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In this paper, we study convergence of random walks, on nite quantum groups, arising from linear combination of irreducible characters. We bound the distance to the Haar state and determine the asymptotic behavior, i.e., the limit state if it exists. We note that the possible limits are any central idempotent state. We also look at cuto phenomenon in the Sekine nite quantum groups.

Introduction

Given a nite group G, and a current position h in G, choose randomly, according to a xed probability distribution, an element g, and move to gh. If you repeat this procedure, with the same probability distribution π, you will get random positions h k = g k g k-1 . . . g 1 which dene a walk on the Cayley graph of G. A frequently asked question is when the distribution π k of the current position h k is close to the uniform distribution on G. Diaconis and Shahshahani answer this question in [START_REF] Diaconis | Generating a random permutation with random transpositions[END_REF] for the case of permutation groups, by using representation theory. They also observe that after less than t n random transpositions a deck of n cards is not well mixed, but after more than t n random transpositions it is well mixed, where t n = 1 2 n log(n). This is called a cuto. For more details on the cuto phenomenon in classical nite groups, the reader can look at the survey of Salo-Coste [START_REF] Salo-Coste | Random Walks on Finite Groups[END_REF].

Finite quantum groups are a generalization of classical nite groups. Despite their name of group, we are studying algebras endowed with an additional structure.

Denition 1.1. A nite quantum group is a pair G = (A, ∆), where A is a unital nite dimensional * -algebra (eventually noncommutative) and ∆ : A → A ⊗ A is a unital * -homomorphism, called coproduct, such that it is coassociative, i.e., (∆ ⊗ id A ) • ∆ = (id A ⊗∆) • ∆ as * -homomorphisms from A to A ⊗ A ⊗ A, and such that it veries the density in A ⊗ A of the two algebras (1

A ⊗ A)∆(A) = span {(1 A ⊗ a)∆(b), a, b ∈ A} and (A ⊗ 1 A )∆(A) = span {(a ⊗ 1 A )∆(b), a, b ∈ A}.
Note that we can dene a nite quantum group thanks to a classical nite group (G, •). The set of complex-valued continuous functions on G, denoted C(G), is endowed with a structure of (commutative) unital * -algebra. Identifying the tensor product C(G) ⊗ C(G) with the * -algebra C(G × G), one can check that the application ∆ : C(G) → C(G × G), dened by ∆(f )(s, t) = f (s • t), satises the coassociativity relation and the density properties, called quantum cancelation rules.

Following this example, we denote the algebra A of the quantum group G = (A, ∆) by C(G).

1

We need to transfer the properties of probability measures dened on a nite group G, to some object dened on C(G). Let us note that if we look at integration of continuous functions with respect to a probability measure, we obtain a state on C(G), i.e., a linear functional which preserves the unit and positivity. In the framework of quantum groups, the convolution product of two probability measures µ 1 and µ 2 is given by µ 1 µ 2 = (µ 1 ⊗ µ 2 ) • ∆. This formula denes the convolution product of two states dened on a quantum group G = (C(G), ∆).

Moreover, every classical nite group can be equipped with a Haar measure λ,

satisfying the identity G f (g • s) dλ(s) = G f (s) dλ(s) = G f (s • g) dλ(s) which becomes (λ ⊗ id C(G) ) • ∆ = λ(•)1 G = (id C(G) ⊗λ)
• ∆, with the coproduct dened above, where λ denotes the integration with respect to the Haar measure.

This leads us to the following denition:

Denition 1.2. A Haar state G on a compact quantum group G = (C(G), ∆) is a state on C(G) such that G ⊗ id C(G) • ∆ = 1 C(G) G (•) = id C(G) ⊗ G • ∆.
Note that every nite quantum group admits a unique Haar state.

Random walks on nite quantum groups were rst studied by Franz and Gohm [START_REF] Franz | Random walks on nite quantum groups[END_REF]. We are now looking at convolution semigroups of states {φ k } k∈N and their convergence to the Haar state. Recently, McCarthy [START_REF] Mccarthy | Random Walks on Finite Quantum Groups: Diaconis-Shahshahani Theory for Quantum Groups[END_REF] developed the Diaconis Shahshahani theory for nite quantum groups. In particular, he gave upper and lower bounds for the distance to the Haar state, exploiting the corresponding tools, but he could not prove a cuto in the Sekine family of nite quantum groups. He dened [START_REF] Mccarthy | Diaconis-Shahshahani Upper Bound Lemma for Finite Quantum Groups[END_REF] the quantum total variation distance as a norm on functions dened on C(G) by φ -

ψ QT V = sup p∈C(G) a projection |φ(p) -ψ(p)| .
For a nite quantum group G, let us denote by I(G) the set of its irreducible representations, i.e., invertible elements α

= (α ij ) 1≤i,j≤n of M n (C(G)) such that, for any 1 ≤ i, j ≤ n, ∆(α ij ) = k α ik ⊗ α kj For a representation α ∈ I(G), d α
denotes its dimension and χ α the associated character.

We shall also use the Fourier transform. For x an element in C(G), let us denote by F(x) the linear functional dened on C(G) by

F(x)(y) = G yx.
This allows us to dene a convolution product on C(G), also denoted like the product of linear functionals on C(G), thanks to the formula

F(a b) = F(a) F(b) := (F(a) ⊗ F(b)) • ∆. Using Sweedler notation, we get a b = (b) b (2) F(a) S(b (1) ) in C(G).
Here, we restrict ourselves to random walks arising from the Fourier transform of linear combination of irreducible characters, it means from elements of the central algebra. This work is separated into two parts. The second section is devoted to the study of the KacPaljutkin group KP. In the last one, we look at the Sekine family KP n . We study cuto phenomenon in Section 3.3 and list all the possible types of asymptotic behaviors for n xed in Theorem 3.4. It allows us to determine all the central idempotent states on these nite quantum groups, by noting that the central algebra is the center of the algebra with respect to the convolution product.

