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HAL is a

Introduction

Let Ω be a bounded domain of R N , N ≥ 1, with smooth boundary ∂Ω and let R and µ be two positive real numbers. In a recent paper [START_REF]Bounded weak solutions to the thin film Muskat problem via an infinite family of Liapunov functionals[END_REF], we noticed that there is an infinite family (E n ) n≥1 of Liapunov functionals associated with the thin film Muskat system

∂ t f = div (f ∇ [(1 + R)f + Rg]) in (0, ∞) × Ω , ∂ t g = µR div (g∇ [f + g]) in (0, ∞) × Ω ,
supplemented with homogeneous Neumann boundary conditions and initial conditions, with the following properties: for all n ≥ 2, there are 0 < c n < C n such that

c n f + g n n ≤ E n (f, g) ≤ C n f + g n n , (f, g) ∈ L n,+ (Ω, R 2 ) ,
and there are 0

< c ∞ < C ∞ such that c ∞ f + g ∞ ≤ lim inf n→∞ E n (f, g) 1/n ≤ lim sup n→∞ E n (f, g) 1/n ≤ C ∞ f + g ∞ for (f, g) ∈ L ∞,+ (Ω, R 2 )
, where L p,+ (Ω, R m ) denotes the positive cone of L p (Ω, R m ) for m ≥ 1 and p ∈ [1, ∞]. On the one hand, the thin film Muskat system being of cross-diffusion type (i.e., featuring a diffusion matrix with no zero entry), the availability of such a family of Liapunov functionals is rather seldom within this class of systems and paves the way towards the construction of bounded weak solutions, a result that we were only able to show in one space dimension N = 1 in [START_REF]Bounded weak solutions to the thin film Muskat problem via an infinite family of Liapunov functionals[END_REF]. On the other hand, it is tempting to figure out whether this property is peculiar to the thin film Muskat system or extends to the generalization thereof

∂ t f = div (f ∇ [af + bg]) in (0, ∞) × Ω , (1.1a) 
∂ t g = div (g∇ [cf + dg]) in (0, ∞) × Ω , (1.1b) 
with (a, b, c, d) ∈ (0, ∞) 4 , supplemented with homogeneous Neumann boundary conditions

∇f • n = ∇g • n = 0 on (0, ∞) × ∂Ω , (1.1c) 
and non-negative initial conditions (f, g)(0) = (f in , g in ) in Ω .

(1.1d)

Obviously, the thin film Muskat system is a particular case of (1.1a)-(1.1b), corresponding to the choice (a, b, c, d) = (1 + R, R, µR, µR).

The main result of this paper is to show that, for any quadruple (a, b, c, d) satisfying (a, b, c, d) ∈ (0, ∞) 4 and ad > bc ,

we can associate a similar family of Liapunov functionals with (1.1) and prove the global existence of bounded non-negative weak solutions to (1.1), whatever the dimension N ≥ 1. More precisely, given a quadruple (a, b, c, d) satisfying (1.2), we define a sequence (Φ n ) n≥1 of functions as follows.

Setting L(r) := r ln r -r + 1 ≥ 0, r ≥ 0, we first define the function Φ 1 by the relation

Φ 1 (X) := L(X 1 ) + b 2 ad L(X 2 ) , X = (X 1 , X 2 ) ∈ [0, ∞) 2 . (1.3)
Next, for each integer n ≥ 2, let Φ n be the homogeneous polynomial of degree n defined by

Φ n (X) := n j=0 a j,n X j 1 X n-j 2 , X = (X 1 , X 2 ) ∈ R 2 , (1.4) 
with a 0,n := 1 and a j,n := n j j-1 k=0 ak + c(n -k -1) bk + d(n -k -1) > 0 , 1 ≤ j ≤ n .

(1.5)

We then define, for n ≥ 1, the functional

E n (u) := Ω Φ n (u(x)) dx, u = (f, g) ∈ L max{2,n},+ (Ω, R 2 ) . (1.6) 
We finally observe that (1.2) guarantees that

Θ 1 := b(ad + bc) 2ad > 0 and Θ 2 := (ad -bc)(3ad + bc) 4a 2 d 2 > 0 . (1.7) 
With this notation, the main result of this paper is the following:

Theorem 1.1. Assume (1.2) and let u in := (f in , g in ) ∈ L ∞,+ (Ω, R 2 ) be given. Then, there is a bounded weak solution u = (f, g) to (1.1) such that:

(i) for each T > 0, (f, g) ∈ L ∞,+ ((0, T ) × Ω, R 2 ) ∩ L 2 ((0, T ), H 1 (Ω, R 2 )) ∩ W 1 2 ((0, T ), H 1 (Ω, R 2 ) ′ ) ; (1.8) (ii) for all ϕ ∈ H 1 (Ω) and t ≥ 0, Ω (f (t, x) -f in (x))ϕ(x) dx + t 0 Ω f (s, x)∇[af + bg](s, x) • ∇ϕ(x) dxds = 0 (1.9a)
and

Ω (g(t, x) -g in (x))ϕ(x) dx + t 0 Ω g(s, x)∇[cf + dg](s, x) • ∇ϕ(x) dxds = 0 ; (1.9b) (iii) for all t ≥ 0, E 1 (u(t)) + 1 a t 0 Ω |∇(af + Θ 1 g)| 2 + Θ 2 |∇g| 2 (s, x) dxds ≤ E 1 (u in ) , (1.10) 
where the positive constants Θ 1 and Θ 2 are defined in (1.7); (iv) for all n ≥ 2 and all t ≥ 0,

E n (u(t)) ≤ E n (u in ) ; (1.11) (v) for t ≥ 0, f (t) + g(t) ∞ ≤ d b max{a, b} min{c, d} f in + g in ∞ .
(1.12)

Let us first mention that Theorem 1.1 improves [START_REF]Bounded weak solutions to the thin film Muskat problem via an infinite family of Liapunov functionals[END_REF] in two directions: on the one hand, it shows that the structural properties (1.10), (1.11), and (1.12), uncovered there for the thin film Muskat system, are also available for the whole class (1.1). On the other hand, it provides the existence of non-negative bounded weak solutions to (1.1) in all space dimensions, a result which was only established in one space dimension in [START_REF]Bounded weak solutions to the thin film Muskat problem via an infinite family of Liapunov functionals[END_REF]. Global weak solutions to the thin film Muskat system are also constructed in [1-3, 6, 9, 10], but they need not be bounded, except in [START_REF] Bruell | On the thin film Muskat and the thin film Stokes equations[END_REF]. The latter however requires some smallness condition on the initial data, in contrast to Theorem 1.1. Finally, the local well-posedness of the thin film Muskat system in the classical sense is investigated in [START_REF] Escher | Modelling and analysis of the Muskat problem for thin fluid layers[END_REF].

We next outline the main steps of the proof of Theorem 1.1. As in [START_REF]Bounded weak solutions to the thin film Muskat problem via an infinite family of Liapunov functionals[END_REF], the starting point is to notice that, introducing the mobility matrix

M (X) = (m jk (X)) 1≤j,k≤2 := aX 1 bX 1 cX 2 dX 2 , X = (X 1 , X 2 ) ∈ R 2 , (1.13) 
and u := (f, g), an alternative formulation of the system (1.1a)-(1.1b) is 

∂ t u = N i=1 ∂ i (M (u)∂ i u) in (0, ∞) × Ω . (1.14) Then, given Φ ∈ C 2 (R
d dt Ω Φ(u) dx + N i=1 Ω D 2 Φ(u)M (u)∂ i u, ∂ i u dx = 0 , (1.15) 
where •, • stands for the scalar product on R 2 . As a straightforward consequence of (1.15) we note that Ω Φ(u) dx is a Liapunov functional for (1.14) when the matrix D 2 Φ(u)M (u) is positive semidefinite. We shall then show in Appendix A that, for all n ≥ 2, it is possible to construct an homogeneous polynomial

Φ n ∈ R[X 1 , X 2 ] of degree n which is convex on [0, ∞) 2 and such that the matrix D 2 Φ n (X)M (X) is positive semidefinite for all X ∈ [0, ∞) 2 .
A closed form formula is actually available for the polynomial Φ n , see (1.4) and (1.5).

