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TRACE OF POWERS OF REPRESENTATIONS OF FINITE
QUANTUM GROUPS

ISABELLE BARAQUIN

ABsTRACT. In this paper we study (asymptotic) properties of the *-distribution

of irreducible characters of finite quantum groups. We proceed in two steps,
first examining the representation theory to determine irreducible representa-
tions and their powers, then we study the x-distribution of their trace with
respect to the Haar measure. For the Sekine family we look at the asymptotic
distribution (as the dimension of the algebra goes to infinity).

Keywords: finite quantum groups; representation theory; asymptotic x-distribution.
2010 Mathematics Subject Classification: 20G42, 81R50

1. INTRODUCTION

In [1] and then in [2], Diaconis, Shahshahani and Evans show that the traces of
powers of a random unitary (respectively orthogonal) matrix behave asymptotically
like independent complex (resp. real) Gaussian random variables. Later, Banica,
Curran and Speicher investigate the case of easy quantum groups in [3, 4], and
obtain similar results in the context of free probability.

Compact quantum groups are a generalization of classical compact groups. They
were introduced in order to extend the Pontryagin duality. Despite of their name
of group, we are studying algebras endowed with an additional structure. For a
more complete presentation, the reader can look at [5] or [6].

Definition 1.1 (Woronowicz). A compact quantum group is a pair G = (A, A),
where A is a unital C*-algebra (eventually noncommutative) and A: A - A® A
is a unital x-homomorphism, called coproduct, such that it is coassociative, i.e.

(A®idy) o A= (idy ®A)o A

as x-homomorphisms from A to A ® A® A, and such that it verifies the density
in A® A of the two algebras (14 ® A)A(A) = span{(14 ® a)A(b),a,b € A} and
(A®14)A(A) = span {(a ® 14)A(b),a,b € A}.

We will say that the quantum group is cocommutative if the coproduct is sym-
metric, i.e. if c o A = A where o(a ® b) = b ® a, for all a,b € A. Note that we
consider unital, associative and involutive algebras over the field of complex num-
bers and that the tensor products of algebras are algebraic tensor products over
C.

Note that we can define a quantum group thanks to a classical compact group
(G,-). The set of complex-valued continuous functions on G, denoted C(G), is
endowed with a structure of (commutative) unital C*-algebra. Identifying the ten-
sor product C(G) @ C(G) with C(G x G), it is easy to check that the application
A: C(G) — C(G x GQ), defined by A(f)(s,t) = f(s-t) satisfies the coassociativity
relation and the density properties, called quantum cancellation rules.
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2 ISABELLE BARAQUIN

Following this example, we also denote the algebra A of the quantum group
G = (A,A) by C(G), and a compact quantum group is called finite when the
algebra is finite dimensional.

In this article, we will look at finite quantum groups. They were introduced
in the sixties as examples of Hopf-von Neumann algebras to recover symmetry
in duality for non abelian locally compact groups. The eight-dimensional Kac-
Paljutkin quantum group KP, introduced in [7] is the smallest non-trivial example,
in the sense it is neither commutative nor cocommutative. In 1996, Sekine defines
a new family of finite quantum groups [8], of dimension 2n? for all n > 2.

To study a group, it is sometimes useful to look at its action on a complex Hilbert
space H. This is a representation of the group 7: G — B(H), where B(H) denotes
the space of bounded operators on . When the group is compact, we can see 7
as an element of B(H) ® C(G). In this framework, the property

Vs, t € G, w(s-t) =n(s)m(t)

becomes (idg(y) ®A)m = Jia(m)J13(m), where for every a ® f € B(H) ® C(G),
Ji2(a®f)=a® f@1lg and J13(a® f) =a®1e® f in B(H) ® C(G) ® C(G) and
1 denotes the constant function 1 on G, the unit in C(G).

Definition 1.2. Let G = (C(G),A) be a compact quantum group. A corepresen-
tation of the algebra C(G), also called a representation of the quantum group G, is
an invertible element u of B(H) @ C(G), for some complex Hilbert space H, such
that (idB(H) ®A)U = Jlg(u)Jlg(u) mn B(H) ® C(G) X C(G)

We will say that a representation u € B(H) ® C(G) of the compact quantum
group G is unitary if u is a unitary element of B(H) ® C(G), finite dimensional if
the Hilbert space H is finite dimensional.

Thus, once a basis of H is fixed, we can see a finite dimensional representation
as an element of M,,(C) ® C(G) ~ M,, (C(G)), i.e. a matrix u = (u;j)1<i,j<n With
coefficients in the algebra of the quantum group satisfying A(u;;) = > uir @ ug;.

k

Definition 1.3. Assume u € B(H,) ® C(G) and v € B(H,) ® C(G) are represen-
tations of the compact quantum group G. We say that an operator T: H, — H,
intertwines u and v if

(T & 1C(G))u = U(T X 10(({;)) .

If such an operator exists, u and v are called equivalent. If moreover T is unitary,
they are called unitarily equivalent.

A representation u is called irreducible if there is no intertwiners between u and
u itself except scalar multiples of idy .

In particular irreducible representations of compact quantum groups are finite
dimensional. An irreducible representation u of a compact quantum group G will
be called fundamental if its coefficients u,; generate the algebra C(G).

