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TRACE OF POWERS OF REPRESENTATIONS OF FINITE

QUANTUM GROUPS

ISABELLE BARAQUIN

Abstract. In this paper we study (asymptotic) properties of the ∗-distribution
of irreducible characters of �nite quantum groups. We proceed in two steps,
�rst examining the representation theory to determine irreducible representa-
tions and their powers, then we study the ∗-distribution of their trace with
respect to the Haar measure. For the Sekine family we look at the asymptotic
distribution (as the dimension of the algebra goes to in�nity).
Keywords: �nite quantum groups; representation theory; asymptotic ∗-distribution.
2010 Mathematics Subject Classi�cation: 20G42, 81R50

1. Introduction

In [1] and then in [2], Diaconis, Shahshahani and Evans show that the traces of
powers of a random unitary (respectively orthogonal) matrix behave asymptotically
like independent complex (resp. real) Gaussian random variables. Later, Banica,
Curran and Speicher investigate the case of easy quantum groups in [3, 4], and
obtain similar results in the context of free probability.

Compact quantum groups are a generalization of classical compact groups. They
were introduced in order to extend the Pontryagin duality. Despite of their name
of group, we are studying algebras endowed with an additional structure. For a
more complete presentation, the reader can look at [5] or [6].

De�nition 1.1 (Woronowicz). A compact quantum group is a pair G = (A,∆),
where A is a unital C∗-algebra (eventually noncommutative) and ∆: A → A ⊗ A
is a unital ∗-homomorphism, called coproduct, such that it is coassociative, i.e.

(∆⊗ idA) ◦∆ = (idA⊗∆) ◦∆

as ∗-homomorphisms from A to A ⊗ A ⊗ A, and such that it veri�es the density
in A ⊗ A of the two algebras (1A ⊗ A)∆(A) = span {(1A ⊗ a)∆(b), a, b ∈ A} and
(A⊗ 1A)∆(A) = span {(a⊗ 1A)∆(b), a, b ∈ A}.

We will say that the quantum group is cocommutative if the coproduct is sym-
metric, i.e. if σ ◦ ∆ = ∆ where σ(a ⊗ b) = b ⊗ a, for all a, b ∈ A. Note that we
consider unital, associative and involutive algebras over the �eld of complex num-
bers and that the tensor products of algebras are algebraic tensor products over
C.

Note that we can de�ne a quantum group thanks to a classical compact group
(G, ·). The set of complex-valued continuous functions on G, denoted C(G), is
endowed with a structure of (commutative) unital C∗-algebra. Identifying the ten-
sor product C(G) ⊗ C(G) with C(G ×G), it is easy to check that the application
∆: C(G)→ C(G×G), de�ned by ∆(f)(s, t) = f(s · t) satis�es the coassociativity
relation and the density properties, called quantum cancellation rules.
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Following this example, we also denote the algebra A of the quantum group
G = (A,∆) by C(G), and a compact quantum group is called �nite when the
algebra is �nite dimensional.

In this article, we will look at �nite quantum groups. They were introduced
in the sixties as examples of Hopf-von Neumann algebras to recover symmetry
in duality for non abelian locally compact groups. The eight-dimensional Kac-
Paljutkin quantum group KP, introduced in [7] is the smallest non-trivial example,
in the sense it is neither commutative nor cocommutative. In 1996, Sekine de�nes
a new family of �nite quantum groups [8], of dimension 2n2 for all n ≥ 2.

To study a group, it is sometimes useful to look at its action on a complex Hilbert
space H. This is a representation of the group π : G→ B(H), where B(H) denotes
the space of bounded operators on H. When the group is compact, we can see π
as an element of B(H)⊗ C(G). In this framework, the property

∀s, t ∈ G, π(s · t) = π(s)π(t)

becomes (idB(H)⊗∆)π = J12(π)J13(π), where for every a ⊗ f ∈ B(H) ⊗ C(G),
J12(a⊗ f) = a⊗ f ⊗1G and J13(a⊗ f) = a⊗1G⊗ f in B(H)⊗C(G)⊗C(G) and
1G denotes the constant function 1 on G, the unit in C(G).

De�nition 1.2. Let G = (C(G),∆) be a compact quantum group. A corepresen-
tation of the algebra C(G), also called a representation of the quantum group G, is
an invertible element u of B(H) ⊗ C(G), for some complex Hilbert space H, such
that (idB(H)⊗∆)u = J12(u)J13(u) in B(H)⊗ C(G)⊗ C(G).

We will say that a representation u ∈ B(H) ⊗ C(G) of the compact quantum
group G is unitary if u is a unitary element of B(H)⊗ C(G), �nite dimensional if
the Hilbert space H is �nite dimensional.

Thus, once a basis of H is �xed, we can see a �nite dimensional representation
as an element ofMn(C)⊗C(G) 'Mn (C(G)), i.e. a matrix u = (uij)1≤i,j≤n with
coe�cients in the algebra of the quantum group satisfying ∆(uij) =

∑
k

uik ⊗ ukj .

De�nition 1.3. Assume u ∈ B(Hu)⊗C(G) and v ∈ B(Hv)⊗C(G) are represen-
tations of the compact quantum group G. We say that an operator T : Hu → Hv
intertwines u and v if

(T ⊗ 1C(G))u = v(T ⊗ 1C(G)) .

If such an operator exists, u and v are called equivalent. If moreover T is unitary,
they are called unitarily equivalent.

A representation u is called irreducible if there is no intertwiners between u and
u itself except scalar multiples of idH.

In particular irreducible representations of compact quantum groups are �nite
dimensional. An irreducible representation u of a compact quantum group G will
be called fundamental if its coe�cients uij generate the algebra C(G).

Up to equivalence, we can consider only unitary irreducible (�nite dimensional)
representations. With these objects, we will use the following notation:

De�nition 1.4. Let M be a matrix whose coe�cients Mi,j are elements of an
algebra A (eventually noncommutative). The trace of M , denoted χ(M), is the
sum of all its diagonal elements, that is χ(M) =

∑
i

Mii in A.
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Moreover, every classical compact group can be equipped with a Haar measure.
If we look at integration of continuous functions with respect to this measure, we
obtain a state on the group algebra. The identity∫

G

f(g · s) dλ(s) =

∫
G

f(s) dλ(s) =

∫
G

f(s · g) dλ(s)

becomes (λ⊗ idC(G)) ◦∆ = λ(·)1G = (idC(G)⊗λ) ◦∆, with the coproduct de�ned
above, where λ denotes the integration with respect to the Haar measure. This
leads us to the following de�nition:

De�nition 1.5. A Haar state h on a compact quantum group G = (A,∆) is a
state on A such that

(h⊗ idA) ◦∆ = h(·)1A = (idA⊗h) ◦∆ .

Note that every compact quantum group admits a unique Haar state. We will use
it to determine ∗-distribution of elements of the algebra, in the following sense. Let
us denote by C〈X,X∗〉 the set of polynomials with two (noncommutative) variables
X and X∗.