Random walks in KP

First let us look at random walks on the eight-dimensional KacPaljutkin nite quantum group KP. This is the smallest Hopf-von Neumann algebra which is neither commutative nor cocommutative. We use the notations given in [START_REF] Baraquin | Trace of powers of representations of nite quantum groups[END_REF]. In particular, the algebra 

C(KP) = C ⊕ C ⊕ C ⊕ C ⊕ M 2 (C)
x 1 ⊕ x 2 ⊕ x 3 ⊕ x 4 ⊕ c 11 c 12 c 21 c 22 = 1 8 (x 1 + x 2 + x 3 + x 4 + 2(c 11 + c 22 )) .
As already noted by Kac and Paljutkin [START_REF] Kac | Finite ring groups[END_REF], the elements of I(KP) are

ρ(1) = 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 0 0 1 , ρ(2) = 1 ⊕ -1 ⊕ -1 ⊕ 1 ⊕ 1 0 0 -1 , ρ(3) = 1 ⊕ -1 ⊕ -1 ⊕ 1 ⊕ -1 0 0 1 , ρ(4) = 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ -1 0 0 -1 and X =     1 ⊕ -1 ⊕ 1 ⊕ -1 ⊕ 0 0 0 0 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 e ı π 4 e -ı π 4 0 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 e -ı π 4 e ı π 4 0 1 ⊕ 1 ⊕ -1 ⊕ -1 ⊕ 0 0 0 0     which gives the character χ(X) = 2 ⊕ 0 ⊕ 0 ⊕ -2 ⊕ 0 0 0 0 . Note that ρ(1) is the unit 1 in C(KP)
, this is the trivial representation of KP.

Let us x an element g = 

4 u=1 g u ρ(u) + g X χ(X) of C(KP), with g α ∈ C for every α ∈ I(KP). Let us note that F(e i )(e k ) = 1 8 δ ik , F(e i )(E kl ) = 0, F(E ij )(e k ) = 0 and F(E ij )(E kl ) =
a ij E ij ) ≥ 0
for any nonnegative real number x, any 1 ≤ i ≤ 4 and any positive semidenite matrix A = (a ij ) 1≤i,j≤2 ∈ M 2 (C). These conditions are equivalent to:

g 1 = 1 1 + g 2 + g 3 + g 4 ±2g X ≥ 0 1 + g 2 -g 3 -g 4 ≥ 0 (1) 1 -g 2 + g 3 -g 4 ≥ 0 1 -g 2 -g 3 + g 4 ≥ 0
In particular, it implies that, for all α ∈ I(KP), g α is real and moreover

(2)

|g α | ≤ d α .
2.1. Upper and lower bounds. Lemma 2.1. For all u ∈ {2, 3, 4} and all positive integer k,

1 2 |g u | k ≤ F(g) k - KP QT V ≤ 1 4 4 v=2 |g v | 2k + |g X | 2k 4 k (3) 
Proof. The Quantum DiaconisShahshahani Upper Bound Lemma [START_REF] Mccarthy | Random Walks on Finite Quantum Groups: Diaconis-Shahshahani Theory for Quantum Groups[END_REF]Lemma 5.3.8] gives

F(g) k - KP 2 QT V ≤ 1 4 β∈I(KP) β =1 KP d β Tr F(g)(β) * k F(g)(β) k
with F(g)(β) the matrix composed by the F(g)(β ij )'s for β ij the matrix coecients of β. On the other hand, by the Lower Bound Lemma [11, Lemma 5.3.9], for all non trivial one-dimensional representation α,

F(g) k - KP QT V ≥ 1 2 F(g)(α) k .
Let us compute F(g)(β) for every β ∈ I(KP). First of all, let us note that, by linearity of F,

F(g)(β) = α∈I(KP) g α F(χ α )(β) =   α∈I(KP) g α KP β ij χ α   1≤i,j≤d β .
Since the quantum group is nite, it is of Kac type. Hence the orthogonality relations for coecients of irreducible representations lead to KP

β ij χ α = δ α, β d α
where β = ((β ij ) * ) 1≤i,j≤d β . We clearly have β = β -1 when d β = 1 and X = X.

Finally, we get F(g Let us note that it still might converge, but to some other state. Moreover, the limit state, if it exists, is clearly an idempotent state.

)(β) = g β -1 when d β = 1 and F(g)(X) = 1 2 g X I 2 . Therefore, for d β = 1, Tr F(g)(β) * k F(g)(β) k = g β -1 2k Tr F(g)(X) * k F(g)(X) k = 1 2 2k-1 |g X | 2k .
F(g) k - KP QT V ≤ 1 4 4 u=2 |g u | 2k + |g X | 2k 4 k ≤ √ 7 
Let us now investigate conditions for the random walk to converge to an idempotent state dierent from KP

. First of all, let us list the idempotent states on KP, given by Pal [START_REF]A counterexample on idempotent states on a compact quantum group[END_REF], i.e. states on KP satisfying (φ ⊗ φ) • ∆ = : φ φ = φ:

φ 1 = 8F(e 1 ) φ 2 = 4F(e 1 + e 2 ) φ 3 = 4F(e 1 + e 3 ) φ 4 = 4F(e 1 + e 4 ) φ 5 = 2F(e 1 + e 2 + e 3 + e 4 ) φ 6 = 2F(e 1 + e 4 + E 11 ) φ 7 = 2F(e 1 + e 4 + E 22 ) φ 8 = F(1 KP ) = KP
Then, by looking at the dierent cases for g to satisfy (1) and not (4), we get: Proposition 2.1. Assume that the random walk associated with g does not converge to the Haar state φ 8 . Then, we have six possibilities.