We next construct weak solutions to (1.14) by a compactness method. It is here of utmost importance to construct approximations which do not alter the inequalities (1.15) for Φ = Φ n and n ≥ 1. As a first step, it is well-known that implicit time discrete schemes are well-suited in that direction. Thus, given τ > 0, we shall first prove the existence of a sequence (u τ l ) l≥0 which satisfies u τ 0 = u in := (f in , g in ) and, for l ≥ 0,

u τ l+1 -τ N i=1 ∂ i M (u τ l+1 )∂ i u τ l+1 = u τ l in Ω , (1.16) 
supplemented with homogeneous Neumann boundary conditions. Furthermore, the sequence (u τ l ) l≥0 has the property that, for n ≥ 1 and l ≥ 0, [START_REF] Hammou Oulhaj | Large time behavior of a two phase extension of the porous medium equation[END_REF][START_REF] Ph | A gradient flow approach to a thin film approximation of the Muskat problem[END_REF] for the thin film Muskat system. In particular, there is a natural variational structure associated with (1.1) which is suitable to construct weak solutions. However, the connection between this variational structure and the whole family (E n ) n≥2 of Liapunov functionals is yet unclear.

E n (u τ l+1 ) + τ N i=1 Ω D 2 Φ n (u τ l+1 )M (u τ l+1 )∂ i u τ l+1 , ∂ i u τ l+1 dx ≤ E n (u τ l ) , (1 
Notation. For p ∈ [1, ∞], we denote the L p -norm in L p (Ω) by • p and set

L p (Ω, R 2 ) := L p (Ω) × L p (Ω) , H 1 (Ω, R 2 ) := H 1 (Ω) × H 1 (Ω) .
The positive cone of a Banach lattice E is denoted by E + . The space of 2 × 2 real-valued matrices is denoted by M 2 (R), while Sym 2 (R) is the subset of M 2 (R) consisting of symmetric matrices and SPD 2 (R) is the set of symmetric and positive definite matrices in M 2 (R). Finally, we denote the positive part of a real number r ∈ R by r + := max{r, 0} and •, • is the scalar product on R 2 .

A time discrete scheme

In order to construct bounded non-negative global weak solutions to the evolution problem (1.1), we employ a compactness approach, paying special attention to preserve as much as possible the structural properties (1.10), (1.11), and (1.12) in the design of the approximation. It turns out that implicit time discrete schemes are well-suited for that purpose and we thus establish in this section the existence of solutions to the implicit time discrete scheme associated with (1.1), see (2.1a)-(2.1b).

Proposition 2.1. Given τ > 0 and U = (F, G) ∈ L ∞,+ (Ω, R 2 ), there is a solution u = (f, g) ∈ H 1 (Ω, R 2 ) ∩ L ∞,+ (Ω, R 2 ) to Ω f ϕ + τ f ∇ [af + bg] • ∇ϕ dx = Ω F ϕ dx , ϕ ∈ H 1 (Ω) , (2.1a 
)

Ω gψ + τ g∇ [cf + dg] • ∇ψ dx = Ω Gψ dx , ψ ∈ H 1 (Ω) , (2.1b 
)

which also satisfies E n (u) ≤ E n (U ) for n ≥ 2 (2.2) and E 1 (u) + τ a Ω |∇(af + Θ 1 g)| 2 + Θ 2 |∇g| 2 dx ≤ E 1 (U ) , (2.3) 
recalling that, see (1.7),

Θ 1 = b(ad + bc) 2ad > 0 and Θ 2 = (ad -bc)(3ad + bc) 4a 2 d 2 > 0 .
As already mentioned, several steps are involved in the proof of Proposition 2.1. We begin with the existence of bounded weak solutions to an auxiliary elliptic system which shares the same structure with (2.1), but has bounded coefficients instead of linearly growing ones, see Section 2.1. As a next step, we introduce in Section 2.2 the approximation to (2.1) which is derived from (2.1) by replacing the matrix M (•) defined in (1.13) by a suitable invertible and bounded matrix M ρ ε (•) with (ε, ρ) ∈ (0, 1) × (1, ∞). We emphasize here once more that the matrix M ρ ε (•) is designed in such a way that the inequalities (2.2) and (2.3) are not significantly altered. Passing to the limit, first as ρ → ∞, and then as ε → 0, is then performed in Section 2.3 and Section 2.4, respectively, this last step completing the proof of Proposition 2.1.

Throughout this section, C and (C l ) l≥0 denote various positive constants depending only on N , Ω, and (a, b, c, d). Dependence upon additional parameters will be indicated explicitly.

2.1. An auxiliary elliptic system. Let A = (a jk ) 1≤j,k≤2 and B = (b jk ) 1≤j,k≤2 be chosen such that A ∈ SPD 2 (R), B ∈ BC(R 2 , M 2 (R)), and AB(X) ∈ SPD 2 (R) for all X ∈ R 2 . Moreover, we assume that there is

δ 1 > 0 such that AB(X)ξ, ξ ≥ δ 1 |ξ| 2 , (X, ξ) ∈ R 2 × R 2 . (2.4) Since A ∈ SPD 2 (R), there is also δ 2 > 0 such that Aξ, ξ ≥ δ 2 |ξ| 2 , ξ ∈ R 2 . (2.5) Lemma 2.2. Given τ > 0 and U = (U 1 , U 2 ) ∈ L 2 (Ω, R 2 ), there is u = (u 1 , u 2 ) ∈ H 1 (Ω, R 2 ) which solves the nonlinear equation Ω u, v + τ N i=1 B(u)∂ i u, ∂ i v dx = Ω U, v dx , v ∈ H 1 (Ω, R 2 ) . ( 2 

.6)

Additionally:

(i) If b 11 (X) ≥ b 12 (X) = 0 , X ∈ (-∞, 0) × R , b 22 (X) ≥ b 21 (X) = 0 , X ∈ R × (-∞, 0) , (2.7 
)

and if U (x) ∈ [0, ∞) 2 for a.a. x ∈ Ω, then u(x) ∈ [0, ∞) 2 for a.a. x ∈ Ω. (ii) If there exists ρ > 0 such that b 11 (X) ≥ b 12 (X) = 0 , X ∈ (ρ, ∞) × R , b 22 (X) ≥ b 21 (X) = 0 , X ∈ R × (ρ, ∞) , (2.8 
)

and if max{U 1 , U 2 } ≤ ρ a.e. in Ω, then max{u 1 , u 2 } ≤ ρ a.e. in Ω.
Proof. The proof of Lemma 2.2 is rather classical and it is actually similar to that of [START_REF]Bounded weak solutions to the thin film Muskat problem via an infinite family of Liapunov functionals[END_REF]Lemma B.1]. We nevertheless sketch it below for the sake of completeness.