De�nition 1.6. Let a be an element of the compact quantum group G = (A,∆),
endowed with the Haar state h. The ∗-distribution of a is the linear functional
µa : C〈X,X∗〉 → C given by

µa (Xε1 . . . Xεn) = h(aε1 . . . aεn)

for all natural number n and every choice of ε1, . . . , εn ∈ {∅, ∗}, where aε1 . . . aεn
denotes the corresponding product of a = a∅ and a∗ in A. The h(aε1 . . . aεn)'s are
called the moments of a.

We will compare these ∗-distributions with classical probability distributions.
For instance, the Dirac mass probability distribution δx in some real number x, the
arcsine distribution µarc(x,y) on the interval (x ; y), or the uniform distribution
U(xT) on a multiple of the complex unit circle T.

We will also look at joint distribution of several elements, de�ned in a similar
way. In this article, we say that the elements are independent when the joint
distribution correspond to the joint distribution of classical independent random
variables. We consider asymptotic distribution as convergence in moments.

This work is separated into two parts. The �rst section is devoted to the study
of the Kac-Paljutkin quantum group KP. After recalling the de�nition, we will de-
termine its �ve irreducible representations. Finally, we determine the ∗-distribution
of the trace of powers of the fundamental representation in Theorem 2.1 and study
their independence in Theorem 2.2.

In the second section, we work with the family of Sekine quantum groups. Af-
ter recalling the de�nition, we give the representation theory. We also study the
character space and a commutative subalgebra. Finally, we determine the asymp-
totic ∗-distribution of the trace of powers of two-dimensional representations in
Theorems 3.4 and 3.5.

2. Kac-Paljutkin Finite Quantum Group KP

2.1. De�nition. We will follow the de�nition of [9], but for convenience of the
reader, we recall here the notations.
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Consider the multi-matrix algebra A = C⊕ C⊕ C⊕ C⊕M2(C) together with
usual multiplication and involution. This is an eight-dimensional algebra, with the
canonical basis

e1 = 1 +̇ 0 +̇ 0 +̇ 0 +̇

(
0 0
0 0

)
E11 = 0 +̇ 0 +̇ 0 +̇ 0 +̇

(
1 0
0 0

)
e2 = 0 +̇ 1 +̇ 0 +̇ 0 +̇

(
0 0
0 0

)
E12 = 0 +̇ 0 +̇ 0 +̇ 0 +̇

(
0 1
0 0

)
e3 = 0 +̇ 0 +̇ 1 +̇ 0 +̇

(
0 0
0 0

)
E21 = 0 +̇ 0 +̇ 0 +̇ 0 +̇

(
0 0
1 0

)
e4 = 0 +̇ 0 +̇ 0 +̇ 1 +̇

(
0 0
0 0

)
E22 = 0 +̇ 0 +̇ 0 +̇ 0 +̇

(
0 0
0 1

)
where +̇ is de�ned in a natural way to designate elements in the direct sum. The

unit is naturally 1 = 1 +̇ 1 +̇ 1 +̇ 1 +̇

(
1 0
0 1

)
= e1 + e2 + e3 + e4 + E11 + E22.

The following de�nes the coproduct, where ı is the imaginary unit:

∆(e1) = e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 + e4 ⊗ e4

+
1

2
E11 ⊗ E11 +

1

2
E12 ⊗ E12 +

1

2
E21 ⊗ E21 +

1

2
E22 ⊗ E22

∆(e2) = e1 ⊗ e2 + e2 ⊗ e1 + e3 ⊗ e4 + e4 ⊗ e3

+
1

2
E11 ⊗ E22 +

1

2
E22 ⊗ E11 −

ı

2
E12 ⊗ E21 +

ı

2
E21 ⊗ E12

∆(e3) = e1 ⊗ e3 + e3 ⊗ e1 + e2 ⊗ e4 + e4 ⊗ e2

+
1

2
E11 ⊗ E22 +

1

2
E22 ⊗ E11 +

ı

2
E12 ⊗ E21 −

ı

2
E21 ⊗ E12

∆(e4) = e1 ⊗ e4 + e4 ⊗ e1 + e2 ⊗ e3 + e3 ⊗ e2

+
1

2
E11 ⊗ E11 +

1

2
E22 ⊗ E22 −

1

2
E12 ⊗ E12 −

1

2
E21 ⊗ E21

∆(E11) = e1 ⊗ E11 + E11 ⊗ e1 + e2 ⊗ E22 + E22 ⊗ e2

+ e3 ⊗ E22 + E22 ⊗ e3 + e4 ⊗ E11 + E11 ⊗ e4

∆(E12) = e1 ⊗ E12 + E12 ⊗ e1 + ıe2 ⊗ E21 − ıE21 ⊗ e2

− ıe3 ⊗ E21 + ıE21 ⊗ e3 − e4 ⊗ E12 − E12 ⊗ e4

∆(E21) = e1 ⊗ E21 + E21 ⊗ e1 − ıe2 ⊗ E12 + ıE12 ⊗ e2

+ ıe3 ⊗ E12 − ıE12 ⊗ e3 − e4 ⊗ E21 − E21 ⊗ e4

∆(E22) = e1 ⊗ E22 + E22 ⊗ e1 + e2 ⊗ E11 + E11 ⊗ e2

+ e3 ⊗ E11 + E11 ⊗ e3 + e4 ⊗ E22 + E22 ⊗ e4

the counit is given by ε

(
x1 +̇x2 +̇x3 +̇x4 +̇

(
c11 c12

c21 c22

))
= x1 and the antipode

is the transpose map, i.e. S(ei) = ei and S(Eij) = Eji.
This de�nes a �nite quantum group, denoted by KP = (A,∆). We shall also

need its Haar state, denoted by
∫
KP:∫

KP

(
x1 +̇x2 +̇x3 +̇x4 +̇

(
c11 c12

c21 c22

))
=

1

8
(x1 + x2 + x3 + x4 + 2(c11 + c22)) .
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2.2. The group of group-like elements. A group-like element is a non-zero
element of A such that ∆(g) = g ⊗ g. Group-like elements satisfying ε(g) = 1, i.e.
g1 = 1, correspond to one dimensional representations of KP. Moreover, they form
a group, with inverse given by the antipode. In particular, the unit 1, called the
trivial representation, satis�es these conditions.

By direct calculation, using the conditions above and the linear basis, the family
of group-like elements of KP is a group isomorphic to Z2 × Z2:

(1)

{
1 +̇ 1 +̇ 1 +̇ 1 +̇

(
1 0
0 1

)
, 1 +̇ 1 +̇ 1 +̇ 1 +̇

(
−1 0
0 −1

)
,

1 +̇−1 +̇−1 +̇ 1 +̇

(
1 0
0 −1

)
, 1 +̇−1 +̇−1 +̇ 1 +̇

(
−1 0
0 1

)}
.

Remark 2.1. Note that in [10], Izumi and Kosaki do not follow the same way to
de�ne KP. They give group-like elements which look a little bit di�erent from ours.
The fact is that they do not use the same basis: in their notation, z(a), z(b) and
z(c) play respectively the role of our e4, e2 and e3.

