loop configuration such as it is observed in Fig. 11c.

Point (iii) is depicted in Fig. 11d involving loops ss8 and ss9. Small loops

localized near the pore equator are observed to intersect this former by forming

steps on the spherical surface. These specific configurations are directly related

to the elastic anisotropy of CMSX-4. Indeed, it was shown previously that in an355

isotropic system, the force induced by line-tension effects cannot be compensated

in the equatorial region by that related to the stress field generated by the pore.

It is therefore important to confirm this result with several slip-systems since

it is correlated to a displacive-induced transport of matter which seems to be

promoted in strongly anisotropic crystals as it is the case for CMSX-4 placed360

under HIP conditions.

Point (iv) is emphasized in Fig. 12 in which the Burgers vectors and line

orientations of loops ss7, ss8 and ss9 are explicitly indicated. Here, contrary to

what is shown in Fig. 10, two triple nodes with 120◦ emerging lines with edge

character are created. They are dragged to the position of their slip-plane which365

is the closest to the pore surface and which turns out to be common for both

nodes. Because forming a quadruple coplanar node is not energetically favor-

able, these nodes do not merge and finally form a junction whose length would

has to depend on the slip-plane/pore distance. Notably, it is expected that the

junction length decreases with the slip-plane/pore distance as the inclination of370

the pore for bringing the nodes at the same place becomes higher and higher.

In Figs. 11c and 11d, one can also notice the presence of Lomer and Hirth

locks pointed out by letters [L] and [H], respectively. These locks may somehow

provoke pinning. However, they do not significantly modify the global disloca-

tion arrangement which mainly remains controlled by the competition between375

the stress field of the pore and their line-tension. Note that colinear annihilation

reactions have not been observed in this simulation, like in two other simulations

not shown here that have been performed to confirm the reproducibility of the

typical dislocation arrangements.
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In the Supplementary Material, other simulations performed with alterna-380

tive initial conditions consisting in a network of coplanar gliding dislocations

have been performed to possibly provoke unexpected mechanisms. They have

lead to the formation of triple nodes with 120◦ emerging lines with edge char-

acter already described in Fig. 12. This tends to demonstrate that the final

dislocation configurations are quite insensitive to the initial conditions (random385

distribution, specific network...) confirming that the arrangement of dislocations

located close to a pore is mainly controlled by the stress field that it generates

in the crystal, in competition with line-tension effects.

In summary, the more complex dislocation arrangement resulting from the

presence of all slip-systems can be explained in terms of the simpler isolated390

mechanisms characterized previously. This demonstrates that the aforemen-

tioned mechanisms are quite insensitive to non coplanar dislocation reactions.

As a consequence, the “stacking mechanism” of dislocation edge parts would

have to be expected in the four ⟨111⟩ FCC octahedral directions aligned with the

pore center when all slip-systems are activated. This result might open the way395

to experimental confrontations.

3.3. Tilt Low Angle Boundaries

In single crystal superalloys such as the CMSX-4, pores are formed during

solidification or homogenization treatments and are mainly localized in inter-

dendritic zones. Furthermore, the low misalignments of dendrites lead to the400

formation of Low Angle Boundaries (LABs), which can be described by the

stacking of dislocations. Hence, regardless of the way pores are created, it is

expected that they stand inside (or at least close to) a LAB. In this part, such

a typical configuration is investigated using the PFMD simulations.

The previous simulating box is reconsidered with straight edge dislocations405

stacking in a way that they reproduce a tilt LAB as it would be in the simple

Read and Shockley model [16]. In the initial condition exposed in Fig. 13a,

the pore is centered in the simulation box and embedded into a LAB built with

edge dislocations from the first slip-system, with Burgers vector
−→
b1 and line
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orientation
−→
ξ = [1̄12], separated by a distance ℓ = 0.57 µm along [11̄1]3. This410

leads to a LAB misorientation of θLAB = b/ℓ = 0.026◦. Note that because of

the periodic boundary conditions (PBCs), two LABs are considered separating

a tilt and an anti-tilt crystal of 100d
√
2/4 = 8.76 µm thickness. In Fig. 13, the

first LAB is centered and appears to be in one piece while the other appears as

two pieces due to the PBCs. In the central LAB, with respect to the figure’s415

point of view, dislocations stacked above the pore present an extra half plane

oriented towards the pore while those stacked under present an extra half plane

oriented from the pore. This is the opposite in the lateral LAB.