Up to equivalence, we can consider only unitary irreducible (finite dimensional)
representations. With these objects, we will use the following notation:

Definition 1.4. Let M be a matriz whose coefficients M, ; are elements of an
algebra A (eventually noncommutative). The trace of M, denoted x(M), is the
sum of all its diagonal elements, that is x(M) = > M;; in A.

i



TRACE OF POWERS OF REPRESENTATIONS OF FINITE QUANTUM GROUPS 3

Moreover, every classical compact group can be equipped with a Haar measure.
If we look at integration of continuous functions with respect to this measure, we
obtain a state on the group algebra. The identity

/G f(g-s)dA(s) = /G £(s)dA(s) = /G F(s - g)dA(s)

becomes (A ® idg(qy) 0 A = A(-)lg = (ide(q) ®A) o A, with the coproduct defined
above, where A denotes the integration with respect to the Haar measure. This
leads us to the following definition:

Definition 1.5. A Haar state h on a compact quantum group G = (A, A) is a
state on A such that

(h®ida) o A =h(-)14 = (ida ®h) 0 A .

Note that every compact quantum group admits a unique Haar state. We will use
it to determine *-distribution of elements of the algebra, in the following sense. Let
us denote by C(X, X*) the set of polynomials with two (noncommutative) variables
X and X*.

Definition 1.6. Let a be an element of the compact quantum group G = (A, A),
endowed with the Haar state h. The x-distribution of a is the linear functional
ta: C(X, X*) = C given by

fia (X' X5%) = h(a® ...a"")

for all natural number n and every choice of €1,...,e, € {0, *}, where a** ...a""
denotes the corresponding product of a = a® and a* in A. The h(a®* ...a°")’s are
called the moments of a.

We will compare these *-distributions with classical probability distributions.
For instance, the Dirac mass probability distribution J, in some real number z, the
arcsine distribution figyc(z,,) on the interval (z ; y), or the uniform distribution
U(2T) on a multiple of the complex unit circle T.

We will also look at joint distribution of several elements, defined in a similar
way. In this article, we say that the elements are independent when the joint
distribution correspond to the joint distribution of classical independent random
variables. We consider asymptotic distribution as convergence in moments.

This work is separated into two parts. The first section is devoted to the study
of the Kac-Paljutkin quantum group KP. After recalling the definition, we will de-
termine its five irreducible representations. Finally, we determine the x-distribution
of the trace of powers of the fundamental representation in Theorem 2.1 and study
their independence in Theorem 2.2.

In the second section, we work with the family of Sekine quantum groups. Af-
ter recalling the definition, we give the representation theory. We also study the
character space and a commutative subalgebra. Finally, we determine the asymp-
totic #-distribution of the trace of powers of two-dimensional representations in
Theorems 3.4 and 3.5.

2. KAC-PALJUTKIN FINITE QUANTUM GROUP KP

2.1. Definition. We will follow the definition of [9], but for convenience of the
reader, we recall here the notations.



4 ISABELLE BARAQUIN

Consider the multi-matrix algebra A =C & C& C & C & M3 (C) together with
usual multiplication and involution. This is an eight-dimensional algebra, with the
canonical basis

. . . . (0 O . . . . (1 0
e1=1+0+0+0+(0 0) E11:0+0+0+0+<0 0)
. . . . (0 O . . . (0 1
ez=0+1+0+0+<0 O) E12=0+0+0+0+<0 0)
. . . . (0 O . . . . (0 O
e3s=0+0+1+0+ Ey =04+04+04+0+
0 0 1 0
er=0+040+14 (2 0 Ep=0+0+0+0+ (2 7
0 0 0 1
where 4 is defined in a natural way to designate elements in the direct sum. The
unit is naturally 1 =1+1+14+14 (1) (1) =e1+estes+es+ Eig + Foo.

The following defines the coproduct, where 1 is the imaginary unit:
Ale1) =e1®e1+eaRex+e3®ez+e4 ey
+ %Ell ® En + %Em ® Erg + %Em ® FEo1 + %Em ® Fa
Ales) =e1@ea+ea®e1 +e3Req +e4 e

1 1 ) 7
+ §E11 ® Eoo + §E22 ® B — §E12 ® Eay + §E21 ® E1o
Alez) =e1@e3+e3Qer +ea®eq+e4 Qe

1 1 1 7
+ §E11 ® Ep + §E22 ® B+ §E12 ® Eo1 — §E21 ® Eq2
A(64) —e1®est+es1®e; +exaXez+e3@es

1 1 1 1
+ §E11 ® Eq + §E22 ® Eao — §E12 ® Eig — §E21 ® Eay

AEn)=e1@FEi1+Eii®er+ex® Eag + Fa @es
+e3®@ Eap + Exn®ez+es®@En+ Ei1 ®ey
A(E12) =e1 @ B2+ E1a ® €1 +162 @ Fo1 —1F9 @ eg
—1e3 ® o1 + 1l ®e3 —es @ Bio — B2 ®ey
A(E21) = €1 ® Ea + Eo @ e —1ea @ Erg +1E12 @ e
+ie3 ®@ Big — 1B ®@e3 —eq4 ® Foy — Foy ® ey
A(Exp) =1 @ FEx+ Ep®er+e® Ei + Eii @es
tes®@En + B ®es+es® Fag+ Faa ®ey

the counit is given by ¢ (xl oo Fazt s+ (211 ?2)) = 1 and the antipode
21 C22

is the transpose map, i.e. S(e;) = ¢; and S(E;;) = Ej;.
This defines a finite quantum group, denoted by KP = (A, A). We shall also
need its Haar state, denoted by fKP:

. . . . 1
/ 1+ X2+ T3+ 24+ ci Ci2 = *($1+I2+l‘3+$4+2(011 +022)) .
KP C21  C22 8
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2.2. The group of group-like elements. A group-like element is a non-zero
element of A such that A(g) = g ® g. Group-like elements satisfying £(g) = 1, i.e.
g1 = 1, correspond to one dimensional representations of KIP. Moreover, they form
a group, with inverse given by the antipode. In particular, the unit 1, called the
trivial representation, satisfies these conditions.

