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In this paper we study (asymptotic) properties of the * -distribution of irreducible characters of nite quantum groups. We proceed in two steps, rst examining the representation theory to determine irreducible representations and their powers, then we study the * -distribution of their trace with respect to the Haar measure. For the Sekine family we look at the asymptotic distribution (as the dimension of the algebra goes to innity).

Introduction

In [START_REF] Diaconis | On the eigenvalues of random matrices[END_REF] and then in [START_REF] Diaconis | Linear functionals of eigenvalues of random matrices[END_REF], Diaconis, Shahshahani and Evans show that the traces of powers of a random unitary (respectively orthogonal) matrix behave asymptotically like independent complex (resp. real) Gaussian random variables. Later, Banica, Curran and Speicher investigate the case of easy quantum groups in [START_REF] Banica | Stochastic aspects of easy quantum groups[END_REF][START_REF] Banica | De Finetti theorems for easy quantum groups[END_REF], and obtain similar results in the context of free probability.

Compact quantum groups are a generalization of classical compact groups. They were introduced in order to extend the Pontryagin duality. Despite of their name of group, we are studying algebras endowed with an additional structure. For a more complete presentation, the reader can look at [START_REF] Maes | Notes on compact quantum groups[END_REF] or [START_REF] Neshveyev | Compact quantum groups and their representation categories[END_REF]. Denition 1.1 (Woronowicz). A compact quantum group is a pair G = (A, ∆), where A is a unital C * -algebra (eventually noncommutative) and ∆ : A → A ⊗ A is a unital * -homomorphism, called coproduct, such that it is coassociative, i.e.

(∆ ⊗ id A ) • ∆ = (id A ⊗∆) • ∆ as * -homomorphisms from A to A ⊗ A ⊗ A, and such that it veries the density in A ⊗ A of the two algebras ( We will say that the quantum group is cocommutative if the coproduct is symmetric, i.e. if σ • ∆ = ∆ where σ(a ⊗ b) = b ⊗ a, for all a, b ∈ A. Note that we consider unital, associative and involutive algebras over the eld of complex numbers and that the tensor products of algebras are algebraic tensor products over C.

Note that we can dene a quantum group thanks to a classical compact group (G, •). The set of complex-valued continuous functions on G, denoted C(G), is endowed with a structure of (commutative) unital C * -algebra. Identifying the tensor product C(G) ⊗ C(G) with C(G × G), it is easy to check that the application ∆ : C(G) → C(G × G), dened by ∆(f )(s, t) = f (s • t) satises the coassociativity relation and the density properties, called quantum cancellation rules.

Following this example, we also denote the algebra A of the quantum group G = (A, ∆) by C(G), and a compact quantum group is called nite when the algebra is nite dimensional.

In this article, we will look at nite quantum groups. They were introduced in the sixties as examples of Hopf-von Neumann algebras to recover symmetry in duality for non abelian locally compact groups. The eight-dimensional Kac-Paljutkin quantum group KP, introduced in [START_REF] Kac | Finite ring groups, Trudy Moskov[END_REF] is the smallest non-trivial example, in the sense it is neither commutative nor cocommutative. In 1996, Sekine denes a new family of nite quantum groups [START_REF] Sekine | An example of nite-dimensional Kac algebras of Kac-Paljutkin type[END_REF], of dimension 2n 2 for all n ≥ 2.

To study a group, it is sometimes useful to look at its action on a complex Hilbert space H. This is a representation of the group π : G → B(H), where B(H) denotes the space of bounded operators on H. When the group is compact, we can see π as an element of B(H) ⊗ C(G). In this framework, the property

∀s, t ∈ G, π(s • t) = π(s)π(t) becomes (id B(H) ⊗∆)π = J 12 (π)J 13 (π), where for every a ⊗ f ∈ B(H) ⊗ C(G), J 12 (a ⊗ f ) = a ⊗ f ⊗ 1 G and J 13 (a ⊗ f ) = a ⊗ 1 G ⊗ f in B(H) ⊗ C(G) ⊗ C(G) and 1 G denotes the constant function 1 on G, the unit in C(G). Denition 1.2. Let G = (C(G), ∆) be a compact quantum group. A corepresen- tation of the algebra C(G), also called a representation of the quantum group G, is an invertible element u of B(H) ⊗ C(G), for some complex Hilbert space H, such that (id B(H) ⊗∆)u = J 12 (u)J 13 (u) in B(H) ⊗ C(G) ⊗ C(G).