According to subsection 2.1, one should expect that the bottom part of the

central LAB (made with “plane from pore” dislocations) be destabilized as op-420

posed to the upper part (made with “plane to pore” dislocations). This is what

is shown in Fig. 13. As time increases, more and more “plane from pore” dis-

locations placed under the LAB are repelled from their initial position. Some

of them adopt a partially circular shape while others merge with dislocations

of an opposed Burgers vector that belong to the anti-tilt lateral LAB. What is425

noticeable is that only the “plane from pore” dislocations localized just under

the pore are observed to be destabilized and repelled towards direction −
−→
b1 .

Further away, these dislocations remain static like the “plane to pore” disloca-

tions localized above the pore allowing to maintain the initial straight shape of

the LAB. Later in the simulation, the two LABs are observed to collapse which430

is not shown here as it is specific to our initial conditions and not a general

mechanism to be highlighted.

The reason why the “plane from pore” dislocations placed under the pore

3In our simulation, ℓ must be higher than d111 = d/
√
3 for this distance to be numerically

resolved (we chose ℓ = 4d111). It is thus constrained by the numerical grid spacing d. Since

this value has been chosen in order to simulate micro-pores with reasonable computational

resources, d = 247.63 nm and the maximal misorientation angle is θmax
LAB = b

√
3/d = 0.104◦.

To access higher values, one should select a smaller value for d but at the cost of higher

numerical ressources. That said, such low values are consistent with the low misorientations

involved in mosaic blocks as written in the introduction.
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are not destabilized when they are localized far from the pore is that they are

stabilized by the stress field generated by the LAB itself. In an isotropic elastic

medium, this effect can be evaluated in the (0;−→ex,−→ey) basis of Fig. 14 defined

with −→ex =
−→
b /b and −→ey = −→n , by comparing the resolved shear stress τ given Eq.

(6) with the always attractive stress field σLAB that a dislocation undergoes by

escaping from its LAB along −→ex. This stress is given by the infinite summation

of the shear stress of stacking edge dislocations4 subtracted from that of the

escaping dislocation:

σLAB(x) =
µb

2π (1− ν)

[
x
(π
ℓ

)2
csch2

(πx
ℓ

)
− 1

x

]
. (13)

Equating Eq. (6) and (13) around x = 0 (at first order of the Taylor series)

provides a critical distance yc beyond which the destabilizing stress field gener-

ated by the pore is not high enough to compensate the stabilizing stress field

of the LAB. This critical distance corresponds to the y−range in which “plan

from pore” dislocations constituting a LAB are not expected to persist. After

simplification, it is shown that:

.
yc
Rp

≈
(
p

µ

)1/4(
2b

Rp

)1/4
1

(θLAB)
1/2

, (14)

meaning notably that yc/Rp will increase with the applied pressure p and will

decrease with the pore radius Rp at the same order 1/4. It is worth noticing

that yc/Rp is more sensitive to the LAB geometry since it will decrease with435

the square root of the LAB misorientation θLAB .

By using the simulation data from Tab. 1 with θLAB = 0.026◦ and µ =

32.32 GPa, one gets yc/Rp ≈ 1.2 meaning that the LAB is destabilized under

the pore over a distance ranging with its radius. This is consistent with the

simulation results which shows a slightly more extended zone due to the fact440

that the idealized straight shape of the LAB considered in the calculation is not

preserved in the destabilized region. The elastically isotropic formalism may

also induce discrepancies.

4See Eq. (B.5) in [16] with φ = π/2, y = 0 and ℓ instead of Dy .
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Ultimately, this leads to the configuration exposed in Fig. 14 where three

distinct regions are identified. In region ¬ corresponding to y > 0, dislocations445

are stabilized on the (Oy) axis by the stress field generated by both pore and

LAB. In region  corresponding to 0 > y > yc, “plane from pore” dislocations

are destabilized by the stress field generated by the pore. As indicated in Eq.

(14), these dislocations are removed over a y−range that inversely depends on

the square root of θLAB . In region ® related to yc > y, the destabilization stress450

field induced by the pore is compensated by that of the LAB so that dislocations

remain static.