2.3. Matrix elements and fundamental representation. Let us look at rep-
resentations of KP with dimension at least 2. We will determine matrix elements
of representation of dimension 2, i.e. elements X(11), X(12), X(21), X(22) of A, such
that ∆(X(ij)) = X(i1)⊗X(1j) +X(i2)⊗X(2j) and ε(X(ij)) = δi,j for all i, j ∈ {1, 2}.
These are matrix elements of two-dimensional representations of KP.

Proposition 2.1. For all a ∈ {−1, 1} and all λ ∈ T, let us �x

Xa,λ =

(
X(11) X(12)

X(21) X(22)

)

=

1 +̇ a +̇−a +̇−1 +̇

(
0 0
0 0

)
0 +̇ 0 +̇ 0 +̇ 0 +̇

(
0 λ
ıaλ 0

)
0 +̇ 0 +̇ 0 +̇ 0 +̇

(
0 λ̄
−ıaλ̄ 0

)
1 +̇−a +̇ a +̇−1 +̇

(
0 0
0 0

)
 .

Then Xa,λ is a fundamental representation of KP, it means that its coe�cients
generate the algebra A.

Remark 2.2. Remark 2.1, about [10], holds again. Moreover, since all Xa,λ are
unitary equivalent, Izumi and Kosaki �x a = −1 and λ = eı

π
4 .

Proof. First of all, let us check that X(11) is a matrix element of a two-dimensional
representation of KP. The computation for X(12), X(21) and X(22) are similar. We
have on the �rst hand

∆(X(11)) = e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 + e4 ⊗ e4

− (e1 ⊗ e4 + e4 ⊗ e1 + e2 ⊗ e3 + e3 ⊗ e2)

+ a (e1 ⊗ e2 + e2 ⊗ e1 + e3 ⊗ e4 + e4 ⊗ e3)

− a (e1 ⊗ e3 + e3 ⊗ e1 + e2 ⊗ e4 + e4 ⊗ e2)

+ E12 ⊗ E12 + E21 ⊗ E21 + ıaE21 ⊗ E12 − ıaE12 ⊗ E21
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and, on the other hand

X(11) ⊗ X(11) + X(12) ⊗ X(21) = e1 ⊗ e1 + ae1 ⊗ e2 − ae1 ⊗ e3 − e1 ⊗ e4

+ a (e2 ⊗ e1 + ae2 ⊗ e2 − ae2 ⊗ e3 − e2 ⊗ e4)

− a (e3 ⊗ e1 + ae3 ⊗ e2 − ae3 ⊗ e3 − e3 ⊗ e4)

− (e4 ⊗ e1 + ae4 ⊗ e2 − ae4 ⊗ e3 − e4 ⊗ e4)

+ |λ|2E12 ⊗ E12 − ıa|λ|2E12 ⊗ E21

+ ıa|λ|2E21 ⊗ E12 + a2|λ|2E21 ⊗ E21 .

Hence, ∆(X(11)) = X(11) ⊗ X(11) + X(12) ⊗ X(21).

Moreover, we can show that Xa,λ and Xa,λ are unitary matrices and that
∫
KPχ(Xa,λ)∗χ(Xa,λ) =

1. Hence Xa,λ de�nes a unitary irreducible representation of KP.
Finally, the family

{
X(11),X(12),X(21),X(22)

}
generates A, since

e1 =
1

4

(
X2

(11) + X(11)X(22)

)
+

1

4

(
X(11) + X(22)

)
e4 =

1

4

(
X2

(11) + X(11)X(22)

)
− 1

4

(
X(11) + X(22)

)
e2 =

1

4

(
X2

(11) − X(11)X(22)

)
+
a

4

(
X(11) − X(22)

)
e3 =

1

4

(
X2

(11) − X(11)X(22)

)
− a

4

(
X(11) − X(22)

)
E11 =

1

2

(
X(12)X

∗
(12) + ıaX(12)X(21)

)
E22 =

1

2

(
X(12)X

∗
(12) − ıaX(12)X(21)

)
E12 =

1

2

(
λ̄X(12) + λX(21)

)
E21 = − ıa

2

(
λ̄X(12) − λX(21)

)
.

�

2.4. Powers of fundamental representation. To extend the study of Diaconis
and Shahshahani in KP, we compute the traces of powers of the fundamental rep-
resentation. Once we have these elements, we compute their ∗-distribution in the
�nite quantum group KP with respect to the Haar state, and identify them with
classical probability distributions determined by moments of all order.

To do this, we have to de�ne the adjoint x∗ of an element x in A. It is given by
the following formula:(

x1 +̇x2 +̇x3 +̇x4 +̇

(
c11 c12

c21 c22

))∗
= x1 +̇x2 +̇x3 +̇x4 +̇

(
c11 c21

c12 c22

)
.

First, let us compute the powers of Xa,λ. Let {eij}1≤i,j≤2 denote the family of
matrix unit inM2(C). Then

Xa,λ =

2∑
i,j=1

eij ⊗ X(ij)
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as an element of M2(C) ⊗ A. The usual multiplication in the tensor product of
algebra gives, going back to the matrix notation,

(Xa,λ)
2

=

1 +̇ 1 +̇ 1 +̇ 1 +̇

(
−ıa 0

0 ıa

)
0 +̇ 0 +̇ 0 +̇ 0 +̇

(
0 0
0 0

)
0 +̇ 0 +̇ 0 +̇ 0 +̇

(
0 0
0 0

)
1 +̇ 1 +̇ 1 +̇ 1 +̇

(
ıa 0
0 −ıa

)
 .

By similar calculations, using (Xa,λ)
2n

=
[
(Xa,λ)

2
]n
, for all non negative integers

n, (Xa,λ)
2n

is a diagonal matrix and

(2) (Xa,λ)
2n

=

1 +̇ 1 +̇ 1 +̇ 1 +̇

(
(−ıa)n 0

0 (ıa)n

)
0 +̇ 0 +̇ 0 +̇ 0 +̇

(
0 0
0 0

)
0 +̇ 0 +̇ 0 +̇ 0 +̇

(
0 0
0 0

)
1 +̇ 1 +̇ 1 +̇ 1 +̇

(
(ıa)n 0

0 (−ıa)n

)


Lemma 2.1. For all non negative integer n, χ
(

(Xa,λ)
2n+1

)
= χ (Xa,λ) and χ

(
(Xa,λ)

2n
)

=

2 +̇ 2 +̇ 2 +̇ 2 +̇ ((ıa)n + (−ıa)n) I2, where I2 is the identity matrix inM2(C).

Proof. The second relation comes from equation (2) and the componentwise ad-

dition. The classical formula (Xa,λ)
2n+1

= (Xa,λ)
2n

Xa,λ leads to the following

expression for (Xa,λ)
2n+1

: 1 +̇ a +̇−a +̇−1 +̇

(
0 0
0 0

)
0 +̇ 0 +̇ 0 +̇ 0 +̇

(
0 (−ıa)nλ

(ıa)n+1λ 0

)
0 +̇ 0 +̇ 0 +̇ 0 +̇

(
0 (ıa)nλ̄

(−ıa)n+1λ̄ 0

)
1 +̇−a +̇ a +̇−1 +̇

(
0 0
0 0

)


and the trace does not depends on n. �

Let E[Zn] denotes moment of order n of a classical random variable Z. We

obtain four di�erent discrete probability distributions for χ
(

(Xa,λ)
k
)
, depending

on the power k.