If g X = 2, then g u = 1 for all 1 ≤ u ≤ 4 and F(g) = φ 1 .

If g α = 1 for at least two non trivial one-dimensional representations in I(KP) and |g X | < 2, then g u = 1 for all 1 ≤ u ≤ 4 and the random walk converges to φ 4 .

If g 2 = 1, then g 3 = g 4 . Assume also that |g 4 | < 1 and |g X | < 2, then the random walk converges to φ 6 .

If g 3 = 1, then g 2 = g 4 . Assume also that |g 2 | < 1 and |g X | < 2, then the random walk converges to φ 7 .

If g 4 = 1, then g 2 = g 3 . Assume also that |g 3 | < 1 and |g X | < 2, then the random walk converges to φ 5 .

In all the other cases, it means if g X = -2 or if there is 2 ≤ u ≤ 4 such that g u = -1, then the random walk is cyclic and does no converge.

Proof. First, let us note that, by [12, Proposition 2.1],

F(g) -F(x) QT V = 1 2 g -x 1 = 1 2 KP |g -x| .
We can deduce that the random walk associated with g converges to φ i if and only if the coecients in front of e 1 , e 2 , e 3 , e 4 , E 11 and E 22 of g k converge to the corresponding ones in the denition of φ i above.

Let us also note that g k = α∈I(KP)

g k α d k-1 α χ α .
In particular, the coecients in front of e 2 and e 3 in g k are equal. Hence, the random walk dened by such a g cannot converge to φ 2 or φ 3 . Let us x g satisfying (1) and not (4). Assume, for instance g X = 2. Then, the inequality 1 + g

2 + g 3 + g 4 -2g X ≥ 0 in (1) implies that g u ≥ 1 for all 1 ≤ u ≤ 4.
Thus, by (2), g u = 1 for all 1 ≤ u ≤ 4, and then, F(g) = φ 1 . Likewise, if g X = -2, g u = 1 for all 1 ≤ u ≤ 4 and g k = 8e 4 or 8e 1 , depending on the parity of k. The other cases with |g X | < 2 follow from a similar reasoning.

Random walks in KP n

We use the denition and the representation theory of the Sekine family of nite quantum groups presented in [START_REF] Baraquin | Trace of powers of representations of nite quantum groups[END_REF]. Let us recall that for each n greater than or equal to 2, C(KP n ) = 

x (i,j) e (i,j) + 1≤i,j≤n X i,j E i,j   = 1 2n 2   i,j∈Zn x (i,j) + n n i=1 X i,i  
where E i,j denotes a choice of matrix units in M n (C) and x (i,j) , X i,j ∈ C.

The set of irreducible representations I(KP n ) depends on the parity of n. For n odd, its elements are, for l ∈ Z n , the one-dimensional representations

ρ ± l = i,j∈Zn η il e (i,j) ± n m=1 E m,m+l
with η = e 2ıπ n a primitive n th root of unity, and the two-dimensional representations X u,v , whose characters are

χ (X u,v ) = 2 s,t∈Zn η su cos 2tvπ n e (s,t) for u ∈ Z n and v ∈ {1, 2, . . . , n-1 2 }.
If n is even, we also need to add, for each l ∈ Z n ,

σ ± l = i,j∈Zn (-1) j η il e (i,j) ± n m=1
(-1) m E m,m+l .

Note that ρ + 0 is the unit in C(KP n ), for each n. Let us x an element a = α∈I(KPn) a α χ α of C(KP n ). Let us denote a (i,j) and A ij its coecients in the canonical basis. Then, with 1 2N the indicator function of even integers,

a (i,j) = n-1 l=0   a ρ + l + a ρ - l +1 2N (n)(-1) j (a σ + l + a σ - l )+ 2 n-1 2 v=1 a X l,v cos 2πjv n   η il and A i,j is given by a ρ + j-i -a ρ - j-i + 1 2N (n)(-1) i (a σ + j-i -a σ - j-i
).

Lemma 3.1. The functional F(a) is a state if and only if a ρ + 0 = 1, for all i, j in Z n , a (i,j) ≥ 0 and the matrix A = (A ij ) 1≤i,j≤n is positive semidenite Proof. We want F(a) to satisfy the rst conditions of [START_REF] Franz | On idempotent states on quantum groups[END_REF]Lemma 6.4]. To obtain the result, we only need to note that

2n 2 F(e (s,t) )(e (i,j) ) = δ s,i δ t,j 2n 2 F(e (s,t) )(E i,j ) = 0 2nF(E p,q )(e (i,j) ) = 0 2nF(E p,q )(E i,j ) = δ p,j δ q,i .
Remark 3.1. By Lemma 3.1, the coecient a ρ - 0 is real and its absolute value is not greater than 1.

Example 3.1. Let p, q be two integers such that pq = n, q > 1. Put a ρ + lp = η lp for all 0 ≤ l ≤ q -1 and a α = 0 for all the others α ∈ I(KP n ). Then, for all i, j ∈ Z n

a (i,j) = q-1 l=0 η lp η ilp = q1 qZn (i + 1)
which equals q if i + 1 is a multiple of q in Z n and 0 otherwise. This is nonnegative, and the matrix A, dened by A ij = η lp if j = i + lp and 0 otherwise, is selfadjoint and its eigenvalues are 0 and q, i.e., A is semidenite positive. Therefore, F(a) = φ p is a state on C(KP n ).