When the LAB does not intersect the pore but is placed in its vicinity, like it

is the case for the lateral anti-tilt LAB, the presence of the pore is expected to in-

duce a similar effect by repelling some “plane from pore” dislocations from their455

initial position. This phenomenon is observed in Fig. 13 for some “plane from

pore” dislocations which, in this lateral LAB, are localized above the equatorial

plane of the pore. Conversely, some “plane to pore” edge dislocations placed

under the equatorial plane of the pore are observed to be attracted under its

stress field and turn out to be relocated to the point of their slip plane which is460

the closest to the pore surface.

In this configuration, still in the isotropic elasticity formalism, it is possible

to quantify the lateral x−range over which the pore can capture some “ plane

to pore” dislocations from a distant LAB. One have to identify the critical

distance xc from which the maximized value of resolved shear stress τ given Eq.

(6) (corresponding to positions for which y = x) is equal to the maximum value

of σLAB given Eq. (13) found to be ≈ µb/[2πℓ(1 − ν)] at distance δx = 0.61ℓ

from the LAB. After simplification, one gets:

xc

Rp
≈
(
p

µ

)1/3
1

(θLAB)
1/3

, (15)

showing notably that xc/Rp will increase with the applied pressure p and will

decrease with the LABmisorientation θLAB at the same order 1/3. Furthermore,

this rescaled value xc/Rp will not depend on the pore radius Rp as opposed to

yc/Rp.465
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By using the simulation data from Tab. 1 with θLAB = 0.026◦ and µ =

32.32 GPa, one gets xc/Rp ≈ 1.8 meaning that a LAB can be destabilized if its

distance from the pore center is in the order of magnitude of the pore radius5.

This result is consistent with the simulation results. It is worth noticing that

xc/Rp inversely varies with the cubic root of θLAB as opposed to yc/Rp which470

exhibits a more sensitive inverse square root dependency.

In summary, tilt LABs containing a pore are destabilized in a region where

the LAB presents “plane from pore” edge dislocations, over a range which is in

the order of magnitude of the pore radius. When tilt LABs are placed close to

a pore, dislocations may be attracted and placed to the point of their slip plane475

which is the closest to the pore surface provided that the distance between the

LAB and pore is in the order of magnitude of the pore radius.

4. Discussion and conclusion

Pore collapse in Nickel base superalloys under HIP condition is the result

of complex processes involving voids, dislocations and LABs. The aim of this480

work is to contribute to a better understanding of the phenomena involved, in

particular dislocation glide.

The contribution of dislocation movement to the change in pore volume has

been the subject of several studies, mainly at the atomic scale, in the context

of the growth of nanometric pores under severe conditions such as laser shocks.485

Mechanisms such as dislocation loops nucleation at the void surface, glide of

complex emergent dislocation structures, formation of prismatic loops and cap-

ture of pre-existing dislocations have been proposed [22, 23, 24, 25, 26, 27, 28,

29, 30, 31, 32]. To finish this paper, we discuss the relevance of these mecha-

nisms for pore closure under HIP, in light of the results achieved in our work,490

which shows that micrometer scaled pores under hydrostatic pressure are able

5Actually, the closest distance without destabilization would have to be xc + δx but this

correction is not relevant, as ℓ ≪ Rp and the other approximations of the calculation might

also be pernicious.
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to attract dislocations (of which some of them may anchor to the pore surface),

with their ”plane to pore” edge parts that are likely to be stacked along the

four octahedral directions of the FCC single crystal.

First, for typical pressures used in HIP conditions, the nucleation of dislo-495

cations from a micrometer pore is a scenario which can be discarded. Indeed,

the growth of a dislocation loop nucleus requires that the pore-induced stress

amplitude overcomes that related to both the image and line-tension forces.

Theoretical estimations [22, 24] show that the required pressure for dislocation

loop nucleation decreases with the pore size but remains above several GPas500

which is at least an order of magnitude higher than the pressure involved dur-

ing HIP.

Furthermore, in a single crystal superalloy, pores are generally formed in

interdendritic regions where LABs are created, implying the existence of dis-

locations in the pore vicinity. Also, as it is shown in our simulations, when505

dislocations are initially placed away from the pore, they tend to be attracted

and relocated to its vicinity such that the dislocation density increases in its

neighborhood. The strong anisotropy of the CMSX-4 may also increases this

density around the pore equator since the dislocations cannot entirely be cap-

tured in this region (see section 2.2) . It is thus more probable that the pore510

closure is induced by the trapping of available preexisting dislocations than by

their nucleation at its surface. Note that the importance of pre-existing disloca-

tion has also been pointed out by several authors in the context of void growth

[33, 34, 30, 32].