We will say that a representation

u ∈ B(H) ⊗ C(G) of the compact quantum group G is unitary if u is a unitary element of B(H) ⊗ C(G), nite dimensional if the Hilbert space H is nite dimensional.
Thus, once a basis of H is xed, we can see a nite dimensional representation as an element of M n (C) ⊗ C(G) M n (C(G)), i.e. a matrix u = (u ij ) 1≤i,j≤n with coecients in the algebra of the quantum group satisfying

∆(u ij ) = k u ik ⊗ u kj . Denition 1.3. Assume u ∈ B(H u ) ⊗ C(G) and v ∈ B(H v ) ⊗ C(G)
are representations of the compact quantum group G. We say that an operator T :

H u → H v intertwines u and v if (T ⊗ 1 C(G) )u = v(T ⊗ 1 C(G) ) .
If such an operator exists, u and v are called equivalent. If moreover T is unitary, they are called unitarily equivalent.

A representation u is called irreducible if there is no intertwiners between u and u itself except scalar multiples of id H .

In particular irreducible representations of compact quantum groups are nite dimensional. An irreducible representation u of a compact quantum group G will be called fundamental if its coecients u ij generate the algebra C(G).

Up to equivalence, we can consider only unitary irreducible (nite dimensional) representations. With these objects, we will use the following notation: Denition 1.4. Let M be a matrix whose coecients M i,j are elements of an algebra A (eventually noncommutative). The trace of M , denoted χ(M ), is the sum of all its diagonal elements, that is

χ(M ) = i M ii in A.
Moreover, every classical compact group can be equipped with a Haar measure. If we look at integration of continuous functions with respect to this measure, we obtain a state on the group algebra. The identity

G f (g • s) dλ(s) = G f (s) dλ(s) = G f (s • g) dλ(s) becomes (λ ⊗ id C(G) ) • ∆ = λ(•)1 G = (id C(G) ⊗λ) • ∆,
with the coproduct dened above, where λ denotes the integration with respect to the Haar measure. This leads us to the following denition: Denition 1.5. A Haar state h on a compact quantum group G = (A, ∆) is a state on A such that

(h ⊗ id A ) • ∆ = h(•)1 A = (id A ⊗h) • ∆ .
Note that every compact quantum group admits a unique Haar state. We will use it to determine * -distribution of elements of the algebra, in the following sense. Let us denote by C X, X * the set of polynomials with two (noncommutative) variables X and X * . Denition 1.6. Let a be an element of the compact quantum group G = (A, ∆), endowed with the Haar state h. The * -distribution of a is the linear functional µ a : C X, X * → C given by µ a (X ε1 . . . X εn ) = h(a ε1 . . . a εn ) for all natural number n and every choice of ε 1 , . . . , ε n ∈ {∅, * }, where a ε1 . . . a εn denotes the corresponding product of a = a ∅ and a * in A. The h(a ε1 . . . a εn )'s are called the moments of a.

We will compare these * -distributions with classical probability distributions. For instance, the Dirac mass probability distribution δ x in some real number x, the arcsine distribution µ arc(x,y) on the interval (x ; y), or the uniform distribution U(xT) on a multiple of the complex unit circle T.

We will also look at joint distribution of several elements, dened in a similar way. In this article, we say that the elements are independent when the joint distribution correspond to the joint distribution of classical independent random variables. We consider asymptotic distribution as convergence in moments.

This work is separated into two parts. The rst section is devoted to the study of the Kac-Paljutkin quantum group KP. After recalling the denition, we will determine its ve irreducible representations. Finally, we determine the * -distribution of the trace of powers of the fundamental representation in Theorem 2.1 and study their independence in Theorem 2.2.

In the second section, we work with the family of Sekine quantum groups. After recalling the denition, we give the representation theory. We also study the character space and a commutative subalgebra. Finally, we determine the asymptotic * -distribution of the trace of powers of two-dimensional representations in Theorems 3.4 and 3.5.

2. Kac-Paljutkin Finite Quantum Group KP 2.1. Denition. We will follow the denition of [START_REF] Franz | Random walks on nite quantum groups, Quantum independent increment processes[END_REF], but for convenience of the reader, we recall here the notations.