3.1. Conditions for convergence. First, note that, if we extend naturally the notation, X u,0 is unitarily equivalent to the direct sum of the representations ρ + u and ρ - u . Similarly, if n is even, X u, n 2 is unitarily equivalent to the direct sum of σ + u and σ - u , as representations of KP n . Moreover, the random walk associated with a converges if and only if the sequences of matrices F(a)(X u,v ) k k∈N converge for all u ∈ Z n and all v ∈ {0, 1, . . . , n 2 },

since (F(a) k )(X u,v ) = F(a)(X u,v ) k .
Theorem 3.1. The random walk associated with a converges if and only if every complex number aα dα is an element of the open unit disk D or equals 1, for all α ∈ I(KP n ). 

Proof. First, let us x (u, v) such that 0 ≤ u ≤ n -1 and 1 ≤ v ≤ n-1 2 . Then F(a)(X u,v ) =     n-1 s,t=0
F(a)(X u,v ) = 1 2 a X n-u,v I 2 .
Hence the corresponding sequences of matrices converge if and only if

1 2 |a X n-u,v | < 1 or 1 2 a X n-u,v = 1.
The same computation for v = 0 gives F(a)(X u,0 ) = 1 2

a ρ + n-u + a ρ - n-u a ρ + n-u -a ρ - n-u a ρ + n-u -a ρ - n-u a ρ + n-u + a ρ - n-u = 1 √ 2 1 √ 2 1 √ 2 -1 √ 2 a ρ + n-u 0 0 a ρ - n-u 1 √ 2 1 √ 2 1 √ 2 -1 √ 2
.

This leads to the condition on a ρ + l and a ρ - l .

If n is even, we get

F(a)(X u, n 2 ) = 1 2   a σ + n-u + a σ - n-u (-1) u a σ + n-u -a σ - n-u (-1) u a σ + n-u -a σ - n-u a σ + n-u + a σ - n-u   whose eigenvalues are a σ + n-u and a σ - n-u
, and the condition on these coecients follows.

Remark 3.2. Since the X u,v 's are unitaries, the F(a)(X 

F(a) k - KPn QT V ≤ 1 4 α∈I(KPn) α =ρ + 0 , dα=1 |a α | 2k + 1 4 k α∈I(KPn) dα=2 |a X u,v | 2k (5) 
Proof. The Quantum DiaconisShahshahani Upper Bound Lemma [START_REF] Mccarthy | Random Walks on Finite Quantum Groups: Diaconis-Shahshahani Theory for Quantum Groups[END_REF]Lemma 5.3.8] gives

F(a) k - KPn 2 QT V ≤ 1 4 β∈I(KPn) β =ρ + 0 d β Tr F(a)(β) * k F(a)(β) k .
Let us compute F(a)(β) for every β ∈ I(KP n ). First of all, let us recall that, by linearity of F,

F(a)(β) = α∈I(KPn) a α F(χ α )(β) =   α∈I(KPn) a α KPn β ij χ α   1≤i,j≤d β . Assume d β = 1.
By the orthogonality relations for coecients of irreducible representations of quantum group of Kac type, we get F(a)(β) = a β -1 and then (6)

Tr F(a)(β) * k F(a)(β) k = a β -1
2k .

Now, assume d β = 2, which means that there exists (u, v)

such that β = X u,v , 0 ≤ u ≤ n-1 and 1 ≤ v ≤ n-1 2 . We already know that F(a)(X u,v ) = 1 2 a X n-u,v I 2 . Therefore (7) Tr F(a)(X u,v ) * k F(a)(X u,v ) k = 1 2 2k-1 |a X n-u,v | 2k .
Finally, we get the bound ( 5) by replacing ( 6) and ( 7) in the Quantum Diaconis Shahshahani Upper Bound Lemma.

Hence, the random walk associated with a converges to the Haar state if all the complex numbers cited in Theorem 3. 

1 2

a α d α k ≤ F(a) k - KPn QT V .
Proof. By the Quantum DiaconisShahshahani Lower Bound Lemma [11, Lemma 5.3.9], for all non trivial one-dimensional representation α,

F(a) k - KPn QT V ≥ 1 2 |a α | k .
Moreover, the following equality [START_REF] Mccarthy | Random Walks on Finite Quantum Groups: Diaconis-Shahshahani Theory for Quantum Groups[END_REF] holds [START_REF] Maes | Notes on compact quantum groups[END_REF] F(a) k -

KPn QT V = 1 2 sup x∈C(KPn), x ∞ ≤1 F(a) k (x) - KPn x and any two-dimensional irreducible representation satises χ(X u,v ) 2 ∞ ≤ 1. Thus F(a) k - KPn QT V ≥ 1 4 F(a) k (χ(X u,v )) = 1 2 a X n-u,v 2 k .
Finally, combining the previous lemmas, we obtain Theorem 3.2. The random walk (F(a) k ) k∈N converges to the Haar state if and only if the condition (8) holds.

Proof. The condition ( 8) is clearly sucient for the random walk to converge to the Haar state, thanks to the upper bound [START_REF] Franz | Random walks on nite quantum groups[END_REF]. Moreover, if ( 8) is not satised for some non trivial representation, by [START_REF] Kac | Finite ring groups[END_REF], we obtain that the sequence F(a) k k∈N stays uniformly far away from randomness, since the norm is at least 1 2 for all k.

Thus, the condition ( 8) is also necessary.