We now analyze the pore closure mechanisms expected from the final dislo-515

cation configurations identified in our simulations showing that: (i) dislocations

may intersect the pore and be captured through its surface, (ii) they may stand

close to the pore with their ”plane to pore” edge parts aligned along the four

octahedral directions.

In case (i) for which dislocations intersect the pore, its closure may be in-520

duced by a direct transport of matter through its surface. The most probable

scenario would then involve prismatic loops resulting from cross-slip of the screw
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parts of some anchored loops [35, 31, 32, 30] as it is illustrated in Fig. 15. The

mechanism described here is very close to that of coherency loss of a precipitate

by prismatic punching [36] expect that it involves pre-existing dislocations in525

the pore vicinity. In the present context, the formation of prismatic loops is ex-

pected because of the existence of cross-slip forces close to the pore surface [37]

and of the very high temperature able to thermally activate this mechanism.

Note that the strong elastic anisotropy on the CMSX-4 superalloy at high

homologous temperature impacts the stability of the dislocation loops anchored530

at the pore surface (see section 2.2). Therefore, including the elastic anisotropy

may be of importance for a quantitative estimation of the consequences of pris-

matic loop formation on pore closure.

In case (i) for which dislocations intersect the pore, other mechanisms may

be of importance. Indeed, the multiple slips of a large number of dislocations535

is also expected to contribute to pore collapse, whether through the formation

of specific interacting dislocation configurations whose topology may permit for

some crystallographic planes to be extracted from the pore [27] or through local

inward surface atomic rearrangements identified in atomistic simulations under

such multiple slips [38, 39, 40]. Of course, testing the relevance of such situations540

for micrometer pores would require to perform additional simulations using

mesoscopic approaches including both free surfaces, dislocation glide and cross-

slip. This could be reached by discrete dislocation dynamics simulations using

local rules for the short-range interactions between dislocations and surfaces

[31, 32] or by extending the elastically non-linear model proposed in [36] to545

the FCC symmetry. Note finally that surface diffusion is also an important

ingredient to explain the spherical shape during pore shrinkage, as plastic mass

transport is expected to be anisotropic.

In case (ii) for which dislocation glide planes do not intersect the pore, our

simulations show that gliding dislocations reach an equilibrium position in the550

pore vicinity favoring edge type orientations. From these configurations, pore

shrinkage may be induced by vacancy diffusion where climbing dislocations act

as source/sink of vacancies.
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In nickel base single crystal superalloys under HIP, pores are removed in

a matter of hours at a high homologous temperature, implying that scenarios555

involving diffusive mechanisms are realistic.

Indeed, the vacancy diffusion between dislocations acting as vacancy sources/sinks

and a spherical pore has been studied using a simplified geometry of LAB [10].

In this paper, it is shown that, provided that the pore size distribution is taken

into account, the time evolution of the volume fraction of pores predicted by560

the model is in reasonable agreement with available experiments.

However, our study of dislocations and LAB in the pore vicinity during HIP

suggests that the rapid glide of dislocations leads to dislocation configurations

much more complex than the perfect immobile LAB considered in [10]. The

presence of these dislocation configurations close to the pore may significantly565

modify the way vacancy diffusion-induced pore closure occurs by constituting a

non trivial distribution of sources and sinks. Because dislocation glide is much

faster than climb, this point could be analyzed using a phase field model of

dislocation climb [41] starting from the final stacking arrangements observed in

our simulations.570

A scenario combining dislocation glide and climb is illustrated in Fig. 16.

Here, it is worth mentioning that the final stages represented in this figure are

more speculative and would deserve to be investigated more rigorously by the

consideration of numerical modeling that explicitly couples vacancy diffusion,

dislocation climb and pore evolution. Such work is currently under consideration575

through the development of a phase field approach drawn on [41].

In summary, both theoretical and numerical investigations have been car-

ried out to analyze the dislocation glide and resulting arrangements around a

micrometer-sized spherical pore in the CMSX-4 superalloy under HIP condi-

tions. We have used a phase field model of dislocation glide in a FCC crystal580

that is able to include surfaces, and we have performed 3D simulations to ana-

lyze the formation of dislocation arrangements in the vicinity of the pore.