Theorem 2.1. Let k be a non negative integer. Let us denote by µ0, µ1, µ2 and
µ4 the following distributions:

µ0 = δ2, µ1 =
1

8
δ−2 +

3

4
δ0 +

1

8
δ2, µ2 =

1

2
δ0 +

1

2
δ2 and µ4 =

1

2
δ−2 +

1

2
δ2 .

Then for all a ∈ {−1, 1} and λ ∈ T, χ
(
(Xa,λ)k

)
is self-adjoint and admits µκ as

∗−distribution, with

κ =


1 if k ≡ 1[2]

2 if k ≡ 2[4]

4 if k ≡ 4[8]

0 if k ≡ 0[8]

.

Moreover, we have

χ
(
(Xa,λ)k

)
=


2 +̇ 0 +̇ 0 +̇−2 +̇ 02 , if k ≡ 1[2]

2 +̇ 2 +̇ 2 +̇ 2 +̇ 02 , if k ≡ 2[4]

2 +̇ 2 +̇ 2 +̇ 2 +̇−2I2 , if k ≡ 4[8]

2 +̇ 2 +̇ 2 +̇ 2 +̇ 2I2 , if k ≡ 0[8]

.
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Proof. Assume that k is odd, then χ
(

(Xa,λ)
k
)

= χ (Xa,λ), by Lemma 2.1, and, by

de�nition, we have

χ (Xa,λ) = X(11) + X(22) = 2 +̇ 0 +̇ 0 +̇−2 +̇

(
0 0
0 0

)
so, χ (Xa,λ)

∗
= χ (Xa,λ), and for all non negative integer n, we obtain that∫
KP

(χ (Xa,λ))
n

=
1

8
(2n + 0n + 0n + (−2)n + 2(0n + 0n))

=
(−2)n

8
+

3

4
× 0n +

2n

8
= E[Zn1 ]

where Z1 is a µ1-distributed random variable.
Now, assume that k is even. Then

χ
(

(Xa,λ)
k
)

= 2 +̇ 2 +̇ 2 +̇ 2 +̇

(
(ıa)

k
2 + (−ıa)

k
2 0

0 (ıa)
k
2 + (−ıa)

k
2

)
is self-adjoint and∫

KP

(
χ
(

(Xa,λ)
k
))n

=
1

2

(
2n +

(
(ıa)

k
2 + (−ıa)

k
2

)n)
.

Let us note that (ıa)2 = −1, and (ıa)4 = 1. Hence, we obtain that the distribution

of χ
(

(Xa,λ)
k
)
equals µ2 if k = 4p+ 2, µ4 if k = 8p+ 4 and µ0 if 8 divides k. �

Remark 2.3. Like in the classical case, we are able to express traces of powers
of the fundamental representation as linear combinations of irreducible characters,
it means one-dimensional representations, listed in (1), and χ (Xa,λ). Here we

have 2 +̇ 2 +̇ 2 +̇ 2 +̇ 2I2 = 2 1, 2 +̇ 2 +̇ 2 +̇ 2 +̇−2I2 = 2
(
1 +̇ 1 +̇ 1 +̇ 1 +̇−I2

)
and

2 +̇ 2 +̇ 2 +̇ 2 +̇ 02 = 2
(
1 +̇ 1 +̇ 1 +̇ 1 +̇−I2 + 1

)
. Let us note that this is not true in

general for quantum groups. For instance, in the free orthogonal group O+
N , χ(u2)

is not a linear combination of characters, where u is the fundamental representation
of O+

N . For further examples, the reader can also look at the dual quantum group

K̂Pn in subsection 3.7.

We are now able to study the independence relations between the four distinct
variables obtained in the previous theorem. To do this, we work with joint cumu-
lants. It vanishes whenever there is a random variable independent from the others.
Let us denote by Pr the set of all partitions of {1, 2, . . . , r}, and for π ∈ Pr, |π| is
the number of its blocks.

Theorem 2.2. For i ∈ {0, 1, 2, 4}, let Zi be a µi-distributed random variable such
that Z0 and Z1 are independent from all the others.

Then, for all a ∈ {−1, 1}, λ ∈ T, and (k1, . . . , kr) ∈ Nr,∫
KP
χ
(
(Xa,λ)k1

)
. . . χ

(
(Xa,λ)kr

)
= E [Zm1

. . . Zmr ]

= 2#{i,ki=0}E
[
Z

#{i,ki=1}
1

]
E
[
Z

#{i,ki=2}
2 Z

#{i,ki=4}
4

]
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with mi =


1 if ki ≡ 1[2]

2 if ki ≡ 2[4]

4 if ki ≡ 4[8]

0 if ki ≡ 0[8]

.

Proof. Let us note that the χ
(

(Xa,λ)
i
)
's commute. Hence∫

KP

r∏
i=1

χ
(

(Xa,λ)
ki
)

=

∫
KP

2r +̇α(k) +̇α(k) +̇(−1)#{i,ki=1}2r +̇β(k)

=
1

8

(
2r
(

1 + (−1)#{i,ki=1}
)

+ 2α(k) + 2Tr(β(k))
)

where α(k) is 0 if there exists i such that ki = 1 and 2r otherwise, and β(k) is the
matrix null if there exists i such that ki ∈ {1, 2} and (−1)#{i,ki=4}2rI2 otherwise.
So, we have∫

KP

r∏
i=1

χ
(

(Xa,λ)
ki
)

=


0 if 2 - #{i, ki = 1}
2r−2 if #{i, ki = 1} ∈ 2(N \ {0})
2r−1 if #{i, ki = 1} = 0,#{i, ki = 2} ≥ 1

2r−1
(
1 + (−1)#{i,ki=4}) otherwise

Clearly, χ
(

(Xa,λ)
0
)
is independent from the other χ

(
(Xa,λ)

i
)
's. To study the

independence of χ (Xa,λ), let us look at classical cumulants. Let {p1, p2, . . . , pr} be a
subset of {1, 2, 4}, and κ(p1, . . . , pr) be the joint cumulant of χ ((Xa,λ)

p1) , . . . , χ ((Xa,λ)
pr ).

By de�nition, we have

κ(p1, . . . , pr) =
∑
π∈Pr

(|π| − 1)! (−1)|π|−1
∏
B∈π

∫
KP

∏
k∈B

χ ((Xa,λ)
pk)

hence, if 1 is in {p1, p2, . . . , pr} the cumulant is 0, it means that χ (Xa,λ) is inde-
pendent from the others. Moreover,

κ(2, 4) =

∫
KP
χ
(

(Xa,λ)
2
)
χ
(

(Xa,λ)
4
)
−
∫
KP
χ
(

(Xa,λ)
2
)∫

KP
χ
(

(Xa,λ)
4
)

= 2

thus χ
(

(Xa,λ)
2
)
and χ

(
(Xa,λ)

4
)
are not independent. �

3. The Sekine Finite Quantum Groups KPn
3.1. De�nition. We will follow the de�nition of [11], but for convenience of the
reader, we recall here the notations.