Remark 3.3. Let us note that if the condition [START_REF] Freslon | Quantum reections, random walks and cut-o[END_REF] is not satised for X u,v , a X u,v = 2, by Theorem 3.1. Hence,

F(a)(X n-u,v ) = 1 2 a X u,v I 2 = I 2
and the limit of the sequence F(a)(X n-u,v ) k k∈N is the identity. But, KPn (X p,q ) is the matrix null except if p = q = 0, it means that the limit state is not KPn . This is another way to prove that the condition [START_REF] Freslon | Quantum reections, random walks and cut-o[END_REF] is necessary for the two-dimensional representations. We will use this method to study the asymptotic behavior of the random walk.

3.3. Cuto phenomenon. In the classical case, we frequently observe cuto phenomenon, i.e., the distance between F(a) k and the Haar state is almost 1 for a time and then suddenly tends to 0, exponentially fast. There exist dierent denitions of the threshold (see, for example, [START_REF] Salo-Coste | Random Walks on Finite Groups[END_REF][START_REF] Diaconis | The cuto phenomenon in nite Markov chains[END_REF][START_REF] Roussel | Phénomène de cuto pour certaines marches aléatoires sur le groupe symétrique[END_REF]), depending on how sharp you want the cuto.

Note that, by upper and lower bounds, ( 5) and ( 9), we have roughly

1 2 M k a ≤ F(a) k - KPn QT V ≤ n √ 2 M k a
where M a is the maximum of the |aα| dα , α non-trivial. For n xed, if M a is less than 1, the random walk converges to the Haar state. In this subsection, we will look at what happens if a and k depend on n. To give a denition of a depending quite naturally on n, we look at some quantum version of the simple random walk on Z n , studied in [2, Theorem 2, Chapter 3C].

If we only consider these bounds and want that nM k a vanishes when n goes to innity, then the limit of M k a is also 0. Moreover, since the lower bound is at most 1 2 , it will be ineective to prove the cuto. Actually, for our example, we are able to prove that there is no cuto, as in its classical version.

Remark 3.4. In [START_REF] Mccarthy | Diaconis-Shahshahani Upper Bound Lemma for Finite Quantum Groups[END_REF], McCarthy gives another example of a random walk in Sekine family where there is no cuto, but with a state which formally does not depend on n and which is not the Fourier transform of an element in the central algebra. Note that in [START_REF] Freslon | Cut-o phenomenon for random walks on free orthogonal quantum groups[END_REF] and [START_REF] Freslon | Quantum reections, random walks and cut-o[END_REF], Freslon nds cuto examples in compact quantum groups. Proof. First let us prove that F(a) is a state on C(KP n ). We only need to check that every a (i,j) is nonnegative and that the matrix A is semidenite positive, since a ρ + 0 is equal to 1 by denition. Note that, for any i and any j in Z n ,

a (i,j) = n-1 l=0 cos 2lπ n η il = n 2 (δ i,1 + δ i,n-1 )
is always nonnegative and the equality A i,j = cos 2(j-i)π n denes a circulant matrix, whose eigenvalues are given by the same formula as the a (i,j) 's, for i between 0 and n -1. Thus, the matrix A is semidenite positive.

On the one hand, following the arguments of the proof of Theorem 2 in Chapter 3C of [START_REF] Diaconis | Group representations in probability and statistics[END_REF], the upper bound [START_REF] Franz | Random walks on nite quantum groups[END_REF] gives

F(a) k - KPn 2 QT V ≤ 1 4 n-1 l=1 cos 2lπ n 2k ≤ 1 2 n-1 2 l=1 cos lπ n 2k ≤ 1 2 n-1 2 l=1 e -kl 2 π 2 n 2
where we use that cos(x) ≤ e -x 2 2 for 0 ≤ x < π 2 . Finally, since for every integer j we have (j + 1) 2 -1 ≥ 3j,

F(a) k - KPn 2 QT V ≤ e -kπ 2 n 2 2 +∞ j=0 e -3kjπ 2 n 2 = e -kπ 2 n 2 2 1 -e -3kπ 2 n 2
.

This works for any k and any odd n. Moreover, note that, for k greater than n 2 , 2 1 -e -3kπ 2 n 2 is greater than 1 ; thus, we obtain the announced upper bound.

On the other hand, the lower bound (9) leads to

F(a) k - KPn QT V ≥ 1 2 max 0≤l≤n-1 cos 2πl n k = 1 2 cos π n k . Let us dene g(x) = log e x 2 2 + x 4 4 cos(x) . Since g (x) = x + x 3 -tan(x) is positive on 0 ; π 3 , g(x)
is also positive on the same interval. Hence,

F(a) k - KPn QT V ≥ 1 2 cos π n k ≥ 1 2 e -kπ 2 2n 2 -kπ 4 4n 4 .
This works for any k and any odd n ≥ 3.

Remark 3.6. Thus, the limit of F(a) k(n) -

KPn QT V
, when n and k(n) n 2 go to innity, is null, and conversely, is always at least 1 2 e -π 2 2 -π 4 36 for k(n) less than n 2 .

Remark 3.7. These bounds give in particular that for any positive integer C,

0 < lim inf n→+∞ F(a) Cn 2 - KPn QT V ≤ lim sup n→+∞ F(a) Cn 2 - KPn QT V < 1.
Thus, k should satisfy lim n→+∞ k n 2 = +∞ in order to get the convergence of the upper bound to 0 when n goes to innity. But, in this case, the lower bound vanishes too. This is precisely the meaning of a no cuto statement.

3.4. Asymptotic behavior. We go back to the setting where n and a are xed, and k does not depend on them. We now study what happens when k goes to innity.