For dislocations whose glide plane does not intersect the pore, it is shown

that edge parts of dislocation lines that present an extra half atomic plane
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oriented towards the pore are stacked in the direction which is perpendicular585

to their slip-planes. This results in an increase of the dislocation density along

the four octahedral directions of the FCC single crystal which intersect the pore

center. This main result is preserved even when coplanar dislocation reactions

are involved since a triple node with 120◦ emerging lines with edge character

can actually be created.590

For dislocations whose glide plane intersects the pore, we have shown the im-

portance of the strong elastic anisotropy on the CMSX-4 superalloy at high ho-

mologous temperature on the dislocation behavior. More precisely, the anisotropy

is at the origin of the formation of stable dislocations loop emerging from the

pore. These stable loops may favor the contribution of pore closure induced by595

the formation of prismatic loops resulting from cross-slip events of the screw

parts of the loop.

Then, the arrangement of dislocations constituting a tilt LAB and localized

in the vicinity of a pore is also characterized. Finally, scenarios of dislocation

induced pore closure are proposed based on the obtained results and the avail-600

able literature. Further investigations are required to clarify the importance

of cross-slip and dislocation climb using the maturing of continuous or discrete

mesoscopic models of dislocation dynamics. Dislocation density based models

may also constitute relevant alternatives [43].

An interesting perspective of this work may be envisaged from an exper-605

imental point of view. By considering a model HIPed FCC γ-alloy (without

γ′ precipitates perturbating any characterization), one could envisage to real-

ize post-mortem FIB specimens with selected crystallographic orientations and

observe dislocations arrangement in the vicinity of a pore; we could then be

able to verify whether a higher density of dislocation is identified along the four610

octahedral directions, as found in our simulations, and also provide new insights

on the competitive mechanisms involved during HIP and subject to interplay

with gliding dislocations.
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Appendix A. Phase-field model of dislocations

In the PFMD, the material is described with the help of continuous fields

defined at each position −→r that reflects both its constitutive elastic behavior

and the presence of dislocations. The relevant fields are strains εij for the

elastic behavior and phase-fields ηs for dislocations. In practice, ηs reflects the

amplitude of glide for each of the s = 1 to 12 FCC slip-systems related to

each of the dislocation-induced sheared phases. These fields are involved in the

definition of a free energy F that can be written as an integral over the volume

V :

F =

∫
V

fel ({εij}, {ηs}) + fcryst ({ηs}) + fgrad ({ηs}) dV. (A.1)

In this formula, fel is the elastic energy density which is written in the small

deformation framework:

fel =
1

2
Cijkl

(
εij − ε0ij

) (
εkl − ε0kl

)
, (A.2)

where Cijkl are the elastic coefficients whose value can vary in space. In a

cubic crystal, use is made of the Voigt notation to define the three independent

elastic coefficients C11, C12 and C44. The bulk modulus K and shear modulus

C ′ are alternative elastic coefficients defined by K = (C11 + 2C12)/3 and C ′ =

(C11 − C12)/2. εij is the total strain:

εij =
1

2

(
∂ui

∂Xj
+

∂uj

∂Xi

)
, (A.3)
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and ui are the displacement component (Xi are the coordinates of a point taken

in the undeformed reference state). ε0ij is the eigenstrain related to dislocations

given by:

ε0ij =
12∑
s=1

bi/s nj/s + bj/s ni/s

2h
g (ηs) , (A.4)

with an interpolating function taken from [44]:

g (ηs) = ηs −
sin(2πηs)

2π
, (A.5)

where, for each slip-system s, bi is a Burgers vector component, ni is a compo-

nent of the normal unit vector of the corresponding slip-plane and h the {111}

FCC interlayer spacing. For a FCC material, we consider the 12 octahedral

slip-systems 1/2⟨110⟩{111} with the nomenclature of Tab. A.2.625

−→n s
−→
b s

−→n 1,2,3 = [11̄1]/
√
3

−→
b 1 = a0/2[110]

−→
b 2 = a0/2[1̄01]

−→
b 3 = a0/2[01̄1̄]

−→n 4,5,6 = [1̄11]/
√
3

−→
b 4 = a0/2[100]

−→
b 5 = a0/2[1̄1̄0]

−→
b 6 = a0/2[011̄]

−→n 7,8,9 = [111]/
√
3

−→
b 7 = a0/2[11̄0]

−→
b 8 = a0/2[1̄01]

−→
b 9 = a0/2[011̄]

−→n 10,11,12 = [111̄]/
√
3

−→
b 10 = a0/2[101]

−→
b 11 = a0/2[1̄10]

−→
b 12 = a0/2[01̄1̄]

Table A.2: Normal unit vectors −→n s and Burgers vectors
−→
b s related to the 12 octahedral

slip-systems 1/2⟨110⟩{111}. a0 is the FCC lattice parameter.