Consider the multi-matrix algebra An =
⊕

i,j∈Zn Ce(i,j)⊕Mn(C) together with

usual multiplication and involution. This is a 2n2-dimensional algebra, with basis
{e(i,j)}i,j∈Zn ∪ {Ei,j}1≤i,j≤n. The unit is naturally

1 =
∑
i,j∈Zn

e(i,j) +

n∑
i=1

Ei,i
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The following de�nes the coproduct:

∆(e(i,j)) =
∑
k,l∈Zn

e(k,l) ⊗ e(i−k,j−l) +
1

n

∑
k,l∈Zn

ηi(k−l)Ek,l ⊗ Ek+j,l+j

∆(Ei,j) =
∑
k,l∈Zn

e(−k,−l) ⊗ ηk(i−j)Ei−l,j−l +
∑
k,l∈Zn

ηk(j−i)Ei−l,j−l ⊗ e(k,l)

with η = e
2ıπ
n a primitive nth root of unity. The counit is given by

ε

 ∑
i,j∈Zn

x(i,j)e(i,j) +
∑

1≤i,j≤n

Xi,jEi,j

 = x(0,0)

and the antipode satis�es S(e(i,j)) = e(−i,−j) and S(Ei,j) = Ej,i.
This de�nes a �nite quantum group, denoted by KPn = (An,∆), called Sekine

quantum group. We shall also need its Haar state, denoted by
∫
KPnand given by

the following formula:

∫
KPn

 ∑
i,j∈Zn

x(i,j)e(i,j) +
∑

1≤i,j≤n

Xi,jEi,j

 =
1

2n2

 ∑
i,j∈Zn

x(i,j) + n

n∑
i=1

Xi,i

 .

Remark 3.1. As noted in [11], with this de�nition, KP2 is cocommutative and

equal to the virtual object D̂4, i.e. A2 ' CD4.

3.2. Representation theory. Let us �rst determine the representation theory of
the Sekine �nite quantum groups. We list here the irreducible unitary representa-
tions of KPn, for each n ≥ 2. Note that it depends on the parity of n.

3.2.1. Case n odd.

Theorem 3.1 ([11]). If n is odd, the �nite quantum group KPn admits 2n one-
dimensional non equivalent unitary representations,

∀l ∈ {0, 1, . . . , n− 1}, ρ±l =
∑
i,j∈Zn

ηile(i,j) ±
n∑
i=1

Ei,i+l .

It also admits n(n−1)
2 non equivalent unitary two-dimensional irreducible repre-

sentations, indexed by u ∈ {0, 1, . . . , n− 1} and v ∈ {1, 2, . . . , n−1
2 }, given by their

matrix-coe�cients:

Xu,v11 =
∑
i,j∈Zn

ηiu+jve(i,j) Xu,v12 =

n∑
i=1

η−ivEi,i+u

Xu,v21 =

n∑
i=1

ηivEi,i+u Xu,v22 =
∑
i,j∈Zn

ηiu−jve(i,j)
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3.2.2. Case n even.

Theorem 3.2. If n is even, the �nite quantum group KPn admits 4n one-dimensional
non equivalent unitary representations,

∀l ∈ {0, 1, . . . , n− 1},


ρ±l =

∑
i,j∈Zn

ηile(i,j) ±
n∑
i=1

Ei,i+l

σ±l =
∑

i,j∈Zn
(−1)jηile(i,j) ±

n∑
i=1

(−1)iEi,i+l

.

It also admits n(n−2)
2 non equivalent unitary two-dimensional irreducible repre-

sentations, indexed by u ∈ {0, 1, . . . , n− 1} and v ∈ {1, 2, . . . , n2 − 1}, given by their
matrix-coe�cients:

Xu,v11 =
∑
i,j∈Zn

ηiu+jve(i,j) Xu,v12 =

n∑
i=1

η−ivEi,i+u

Xu,v21 =

n∑
i=1

ηivEi,i+u Xu,v22 =
∑
i,j∈Zn

ηiu−jve(i,j)

Proof. The computations done for ρ±l and Xu,v in the odd case in [11] are still valid.

It is clear that ε(σ±l ) = 1. By [12, Proposition 3.1.7], it remains to prove that

σ±l are group-like elements. The same steps as for ρ±l give

∆(σ±l ) =
∑

i,j,s,t∈Zn

(−1)jηile(s,t) ⊗ e(i−s,j−t)

+

n∑
m=1
j∈Zn

(−1)jEm,m+l ⊗ Em+j,m+j+l

±
n∑

m=1
s,t∈Zn

(−1)mηsle(s,t) ⊗ Em+t,m+t+l

±
n∑

m=1
s,t∈Zn

(−1)mηslEm−t,m−t+l ⊗ e(s,t) .

On the other hand, we have

σ±l ⊗ σ
±
l =

∑
i,j,s,t∈Zn

(−1)j+tη(i+s)le(i,j) ⊗ e(s,t)

+

n∑
s,t=1

(−1)s+tEs,s+l ⊗ Et,t+l

±
n∑

m=1
s,t∈Zn

(−1)t+mηsle(s,t) ⊗ Em,m+l

±
n∑

m=1
s,t∈Zn

(−1)m+tηslEm,m+l ⊗ e(s,t)
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which is the same, up to re-indexation (s+ i→ i, t+ j → j, i→ s and j → t in the
�rst term, t− s→ j in the second one, m− t→ m in the third one and m+ t→ m
in the last one). �

Remark 3.2. This is another way to see that the Kac-Paljutkin KP �nite quantum
group is di�erent from KP2, since they do not have the same representation the-
ory. The quantum group KP admits four one-dimensional representations and one
two-dimensional irreducible representation, whereas the Sekine quantum group KP2

admits eight one-dimensional representations and no two-dimensional irreducible
representation.

3.3. Characters. We will now consider the traces of powers of the two-dimensional
irreducible representations Xu,v. In the following, we (incorrectly) call kth character
associated to Xu,v the trace of the kth power of this representation.

Lemma 3.1. The even powers of Xu,v are diagonal matrices.

Proof. By de�nition and orthogonality of the e(i,j)'s and the Ei,j 's, we have(
(Xu,v)

2
)

12
= Xu,v11 Xu,v12 + Xu,v12 Xu,v22 = 0KPn(

(Xu,v)
2
)

21
= Xu,v21 Xu,v11 + Xu,v22 Xu,v21 = 0KPn

so (Xu,v)
2
is a diagonal matrix and therefore (Xu,v)

2k
=
(

(Xu,v)
2
)k

is also a diag-

onal matrix inM2(An). �

Proposition 3.1. The characters associated to Xu,v are

χ
(

(Xu,v)
k
)

= 2
∑
s,t∈Zn

ηksu cos

(
2ktvπ

n

)
e(s,t)

+ 12Z(k) 2 cos

(
kuvπ

n

) n∑
r=1

Er,r+ku

where 12Z denotes the indicator function of the even integers.