Step 1. To set up a fixed point scheme, we consider u ∈ L 2 (Ω, R 2 ) and define a bilinear form b u on

H 1 (Ω, R 2 ) by b u (v, w) := Ω Av, w + τ N i=1 AB(u)∂ i v, ∂ i w dx , (v, w) ∈ H 1 (Ω, R 2 ) × H 1 (Ω, R 2 ) .
Owing to (2.4) and (2.5),

b u (v, v) ≥ δ 0 v 2 H 1 , v ∈ H 1 (Ω, R 2 ) , (2.9) 
where δ 0 := min{τ δ 1 , δ 2 }, while the boundedness of B guarantees that

|b u (v, w)| ≤ b * v H 1 w H 1 , (v, w) ∈ H 1 (Ω, R 2 ) × H 1 (Ω, R 2 ) , with b * := 2 max 1≤j,k≤2 {|a jk |} 1 + 2τ max 1≤j,k≤2 { b jk ∞ } .
We then infer from Lax-Milgram's theorem that there is a unique

V[u] ∈ H 1 (Ω, R 2 ) such that b u (V[u], w) = Ω AU, w dx , w ∈ H 1 (Ω, R 2 ) . (2.10) 
An immediate consequence of (2.9), (2.10) (with w = V[u]), and Hölder's inequality is the following estimate:

δ 0 V[u] 2 H 1 ≤ b u (V[u], V[u]) ≤ AU 2 V[u] 2 ≤ AU 2 V[u] H 1 . Hence V[u] H 1 ≤ AU 2 δ 0 . (2.11)
We next argue as in the proof of [START_REF]Bounded weak solutions to the thin film Muskat problem via an infinite family of Liapunov functionals[END_REF]Lemma B.1] to show that the map V is continuous and compact from L 2 (Ω, R 2 ) to itself, the proof relying on (2.11), the compactness of the embedding of H 1 (Ω, R 2 ) in L 2 (Ω, R 2 ), and the continuity and boundedness of B.

Consider now θ ∈ [0, 1] and a function u

∈ L 2 (Ω, R 2 ) satisfying u = θV[u]. Then u ∈ H 1 (Ω, R 2 )
and, in view of (2.11),

u 2 = θ V[u] 2 ≤ V[u] 2 ≤ V[u] H 1 ≤ AU 2 δ 0 .
Thanks to the above bound and the continuity and compactness properties of the map

V in L 2 (Ω, R 2 ),
we are in a position to apply Leray-Schauder's fixed point theorem, see [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]Theorem 11.3] for instance, and conclude that the map V has a fixed point

u ∈ L 2 (Ω, R 2 ). Since V ranges in H 1 (Ω, R 2 ), the function u actually belongs to H 1 (Ω, R 2 ) and satisfies b u (u, w) = Ω AU, w dx , w ∈ H 1 (Ω, R 2 ) .
Finally, given v ∈ H 1 (Ω, R 2 ), the function w = A -1 v also belongs to H 1 (Ω, R 2 ) and we infer from the above identity and the symmetry of

A that Ω U, v dx = Ω AU, w dx = b u (u, w) = b u (u, A -1 v) = Ω u, v + τ N i=1 B(u)∂ i u, ∂ i v dx .
We have thus constructed a weak solution u ∈ H 1 (Ω, R 2 ) to (2.6).

Step 2. We now turn to the sign-preserving property (i) and assume that

U (x) ∈ [0, ∞) 2 for a.a. x ∈ Ω. Let u ∈ H 1 (Ω, R 2
) be a weak solution to (2.6) and set ϕ := -u. Then (ϕ 1,+ , ϕ 2,+ ) belongs to H 1 (Ω, R 2 ) and it follows from (2.6) that

Ω ϕ 1 ϕ 1,+ + ϕ 2 ϕ 2,+ + τ N i=1 2 j,k=1 b jk (u)∂ i ϕ k ∂ i (ϕ j,+ ) dx = - Ω (U 1 ϕ 1,+ + U 2 ϕ 2,+ ) dx ≤ 0 .
(2.12)

We now infer from (2.7) that, for

1 ≤ i ≤ N , b 11 (u)∂ i ϕ 1 ∂ i ϕ 1,+ = b 11 (u)1 (-∞,0) (u 1 )|∂ i u 1 | 2 ≥ 0 , b 12 (u)∂ i ϕ 2 ∂ i ϕ 1,+ = b 12 (u)1 (-∞,0) (u 1 )∂ i u 1 ∂ i u 2 = 0 , b 21 (u)∂ i ϕ 1 ∂ i ϕ 2,+ = b 21 (u)1 (-∞,0) (u 2 )∂ i u 1 ∂ i u 2 = 0 , b 22 (u)∂ i ϕ 2 ∂ i ϕ 2,+ = b 22 (u)1 (-∞,0) (u 2 )|∂ i u 2 | 2 ≥ 0 ,
so that the second term on the left-hand side of (2.12) is non-negative. Consequently, (2.12) gives

Ω |ϕ 1,+ | 2 + |ϕ 2,+ | 2 dx ≤ 0 ,
which implies that ϕ 1,+ = ϕ 2,+ = 0 a.e. in Ω. Hence, u(x) ∈ [0, ∞) 2 for a.a. x ∈ Ω as claimed.

Step 3. It remains to prove (ii). We thus assume that max{U 1 , U 2 } ≤ ρ a.e. in Ω and consider a weak solution u ∈ H

1 (Ω, R 2 ) to (2.6). As v = ((u 1 -ρ) + , (u 2 -ρ) + ) belongs to H 1 (Ω, R 2 ), we deduce from (2.6) that Ω 2 j=1 (u j -U j )(u j -ρ) + + τ N i=1 2 j,k=1 b jk (u)∂ i u k ∂ i (u j -ρ) + dx = 0 .
On the one hand,

u j -U j ≥ u j -ρ a.e. in Ω , j = 1, 2 , so that (u j -U j )(u j -ρ) + ≥ (u j -ρ)(u j -ρ) + = (u j -ρ) 2 + a.e. in Ω , j = 1, 2 .
On the other hand, we infer from (2.8) that, for

1 ≤ i ≤ N , b 11 (u)∂ i u 1 ∂ i (u 1 -ρ) + = b 11 (u)1 (ρ,∞) (u 1 )|∂ i u 1 | 2 ≥ 0 , b 12 (u)∂ i u 2 ∂ i (u 1 -ρ) + = b 12 (u)1 (ρ,∞) (u 1 )∂ i u 1 ∂ i u 2 = 0 , b 21 (u)∂ i u 1 ∂ i (u 2 -ρ) + = b 21 (u)1 (ρ,∞) (u 2 )∂ i u 1 ∂ i u 2 = 0 , b 22 (u)∂ i u 2 ∂ i (u 2 -ρ) + = b 22 (u)1 (ρ,∞) (u 2 )|∂ i u 2 | 2 ≥ 0 . Therefore, 2 j=1 Ω (u j -ρ) 2 + dx ≤ 0 ,
from which we deduce that max{u 1 , u 2 } ≤ ρ a.e. in Ω.

2.2.

A regularised system. We now introduce the two-parameter approximation of (2.1) on which the subsequent analysis relies. Specifically, given ρ > 1, we define

α ρ (z) :=        0 , z ≤ 0, z , 0 ≤ z ≤ ρ -1, (ρ -1)(ρ -z) , ρ -1 ≤ z ≤ ρ, 0, , z ≥ ρ,
and observe that α ρ ∈ BC(R) with

0 ≤ α ρ (z) ≤ min{ρ, z + } , z ∈ R .
Next, for ε ∈ (0, 1) and X ∈ R 2 , we set

M ρ ε (X) = (m ρ ε,jk (X)) 1≤j,k≤2 := εI 2 + λ ε ((X 1,+ , X 2,+ ))M ρ (X), where M ρ (X) = (m ρ jk (X)) 1≤j,k≤2 := aα ρ (X 1 ) bα ρ (X 1 ) cα ρ (X 2 ) dα ρ (X 2 ) , X ∈ R 2 , (2.13) 
and

λ ε (X) := 2 1 + exp [ε(X 1 + X 2 )] , X ∈ R 2 .
Note that (M ρ ) ρ>1 converges to M , defined in (1.13), locally uniformly in [0, ∞) 2 as ρ → ∞, while (λ ε ) ε∈(0,1) converges to 1 locally uniformly in R 2 as ε → 0. In fact, for R > 0,

|λ ε (X) -1| ≤ 2Rε , X ∈ [-R, R] 2 . (2.14)
The outcome of this section is that, given τ > 0, ε ∈ (0, 1), ̺ > 1, and

U ∈ L ∞,+ (Ω, R 2 ), there is a weak solution u ρ ε ∈ H 1 (Ω, R 2 ) ∩ L ∞,+ (Ω, R 2 ) to u ρ ε -τ N i=1 ∂ i M ρ ε (u ρ ε )∂ i u ρ ε = U in Ω ,
which satisfies an appropriate weak version of (2.2), as stated below. The next lemma is actually the building block of the proof of Proposition 2.1.