In Eq. (A.1), fcryst is the Landau bulk energy density related to the

dislocation-induced sheared phases. In the present context, this term is re-

lated to the symmetry of the {111} generalized stacking fault energy in relation

to the FCC crystallography. For reasons explained in [45], this contribution is
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taken to be:630

fcryst = 2A {4− cos [π (η1 − η2)] cos [π (η2 − η3)]

cos [π (η3 − η1)]

− cos [π (η4 − η5)] cos [π (η5 − η6)]

cos [π (η6 − η4)]

− cos [π (η7 − η8)] cos [π (η8 − η9)]

cos [π (η9 − η7)]

− cos [π (η10 − η11)] cos [π (η11 − η12)]

cos [π (η12 − η10)]} , (A.6)

where A is a parameter of the model.

The last term of Eq. (A.1) is the Ginzburg penalty core energy density taken

from [45]:

fgrad =
B

2

12∑
s,s′=1

−→
b s ·

−→
b s′

b2

(−→n s ×
−→
∇ηs

)
·
(−→n s′ ×

−→
∇ηs′

)
, (A.7)

where B is another parameter of the model.

It is shown in [12] that A and B are related to the core energy (per unit

length) Wcore and the core size ξ of a dislocation:

Wcore =
4d

π
√
3

√
AB and ξ =

1

2π

√
B

A
, (A.8)

where d is the numerical grid spacing. The first quantity is chosen with the

physical constraint: Wcore ≈ 0.1µb2 (µ is the shear modulus and b the Burgers

vector’s norm). The second is chosen with the numerical constraint: ξ ≈ 0.5d.635

Dislocation mobility is controlled by a relaxation equation on phase-fields ηs

usually called the Allen-Cahn equation:

∂ηs
∂t

= −L
δF
δηs

, (A.9)

where L is a mobility coefficient. Elastic fields are dissipatively relaxed at each

time step of the dislocation mobility so their movement is assumed to be quasi-

static.
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It is shown in [12] that L is related to the frictional coefficient Bfr involved

in the classical relationship Bfrv = bτ linking the dislocation velocity v to the

resolved shear stress τ [19]:

L =
2h

Bfrπ2ξ
. (A.10)

In pure metals, this linear relationship is experimentally related to phonon drag

mechanisms and Bfr is nothing but the phonon drag coefficient. This former

relationship enables us to define the characteristic time-scale of our simulations:

t0 =
π2

√
3

4

(
d

a0

)2
Bfr

K
, (A.11)

where K is the bulk modulus. In [12], we used experimental data in a Re

containing Ni-base superalloy at T = 350 ◦C to estimate Bfr ≈ 104 Pa.s. By640

considering d/a0 = 648 and K = 165 GPa, one gets t0 ≈ 0.1 s. That said, there

is no similar experimental data on the dislocation velocities in CMSX-4 at high

homologous temperature that could be used to estimate a value of Bfr relevant

in HIP conditions.

Numerically, the fields are discretized on a FCC finite difference grid also645

exposed in [12] that allows us to consider a heterogeneous material in which a

circular cavity of zero stiffness can be sharply introduced without generating

any numerical artifacts. As the mechanical equilibrium is reached, the stress

field generated by a pore under external pressure and that originated from

dislocations are fully computed whether the material is elastically isotropic or650

anisotropic. Hence, the coupling of fields within the variational formalism natu-

rally accounts for all the elastic interactions between the dislocations themselves

and with the free surface of a pore.
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a) Initial condition

b) Isotropic c) Anisotropic CMSX-4

d) Isotropic (4 MPa τ-contour) e) Anisotropic CMSX-4  (4 MPa τ-contour) 
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Figure 6: Dislocation loops from the slip-system s = 1, initially introduced in five slip-planes

of type (11̄1). The loop introduced in the equatorial slip-plane is in red while the other are

in blue (a). Final configuration of the loops in the model isotropic crystal (b) and in the

anisotropic CMSX-4 (c). These configurations are placed in comparison to the 4 MPa τ -

contours related to the isotropic (d) and anisotropic CMSX-4 crystals (e), respectively. The