3.4.1. Possible limit states. Let us note that, when the random walk converges, the limit state µ is an idempotent state. Thanks to Zhang [START_REF] Zhang | Idempotent states on Sekine quantum groups[END_REF], we know all the idempotent states on the Sekine quantum groups. There are four dierent types:

• KPn , the Haar state,

• h Γ = 2n 2 #Γ (i,j)∈Γ F(e (i,j) ) where Γ is a subgroup of Z n × Z n , • h Γ,l = n 2 #Γ (i,j)∈Γ F(e (i,j) ) + q m≡l[q] F(E m,m ) where Γ = Z n × qZ n , q | n, q > 1 and l ∈ Z q , • h Γ,l,τ = n 2 #Γ (i,j)∈Γ F(e (i,j) )+q i,j≡l[q]
τ j-i F(E i,j ) where Γ = pZ n ×qZ n , p > 1, pq = n, l ∈ Z q and τ ∈ {-1, 1} qZn such that j∈qZn τ j η ij > 0 for all i ∈ Z p .

Let us note that the two rst types are Haar idempotent states, which means that they arise from the Haar state of a quantum subgroup.

Remark 3.8. We already know that

KPn (X u,v ) = δ (u,v),(0,0) I 2 .
The Remark 2.11 in [START_REF] Zhang | Idempotent states on Sekine quantum groups[END_REF] gives a useful characterization of types h Γ,l and h Γ,l,τ by the μ(X u,v )'s:

(11) h Γ,l (X u,v ) =            1 2 1 η -vl η vl 1 if u = 0 and n q | v 0 0 0 0 otherwise (12) h Γ,l,τ (X u,v ) =            1 2 1 τ -v η -vl τ v η vl 1 if q | u and n q | v 0 0 0 0 otherwise
In particular, for µ of these types, and for each v between 1 and n-1 2 , the matrix μ(X n-u,v ) is either null or not diagonal. Thus, when some a X u,v equals 2, by the proof of Theorem 3.2, the limit state should be of type h Γ , if it exists.

Proposition 3.1. If the random walk associated with a converges, the limit state µ is a central idempotent state.

Proof. A central idempotent state is a state φ on C(KP n ) such that φ φ = φ and φ ψ = ψ φ for every bounded linear functional ψ on C(KP n ).

Let us note that if F(a) k ψ = ψ F(a) k holds for all k, then µ ψ = ψ µ is veried, where µ is the limit state of the random walk F(a) k . Thus, we will study the commutativity for the random walk. Actually, we only need to check if F(a) is central, for a a linear combination of irreducible characters.

Let ψ be a linear functional on C(KP n ). Then, there exists b in C(KP n ) such that ψ = F(b). We want to prove the equality ψ F(a) = F(a) ψ. This is to show that if a is a linear combination of characters, a b = b a holds for all b in C(KP n ).

Using Sweedler notation, by denition of the convolution product on C(KP n ), since the Haar state is tracial and

S is involutive, b a = (a) a (2) KPn S(a (1) )b = KPn ⊗ρ + 0 (b ⊗ ρ + 0 ) • (S ⊗ ρ + 0 )∆(a) = KPn ⊗S (b ⊗ ρ + 0 ) • (S ⊗ S)∆(a) .
Let us denote by σ the morphism x ⊗ y → y ⊗ x, and note that for any α in I(KP n ), σ(∆(χ α )) = ∆(χ α ). Remark 3.9. This result is true in any nite quantum group since they satisfy the Kac property. Note that the Haar state is always invariant under the antipode on a compact quantum group [START_REF] Franz | On idempotent states on quantum groups[END_REF].

3.4.2. Convergence to h Γ .

Lemma 3.4. Assume that the random walk associated with a converges, and denote by µ the limit state. The followings are equivalent:

i) ∀l ∈ Z n , a ρ + l = a ρ - l and a σ + l = a σ - l (when n is even) ii) a ρ - 0 = 1 iii) µ is a h Γ for Γ a subgroup of Z n × Z n such that (13) (k, l) ∈ Γ ⇐⇒ (k, -l) ∈ Γ Proof. The implication i) ⇒ ii) is clear.
The converse follows from the fact that A is positive semidenite. Now, let us look at the equivalence between ii) and iii). First of all, let us note that

a k = α∈I(KPn) a k α d k-1 α χ α .
Let us denote by a (k) (i,j) and A (k) i,j its coecients in the canonical basis, and by µ (i,j) and M i,j the coecients of µ in basis {F(e (i,j) ), F(E i,j ), 1 ≤ i, j ≤ n}.

Then by [START_REF] Zhang | Idempotent states on Sekine quantum groups[END_REF], either i,j∈Zn 

µ (i,j) = 2n
a ρ - 0 = 1.
Moreover, for a a linear combination of irreducible characters, a

(i,-j) = a (k) (i,j) (k) 
then µ (i,j) = µ (i,-j) . Thus, the subgroup Γ of Z n × Z n satises the condition [START_REF] Neshveyev | Compact quantum groups and their representation categories, volume 20 of Cours Spécialisés[END_REF].

Remark 3.10. By Remark 3.8, we obtain that if the random walk converges and

there exists α ∈ I(KP n ) such that a α = d α = 2, then a ρ - 0 = 1.
Lemma 3.5. Assume that the random walk associated with the element a converges.

If there exists a one-dimensional representation α + in I(KP n ) such that a α + = a α -= 1, then the limit state is of type h Γ , with Γ a subgroup of Z n × Z n satisfying [START_REF] Neshveyev | Compact quantum groups and their representation categories, volume 20 of Cours Spécialisés[END_REF].