Lemma 2.3. Given τ > 0, U = (F, G) ∈ L ∞,+ (Ω, R 2 ), ε ∈ (0, 1), and ρ ≥ max{1, F ∞ , G ∞ }, there is a weak solution u ρ ε = (u ρ ε,1 , u ρ ε,2 ) ∈ H 1 (Ω, R 2 ) ∩ L ∞,+ (Ω, R 2 ) to Ω u ρ ε , v + τ N i=1 M ρ ε (u ρ ε )∂ i u ρ ε , ∂ i v dx = Ω U, v dx , v ∈ H 1 (Ω, R 2 ) , (2.15) 
which additionally satisfies

max{ u ρ ε,1 ∞ , u ρ ε,2 ∞ } ≤ ρ, (2.16 
)

u ρ ε 2 ≤ C 0 U 2 ,
(2.17)

∇u ρ ε 2 ≤ C 1 (τ, ε) U 2 .
(2.18)

Moreover, given n ≥ 2, there exists a constant C(n) such that 

E n (u ρ ε ) ≤ τ C(n) ρ n-1 e ερ ∇u ρ ε 2 2 + E n (U ) . ( 2 
0 ≤ m ρ ε,jk (X) ≤ ε + 2ρ max{a, b, c, d} , 1 ≤ j, k ≤ 2 , X ∈ R 2 , (2.20a) 
as well as

m ρ ε,11 (X) ≥ m ρ ε,12 (X) = 0 , X ∈ (-∞, 0) × R , m ρ ε,22 (X) ≥ m ρ ε,21 (X) = 0 , X ∈ R × (-∞, 0) . (2.20b)
and

m ρ ε,11 (X) ≥ m ρ ε,12 (X) = 0 , X ∈ (ρ, ∞) × R , m ρ ε,22 (X) ≥ m ρ ε,21 (X) = 0 , X ∈ R × (ρ, ∞) . (2.20c) 
Next, according to [START_REF] Degond | Symmetrization and entropy inequality for general diffusion equations[END_REF], it is natural to use the Hessian matrix of the convex function Φ 2 to symmetrize (2.15). We thus set

S := bd 2 D 2 Φ 2 = ac bc bc bd
and observe that S is symmetric and positive definite by (1.2). In addition, for all X ∈ R 2 ,

SM ρ ε (X) = εS + λ ε ((X 1,+ , X 2,+ ))SM ρ (X) with SM ρ (X) =   a 2 cα ρ (X 1 ) + bc 2 α ρ (X 2 ) abcα ρ (X 1 ) + bcdα ρ (X 2 ) abcα ρ (X 1 ) + bcdα ρ (X 2 ) b 2 cα ρ (X 1 ) + bd 2 α ρ (X 2 )   ∈ Sym 2 (R) . Since tr(SM ρ (X)) ≥ 0 and det(SM ρ (X)) = det(S) det(M ρ (X)) = bc(ad -bc) 2 α ρ (X 1 )α ρ (X 2 ) ≥ 0 by (1.2), the matrix SM ρ (X) is positive semidefinite, so that the matrix SM ρ ε (X) belongs to SPD 2 (R) for all X ∈ R 2 with SM ρ ε (X)ξ, ξ ≥ ε Sξ, ξ ≥ ε det(S) tr(S) |ξ| 2 = ε bc(ad -bc) ac + bd |ξ| 2 , ξ ∈ R 2 . (2.20d)
According to the properties (2.20), we are now in a position to apply Lemma 2.2 (with A = S and B = M ρ ε ) and deduce that there is a solution

u ρ ε ∈ H 1 (Ω, R 2 ) ∩ L ∞,+ (Ω, R 2 ) to (2.
15) which satisfies (2.16). Moreover, it follows from (2.15

) (with v = Su ρ ε ∈ H 1 (Ω, R 2 
)), (2.20d), and the positive definiteness of S,

Sξ, ξ ≥ bc(ad -bc) ac + bd |ξ| 2 , ξ ∈ R 2 , that SU 2 u ρ ε 2 ≥ Ω SU, u ρ ε dx = Ω u ρ ε , Su ρ ε + τ N i=1 M ρ ε (u ρ ε )∂ i u ρ ε , ∂ i Su ρ ε dx = Ω Su ρ ε , u ρ ε + τ N i=1 SM ρ ε (u ρ ε )∂ i u ρ ε , ∂ i u ρ ε dx ≥ bc(ad -bc) ac + bd u ρ ε 2 2 + τ ε ∇u ρ ε 2 2 .
Owing to (1.2), we conclude that the estimates (2.17) and (2.18) are satisfied. It remains to establish the estimate

(2.19). Let n ≥ 2. Since u ρ ε ∈ H 1 (Ω, R 2 ) ∩ L ∞ (Ω, R 2 ), the vector field DΦ n (u ρ ε ) belongs to H 1 (Ω, R 2 ) and we infer from (2.15) (with v = DΦ n (u ρ ε )) that Ω u ρ ε -U, DΦ n (u ρ ε ) + τ N i=1 M ρ ε (u ρ ε )∂ i u ρ ε , ∂ i DΦ n (u ρ ε ) dx = 0 . (2.21)
On the one hand, the convexity of Φ n implies that

Ω u ρ ε -U, DΦ n (u ρ ε ) dx ≥ Ω [Φ n (u ρ ε ) -Φ n (U )] dx = E n (u ρ ε ) -E n (U ) . (2.22) 
On the other hand, using the symmetry and the positive semidefiniteness of the matrix

D 2 Φ n (u ρ ε ), see Lemma A.2, we have τ N i=1 Ω M ρ ε (u ρ ε )∂ i u ρ ε , ∂ i DΦ n (u ρ ε ) dx = τ N i=1 Ω M ρ ε (u ρ ε )∂ i u ρ ε , D 2 Φ n (u ρ ε )∂ i u ρ ε dx = τ N i=1 Ω D 2 Φ n (u ρ ε )M ρ ε (u ρ ε )∂ i u ρ ε , ∂ i u ρ ε dx = τ ε N i=1 Ω D 2 Φ n (u ρ ε )∂ i u ρ ε , ∂ i u ρ ε dx + τ N i=1 Ω λ ε (u ρ ε ) D 2 Φ n (u ρ ε )M ρ (u ρ ε )∂ i u ρ ε , ∂ i u ρ ε dx ≥ τ N i=1 Ω λ ε (u ρ ε ) D 2 Φ n (u ρ ε )M ρ (u ρ ε )∂ i u ρ ε , ∂ i u ρ ε dx . (2.23) Since S n (u ρ ε ) := D 2 Φ n (u ρ ε )M (u ρ ε ) is positive semidefinite by Lemma A.3, we further have τ N i=1 Ω λ ε (u ρ ε ) D 2 Φ n (u ρ ε )M ρ (u ρ ε )∂ i u ρ ε , ∂ i u ρ ε dx = τ N i=1 Ω λ ε (u ρ ε ) D 2 Φ n (u ρ ε )M (u ρ ε )∂ i u ρ ε , ∂ i u ρ ε dx + τ N i=1 Ω λ ε (u ρ ε ) D 2 Φ n (u ρ ε ) M ρ (u ρ ε ) -M (u ρ ε ) ∂ i u ρ ε , ∂ i u ρ ε dx ≥ τ N i=1 Ω λ ε (u ρ ε ) D 2 Φ n (u ρ ε ) M ρ (u ρ ε ) -M (u ρ ε ) ∂ i u ρ ε , ∂ i u ρ ε dx . (2.24)
Taking now advantage of the fact that 0 ≤ u ρ ε,j ≤ ρ a.e. in Ω for j = 1, 2 by (2.16), we further have