By direct calculation, using the conditions above and the linear basis, the family
of group-like elements of KP is a group isomorphic to Zs X Zs:

(10 R
(1) {1+1+1+1+(0 1),1+1+1+1+(0 1),
. . . . (1 0 . . . . (—1 0
1+—1+—1+1+<O _1>,1+—1+—1+1+(0 1)}

Remark 2.1. Note that in [10], Izumi and Kosaki do not follow the same way to
define KP. They give group-like elements which look a little bit different from ours.
The fact is that they do not use the same basis: in their notation, z(a), z(b) and
z(c) play respectively the role of our ey, es and es.

2.3. Matrix elements and fundamental representation. Let us look at rep-
resentations of KIP with dimension at least 2. We will determine matrix elements
of representation of dimension 2, i.e. elements X (1), X(12), X(21), X(22) of A, such
These are matrix elements of two-dimensional representations of KP.

Proposition 2.1. For all a € {—1,1} and all A € T, let us fix

Xy X
Xy = (Fan Xaz)
A (35@1) X(22)

. . . (0 O Lo 0 A
1+a+—a+—1+<0 O) 0+0+0+0+<w/\ 0)

S 0 A . . . (0 0
0+0+0+0+(—m 0) 1+—a—|—a—|——1+<0 0)

Then X, is a fundamental representation of KP, it means that its coefficients
generate the algebra A.

Remark 2.2. Remark 2.1, about [10], holds again. Moreover, since all X, x are
unitary equivalent, Irumi and Kosaki fit a = —1 and A\ = e'7 .

Proof. First of all, let us check that X(;1) is a matrix element of a two-dimensional
representation of KP. The computation for X(12), X(21) and X(22) are similar. We
have on the first hand

AXq)) =e1®er +ea®@ex+e3®@ez +eg@ey
—(e1®es+es®@er +eaQez+e3 D ez)
tale1®extea®@er +ez3®@eq+eq @ es)
—a(e1®ez+es®er +ex®@eq+e4 ®ey)

+ E12 @ Ero + B2 @ Eoy +1aFE2 ® Eig —1waFi2 ® Ey
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and, on the other hand

Xan @ Xy + X2 @ X)) =e1®e1 +ae; Qex —ae; @ez —e1 D ey
+a(ea®e; +aes ey —aes @ez — ex ® ey)
—a(e3®e; +ae3 ey —aez3 ez — ez D ey)
—(e4®e1 +aey ey —aeqs ez —eq D ey)
+ |A2E12 ® E1a —1a|A\*Er12 ® Eoy
+1a|\*Fa1 ® Eio 4 a®|\*Fay @ By .
Hence, A(X(11)) = X11) ® X1y + X(12) ® X(21)-
Moreover, we can show that X, » and X,  are unitary matrices and that prx(fa,,\)*x(fa,,\) =

1. Hence X, » defines a unitary irreducible representation of KIP.
Finally, the family {X(11), X(12), X(21), X(22) } generates A, since

ﬁ—i<fm+ﬂmﬂm)‘ﬂﬁm+%mﬁ
eq = i (33%11 + 35<n>3€<22>) i (Xan + X))
€2 i(%1n XanXen) + 7 (Xay — Xe)
63—-%(f11-xunx@m) 7 (®ay — X))
By = % (35(12)35(12> +aXazX( 21))
‘@2:%<ﬁmﬁh%—w%m QD)

Epp = % (/\36(12) + XX (21))

FEo = —5 (;\:{(12) — /\%(21)) .
(]

2.4. Powers of fundamental representation. To extend the study of Diaconis
and Shahshahani in KP, we compute the traces of powers of the fundamental rep-
resentation. Once we have these elements, we compute their *-distribution in the
finite quantum group KPP with respect to the Haar state, and identify them with
classical probability distributions determined by moments of all order.

To do this, we have to define the adjoint z* of an element z in A. It is given by
the following formula:

. . . . c C * e e e w7 Co1
sitatrztaat+ (T T?)) =mAimim i (2 )
C21 (22 Ci2 (22
First, let us compute the powers of X, . Let {e;;}1<i j<2 denote the family of

matrix unit in My (C). Then

2
Xap = ) €ij ® Xy

4,j=1
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as an element of M5(C) ® A. The usual multiplication in the tensor product of
algebra gives, going back to the matrix notation,

pit1drird (7 ) oiotoioi(Y 0
0 2a 0 0

(an\)ZZ . . . . {0 0 . . . . [1a 0
04+04+0+0+ 1+14+141+
0 0 0 —wa

By similar calculations, using (xa,A)Qn = {(%a,x)ﬂ , for all non negative integers

n, (%a’)\)zn is a diagonal matrix and
(=)™ 0 0 0
0 ()" 00
0

1+1+1+1+<
. .. . . {0 O L. (za)”
o+0+0+0+(0(9 1+1+1+1+<(J(—MW)

) 01010104
(2)  (Xan)™ =

Lemma 2.1. For all non negative integer n, x ((ffa7>\)2n+1) = x(Xq,x) and x ((.’{W\)Q") =
24242424 ((1a)™ + (—1a)™) Iz, where Iy is the identity matriz in Ms(C).