Proof. By de�nition, we have(
(Xu,v)

2
)

11
= (Xu,v11 )2 + Xu,v12 Xu,v21

=
∑

i,j,k,l∈Zn

ηiu+jve(i,j)η
ku+lve(k,l) +

n∑
i,j=1

η−ivEi,i+uη
jvEj,j+u

=
∑
s,t∈Zn

η2su+2tve(s,t) +

n∑
r=1

ηuvEr,r+2u

and by similar calculations, and by Lemma 3.1 we have(
(Xu,v)

2k
)

11
=
∑
s,t∈Zn

η2ksu+2ktve(s,t) +

n∑
r=1

ηkuvEr,r+2ku

(
(Xu,v)

2k
)

22
=
∑
s,t∈Zn

η2ksu−2ktve(s,t) +

n∑
r=1

η−kuvEr,r+2ku

which leads to the result for even powers.



TRACE OF POWERS OF REPRESENTATIONS OF FINITE QUANTUM GROUPS 13

Let k = 2p+ 1, then (Xu,v)
2p+1

= (Xu,v)
2p

Xu,v, hence we obtain(
(Xu,v)

k
)

11
=
(

(Xu,v)
2p
)

11
(Xu,v)11 +

(
(Xu,v)

2p
)

12
(Xu,v)21

=

 ∑
i,j∈Zn

η2piu+2pjve(i,j) +

n∑
i=1

ηpuvEi,i+2pu

∑
k,l∈Zn

ηku+lve(k,l)

=
∑
s,t∈Zn

ηksu+ktve(s,t)

and similarly
(

(Xu,v)
k
)

22
=

∑
s,t∈Zn

ηksu−ktve(s,t) which leads to the result for odd

powers. �

3.4. Character spaces. Let us look more precisely at relations between the char-
acters before to study their asymptotic distributions.

3.4.1. Algebra of characters.

Proposition 3.2. The algebra of characters, generated by all one-dimensional rep-

resentations and all the χ(Xu,v), contains all χ
(

(Xu,v)
k
)
, k ≥ 1.

Proof. If n does not divide kv, consider w the absolute value of kv (mod n). If w
belongs to {1, . . . , bn−1

2 c}, then

χ
(

(Xu,v)
k
)

= χ
(
Xku,w

)
+ 12Z(k) cos

(
kuvπ

n

)
(ρ+
ku − ρ

−
ku)

otherwise, n is even and w = n
2 , and

χ
(

(Xu,v)
k
)

= σ+
ku + σ−ku + 12Z(k)12Z(u)(−1)

u
2 (ρ+

ku − ρ
−
ku) .

If kv = an then, for s the sign of (−1)au,

χ
(

(Xu,v)
k
)

=

{
ρ+
ku + ρ−ku if k is odd

2ρsku if k is even
.

�

Remark 3.3. This proposition gives us another reason to call character the χ
(

(Xu,v)
k
)

since, for the classical groups, every linear combination χ, with coe�cients in Z, of
characters such that χ(e) > 0 is again a character. Let us note once again that this
is not true in general for quantum groups, a counterexample is given by the dual

quantum group K̂Pn in subsection 3.7.

Proposition 3.3. The algebra of characters is commutative if n is odd.

Proof. We have for s 6= s′ or t 6= t′, e(s,t)e(s′,t′) = 0KPn , e
2
(s,t) = e(s,t) and e(s,t)Ei,j =

Ei,je(s,t) = 0KPn . On the other hand, we also have, for all natural numbers a, b,(
n∑

m=1

Em,m+a

)(
n∑
µ=1

Eµ,µ+b

)
=

n∑
r=1

Er,r+a+b =

(
n∑
µ=1

Eµ,µ+b

)(
n∑

m=1

Em,m+a

)
which leads to the commutativity of the algebra. �
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Remark 3.4. If n is even, the subalgebra generated by the ρ±l 's and the χ(Xu,v) is

also commutative. But the σ±l 's do not commute with the ρ±l 's, since(
n∑

m=1

(−1)mEm,m+a

)(
n∑
µ=1

Eµ,µ+b

)
=

n∑
r=1

(−1)rEr,r+a+b

6=

(
n∑
µ=1

Eµ,µ+b

)(
n∑

m=1

(−1)mEm,m+a

)
=

n∑
r=1

(−1)r+bEr,r+b+a

when b is odd.

3.4.2. A commutative (sub)algebra. For all n, the algebra generated by all the
χ(Xu,v)'s and all the ρ±l 's is a classical commutative algebra. Thus, by the spectral

theorem, it is ∗-isomorphic to Ck for some k ∈ N. In order to keep track of the
restriction of the Haar state, we can view it as a subalgebra of some L∞(Ωn, µn),
for a compact space Ωn and a probability distribution µn. It means that we can
see these characters as classical random variables on the classical probability space
(Ωn, µn).

By the Gelfand-Naimark Theorem, Ωn is the spectrum of the algebra, it means
the set of all its characters, which are all the non zero ∗-multiplicative linear forms.
To determine this space and the measure µn, we need to investigate deeper the
structure of the ∗-algebra

Cn = *-alg

{
ρ±l , χ (Xu,v) , 0 ≤ l, u ≤ n− 1, 1 ≤ v ≤

⌊
n− 1

2

⌋}
.

Lemma 3.2. For all non negative integers k and l smaller than n−1, ρ+
k ρ

+
l = ρ+

k+l,

ρ−k ρ
−
l = ρ+

k+l and ρ
+
k ρ
−
l = ρ−k+l = ρ−k ρ

+
l , where the sum k + l is taken in Zn. We

also have that, for all integer v between 1 and bn−1
2 c, and for all integer u between

0 and n− 1, there exist integers ai ∈ Z such that

χ (Xu,v) = ρ±u

((
χ
(
X0,1

))v
+ av−2

(
χ
(
X0,1

))v−2
+ . . .+ a1χ

(
X0,1

))
if v is odd, or, if v is even

χ (Xu,v) = ρ±u

((
χ
(
X0,1

))v
+ av−2

(
χ
(
X0,1

))v−2
+ . . .+ a0

(
ρ+

0 + ρ−0
))

.

Proof. The �rst assertion follows from the de�nition of the componentwise multi-
plication.

For the second part of the lemma, by the same way, we easily see that ρ±u χ
(
X0,v

)
=

χ (Xu,v). Therefore, we only need to consider the χ
(
X0,v

)
.

Let us note that the Tchebychev polynomials Tn satisfy, for all real θ, Tn(cos(θ)) =
cos(nθ) , so we have

χ
(
X0,v

)
= 2

∑
s,t∈Zn

cos

(
2πtv

n

)
e(s,t)

= 2
∑
s,t∈Zn

Tv

(
cos

(
2πt

n

))
e(s,t)

= 2 T̃v

(
χ
(
X0,1

)
2

)
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thanks to the componentwise multiplication, where the constant term in T̃v

(
χ(X0,1)

2

)
is 0 or (ρ+

0 + ρ−0 ) =
∑

s,t∈Zn
e(s,t) but not 1KPn , what we should have if we substitute

χ
(
X0,1

)
in Tv(X).