τ N i=1 Ω λ ε (u ρ ε ) D 2 Φ n (u ρ ε ) M ρ (u ρ ε ) -M (u ρ ε ) ∂ i u ρ ε , ∂ i u ρ ε dx ≤ 2τ max{a, b, c, d} D 2 Φ n L∞((0,ρ) 2 ) 2 j=1 Ω λ ε (u ρ ε )|α ρ (u ρ ε,j ) -u ρ ε,j | |∇u ρ ε | 2 dx ≤ 4τ max{a, b, c, d}κ n ρ n-2 2 j=1 {ρ-1≤u ρ ε,j ≤ρ} |α ρ (u ρ ε,j ) -u ρ ε,j | 1 + exp(εu ρ ε,j ) |∇u ρ ε | 2 dx , where κ n ∈ R is a positive constant such that |D 2 Φ n (X)| ≤ κ n (X n-2 1 + X n-2 2 ) for all X ∈ [0, ∞) 2 .
Owing to the definition of α ρ , we further obtain

τ N i=1 Ω λ ε (u ρ ε ) D 2 Φ n (u ρ ε ) M ρ (u ρ ε ) -M (u ρ ε ) ∂ i u ρ ε , ∂ i u ρ ε dx ≤ 4τ max{a, b, c, d}κ n ρ n-2 2 j=1 {ρ-1≤u ρ ε,j ≤ρ} ρ 1 + e ε(ρ-1) |∇u ρ ε | 2 dx ≤ 8eτ max{a, b, c, d}κ n ρ n-1 e -ερ ∇u ρ ε 2 2 .
(2.25)

The desired estimate (2.19) is now a straightforward consequence of the relations (2.21)-(2.25).

2.3.

A regularised system: ρ → ∞. We next study the cluster points as ρ → ∞ of the fam-

ily {u ρ ε : ρ ≥ max{1, F ∞ , G ∞ }} provided in Lemma 2.3, the parameter ε ∈ (0, 1) being held fixed. Lemma 2.4. Given τ > 0, U = (F, G) ∈ L ∞,+ (Ω, R 2 )
, and ε ∈ (0, 1), there exist a sequence (ρ l ) l≥1 and a function

u ε = (u ε,1 , u ε,2 ) ∈ H 1 (Ω, R 2 ) ∩ L ∞,+ (Ω, R 2 ) such that ρ l → ∞ and u ρ l ε → u ε in L p (Ω, R 2 ) for all p ∈ [1, ∞
) and pointwise a.e. in Ω , (2.26)

∇u ρ l ε ⇀ ∇u ε in L 2 (Ω, R 2N ) . ( 2 

.27)

Moreover, u ε solves the equation

Ω u ε , v + τ N i=1 M ε (u ε )∂ i u ε , ∂ i v dx = Ω U, v dx , v ∈ H 1 (Ω, R 2 ) , (2.28) where M ε (X) = (m ε,jk (X)) 1≤j,k≤2 := εI 2 + λ ε ((X 1,+ , X 2,+ ))M (X),
with M (X) defined in (1.13), and, for each n ≥ 2, we have

E n (u ε ) ≤ E n (U ) . (2.29) Furthermore, min 1, c d u ε,1 + u ε,2 ∞ ≤ max 1, a b F + G ∞ .
(2.30)

Proof. Recalling (2.17)-( 2.18), we deduce that

(u ρ ε ) ρ is bounded in H 1 (Ω, R 2 ). Moreover, since ε n z n n! ≤ e εz , z ∈ [0, ∞) , n ≥ 1 , (2.31)
the estimates (2.18) and (2.19), along with Lemma A.4, ensure that (u ρ ε ) ρ is bounded in L n (Ω, R 2 ) for any integer n ≥ 2 (with an ε-dependent bound). We may then use a Cantor diagonal process, together with Rellich-Kondrachov' theorem and an interpolation argument, to deduce the convergence (2.26) and (2.27) along a sequence ρ l → ∞, as well as the componentwise non-negativity of u ε .

Since 

Φ n is convex on [0, ∞)
lim l→∞ Ω u ρ l ε , v dx = Ω u ε , v dx and lim l→∞ Ω ∂ i u ρ l ε , ∂ i v dx → Ω ∂ i u ε , ∂ i v dx for 1 ≤ i ≤ N , the identity (2.28) is satisfied provided that lim l→∞ Ω λ ε (u ρ l ε ) M ρ l (u ρ l ε )∂ i u ρ l ε , ∂ i v dx = Ω λ ε (u ε ) M (u ε )∂ i u ε , ∂ i v dx (2.32)
for each 1 ≤ i ≤ N . To prove (2.32), we observe that, for 1 ≤ i ≤ N and j ∈ {1, 2}, 

Ω λ ε (u ρ l ε ) M ρ l (u ρ l ε )∂ i u ρ l ε , ∂ i v dx = Ω λ ε (u ρ l ε ) M ρ l (u ρ l ε ) t ∂ i v, ∂ i u ρ l ε dx (2.33) with λ ε (u ρ l ε ) 2 k=1 m ρ l kj (u ρ l ε )∂ i v k ≤ 2 max{a, b, c, d} u ρ l ε,1 + u ρ l ε,2 1 + exp[ε(u ρ l ε,1 + u ρ l ε,2 )] |∂ i v| ≤ 2 max{a, b, c
lim l→∞ λ ε (u ρ l ε ) 2 k=1 m ρ l kj (u ρ l ε )∂ i v k = λ ε (u ε ) 2 k=1 m kj (u ε )∂ i v k a.e.
in Ω , by (2.13), the pointwise almost everywhere convergence in Ω established in (2.26), and the properties of α ρ l . Lebesgue's dominated convergence theorem then guarantees that

lim l→∞ λ ε (u ρ l ε ) 2 k=1 m ρ l kj (u ρ l ε )∂ i v k -λ ε (u ε ) 2 k=1 m kj (u ε )∂ i v k 2 = 0 .
Combining the above convergence with (2.27), allows us to pass to the limit as l → ∞ in (2.33) and find

lim l→∞ Ω λ ε (u ρ l ε ) M ρ l (u ρ l ε )∂ i u ρ l ε , ∂ i v dx = Ω λ ε (u ε ) M (u ε ) t ∂ i v, ∂ i u ε dx = Ω λ ε (u ε ) M (u ε )∂ i u ε , ∂ i v dx
for 1 ≤ i ≤ N , which proves (2.32). We have thus shown that u ε solves (2.28) and thereby completed the proof of Lemma 2.4.

We next show that the entropy functional E 1 evaluated at the function u ε identified in Lemma 2.4 is dominated by E 1 (U ) and that the associated dissipation term E 1 (U ) -E 1 (u ε ) provides a control on the gradient of u ε which is essential when considering the limit ε → 0.