Proof. The second relation comes from equation (2) and the componentwise ad-

dition. The classical formula (%a,,\)%Jrl = (xm)% Xq leads to the following

. 2n+1
expression for (¥,.,)°" "'

.. . . /0 O L 0 (—za)n)\
lfat-at-14+(4 ) 0+0+0+0+<@@”“A 0 )
S 0 (1a)™ A ) . /0 0
0+0+0+0+<(__m)nHX 0 ) 1+—a+a+—1+<0(9
and the trace does not depends on n. ([l

Let E[Z™] denotes moment of order n of a classical random variable Z. We
obtain four different discrete probability distributions for y ((fa,x)k>, depending
on the power k.

Theorem 2.1. Let k be a non negative integer. Let us denote by uo, w1, pz and
w4 the following distributions:

1 3 1 1 1 1 1
Mo = 52, H1 = §5_2 + 150 + §52, Ho = 560 + 552 and Ha = 55_2 + 552 .

Then for alla € {—1,1} and A € T, x ((Xa,2)*) is self-adjoint and admits . as
x—distribution, with

1 ifk=1[2]
. 2 ifk=2[4]
4 ifk=48]
0 ifk=0[g
Moreover, we have
2+04+0+-2+0, L ifk=1[2

X)) =" " T
X (Xa)") 24242424+ -2 ,ifk=4

[
242424240, if k=2
[
242424242, ,ifk=0[8
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Proof. Assume that k is odd, then x ((%a,,\)k) = X (X4,1), by Lemma 2.1, and, by
definition, we have

S . /0 0
X (Xan) = X1y + X2 =2+0+0+ -2+ (0 0)

80, X (X4.2)" = x (X4,1), and for all non negative integer n, we obtain that

/ o))" = é@" 07+ 07"+ (=2)" +2(0" +07))
KP

(=2) 3 2n
= - "+ — =E[Z]
5 + 1% 0" + 5 [Z7]
where Z; is a pi-distributed random variable.

Now, assume that k is even. Then

o ioie el (za)% + (—za)% 0
X ((%a,x)k) =2+2+242+ ( 0 ()b + (_m)g-)

is self-adjoint and

/K]P(x ((%a,/\)k)yL = % (2” + ((m)% + (—za)g)n) .

Let us note that (1a)?> = —1, and (2a)* = 1. Hence, we obtain that the distribution
of x ((xm)’“) equals g it k = 4p + 2, juq if k = 8p + 4 and g if 8 divides k. O

Remark 2.3. Like in the classical case, we are able to express traces of powers
of the fundamental representation as linear combinations of irreducible characters,
it means one-dimensional representations, listed in (1), and x (X,,5). Here we
have 2424242420 =21, 2424242+ -2, = 2(1+1+14+1+—12) and
242424240,=2 (1—@—14—14—1—@——12 —|—]1). Let us note that this is not true in
general for quantum groups. For instance, in the free orthogonal group O;{[, x(u?)
is not a linear combination of characters, where u is the fundamental representation
of O?{,. For further examples, the reader can also look at the dual quantum group

H@P\n in subsection 3.7.

We are now able to study the independence relations between the four distinct
variables obtained in the previous theorem. To do this, we work with joint cumu-
lants. It vanishes whenever there is a random variable independent from the others.
Let us denote by P, the set of all partitions of {1,2,...,r}, and for 7 € P,., |7 is
the number of its blocks.

Theorem 2.2. For i € {0,1,2,4}, let Z; be a p;-distributed random variable such
that Zy and Z, are independent from all the others.
Then, for alla € {—1,1}, A€ T, and (k1,...,k.) € N",

/ X ((Xan)™) X (X)) =E[Zum, .. Zim,]
KP

— o#{iki=0}p {Z#{i,kizl}] E {Zz#{i,ki=2}zf{i,ki=4}
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1 ifk;=1[2]
with m; = 2 Zf ki = 204 .

4 if k; =4[8]

0 ifki=0[§]

Proof. Let us note that the x ((ffax)l) ’s commute. Hence

~/K]P’i1i|1:X((xa,)\)ki) :/]K27-—;_06(]6)+a(k)+(_1)#{i7ki:1}27'+ﬁ(k)

P
_ % (2r (1 4 (_1)#{1;161:1}) + 2a(k) +2Tr(ﬂ(k)))

where a(k) is 0 if there exists ¢ such that k; = 1 and 2" otherwise, and (k) is the
matrix null if there exists i such that k; € {1,2} and (—1)#{#*=4}27], otherwise.
So, we have

[T ()

0 if 24 #{i, k; =1}
)2 if #{i,k; =1} € 2(N\ {0})
)2t if #{ik; =1} =0,#{i,k; =2} > 1

2T—1 (1 + (_1)#{’7k1:4}) otherwise

%

Clearly, ((%G,A)O) is independent from the other ((%a,,\) )’s. To study the

independence of x (X4,x), let us look at classical cuamulants. Let {p1,p2,...,pr} bea
subset of {1,2,4}, and £(p1, . . ., pr) be the joint cumulant of x (X)), ..., x (Xan)"").
By definition, we have