Proof. Let us denote by X α the corresponding X u,v with u ∈ Z n and v = 0

if α + is ρ + n-u or v = n 2 if α + = σ + n-u . Then, F(a) k (X α ) = I 2 .
Hence, by characterizations ( 11) and ( 12), the limit state is of type h Γ . The same argument as in the preceding lemma gives the property of Γ. If n is odd, there are only four possibilities:

• condition (8) holds, i.e., µ = KPn ,

• ∀α ∈ I(KP n ), |a α | < d α or a α = d α , and a ρ - [START_REF] Freslon | Quantum reections, random walks and cut-o[END_REF] does not hold, i.e., µ = h Γ,l,τ with q = 1 (and p = n), l = 0 and τ i = 1 for all i ∈ Z n ,

0 = 1, i.e., µ = h Γ , with Γ a subgroup of Z n × Z n satisfying (13) • ∀α ∈ I(KP n ), |a α | < d α or a α = 1, a ρ - 0 = 1 but condition
• otherwise the random walk diverges.

If n is even, there are six possibilities: [START_REF] Freslon | Quantum reections, random walks and cut-o[END_REF] does not hold, i.e., µ = h Γ,l,τ with q = 1 (and p = n), l = 0 and τ

• condition (8) holds, i.e., µ = KPn , • ∀α ∈ I(KP n ) |a α | < d α or α = d α , and a ρ - 0 = 1, i.e., µ = h Γ , with Γ a subgroup of Z n × Z n satisfying (13) • ∀α ∈ I(KP n ), |a α | < d α or a α = 1, a ρ - 0 = 1, a σ + 0 = 1 or a σ - 0 = 1 but a σ + 0 = a σ - 0 , a σ + 2 < 1 and a σ - 2 < 1, i.e., µ = h Γ,l with q = 2 and l equals 0 if a σ + 0 = 1, or 1 if a σ - 0 = 1, • ∀α ∈ I(KP n ), |a α | < d α or a α = 1, a ρ - 0 = 1, a σ + 0 < 1 and a σ - 0 < 1 but condition
i = 1 for all i ∈ Z n , • ∀α ∈ I(KP n ), |a α | < d α or a α = 1, a ρ - 0 = 1, a σ + 0 = a σ + 2 = 1 or a σ - 0 = a σ - 2 = 1 but a σ + 0 = a σ -

0

, i.e., µ = h Γ,l,τ with q = 2 (and p = n 2 ),

• otherwise the random walk diverges. Remark 3.11. By Proposition 3.1, the limit states are central for the convolution product. One can check that an idempotent state arises as the limit of such a random walk if and only if it is central.

Proof. We only need to look at the case when the limit µ exists but is not the Haar state or some h Γ . We will again use the characterizations [START_REF] Mccarthy | Random Walks on Finite Quantum Groups: Diaconis-Shahshahani Theory for Quantum Groups[END_REF] and ( 12) of the idempotent states h Γ,l and h Γ,l,τ .

The limit of the F(a) k (X u,v )'s is null for all v between 1 and n-1 2 , which is equivalent to q equals 1 or 2.

Since q divides n, if n is odd, the only possibility is q = 1. Hence, µ is the state h {0}×Zn,0,(1) n-1 i=0 .

If n is even, X 0, n 2 exists, and

F(a) k (X 0, n 2 ) = 1 2 a k σ + 0 + a k σ - 0 a k σ + 0 -a k σ - 0 a k σ + 0 -a k σ - 0 a k σ + 0 + a k σ - 0 tends to 0 0 0 0 , 1 2 
1 1 1 1 or 1 2 1 -1 - 1 1 
. Let us note that the limit is null if and only if a σ + 0 and a σ - 0 have both modulus less than 1. Since, among the possible limit states, the equality µ(X 0, n 2 ) = 0 0 0 0 characterizes h {0}×Zn,0,(1) n-1 i=0 , we get the fourth case. Assume now that the previous limit is not the null matrix. The case u = n -2 and v = n 2 will determine the limit, since h

Γ,l (X n-2, n 2 ) = 0 0 0 0 whereas h Γ,l,τ (X n-2, n 2 ) = h Γ,l,τ (X 0, n 2 
).

Thus, we can dene the random walk

ψ p = F (ρ + 0 -ρ - 0 ) q-1 l=0 η lp ρ + lp = q-1 l=0 η lp F(ρ + lp ) -η lp F(ρ - lp )
which is also cyclic, with period lcm(2, q). In particular, it has period 2q when n is odd.

Example

3.3. Let us note that ρ + 0 -ρ - 0 + 1 2 n-1 l=1 (ρ + l -ρ - l
) denes a state. One can check that the associated random walk is not cyclic and admits no limit.

3.5. Random walks in the dual of KP n . We can dene the dual group of a nite quantum group G = (C(G), ∆). This dual, denoted Ĝ = (C( Ĝ), ∆), is again a nite quantum group. The algebra C( Ĝ) is the set of all linear forms dened on C(G).

It is also isomorphic to the direct sum of the non-equivalent unitary irreducible corepresentations of C(G), thanks to the Fourier transform. All the structures are dened by duality.

Let us denote the dual of KP n by KP n = (C( KP n ), ∆). It admits the dual basis {e (i,j) } i,j∈Zn ∪ {E i,j } 1≤i,j≤n . Then, its irreducible characters are all the e (i,j) 's and χ( X) = x (i,j) e (i,j) + 1≤i,j≤n X i,j E ij   = x (0,0) .