Lemma 2.5. Let τ > 0, U = (F, G) ∈ L ∞,+ (Ω, R 2 )
, and ε ∈ (0, 1). The function

u ε = (u ε,1 , u ε,2 ) ∈ H 1 (Ω, R 2 ) ∩ L ∞,+ (Ω, R 2 ) identified in Lemma 2.4 satisfies E 1 (u ε ) + τ a Ω λ ε (u ε ) |∇(au ε,1 + Θ 1 u ε,2 )| 2 + Θ 2 |∇u ε,2 | 2 dx ≤ E 1 (U ) .
Proof. Let η ∈ (0, 1). Then ln (u ε,1 + η), (b 2 /ad) ln (u ε,2 + η) ∈ H 1 (Ω, R 2 ) and we infer from (2.28) that

0 = Ω (u ε,1 -U 1 ) ln (u ε,1 + η) + b 2 ad (u ε,2 -U 2 ) ln (u ε,2 + η) dx + D(η) , (2.34) 
where

D(η) := τ Ω N i=1 m ε,11 (u ε )∂ i u ε,1 + m ε,12 (u ε )∂ i u ε,2 ∂ i u ε,1 u ε,1 + η dx + τ b 2 ad Ω N i=1 m ε,21 (u ε )∂ i u ε,1 + m ε,22 (u ε )∂ i u ε,2 ∂ i u ε,2 u ε,2 + η dx .
Since L(r) = r ln r -r + 1 is convex on [0, ∞) with L ′ (r) = ln r, the first term on the right-hand side of (2.34) can be estimated as follows

Ω (u ε,1 -U 1 ) ln (u ε,1 + η) + b 2 ad (u ε,2 -U 2 ) ln (u ε,2 + η) dx ≥ Ω (L(u ε,1 + η) -L(U 1 + η)) + b 2 ad (L(u ε,2 + η) -L(U 2 + η)) dx = E 1 ((u ε,1 + η, u ε,2 + η)) -E 1 ((U 1 + η, U 2 + η)) .
Using the continuity of Φ 1 and the boundedness of u ε , see (2.30), we deduce that

lim inf η→0 Ω (u ε,1 -U 1 ) ln (u ε,1 + η) + b 2 ad (u ε,2 -U 2 ) ln (u ε,2 + η) dx ≥ E 1 (u ε ) -E 1 (U ) . (2.35)
Next, recalling the definition of the matrix M ε , see Lemma 2.4, we have

D(η) = τ ε Ω |∇u ε,1 | 2 u ε,1 + η + b 2 ad |∇u ε,2 | 2 u ε,2 + η dx + τ a Ω λ ε (u ε ) |∇(au ε,1 + Θ 1 u ε,2 )| 2 + Θ 2 |∇u ε,2 | 2 dx -J 1 (η) -J 2 (η) ,
where

J 1 (η) := τ Ω ηλ ε (u ε ) u ε,1 + η ∇u ε,1 • ∇(au ε,1 + bu ε,2 ) dx , J 2 (η) := τ b 2 ad Ω ηλ ε (u ε ) u ε,2 + η ∇u ε,2 • ∇(cu ε,1 + du ε,2 ) dx . Since u ε ∈ H 1 (Ω, R 2
) and ∇u ε,j = 0 a.e. on the level set {x ∈ Ω : u ε,j = 0} for j ∈ {1, 2}, we have

lim η→0 ηλ ε (u ε ) u ε,j + η ∇u ε,j = 0 a.e. in Ω , ηλ ε (u ε ) u ε,j + η ∇u ε,j ≤ |∇u ε,j | a.e. in Ω .
Lebesgue's dominated convergence theorem ensures now that

lim η→0 (J 1 (η) + J 2 (η)) = 0 .
This shows that

lim inf η→0 D(η) ≥ τ a Ω λ ε (u ε ) |∇(au ε,1 + Θ 1 u ε,2 )| 2 + Θ 2 |∇u ε,2 | 2 dx . (2.36) 
Passing to the limit η → 0 in (2.34), we get the desired estimate in view of (2.35) and (2.36).

2.4.

A regularised system: ε → 0. We complete this section with the proof of Proposition 2.1.

Proof of Proposition 2.1. Consider τ > 0 and U = (F, G) ∈ L ∞,+ (Ω, R 2 ). Given ε ∈ (0, 1), let u ε = (u ε,1 , u ε,2 ) ∈ H 1 (Ω, R 2 ) ∩ L ∞,+ (Ω, R 2 )
denote the weak solution to (2.28) provided by Lemma 2.4. According to (2.30),

max{ u ε,1 ∞ , u ε,2 ∞ } ≤ u ε,1 + u ε,2 ∞ ≤ R 0 := d b max{a, b} min{c, d} F + G ∞ . (2.37) 
Hence,

λ ε (u ε ) ≥ 2 1 + e R 0 ,
a lower bound which, together with Lemma 2.5 and the non-negativity of E 1 , ensures that

(∇u ε ) ε∈(0,1) is bounded in L 2 (Ω, R 2N ).
(2.38)

We now infer from (2.37), (2.38), Rellich-Kondrachov' theorem, an interpolation argument, and a Cantor diagonal process that there exist a function

u = (f, g) ∈ H 1 (Ω, R 2 ) ∩ L ∞,+ (Ω, R 2 )
and a sequence (ε l ) l≥1 , with ε l → 0, such that

u ε l → u in L p (Ω, R 2 ) for all p ∈ [1, ∞) , (2.39) 
u ε l * ⇀ u in L ∞ (Ω, R 2 ) , (2.40 
)

∇u ε l ⇀ ∇u in L 2 (Ω, R 2N ) . (2.41) 
An immediate consequence of (2.29) and (2.39) is the estimate (2.2). Since

λ ε l (u ε l ) → 1 in L ∞ (Ω)
by (2.14) and (2.37), we conclude together with (2.41) that

λ ε l (u ε l )∇ au ε l ,1 + Θ 1 u ε l ,2 ⇀ ∇ au 1 + Θ 1 u 2 in L 2 (Ω, R N ) , Θ 2 λ ε l (u ε l )∇u ε l ,2 ⇀ Θ 2 ∇u 2 in L 2 (Ω, R N ) .
Moreover, the L ∞ -bound (2.37) and the convergence (2.39) imply that

lim inf l→∞ E 1 (u ε l ) ≥ E 1 (u) ,
and the estimate (2.3) is now obtained by passing to lim inf in the inequality reported in Lemma 2.5 (with ε replaced by ε l ). Finally, (2.39), along with (2.37) and the convergence property

lim ε→0 m ε,jk (X) -m jk (X) = 0 ,
which is uniform with respect to X ∈ [0, R 0 ] 2 and 1 ≤ j, k ≤ 2, enables us to use Lebesgue's dominated convergence theorem to show that, for v = (ϕ,

ψ) ∈ H 1 (Ω, R 2 ), lim l→∞ M ε l (u ε l ) t ∂ i v -M (u) t ∂ i v 2 = 0 , 1 ≤ i ≤ N .
Together with (2.39) and (2.41), the above convergence allows us to let ε l → 0 in (2.28) and conclude that u = (f, g) satisfies (2.1). This completes the proof of Proposition 2.1.

Existence of bounded weak solutions

This section is devoted to the proof of Theorem 1.1, which relies on rather classical arguments, besides the estimates derived in Proposition 2.1, and proceeds along the lines of the proof of [START_REF]Bounded weak solutions to the thin film Muskat problem via an infinite family of Liapunov functionals[END_REF]Theorem 1.2]. As a first step, we use Proposition 2.1 to construct a family of piecewise constant functions (u τ ) τ ∈(0,1) starting from the initial condition (f in , g in ) ∈ L ∞,+ (Ω, R 2 ). More precisely, for τ ∈ (0, 1), we set u τ (0) := u τ 0 and

u τ (t) = u τ l , t ∈ ((l -1)τ, lτ ] , l ∈ N \ {0} , (3.1) 
where the sequence (u τ l ) l≥0 is defined as follows:

u τ 0 = u in := (f in , g in ) ∈ L ∞,+ (Ω, R 2 ) , u τ l+1 = (f τ l+1 , g τ l+1 ) ∈ H 1 (Ω, R 2 ) ∩ L ∞,+ (Ω, R 2 )
is the solution to (2.1) with U = u τ l = (f τ l , g τ l ) constructed in Proposition 2.1 for l ≥ 0 .

(3.2)

In order to establish Theorem 1.1, we show that the family (u τ ) τ ∈(0,1) defined in (3.2) converges along a subsequence τ j → 0 towards a pair u = (f, g) which fulfills all the requirements of Theorem 1.1.