K(p1y---,pr) = al — D (=171 a)PE
(Prs- 101 ﬂ;m 1)1(-1) gr/mkeHBx«x,A))

hence, if 1 is in {p1,p2,...,pr} the cumulant is 0, it means that x (X,,) is inde-
pendent from the others. Moreover,

w2 = [ (@) (@) = [ x(@n?) [ x (@) =2

thus x ((.’{u,\)2> and x ((xm)“) are not independent. O

3. THE SEKINE FINITE QuANTUM GROUPS KP,

3.1. Definition. We will follow the definition of [11], but for convenience of the
reader, we recall here the notations.

Consider the multi-matrix algebra A, = P, ;cz Ce( j) ® M, (C) together with
usual multiplication and involution. This is a 2n?-dimensional algebra, with basis
{e(i,j)}i,jezn U {Ei,j}lgi,jgn- The unit is naturally

1= Z i) T ZE“
1

1, €Ly =
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The following defines the coproduct:

1 o
Aleagy) = Y. C(kt) @ €limkj—t) T — > "B @ Ergjasg
kJAELy, kJELy

A(E; ;) = Z ek @ TIE i+ Z PUTVE i ® e
k€2 k€Zn

with 7 = e*" a primitive nth root of unity. The counit is given by

| X weacent X XisFis | =0

4,j€Ln 1<i,j<n

and the antipode satisfies S(e(; j)) = e(—; —j) and S(E; ;) = Ej ;.
This defines a finite quantum group, denoted by KP,, = (A,, A), called Sekine
quantum group. We shall also need its Haar state, denoted by fKPn and given by

the following formula:

1 n
L E woneon+ X X ] =g (X s tnd X
n 7/:1

€L 1<ij<n i,j€Ln

Remark 3.1. As noted in [11], with this definition, KPy is cocommutative and
equal to the virtual object Dy, i.e. Ao ~ CDy.

3.2. Representation theory. Let us first determine the representation theory of
the Sekine finite quantum groups. We list here the irreducible unitary representa-
tions of KP,, for each n > 2. Note that it depends on the parity of n.

3.2.1. Case n odd.
Theorem 3.1 ([11]). If n is odd, the finite quantum group KP, admits 2n one-
dimensional non equivalent unitary representations,

n

vie {0,1,...,n—1}, pli = Z nile(m) + ZEi,i—i-l .

1,j€Zn i=1

It also admits n(n;l) non equivalent unitary two-dimensional irreducible repre-
sentations, indeved by u € {0,1,...,n — 1} and v € {1,2,..., 251}, given by their
matriz-coefficients:

n
U, v _ iu+ju uv —iv
}:11 - Z n e(ivj) %12 - ZU Ez,eru
4,J€Ln 1=1
n
uv v U,V _ u—ju,
X5 —E N Eiitu Xy = E n €(i,4)

=1 4,J€Ln
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3.2.2. Cuse n even.

Theorem 3.2. Ifn is even, the finite quantum group KP,, admits 4n one-dimensional
non equivalent unitary representations,

pli = Z nez])iZEzH—l
vie{0,1,...,n—1}, -1 €2n |
of = > (=1ipt @, * Z (=1)'E; i1
1,J€Ln =1

It also admits "("2_2) non equivalent unitary two-dimensional irreducible repre-
sentations, indeved by u € {0,1,...,n—1} andv € {1,2,..., 5 — 1}, given by their

matriz-coefficients:

U Tu+ju —1v
1 = § n"r €(i,5) 12 —E N " Eiitu

4,J€Ln

v UV u—jv
X51 —E N Lijitu 22 = E n €(i,5)

4,J€Ln

Proof. The computations done for Pz and X7 in the odd case in [11] are still valid.

It is clear that ¢(0j") = 1. By [12, Proposition 3 1.7], it remains to prove that

li are group-like elements. The same steps as for pl give

A(Uzi) = Z (*1)j77”6(s,t) @ €(i—s,j—t)
1,5,8,t€ZLn
+ Z m ,m—+1 ® Em+] m+j+1
JEZ

+ Z mn”e(s ) @ Emttmttti

s, D,

n
+ Z (=)™ Bt 141 @ €(s.1) -
s,te_Zln

On the other hand, we have
of o= > (1T @

i.§,5,t€Ln
n

+ Y (1B 1 ® By

(_1)t+mn8le(s,t) ® Em,m+l

1)
T~
M: I
I}

+

v»S

37 n

n
4 Z m+t77$lEm,m+l ® €(s)
m=1

N

S7 n
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which is the same, up to re-indexation (s+1i —i,t+j — j,4 — s and j — ¢ in the
first term, t — s — j in the second one, m —t — m in the third one and m+t — m
in the last one). O

Remark 3.2. This is another way to see that the Kac-Paljutkin KPP finite quantum
group s different from KPs, since they do not have the same representation the-
ory. The quantum group KPP admits four one-dimensional representations and one
two-dimensional irreducible representation, whereas the Sekine quantum group KPs
admits eight one-dimensional representations and no two-dimensional irreducible
representation.

3.3. Characters. We will now consider the traces of powers of the two-dimensional
irreducible representations X*¥. In the following, we (incorrectly) call kth character
associated to X*" the trace of the kth power of this representation.

Lemma 3.1. The even powers of X*V are diagonal maitrices.
Proof. By definition and orthogonality of the e(; ;)’s and the E; ;’s, we have

((xu’v)z)u = X117 X0y + XXy = O,

((35“’")2) = X" X7]" + X35" 251" = O,

21
k

o (x*v)? is a diagonal matrix and therefore (X%*)?" = ((%““)2> is also a diag-
onal matrix in Ms(A,). O
Proposition 3.1. The characters associated to XV are

X ((xu,v)k> —9 Z ,rlksu cos (2]4;::}71'> Co)

S, tE€ELn,

kuor ) —
+ Toz(k) 2cos< - )ZEr,r+ku

r=1
where 1oy denotes the indicator function of the even integers.

