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Abstract. A domain decomposition approach is developed to solve coupled conductive–
radiative heat transfer within highly porous materials. In this work, a Kelvin–cell foam with five
cells in each direction which has ≈15.6× 106 of voxels is considered. The coupled heat transfer
is solved using the finite volume method where deterministic ray tracing is used to calculate
radiative exchange. The temperature distribution is computed and cross–validated with the
distribution obtained using a commercial software STAR–CCM+.

1. Introduction
Highly porous media possess many interesting properties, making them suitable for applications
such as energy conservation, thermal protection systems, etc. Heat transfer through such
materials may involve all three modes and its accurate estimation through numerical [1, 2] or
experimental methods [3] is a challenging task. Designing and optimizing heat transfer through
such complicated porous media can be leveraged by appropriate determination of effective heat
transfer within the volume and optimizing relevant contributing textural parameters such as
shape, size, porosity, etc. Till date, several methods are developed to approximate coupled heat
transfer at local scale but they are limited to small and simple geometries as the computation
over large and realistic geometries is computationally expensive.

Here, we present an approach based on domain decomposition to estimate effective
heat transfer by coupling conduction and radiation in participating media (an opaque solid
surrounded by vacuum). The work is based on the voxel–based finite volume method (FVM)
which uses ray tracing for calculation of the radiative exchange factor. Using this approach, a
Kelvin–cell foam which has ≈15.6× 106 voxels is studied and results are shown and discussed.

2. Mathematical formulation
2.1. Governing equations
Coupled conductive–radiative heat transfer at steady state can be solved by energy balance as:

∇ · (Qcond +Qrad) = 0 ∀x ∈ Ω ⊂ R3, (1)
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where Q denotes the thermal energy, subscripts ‘cond’ and ‘rad’ denote conduction and radiation,
respectively, Ω = Ωs ∪Ωv denotes the whole volume, subscripts ‘s’ and ‘v’ denote solid and void,
respectively, and x = (x, y, z) denotes the spatial location. The conductive heat energy is
denoted as:

Qcond = −λsA∇T (x) = 0 ∀x ∈ Ωs ⊂ R3, (2)

where λ = (λx, λy, λz)
T denotes the thermal conductivity vector, A denotes the cross–sectional

area perpendicular to the direction of heat flow, and T is the temperature at spatial location x.
Further, the net radiative heat energy, adapted from eq. (8.14) in [4], can be represented as:

Qrad = σεn2A(x)T 4(x)−
∫
A′

σεA(x
′
)T 4(x

′
)Fx′→xdA

′ ∀x ∈ Ωv ⊂ R3, (3)

where x and x
′ denote emitting and reflecting surfaces, respectively, T denotes the temperature,

A denotes the surface area, σ denotes the Stefan–Boltzmann constant, ε denotes the total
hemispherical emissivity of the surface, and Fx′→x denotes the radiative exchange factor.
To solve eq. (2) and eq. (3), following boundary conditions (BC) are imposed (for schematic
representation, cf. fig 1):

• Dirichlet BC for eq. (2) is prescribed at hot and cold boundaries as:

T (x = 0) = Thot, T (x = Lx) = Tcold ; (4)

• Neumann BC for eq. (2) is prescribed on side faces to avoid any heat loss as:

∇T · n(y = 0 & y = Ly) = 0; ∇T · n(z = 0 & z = Lz) = 0 ; (5)

• The emitting BC is prescribed at fixed temperature boundaries Either reflecting or
absorbing (surface at T = 0K) BC is prescribed at all four side walls;

• Also, the reflecting BC is applied at the interface with reflection where ρ = 1 - ε .

2.2. Numerical methods
The domain decomposition approach [5] is based on division of the entire volume into subvolumes
of almost equal size (cf. fig 1). It requires calculation of the equivalent thermal conductivity
vector (λi,j) of each subvolume and radiative exchange factor between subvolumes (Fi,j→m,n) ∀ i,
j, m, n = 1, 2, ..., N where N denotes the number of subvolumes.

A voxel–based FVM is used to solve the steady–state heat conduction equation by performing
the energy balance on each subvolume (resp. control volume (CV) at discrete level to calculate
λi,j) [1, 6]. The temperature distribution throughout the domain is calculated using the second
order accurate finite difference stencil formula as:

Tn+1
i,j = (wi+1,jT

n
i+1,j + wi−1,jT

n
i−1,j + wi,j+1T

n
i,j+1 + wi,j−1T

n
i,j−1)/w

t
i,j , i, j = 1, 2, ..., N , (6)

where T is the temperature of the subvolume (resp. CV) corresponding to attached index,
w is the weight of exchange with the neighbour subvolume (resp. CV) and wt

i,j = wi+1,j +
wi−1,j + wi,j+1 + wi,j−1 is the total weight. The wi+1,j (i.e., in x-direction) is calculated as
2/

[
dx/2
λx(i,j)

+ dx/2
λx(i+1,j)

]
, where λx is the conductivity (resp. CV) and dx is the length of the

subvolume (resp. CV) in x-direction. The development of the method is relatively simple, the
code is cross-validated with several conventional test cases.