Below, C and (C l ) l≥0 denote various positive constants depending only on (a, b, c, d) and u in . Dependence upon additional parameters will be indicated explicitly.

Proof of Theorem 1.1. Let τ ∈ (0, 1) and let u τ be defined in (3.1)-(3.2). Given l ≥ 0, we infer from Proposition 2.1 that

Ω f τ l+1 ϕ + τ f τ l+1 ∇[af τ l+1 + bg τ l+1 ] • ∇ϕ dx = Ω f τ l ϕ dx , ϕ ∈ H 1 (Ω) , (3.3a 
)

Ω g τ l+1 ψ + τ g τ l+1 ∇[cf τ l+1 + dg τ l+1 ] • ∇ψ dx = Ω g τ l ψ dx , ψ ∈ H 1 (Ω) . (3.3b) Moreover, E n (u τ l+1 ) ≤ E n (u τ l ) for n ≥ 2, (3.4) 
and we also have

E 1 (u τ l+1 ) + τ a Ω |∇(af τ l+1 + Θ 1 g τ l+1 )| 2 + Θ 2 |∇g τ l+1 | 2 dx ≤ E 1 (u τ l ) . (3.5) 
It readily follows from (3.1), (3.2), (3.4), and (3.5) that, for t > 0,

E n (u τ (t)) ≤ E n (u in ) , n ≥ 2 , (3.6) 
and

E 1 (u τ (t)) + 1 a t 0 Ω |∇(af τ + Θ 1 g τ )| 2 + Θ 2 |∇g τ | 2 dxds ≤ E 1 (u in ) . (3.7) 
An immediate consequence of (3.6) and Lemma A.4 is the estimate

f τ (t) + g τ (t) n ≤ d b max{a, b} min{c, d} f in + g in n , n ≥ 2 , t > 0 .
Letting n → ∞ in the above inequality gives

f τ (t) + g τ (t) ∞ ≤ C 1 := d b max{a, b} min{c, d} f in + g in ∞ , t > 0 . (3.8) 
Also, taking advantage of the non-negativity of E 1 , we deduce from (3.7) that

t 0 ∇f τ (s) 2 2 + ∇g τ (s) 2 2 ds ≤ C 2 := a 2 + 2(Θ 2 + Θ 2 1 ) aΘ 2 E 1 (u in ) , t > 0 . (3.9) 
Next, for l ≥ 1 and t ∈ ((l -1)τ, lτ ], we deduce from (3.3a), (3.8), and Hölder's inequality that, for ϕ ∈ H 1 (Ω),

Ω (f τ (t + τ ) -f τ (t)) ϕ dx = (l+1)τ lτ Ω f τ l+1 ∇[af τ l+1 + bg τ l+1 ] • ∇ϕ dxds ≤ (l+1)τ lτ f τ (s) ∞ ∇[af τ (s) + bg τ (s)] 2 ∇ϕ 2 ds ≤ C 1 ∇ϕ 2 (l+1)τ lτ ∇[af τ (s) + bg τ (s)] 2 ds .
A duality argument then gives

f τ (t + τ ) -f τ (t) (H 1 ) ′ ≤ C 1 (l+1)τ lτ ∇[af τ (s) + bg τ (s)] 2 ds
for t ∈ ((l -1)τ, lτ ] and l ≥ 1. Now, for l 0 ≥ 2 and T ∈ ((l 0 -1)τ, l 0 τ ], the above inequality, along with Hölder's inequality, entails that

T -τ 0 f τ (t + τ ) -f τ (t) 2 (H 1 ) ′ dt ≤ (l 0 -1)τ 0 f τ (t + τ ) -f τ (t) 2 (H 1 ) ′ dt = l 0 -1 l=1 lτ (l-1)τ f τ (t + τ ) -f τ (t) 2 (H 1 ) ′ dt ≤ C 2 1 τ l 0 -1 l=1 (l+1)τ lτ ∇[af τ (s) + bg τ (s)] 2 ds 2 ≤ C 2 1 τ 2 l 0 -1 l=1 (l+1)τ lτ ∇[af τ (s) + bg τ (s)] 2 2 ds ≤ C 2 1 τ 2 l 0 τ 0 ∇[af τ (s) + bg τ (s)] 2 2 ds .
We then use (3.9) (with t = l 0 τ ) and Young's inequality to obtain

T -τ 0 f τ (t + τ ) -f τ (t) 2 (H 1 ) ′ dt ≤ C 2 1 τ 2 l 0 τ 0 2a 2 ∇f τ (s) 2 2 + 2b 2 ∇g τ (s) 2 2 ds ≤ C 3 τ 2 , (3.10) 
with

C 3 := 2(a 2 + b 2 ) 2 C 2 1 C 2 . Similarly, T -τ 0 g τ (t + τ ) -g τ (t) 2 (H 1 ) ′ dt ≤ C 4 τ 2 , (3.11) 
with

C 4 := 2(c 2 + d 2 )C 2 1 C 2 . According to Rellich-Kondrachov' theorem, H 1 (Ω, R 2 ) is compactly embedded in L 2 (Ω, R 2 ), while L 2 (Ω, R 2 ) is continuously (and compactly) embedded in H 1 (Ω, R 2 ) ′ . Gathering (3.8)-(3.11), we infer from [5, Theorem 1] that, for any T > 0, (u τ ) τ ∈(0,1) is relatively compact in L 2 ((0, T ) × Ω, R 2 ) .
(3.12)

Owing to (3.8), (3.9), and (3.12), we may use a Cantor diagonal argument to find a function

u = (f, g) ∈ L ∞,+ ((0, ∞) × Ω, R 2 )
and a sequence (τ m ) m≥1 , τ m → 0, such that, for any T > 0 and p ∈ [1, ∞),

u τm -→ u in L p ((0, T ) × Ω, R 2 ) , u τm * ⇀ u in L ∞ ((0, T ) × Ω, R 2 ) , u τm ⇀ u in L 2 ((0, T ), H 1 (Ω, R 2 
)) .

(3.13)

In addition, the compact embedding of L 2 (Ω, R 2 ) in H 1 (Ω, R 2 ) ′ , along with (3.6) with n = 2, (3.10), and (3.11), allows us to apply once more [START_REF] Dreher | Compact families of piecewise constant functions in L p (0, T ; B), Nonlinear Anal[END_REF]Theorem 1] to conclude that

u ∈ C([0, ∞), H 1 (Ω, R 2 ) ′ ) . (3.14) 
Let us now identify the equations solved by the components f and g of u. To this end, let χ ∈ W 1 ∞ ([0, ∞)) be a compactly supported function and ϕ ∈ C 1 (Ω). In view of (3.3a), classical computations give

∞ 0 Ω χ(t + τ ) -χ(t) τ f τ (t)ϕ dxdt + 1 τ τ 0 χ(t) dt Ω f in ϕ dx = ∞ 0 Ω χ(t)f τ (t)∇[af τ (t) + bg τ (t)] • ∇ϕ dxdt .
Taking τ = τ m in the above identity, it readily follows from (3.13) and the regularity of χ and ϕ that we may pass to the limit as m → ∞ and conclude that with a j,n , 0 ≤ j ≤ n, to be determined in order for properties (P1)-(P2) to be satisfied. We recall that the parameters (a, b, c, d) are assumed to satisfy (1.2). Then a j,n > 0 for 0 ≤ j ≤ n and S n (X) = D 2 Φ n (X)M (X) ∈ Sym 2 (R) for all X ∈ R 2 .