Proof. By definition, we have
(m)?), | = @2 + xiy

n
oo ey M egn + D 0T Biivutt’ Byt

0.4,k €Dy ij=1
n
_ 2su-+2tv uv
= E n €(s,t) + E n Er,'r'-‘rZu
S, UE€ELn r=1

and by similar calculations, and by Lemma 3.1 we have

n
k
<(xuv 2 ) Z 772ksu+2ktv s7t) +Z7’]kqur,T+2ku
r=1

S, tELn,

((xuu 2k> Z 772ksu 2ktve(s 9 +Z77 kuv rr+2ku

$,tE7Ln,
which leads to the result for even powers.
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2p+1 2 :
Let k = 2p+ 1, then (X»¥)*PT! = (x%?)* X%?_hence we obtain

(o) = (™) @, + (@) @),

11

n

2piu+2pjv uv ku+lv
E NPT e 5y + E """ Ej iv2pu E 7 e(k,1)
1,JELn i=1 k,J€Zy

_ E ksu+kt
— ,',’ Su ’Ue(s7t)
ENASY/S

and similarly ((%““)k) = Y nksumHve ) which leads to the result for odd
22 i€l
powers. U

3.4. Character spaces. Let us look more precisely at relations between the char-
acters before to study their asymptotic distributions.

3.4.1. Algebra of characters.

Proposition 3.2. The algebra of characters, generated by all one-dimensional rep-
resentations and all the x(X™"), contains all x ((%“’”)k), k>1.

Proof. If n does not divide kv, consider w the absolute value of kv (mod n). If w
belongs to {1,..., 5]}, then

kuvm _
Y ((xu,y)k) =y (xku,w) + ]122(]43) cos < " > (p:u — pku)
otherwise, n is even and w = %, and
((E9)1) = o, + o, + LUz (~1)F (o1, — i)

If kv = an then, for s the sign of (—1)%%,

+ _ - -
o P T P, if K is odd
x((ae’)k){': b RN
2p3., if k is even

O

Remark 3.3. This proposition gives us another reason to call character the x ((f{“”)k)

since, for the classical groups, every linear combination x, with coefficients in Z, of
characters such that x(e) > 0 is again a character. Let us note once again that this
is not true in general for quantum groups, a counterexample is given by the dual
quantum group ]I@D\n in subsection 3.7.

Proposition 3.3. The algebra of characters is commutative if n is odd.

Proof. We have for s # s" ort # ', (s pye(s ¢y = Oxe,, e%s 1 = €(s,t) and e, B j =
E; je(s) = Ogp,- On the other hand, we also have, for all natural numbers a, b,

(Z Em,m+a><z E,u,,u+b>_ Z Er,r+a+b _<Z Ep,erb)(Z Em,era)
m=1 r=1 m=1

p=1 p=1

which leads to the commutativity of the algebra. (]
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Remark 3.4. If n is even, the subalgebra generated by the ,ol:t ’s and the x(X“") is
also commutative. But the Uli ’s do not commute with the pljE ’s, since

(Z ( mEm m+a><z EH H+b> Z(_l)TEr,r+a+b

m=1 r=1
n
(Z EM #H‘b)(Z( l)m m,m—i—a) = Z(_l)r+bE7',r+b+a
m=1 r=1

when b is odd.

34.2. A commutative (sub)algebra. For all n, the algebra generated by all the
X(X*?)’s and all the pli’s is a classical commutative algebra. Thus, by the spectral
theorem, it is *-isomorphic to C* for some k& € N. In order to keep track of the
restriction of the Haar state, we can view it as a subalgebra of some L™ (Q,, ),
for a compact space €2, and a probability distribution p,. It means that we can
see these characters as classical random variables on the classical probability space
(Qn, i)

By the Gelfand-Naimark Theorem, €2, is the spectrum of the algebra, it means
the set of all its characters, which are all the non zero x-multiplicative linear forms.
To determine this space and the measure u,, we need to investigate deeper the
structure of the *-algebra

-1
Cn:*_a]g{p?:,x(xu’v)’o<l7u<n—171<U<\:nz J}

Lemma 3.2. For all non negative integers k and | smaller than n—1, prlJr = p;:H,
PP = pzﬂ and pzpf = Pry = p;p;r, where the sum k + 1 is taken in Z,. We
also have that, for all integer v between 1 and | "5 L|, and for all integer u between
0 and n — 1, there exist integers a; € 7, such that

x (X%Y) = pf ((X (.’{0’1))v +ay—2 (x (%071))U_2 +...+ax (%0’1))

if v is odd, or, if v is even
x () = o (((30) + aums (0 (X)) ao (07 +07) ) -

Proof. The first assertion follows from the definition of the componentwise multi-
plication.

For the second part of the lemma, by the same way, we easily see that px (X°) =
x (X*"). Therefore, we only need to consider the y (X%v).

Let us note that the Tchebychev polynomials T;, satisfy, for all real 6, T;, (cos(0)) =
cos(nd) , so we have

t
%0” =2 Z COS( WU)e(s,t)

S$,t€EZLn

o2 5 o (2

S, UELn,

()
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. N - x0!
thanks to the componentwise multiplication, where the constant term in T, <X(2)>

isOor (pf +p5)= > €(s,+) but not Igp,, what we should have if we substitute
S, tELm,

x (X%1) in T,(X).