Furthermore, the ray tracing approach based on a fast voxel traversal algorithm [7] is used
to compute the radiative exchange factor. Rays are emitted from the center of each triangle,
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Figure 1: Schematic representation of a porous
medium, placed between solid plates and decomposed
into subvolumes, with prescribed boundary conditions.

Figure 2: Kelvin–cell foam gener-
ated in genMat and divided into 5×
5× 5 subvolumes.

towards the void phase, in prescribed number of directions within the hemisphere, and they are
traced until they are fully absorbed or leave the system. Once F(i,j)→(m,n) is computed, the
temperature distribution throughout the domain can be computed using the discretized form of
eq. (3) as:

N∑
i,j=1

i,j 6=m,n

hr,(i,j)→(m,n)F(i,j)→(m,n) (Ti,j − Tm,n) = 0 ∀ m, n = 1, 2, ..., N , (7)

where hr,(i,j)→(m,n) is a constant and is equal to εσAi,j

(
T 2
i,j + T 2

m,n

)
(Ti,j + Tm,n) and A denotes

the total surface area of all triangles. Generally, computation of F(i,j)→(m,n) is long and can be
memory intensive if one records the exchange between each triangle [1]. It would then be nearly
impossible to consider a large mesh with millions of surfaces. Using domain decomposition
approach, we calculate the radiative exchange among all the triangles within the volume but
store the radiative exchange factor between subvolumes. Finally, the coupling is performed over
a simplified geometry having subvolumes equal to number of subdivisions.

3. Numerical experiments
The 3D geometry (or 3D image) used for the computation is generated using an in–house software
genMat developed in C++ and Qt [8]. The geometry was placed between two walls whose faces
were maintained at fixed temperatures (Thot = 1800K and Tcold = 1200K) to generate strong
temperature gradient. The 3D geometry is composed of 250 voxels in each direction giving total
number of voxels ≈15.6× 106. The foam has a porosity of 90% (cf. fig 2.). We assumed that
the solid phase is opaque and optically smooth with a local thermal conductivity (λs) equal to
0.3Wm−1K−1 and a fixed emmisivity (ε) equal to 0.9.

The plane–averaged temperature profile of a Kelvin–cell foam for both absorbing and
reflecting BC is shown in fig 3. The plane–averaged temperature T = 1

A

∫
As

T (x = xc)dA
is the average of temperature over a slice positioned at x = xc, where A is the cross–sectional
area perpendicular to the direction of heat flow. The number of points at which the temperature
is computed is equal to the number of divisions in the direction of heat flow. The results obtained
using our approach were compared with the results produced using the STAR–CCM+. STAR–
CCM+ is also based on FVM and uses ray tracing to calculate the view factor.

From fig 3, it is evident that the results are in good agreement with those of STAR–CCM+,
hence cross–validating our approach. For absorbing boundaries, the temperature in the middle
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Figure 3: Plane–averaged temperature (T ) profile from conduction and conduction–radiation
computation for Absorbing (left) and Reflecting (right) boundary conditions

goes lower than those fixed at hot and cold boundaries This occurs due to the loss of heat due
to radiation (as the temperature at the side walls is 0K) and gives a significant deviation from
pure conductive profile. For reflecting boundaries, the temperature does not go beyond those
fixed at the inlet and outlet. Further, we noticed asymmetric behavior of temperature profile
as in [1]. The average temperature increases near the cold boundary as high intensity radiation
coming from the hot region will be absorbed here and vice versa occurs near the hot boundary.

Furthermore, the number of rays (or directions) used for exchange factor computation
may have a significant effect on correct estimation of radiative heat transfer. For absorbing
boundary, the effect is negligible because most of the rays striking the side faces will be absorbed
permanently. However, this is not the case for reflecting boundaries as the reflected rays can
travel further before being absorbed. Hence, it is necessary for reflecting boundaries to consider
maximum possible directions to account for proper exchange of radiation, as shown in fig 3.

4. Conclusion
In this work, a method based on domain decomposition was established to solve the coupled
conductive–radiative heat transfer within Kelvin–cell foam. The coupling requires λi,j and
F(i,j)→(m,n) whose computation is independent of the temperature and simplifies the coupling
efforts. The results obtained for reflecting and absorbing boundaries are in good agreement with
those computed using STAR–CCM+. It was found that the effect of number of rays on results
may be significant depending on the BC and geometry, and should be used carefully.

This approach is a new milestone in dealing with large and complex geometries composed of
millions of voxels due to low computational effort. In future, it will be extended to solve bigger
and more complex geometries such as fibrous materials composed of randomly distributed fibers.
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