The Fourier transform on C( KP n ) is denoted F -1 , since it allows us to go back in the Sekine nite quantum group KP n , identifying F -1 (e (i,j) ) with e (-i,-j) and F -1 (E ij ) with 1 n E ij . Thus, the Fourier transform of element a = α∈I( KPn) a α χ α = i,j∈Zn a (i,j) e (i,j) + g X n i=1

E ii denes a state on C( KP n ) if and only if F -1 (a) is a positive element in C(KP n ) and KPn a = 1. This is equivalent to the fact that a α is real and nonnegative for any α ∈ I( KP n ) and a (0,0) = a e (0,0) = 1.

The same type of computation as the above gives us the following result: ∀α ∈ I( KP n ) \ {e (0,0) }, a α < d α .

If this condition is not satised, but a α ≤ d α for any irreducible representation α, then the random walk converges to some central idempotent state, i.e., an element of C(KP n ) of the form i,j∈Zn ε (i,j) e (i,j) + ε X n i=1 E ii , with ε α = 0 or 1, for any α in I( KP n ) and ε (0,0) = 1. Moreover, every idempotent element in the center of C(KP n ) can be obtained this way. Otherwise, there exists α such that a α > d α and the random walk diverges.

Proof. Let us note that, for any β ∈ I( KP n )

F -1 (a)(β) = a (-i,-j) if β = e (i,j)

a X n I n if β = X .
Thus, the random walk converges if and only if a α < d α for all non trivial α ∈ I( KP n ).

Then, the distance between the random walk and the Haar state can be bounded from above and below in the following way: Since KP n is of Kac type, Proposition 3.1 holds also in this case. Note that states on C( KP n ) correspond to positive elements in C(KP n ) with coecient 1 in front of e (0,0) , thus of the form i,j∈Zn

x (i,j) e (i,j) + n i,j=1 X i,j E i,j where the x (i,j) 's are nonnegative and X = (X i,j ) 1≤i,j≤n is positive semidenite. The state is central if and only if the matrix X is central in M n (C), i.e., is a scalar multiple of the identity matrix I n . Then the state is central and idempotent if and only if it is of the announced form.

  exponential decay. By the inequality (2), the random walk does not converge to the Haar state if and only if there exists a non-trivial irreducible representation α such that |g α | = d α , i.e. g α ∈ {-d α , d α }.

  i,j∈ZnCe (i,j) ⊕ M n (C) is endowed with the Haar state KPn
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S ⊗ ρ + 0 S

 0 The property of the antipode gives (S ⊗ S)∆(a) = σ (∆(S(a))). Moreover the element S(a) is also a linear combination of characters ; hence, σ (∆ (S(a))) = ∆(S(a)). Thus, we get b a = S ⊗ ρ + 0 ∆(b) • (a ⊗ ρ + 0 ) = a b where the second equality comes from the Kac property, and the last one from the fact that KPn S(x) = KPn x.

2 and n m=1 M

 m=1 m,m = 0 and µ is of type h Γ , or i,j∈Zn µ (i,j) = n 2 and n m=1 M m,m = n and µ is of another type. On the other hand, limit µ satises i,j∈Zn µ (i,j) = 2n 2 and n m=1 M m,m = 0 if and only if

4 .

 4 Denote by µ the limit state of the random walk associated with a, if it exists.
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  ii . The Haar state, dual of the counit of KP n , is given by KPn

Proposition 3 . 2 .

 32 The random walk associated with such an element a of C( KP n ) converges to the Haar state KPn if and only if

  for any non-trivial irreducible representation α. This gives the necessary and sucient condition for the random walk to converge to the Haar state.

  is endowed with the canonical basis {e 1 , e 2 , e 3 , e 4 , E 11 , E 12 , E 21 , E 22 }, where E ij is the image of a matrix unit. The unit is 1 = 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ I 2 , with I 2 the identity matrix. The Haar state is given by KP

  By the lower bound (3) in Lemma 2.1, the convergence implies that |g u | is strictly less than 1, for each u ∈ {2, 3, 4}. Then, the second equation in (1) leads to |g X | < 2, i.e. (4) holds. In the case of convergence, let us denote by g m the greatest element among |g 2 |, |g 3 |, |g 4 | and |g

	Hence, the Quantum DiaconisShahshahani Upper and Lower Bound Lemmas give
	the bounds announced in (3).	
	2.2. Asymptotic behavior. We can now determine the conditions for the random
	walk to converge to the Haar state. We then study the other cases, when the random
	walk does not converge to the Haar state.	
	Theorem 2.1. The random walk dened by g =	4	g u ρ(u) + g X χ(X), satisfying
			u=1
	conditions (1), converges to the Haar state if and only if
	(4)	∀α ∈ I(KP) \ {1 KP }, |g α | < d α .
	In this case, the distance to the Haar state decreases exponentially fast from the
	rst step on.		
	Proof. By the upper bound (3) in Lemma 2.1, the condition (4) is sucient.

X | 2 . Then, g m < 1 and, by Lemma 2.1,
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Remark 3.12. If we look at the characterizations [START_REF] Mccarthy | Random Walks on Finite Quantum Groups: Diaconis-Shahshahani Theory for Quantum Groups[END_REF] and [START_REF] Mccarthy | Diaconis-Shahshahani Upper Bound Lemma for Finite Quantum Groups[END_REF], we have also the following equivalences: 

for q > 1 such that pq = n. Thus, the random walk is cyclic, with period q.

Let us note that ρ + 0 -ρ - 0 = 2 n m=1 E m,m clearly satises the conditions of Lemma 6.4 in [START_REF] Franz | On idempotent states on quantum groups[END_REF]. The associated random walk is also cyclic, with period 2, for all n ≥ 2 (even for odd n). The state is the Haar state when k is even and 2 n m=1

F(E m,m )

for k odd.