Moreover, the Tchebychev polynomial T, has degree v with leading coefficient
2v~1 and all its coefficients are integers. It is symmetric if v is even, or antisym-
metric if v is odd. O

This Lemma means that
Cn = *_alg {pii_a pl_a X (XOJ)} -

Remark 3.5. Since, when n is odd, we have (p7 )" ™! = pi*', the corresponding C,
is generated (as an algebra) by {pl_,x (3.”0’1)}.

Thus, by the properties of the characters, they are defined by their values on pf,
py and y (X%1). Moreover, o(a) = {w(a),w € Q}, so Q, is fixed by the spectra of
the three elements and some relations. Let us note that C, is a subalgebra of KP,,
containing the unit. Hence, the spectrum with respect to C,, is the spectrum with
respect to KP,,. Direct calculations show that:

o (x (201)) = {2(:05 (2;”) e zn} U0},

g (pii_) = {775’ ERS Zn} )
o (p;) ={n®, s€Z,}U{-n°, s€Z,} .
To determine €,,, let us note that
(1) = (p7)” = pi and pfx (X1) = pyx (%) = x (&)
which leads to the relations
Vw € Qy, w (pf) = tw (p7)
{Vw €y, w (p{“) = —w (pl_) = w (X (%0’1)) =0
Finally, we get the following result

Theorem 3.3. For all n, C,, equipped with the Haar state, can be viewed as an
algebra of random variables on the probability space

2t
Q, = <{775, S € Zn}y x {1} x ({2cos <nﬂ> , te Zn} U {O}))
U({-n°, s€Z,} x {-1} x {0})
endowed with the measure
1142(77,) 1-— ]142(’/1)) 1
2n(p B 1) 2n(p B 2) w=(a,b,c)EN, 2n w=(a,b,c)ENy,

b=1 b=-1

where p = L%J and 147 is the indicator function of 4Z, thanks to the Gelfand
transform,

F:Cp — L®(Qp, pin)

z (2w wx))
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given by the following formula

—

p1 (a,b,¢c) =a, ;}(a,b,c) =ab, X(/Xo\vl)(a,b,c) =c.
3.5. Asymptotic laws.

Definition 3.1. We say that a complex random variable Z is C-arcsine(a) dis-
- - - - 1 - -
tributed, if it admits z — ]laD(z)WQ\/j as density function. Let us denote by

a?—|z|?

HC—arc(a) the corresponding distribution.

Lemma 3.3. If Z is a C-arcsine(2) random variable, for all k and 1, we have

E[ZF 7] = {(2:) if k=1

0 otherwise

Proof. We need to compute

21k u(k—1)0
772/‘/ \/—77"2 de dr .

The integral with respect to 6 vanishes, except if K = [. In this case, we are left
with the 2kth moment of the arcsine distribution on (-2 ; 2). O

This helps us to find the x-distribution of characters associated to the irreducible
representations X*°.

Theorem 3.4. For all u,v > 1, x (X“") is asymptotically (when n — +00) a
(%50 + %uc_arc@))-distributed random variable, and x (%0’”) admits asymptotically
(when n — +00) the x-distribution %50 + %Marc(_272), where fiqre(—2,2) Tepresents
the classical arcsine distribution on the open interval (—2 , 2).

Moreover, the same holds for all x ((ff“’”)k), with k odd.

Proof. We only do the computation for x (X*¥). The case x ((X“’”)k>, with k > 1
odd, is similar.
Let us remember that, by Proposition 3.1,

2t
X (X0) =2 Z ( U?T)e(s’t) .

S, €Ly,

Therefore, x (X*?) commutes with y (X*)*, and for all m > 1

m m s 2tor \ "
@)= 3 ( ) e

n
ERASY/S
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so we have
et ey
KP,,
ritrs ) su otom\ T
TS e (22)
ERI<y/S
1 T e 4y
= Ly g (0 ( 1 *>Z - (trt
2n SeZn =0 l teZn

1+
— %]1”2((7’1 — 7)) Z <r1 ?r*)]lnz((% —(r1+r))v) .

=0

Forall u>1,r; #r., n>wu(ry —r«) + 1, we have 0 < u(r; — r.) < n, so

[ teemny ey <o,
KP,,

Otherwise, if r; = r, =r > 1, for n great enough (n > 2rv + 1), we obtain

JRCER IR 1

Hence, if u # 0, x (X*) is asymptotically a (%50 + %yc_arc(g))—dis‘uributed random
variable.
If u = 0, let us note that x (X°v) is selfadjoint, and

/KM(X (X)™ = %Em: (Tln) 1,2((2L — m)v) .

=0

Hence, for n great enough, if m is odd, the moment vanishes, and if m = 2p, it is
1

3 (7;), which corresponds to the distribution £80 + 1 ftare(—2,2)- O
Theorem 3.5. For all integers u,v > 1 and any even k, x ((%“”)k) s asymptot-
ically (when n — +00) a (%L{(Q']I‘) + %uc,am(g))—distributed random variable, and
X ((360’”)k) admits %52—&—%;4”0(_2)2) as asymptotic x-distribution (whenn — +00).

Proof. The only difference with the characters in the preceding theorem is the part
"+2cos (k"””) Z E, ik in the even characters.

By the propertles of the multiplication in KP,, we only need to study it, and
show that its moments are asymptotically one half of those for a random varlable
uniformly distributed on 2T.