Moreover, the Tchebychev polynomial Tv has degree v with leading coe�cient
2v−1, and all its coe�cients are integers. It is symmetric if v is even, or antisym-
metric if v is odd. �

This Lemma means that

Cn = *-alg
{
ρ+

1 , ρ
−
1 , χ

(
X0,1

)}
.

Remark 3.5. Since, when n is odd, we have (ρ−1 )n+1 = ρ+
1 , the corresponding Cn

is generated (as an algebra) by
{
ρ−1 , χ

(
X0,1

)}
.

Thus, by the properties of the characters, they are de�ned by their values on ρ+
1 ,

ρ−1 and χ
(
X0,1

)
. Moreover, σ(a) = {ω(a), ω ∈ Ω}, so Ωn is �xed by the spectra of

the three elements and some relations. Let us note that Cn is a subalgebra of KPn
containing the unit. Hence, the spectrum with respect to Cn is the spectrum with
respect to KPn. Direct calculations show that:

σ
(
χ
(
X0,1

))
=

{
2 cos

(
2tπ

n

)
, t ∈ Zn

}
∪ {0} ,

σ
(
ρ+

1

)
= {ηs, s ∈ Zn} ,

σ
(
ρ−1
)

= {ηs, s ∈ Zn} ∪ {−ηs, s ∈ Zn} .

To determine Ωn, let us note that

(ρ+
1 )2 = (ρ−1 )2 = ρ+

2 and ρ+
1 χ
(
X0,1

)
= ρ−1 χ

(
X0,1

)
= χ

(
X1,1

)
which leads to the relations{

∀ω ∈ Ωn, ω
(
ρ+

1

)
= ±ω

(
ρ−1
)

∀ω ∈ Ωn, ω
(
ρ+

1

)
= −ω

(
ρ−1
)
⇒ ω

(
χ
(
X0,1

))
= 0

.

Finally, we get the following result

Theorem 3.3. For all n, Cn, equipped with the Haar state, can be viewed as an
algebra of random variables on the probability space

Ωn =

(
{ηs, s ∈ Zn} × {1} ×

({
2 cos

(
2tπ

n

)
, t ∈ Zn

}
∪ {0}

))
t ({−ηs, s ∈ Zn} × {−1} × {0})

endowed with the measure

µn =

(
14Z(n)

2n(p+ 1)
+

1− 14Z(n)

2n(p+ 2)

) ∑
ω=(a,b,c)∈Ωn

b=1

δω +
1

2n

∑
ω=(a,b,c)∈Ωn

b=−1

δω

where p =
⌊
n
2

⌋
and 14Z is the indicator function of 4Z, thanks to the Gelfand

transform,

F : Cn → L∞(Ωn, µn)

x 7→ (x̂ : ω 7→ ω(x))
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given by the following formula

ρ̂−1 (a, b, c) = a , ρ̂+
1 (a, b, c) = ab , χ̂ (X0,1)(a, b, c) = c .

3.5. Asymptotic laws.

De�nition 3.1. We say that a complex random variable Z is C-arcsine(α) dis-
tributed, if it admits z 7→ 1αD(z) 1

π2
√
α2−|z|2

as density function. Let us denote by

µC−arc(α) the corresponding distribution.

Lemma 3.3. If Z is a C-arcsine(2) random variable, for all k and l, we have

E[ZkZ̄l] =

{(
2k
k

)
if k = l

0 otherwise
.

Proof. We need to compute

1

π2

∫ 2

0

∫ 2π

0

rk+leı(k−l)θ√
4− r2

dθ dr .

The integral with respect to θ vanishes, except if k = l. In this case, we are left
with the 2kth moment of the arcsine distribution on (−2 ; 2). �

This helps us to �nd the ∗-distribution of characters associated to the irreducible
representations Xu,v.

Theorem 3.4. For all u, v ≥ 1, χ (Xu,v) is asymptotically (when n → +∞) a(
1
2δ0 + 1

2µC−arc(2)

)
-distributed random variable, and χ

(
X0,v

)
admits asymptotically

(when n → +∞) the ∗-distribution 1
2δ0 + 1

2µarc(−2,2), where µarc(−2,2) represents
the classical arcsine distribution on the open interval (−2 , 2).

Moreover, the same holds for all χ
(

(Xu,v)
k
)
, with k odd.

Proof. We only do the computation for χ (Xu,v). The case χ
(

(Xu,v)
k
)
, with k > 1

odd, is similar.
Let us remember that, by Proposition 3.1,

χ (Xu,v) = 2
∑
s,t∈Zn

ηsu cos

(
2tvπ

n

)
e(s,t) .

Therefore, χ (Xu,v) commutes with χ (Xu,v)
∗
, and for all m ≥ 1

(χ (Xu,v))
m

= 2m
∑
s,t∈Zn

ηmsu cos

(
2tvπ

n

)m
e(s,t)
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so we have∫
KPn

(χ (Xu,v))r1 (χ (Xu,v))
∗r∗

=
2r1+r∗

2n2

∑
s,t∈Zn

η(r1−r∗)su cos

(
2tvπ

n

)r1+r∗

=
1

2n2

(∑
s∈Zn

η(r1−r∗)su

)(
r1+r∗∑
l=0

(
r1 + r∗

l

)∑
t∈Zn

η(2l−(r1+r∗))tv

)

=
1

2
1nZ((r1 − r∗)u)

r1+r∗∑
l=0

(
r1 + r∗

l

)
1nZ((2l − (r1 + r∗))v) .

For all u ≥ 1, r1 6= r∗, n ≥ u(r1 − r∗) + 1, we have 0 < u(r1 − r∗) < n, so∫
KPn

(χ (Xu,v))
r1 (χ (Xu,v))

∗r∗ = 0 .

Otherwise, if r1 = r∗ = r ≥ 1, for n great enough (n ≥ 2rv + 1), we obtain∫
KPn

(χ (Xu,v))
r

(χ (Xu,v))
∗r

=
1

2

(
2r

r

)
.

Hence, if u 6= 0, χ (Xu,v) is asymptotically a
(

1
2δ0 + 1

2µC−arc(2)

)
-distributed random

variable.
If u = 0, let us note that χ

(
X0,v

)
is selfadjoint, and∫

KPn
(χ (Xu,v))

m
=

1

2

m∑
l=0

(
m

l

)
1nZ((2l −m)v) .

Hence, for n great enough, if m is odd, the moment vanishes, and if m = 2p, it is
1
2

(
m
p

)
, which corresponds to the distribution 1

2δ0 + 1
2µarc(−2,2). �

Theorem 3.5. For all integers u, v ≥ 1 and any even k, χ
(

(Xu,v)
k
)
is asymptot-

ically (when n → +∞) a
(

1
2U(2T) + 1

2µC−arc(2)

)
-distributed random variable, and

χ
((

X0,v
)k)

admits 1
2δ2+ 1

2µarc(−2,2) as asymptotic ∗-distribution (when n→ +∞).