τ -contours enclose a green region where τ > 4 MPa. The external region is related to τ < 4

MPa. The translucent red plane is the (11̄1) plane intersecting pore equator. (See colors

on-line)
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Figure 7: Equilibrium position, ymax, rmax and xmax given by Eqs. (9 – 11) as a function of

χ in the positive quarter of (0;−→ex,−→ey) basis exposed in Fig. 5b with the pore (in gray). The

case χ = 45.41 ≈ 40 related to the simulations is in red. (See colors on-line)
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Figure 8: Final expected equilibrium arrangement of dislocation loops around the pore (in

gray) by considering slip-system
−→
b = a0/2[110] and

−→n = [11̄1]/
√
3 in the (0;−→ex,−→ey) basis

defined by −→ex =
−→
b /b and −→ey = −→n .
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a) Initial configuration

c) Final configuration (t = 12 900 t0) 
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Figure 9: Dislocation loops from the slip-system s = 1 (in red) and s = 2 (in green), initially

introduced in a plane (11̄1) that does not intersect the pore (a). Intermediate configuration

in the elastically anisotropic CMSX-4 showing the formation of dislocation segments from

slip-system s = 3 (in blue) that result from the coplanar reaction of the first two (b). Final

configuration of the loops (c). (See colors on-line)
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Figure 10: Final configuration of two coplanar dislocation loops originated from two different

slip-systems in the anisotropic CMSX-4. (See colors on-line)
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Figure 11: (a) Final configuration resulting from the evolution of twenty-four initial circular

dislocation loops of random radii and positions, arbitrary chosen from every slip-systems.

Dislocations from slip-systems 1 to 3 are colorized in a hue of red, those from 4 to 6 in a hue

of green, those from 7 to 9 in a hue of blue and those from 10 to 12 in a hue of yellow. Glissile

junctions [g], Lomer [L] and Hirth locks [H] are directly indicated with the corresponding

letters. Figs. (b), (c) and (d) emphasize specific loops commented in the text at points (i),

(ii) and (iii) respectively. (See colors on-line)
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Figure 12: Final configuration of loops from slip-systems 7 to 9 such as they can be found in

Fig. 11a and resulting from coplanar dislocation reactions. Loops are in hue of blue while the

glissile junction [g] resulting from loops ss7 and ss2 (not shown in the figure) is in gray. (See

colors on-line)
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Figure 13: Pore (in gray) embedded in a tilt LAB made with straight edge dislocations (in

blue) from the first slip-system (a). Destabilization of the LAB under the stress field generated

by the pore as time t increases (b – f). The time is given in unit t0 given Eq. (A.11). (See

colors on-line)
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Figure 14: Final expected configuration of a pore interacting with a tilt LAB built with

stacking edge dislocations belonging to slip-system
−→
b 1 = a0/2[110] and

−→n = [11̄1]/
√
3 in the

(0;−→ex,−→ey) basis defined by −→ex =
−→
b /b and −→ey = −→n . Region ¬ corresponds to the region where

dislocations are stabilized by the the stress field generated by both pore and LAB. In region

, dislocations are destabilized by the stress field generated by the pore. In region ®, the

destabilization stress field induced by the pore is compensated by that of the LAB.
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Figure 15: Scenario of pore closure involving cross-slip generated prismatic loop. The starting

point would be a preexisting shear dislocation loop that would anchor to the pore. Screw

parts of the shear loop would cross-slip on the pore surface. This would allow a prismatic

loop to be formed, placing the dislocation segments further away from the surface where the

image force would notably be weaker. It would then allow for the “plane from pore” edge

part of the loop to be pushed forward and a prismatic plane to be introduced, whether by a

line-tension induced detaching process or another cross-slip mechanism.
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Figure 16: Glide – Climb scenario inducing pore closure [42]. The starting point would be

a preexisting shear dislocation whose ”plane to pore” edge part would be placed just above

the pore surface. This “plane to pore” edge part would then climb through the absorption

of vacancies in a (110) crystallographic plane (in blue), allowing the removal of one atomic

plane. Under the equatorial plane of the pore, we can speculate that the dislocation line would

continue its movement. By becoming a “plane from pore” edge repulsive part, it may finally

be pushed forward by glide. (See colors on-line)
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