Let us denote this normal matrix by M}, 4 ». Then, for all m > 1

n
M]Tu,v,n = 2™ cos (kuvﬂ—) Z r,r+mku
"t
(Mlzuvn)m =2m Cos ( ) Z r,r—mku
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Hence, we have

o . 3 1 atf kuvr \ * TP -
Mk:,u,'u,n(Mk,u,v,n) :W’n’Q COS n Tr ZET’,T+’CU(047[3)

KPy, r=1

20+58 kuvr\ * P &
— cos ( ) ; 1z (ku(a— B))

-1 (2 (’““:”))W Luz(ku(a — 8)) -

For u = 0, we get 3 (2cos (k“nﬂ))a+ﬁ which is one half of 2475,
For u > 1 and n great enough, this moment goes to one half of the moment of
U(2T), which is zero if « is different from 3, 22% otherwise. This completes the

proof of the theorem. O

n

n
Remark 3.6. Let us note that > E, ,4k, is a permutation matriz, whose eigenval-
r=1

n
ues are the nth roots of unity. Therefore the eigenvalues of the matriz 2 cos (k“%) > Errtku
r=

kuvm

are the nth roots of unity multiplied by 2 cos (T) So when n goes to infinity,
the eigenvalues come out uniformly on 2T if u is not zero, which corresponds to the
result of the Theorem 3.5.

Remark 3.7. If we let n go to oo in Theorem 3.3, we see that, (Qy, tn) converges
to (9, u) where

1 1
Q=T x {1} x [=2; 20T x {=1} x {0}, jt = pic_arez) + 5U(T) -

And, we can check easily that

— —

= ¥ 1 1
P1 ap;_ ~ U(T) and X(xo’l) ~ §/Jarc(72,2) + 5(50 .

Remark 3.8. The same type of computations for the dihedral group Do, gives
similar results. The dihedral group Ds,, admits indeed L”T_lj two-dimensional non
equivalent unitary irreducible representations oy, given by

0 1 nt 0
) (]

where s and t generate Do, with s of order 2 and t of order n. Let us denote by
Xk, the class function Tr (ak(~)l). Then by the moments method, the asymptotic
law of x1, is % (,uarc(,g’g) + 52) if | is even and positive, % (/.Larc(,zg) + 50) if I is
odd or 6o when | = 0.

3.6. Asymptotic pairwise independence. Since we only consider x(X“") or its
adjoint, we work in a commutative setting, and we can use classical cumulants k.
Let b, d, k, [, be natural integers, a and ¢ be non negative integers and e, f be in
{1,*}. Then direct calculation leads to

e f
lim & (X ((xa’b>k) » X ((%C’d>l) > = 6ka7lc6{e,f},{1,*} (5kb,ld + 211(22)2(ka l))

n—-+00

which proves
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Proposition 3.4. Let a, b, ¢, d, e, f, k and | be as above. The followings are
equivalent

e f
(1) x ((%“’b)k) and x ((fc’d)l) are asymptotically independent
(2) at least one of the following conditions holds
o ka #lc

ec=f
e k orl is odd, and kb # Id

3.7. Dual groups. We can define a notion of duality for a finite quantum group
G = (C(G),A). This dual, denoted G = (C(G), A), is again a finite quantum group.
The algebra C(G) is the set of all linear forms defined on C(G). It is also isomorphic
to the direct sum of the non-equivalent unitary irreducible corepresentations of
C(G), thanks to the Fourier transform. All the structures are defined by duality.

In particular, for the case of the Sekine family, let us denote by e(*7) and E*J the
elements of the dual basis. Then, we have the coproduct, dual of the multiplication
on A, given by

n
AeD) = () @ e3) and A(E™) = ZElk ® EFI
k=1

and the Haar state, dual of the counit on A,

/K/\ Z x(iyj)e(i’j) + Z Xi’jEi’j = Z(0,0) -

i,5€%n 1<i,j<n

We clearly obtain that the unitary irreducible representations of KIF’ are the
n? e()’s and the n-dimensional representation % given by its matrlx—elements
X, = Ei. Let us note that ¥ is a fundamental representation of K]P’ Moreover,
these representations are non-equivalent, so there is no other non-equivalent unitary
irreducible representation.

The characters, e(™9), i, j € Z,, and X(f%) = i E™, generate a commutative

i=1
algebra, for the product in C' (]I@P?n) This central algebra is the linear span of these
characters and may not contain all the traces of powers of 3%, given for all positive
integer k by

S>> Esstt if k is odd
S,LELn
X( /f) _— ) kt=0 mod n .
ST pstelts) if kis even
S, tELm,
kt=0 mod n

Note that x (%k) equals x(X) when k is odd and ged(k,n) = 1. If ged(k,n) is

greater than 1 for some odd k, then x (ik) is not in the character space.

However, these traces are all self-adjoint, and commute. Using the corepresen-
tations basis, we can get that, for all positive integers k1, ko, ..., k;,

/Ax(ﬁe’fl)...x(ﬁekr) - nr—Q% H{t € T V1 < i < ryn|kit) .
KP,,
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In particular, by the moments method, the normalized character %x(i) ad-
mits the s-distribution 55 (6_1 + 1) + (1 — 25)do. Moreover, let us note that
#{te€Z,,V1<i<rn|kt}=ged(n, ki,..., k). Thus, for any k& > 1, the nor-
malized trace %X(ik) admits the +-distribution 835%™ (5, 4+ §,)+(1— %)60

2n2
if k is odd, and B4 5, 1 (1 - &dn)y5ig ks even.
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