Proof. The only di�erence with the characters in the preceding theorem is the part

"+2 cos
(
kuvπ
n

) n∑
r=1

Er,r+ku" in the even characters.

By the properties of the multiplication in KPn we only need to study it, and
show that its moments are asymptotically one half of those for a random variable
uniformly distributed on 2T.

Let us denote this normal matrix by Mk,u,v,n. Then, for all m ≥ 1
Mm
k,u,v,n = 2m cos

(
kuvπ
n

)m n∑
r=1

Er,r+mku

(M∗k,u,v,n)m = 2m cos
(
kuvπ
n

)m n∑
r=1

Er,r−mku

.
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Hence, we have∫
KPn

Mα
k,u,v,n(M∗k,u,v,n)β =

1

2n2
n2α+β cos

(
kuvπ

n

)α+β

Tr

(
n∑
r=1

Er,r+ku(α−β)

)

=
2α+β

2n
cos

(
kuvπ

n

)α+β n∑
r=1

1nZ(ku(α− β))

=
1

2

(
2 cos

(
kuvπ

n

))α+β

1nZ(ku(α− β)) .

For u = 0, we get 1
2

(
2 cos

(
kuvπ
n

))α+β
which is one half of 2α+β .

For u ≥ 1 and n great enough, this moment goes to one half of the moment of
U(2T), which is zero if α is di�erent from β, 22α otherwise. This completes the
proof of the theorem. �

Remark 3.6. Let us note that
n∑
r=1

Er,r+ku is a permutation matrix, whose eigenval-

ues are the nth roots of unity. Therefore the eigenvalues of the matrix 2 cos
(
kuvπ
n

) n∑
r=1

Er,r+ku

are the nth roots of unity multiplied by 2 cos
(
kuvπ
n

)
. So when n goes to in�nity,

the eigenvalues come out uniformly on 2T if u is not zero, which corresponds to the
result of the Theorem 3.5.

Remark 3.7. If we let n go to ∞ in Theorem 3.3, we see that, (Ωn, µn) converges
to (Ω, µ) where

Ω = T× {1} × [−2 ; 2] t T× {−1} × {0} , µ =
1

2
µC−arc(2) +

1

2
U(T) .

And, we can check easily that

ρ̂−1 , ρ̂
+
1 ∼ U(T) and χ̂ (X0,1) ∼ 1

2
µarc(−2,2) +

1

2
δ0 .

Remark 3.8. The same type of computations for the dihedral group D2n gives
similar results. The dihedral group D2n admits indeed

⌊
n−1

2

⌋
two-dimensional non

equivalent unitary irreducible representations σk given by

s 7→
(

0 1
1 0

)
, t 7→

(
ηk 0
0 η−k

)
where s and t generate D2n with s of order 2 and t of order n. Let us denote by
χk,l the class function Tr

(
σk(·)l

)
. Then by the moments method, the asymptotic

law of χk,l is
1
2

(
µarc(−2,2) + δ2

)
if l is even and positive, 1

2

(
µarc(−2,2) + δ0

)
if l is

odd or δ2 when l = 0.

3.6. Asymptotic pairwise independence. Since we only consider χ(Xu,v) or its
adjoint, we work in a commutative setting, and we can use classical cumulants κ.
Let b, d, k, l, be natural integers, a and c be non negative integers and e, f be in
{1, ∗}. Then direct calculation leads to

lim
n→+∞

κ

(
χ
((

Xa,b
)k)e

, χ
((

Xc,d
)l)f)

= δka,lcδ{e,f},{1,∗}
(
δkb,ld + 21(2Z)2(k, l)

)
which proves
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Proposition 3.4. Let a, b, c, d, e, f , k and l be as above. The followings are
equivalent

(1) χ
((

Xa,b
)k)e

and χ
((

Xc,d
)l)f

are asymptotically independent

(2) at least one of the following conditions holds
• ka 6= lc
• e = f
• k or l is odd, and kb 6= ld

3.7. Dual groups. We can de�ne a notion of duality for a �nite quantum group
G = (C(G),∆). This dual, denoted Ĝ = (C(Ĝ), ∆̂), is again a �nite quantum group.

The algebra C(Ĝ) is the set of all linear forms de�ned on C(G). It is also isomorphic
to the direct sum of the non-equivalent unitary irreducible corepresentations of
C(G), thanks to the Fourier transform. All the structures are de�ned by duality.

In particular, for the case of the Sekine family, let us denote by e(i,j) and Ei,j the
elements of the dual basis. Then, we have the coproduct, dual of the multiplication
on An, given by

∆̂(e(i,j)) = e(i,j) ⊗ e(i,j) and ∆̂(Ei,j) =

n∑
k=1

Ei,k ⊗ Ek,j

and the Haar state, dual of the counit on An,∫
K̂Pn

 ∑
i,j∈Zn

x(i,j)e
(i,j) +

∑
1≤i,j≤n

Xi,jE
i,j

 = x(0,0) .

We clearly obtain that the unitary irreducible representations of K̂Pn are the

n2 e(i,j)'s and the n-dimensional representation X̂, given by its matrix-elements

X̂i,j = Ei,j . Let us note that X̂ is a fundamental representation of K̂Pn. Moreover,
these representations are non-equivalent, so there is no other non-equivalent unitary
irreducible representation.

The characters, e(i,j), i, j ∈ Zn, and χ(X̂) =
n∑
i=1

Ei,i, generate a commutative

algebra, for the product in C(K̂Pn). This central algebra is the linear span of these

characters and may not contain all the traces of powers of X̂, given for all positive
integer k by

χ
(
X̂k
)

=


∑

s,t∈Zn
kt≡0 mod n

Es,s+t if k is odd

∑
s,t∈Zn

kt≡0 mod n

η−ste(s,t k2 ) if k is even
.

Note that χ
(
X̂k
)
equals χ(X̂) when k is odd and gcd(k, n) = 1. If gcd(k, n) is

greater than 1 for some odd k, then χ
(
X̂k
)
is not in the character space.

However, these traces are all self-adjoint, and commute. Using the corepresen-
tations basis, we can get that, for all positive integers k1, k2, . . . , kr∫

K̂Pn
χ
(
X̂k1

)
. . . χ

(
X̂kr

)
= nr−2 1 +(−1)

r∑
i=1

ki

2
#{t ∈ Zn,∀1 ≤ i ≤ r, n |kit} .
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In particular, by the moments method, the normalized character 1
nχ(X̂) ad-

mits the ∗-distribution 1
2n2 (δ−1 + δ1) + (1 − 1

n2 )δ0. Moreover, let us note that
# {t ∈ Zn,∀1 ≤ i ≤ r, n | kit} = gcd(n, k1, . . . , kr). Thus, for any k ≥ 1, the nor-

malized trace 1
nχ(X̂k) admits the ∗-distribution gcd(k,n)

2n2 (δ−1 + δ1)+(1− gcd(k,n)
n2 )δ0

if k is odd, and gcd(k,n)
n2 δ1 + (1− gcd(k,n)

n2 )δ0 if k is even.
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