∞ 0 Ω dχ dt (t)f (t, x)ϕ(x) dxdt + χ(0) Ω f in (x)ϕ(x) dx = ∞ 0 Ω χ(t)f (t, x)∇ [af + bg] (t, x) • ∇ϕ(x) dxdt .
Proof. Given X ∈ R 2 , we compute

∂ 2 1 Φ n (X) =
n-1 j=1 j(j + 1)a j+1,n X j-1 1 X n-j-1 2 = n-2 j=0

(j + 1)(j + 2)a j+2,n X j 1 X n-j-2

2 , ∂ 1 ∂ 2 Φ n (X) = n-1 j=1 j(n -j)a j,n X j-1 1 X n-j-1 2 = n-2 j=0 (j + 1)(n -j -1)a j+1,n X j 1 X n-j-2 2 , ∂ 2 2 Φ n (X) = n-2 j=0
(n -j)(n -j -1)a j,n X j 1 X n-j-2

2

.

It then follows that (j + 1)(n -j -1)a j+1,n X j 1 X n-j-1

2

= bn(n -1)a n,n X n-1

1 + n-2 j=1 (j + 1)[bj + d(n -j -1)]a j+1,n X j 1 X n-j-1 2 + d(n -1)a 1,n X n-1 2 , [S n (X)] 21 = aX 1 ∂ 1 ∂ 2 Φ n (X) + cX 2 ∂ 2 2 Φ n (X) = a n-1 j=1 j(n -j)a j,n X j 1 X n-j-1 2 + c n-2 j=0
(n -j)(n -j -1)a j,n X j 1 X n-j-1 2 = a(n -1)a n-1,n X n-1

1 + n-2 j=1
(n -j)[aj + c(n -j -1)]a j,n X j 1 X n-j-1

2

+ cn(n -1)a 0,n X n-1 (n -1)(n -j -2)A n-2,j+1 X j+n-1 1 X n-j-3

2

.

According to (1.2) and (A.5),

A l,0 = (ad bc) n(n -1)(n -1 -l)(l + 1)

α 0,n α l+1,n > 0 , 0 ≤ l ≤ n -2 , A n-2,l = (ad -bc) (n -1)(n -l)(n -1 -l) α n-1,n α l,n > 0 , 0 ≤ l ≤ n -2 .
In particular, all the terms in the above identity involving a single sum are non-negative. Therefore, using the symmetry property (A.6) and retaining in the last two sums only the terms corresponding to k = 1 and j = n -3, respectively, we get 

( 3 .

 3 15)Since f ∇f and f ∇g belong to L 2 ((0, T ) × Ω) for all T > 0 by (3.13), a density argument ensures that the identity (3.15) is valid for any ϕ ∈ H 1 (Ω). We next use the time continuity (3.14) of f and a classical approximation argument to show that f solves (1.9a). A similar argument allows us to derive (1.9b) from (3.3b).Finally, combining (3.13), (3.14), and a weak lower semicontinuity argument, we may let m → ∞ in (3.6), (3.7), and (3.8) with τ = τ m to show that u = (f, g) satisfies (1.10),(1.11), and (1.12), thereby completing the proof.

Lemma A. 1 .

 1 Set a 0,n := 1 anda j,n := j-1 k=0 (n -k)[ak + c(n -k -1)] (k + 1)[bk + d(n -k -c(n -k -1) bk + d(n -k -1) , 1 ≤ j ≤ n . (A.2)

[ 2 ,

 2 S n (X)] 11 = aX 1 ∂ 2 1 Φ n (X) + cX 2 ∂ 1 ∂ 2 Φ n (X) 1)(n -j -1)a j+1,n X j 1 X n-j-1 [S n (X)] 12 = bX 1 ∂ 2 1 Φ n (X) + dX 2 ∂ 1 ∂ 2 Φ n (X)

2 ,[ 1 X 1 l 2 = 1 X 1 X 1 X 2 + n- 2 k=0(n - 1 ) 1 X 1 X

 211211122111 S n (X)] 22 = bX 1 ∂ 1 ∂ 2 Φ n (X) + dX 2 ∂ 2 2 Φ n (X) It then follows from (A.4) that 2 det(D 2 Φ n (X)) = 1)(n -k -1)A j,k X j+k (n -i -2)A l-1,i+1 X i+l 1 X 2n-i-l-4 1)(n -k -1)A j,k X j+k -j -2)A k-1,j+1 X j+k 1)(n -k -1)A j,k X j+k 2n-j-k-4 (n -k -1)A n-2,k X n-2+k -j -2)A k-1,j+1 X j+k

2 3 j=0 n- 2 k=1[ 1 X 2 + 1 +

 32121 det(D 2 Φ n (X)) ≥ n-(j + 1)(n -k -1) -k(n -j -2)] A j,k X j+k 2n-j-k-4 (n -1)A n-2,n-2 X 2n-4 (n -1)A 0,0 X 2n-4 2

  .19)Proof. Let ε ∈ (0, 1) and ρ ≥ max{1, F ∞ , G ∞ }. To deduce the existence result stated in Lemma 2.3 from the already established Lemma 2.2, we first recast (2.15) in the form(2.6). First, owing to the definition of the function α ρ , the matrix M ρ ε lies in BC(R 2 , M 2 (R)) and satisfies

  and (2.31) that (2.29) holds true. Using once more Lemma A.4, we infer from (2.29) that

	cu ε,1 + du ε,2 n ≤	d b	aF + bG

2 

for all n ≥ 2, see Lemma A.2, it follows from (2.18), (2.19),

(2.26)

, n for all n ≥ 2. Passing to the limit n → ∞ in the above inequality, we deduce that u ε ∈ L ∞ (Ω, R 2 ) satisfies (2.30).

Let us now consider v ∈ H 1 (Ω, R 2 ). Since (2.26) and (2.27) imply that

Acknowledgments

PhL gratefully acknowledges the hospitality and support of the Fakultät für Mathematik, Universität Regensburg, where part of this work was done.

Appendix A. The polynomials Φ n , n ≥ 2

Let n ≥ 2. According to the discussion in the introduction, we look for an homogeneous polynomial Φ n of degree n such that:

(P1) Φ n is convex on [0, ∞) 2 ; (P2) the matrix S n (X) := D 2 Φ n (X)M (X) is symmetric and positive semidefinite for X ∈ [0, ∞) 2 . We recall that the mobility matrix M (X) is given by

see (1.13). Specifically, we set

Hence, S n (X) is symmetric provided that

or, equivalently,

Since a 0,n = 1, the closed form formula (A.2) readily follows from (A.3) and we deduce from (A.2) and the positivity of (a, b, c, d) that a j,n > 0 for all 0 ≤ j ≤ n.

We next show that D

Lemma A.2. Let Φ n be the polynomial defined by (A.1) and (A.2).

It remains to show that the determinant det(D 2 Φ n (X)) is also non-negative. To this end we compute

where

Using (A.3), we express a j+2,n and a k+1,n in terms of a j+1,n and a k,n , respectively, to arrive at the following formula

where α k,n denotes the positive number

In particular,

Observing that

Since A 0,0 > 0 and A n-2,n-2 > 0, we have thus established that, for each X ∈ [0, ∞) 2 \ {(0, 0)}, the symmetric matrix D 2 Φ n (X) has non-negative trace and positive determinant, so that it is positive definite.

We next turn to the positive definiteness of

Proof. Let X ∈ (0, ∞) 2 . On the one hand, by (1.2), (A.7), and the positivity of A 0,0 and A n-2,n-2 ,

On the other hand, the positivity of a j,n for 0 ≤ j ≤ n and (1.2) imply that tr(S n (X)) = [S n (X)] 11 + [S n (X)] 22 > 0 .

Consequently, S n (X) has positive trace and positive determinant, and is thus positive definite as claimed.

We end up this section with useful upper and lower bounds for Φ n .

Lemma A.4. Let Φ n be defined by (A.1) and (A.2). Then

Proof. Since the function

is increasing and positive, we deduce from (A.2) that, for 1 ≤ j ≤ n, a j,n = n j The upper and lower bounds in (A.8) are direct consequences of the above inequalities.