Consider the multi-matrix algebra

A = C ⊕ C ⊕ C ⊕ C ⊕ M 2 (C)
together with usual multiplication and involution. This is an eight-dimensional algebra, with the canonical basis e 1 = 1 + 0 + 0 + 0 + 0 0 0 0 E 11 = 0 + 0 + 0 + 0 + 1 0 0 0 e 2 = 0 + 1 + 0 + 0 + 0 0 0 0 E 12 = 0 + 0 + 0 + 0 + 0 1 0 0 e 3 = 0 + 0 + 1 + 0 + 0 0 0 0 E 21 = 0 + 0 + 0 + 0 + 0 0 1 0

e 4 = 0 + 0 + 0 + 1 + 0 0 0 0 E 22 = 0 + 0 + 0 + 0 + 0 0 0 1
where + is dened in a natural way to designate elements in the direct sum. The unit is naturally 

1 = 1 + 1 + 1 + 1 + 1 0 0 1 = e 1 +
E 11 ⊗ E 11 + 1 2 E 22 ⊗ E 22 - 1 2 E 12 ⊗ E 12 - 1 2 E 21 ⊗ E 21 ∆(E 11 ) = e 1 ⊗ E 11 + E 11 ⊗ e 1 + e 2 ⊗ E 22 + E 22 ⊗ e 2 + e 3 ⊗ E 22 + E 22 ⊗ e 3 + e 4 ⊗ E 11 + E 11 ⊗ e 4 ∆(E 12 ) = e 1 ⊗ E 12 + E 12 ⊗ e 1 + ıe 2 ⊗ E 21 -ıE 21 ⊗ e 2 -ıe 3 ⊗ E 21 + ıE 21 ⊗ e 3 -e 4 ⊗ E 12 -E 12 ⊗ e 4 ∆(E 21 ) = e 1 ⊗ E 21 + E 21 ⊗ e 1 -ıe 2 ⊗ E 12 + ıE 12 ⊗ e 2 + ıe 3 ⊗ E 12 -ıE 12 ⊗ e 3 -e 4 ⊗ E 21 -E 21 ⊗ e 4 ∆(E 22 ) = e 1 ⊗ E 22 + E 22 ⊗ e 1 + e 2 ⊗ E 11 + E 11 ⊗ e 2 + e 3 ⊗ E 11 + E 11 ⊗ e 3 + e 4 ⊗ E 22 + E 22 ⊗ e 4
the counit is given by ε

x 1 + x 2 + x 3 + x 4 + c 11 c 12 c 21 c 22
= x 1 and the antipode is the transpose map, i.e. S(e i ) = e i and S(E ij ) = E ji .

This denes a nite quantum group, denoted by KP = (A, ∆). We shall also need its Haar state, denoted by KP :

KP x 1 + x 2 + x 3 + x 4 + c 11 c 12 c 21 c 22 = 1 8 (x 1 + x 2 + x 3 + x 4 + 2(c 11 + c 22 )) .
2.2. The group of group-like elements. A group-like element is a non-zero element of A such that ∆(g) = g ⊗ g. Group-like elements satisfying ε(g) = 1, i.e. g 1 = 1, correspond to one dimensional representations of KP. Moreover, they form a group, with inverse given by the antipode. In particular, the unit 1, called the trivial representation, satises these conditions. By direct calculation, using the conditions above and the linear basis, the family of group-like elements of KP is a group isomorphic to Z 2 × Z 2 :

(1)

1 + 1 + 1 + 1 + 1 0 0 1 , 1 + 1 + 1 + 1 + -1 0 0 -1 , 1 + -1 + -1 + 1 + 1 0 0 -1 , 1 + -1 + -1 + 1 + -1 0 0 1 .
Remark 2.1. Note that in [START_REF] Izumi | Kac algebras arising from composition of subfactors: general theory and classication[END_REF], Izumi and Kosaki do not follow the same way to dene KP. They give group-like elements which look a little bit dierent from ours.

The fact is that they do not use the same basis: in their notation, z(a), z(b) and z(c) play respectively the role of our e 4 , e 2 and e 3 .

Matrix elements and fundamental representation.

Let us look at representations of KP with dimension at least 2. We will determine matrix elements of representation of dimension 2, i.e. elements X [START_REF] Mccarthy | Random Walks on Finite Quantum Groups: Diaconis-Shahshahani Theory for Quantum Groups[END_REF] ,

X (12) , X (21) , X (22) of A, such that ∆(X (ij) ) = X (i1) ⊗ X (1j) + X (i2) ⊗ X (2j) and ε(X (ij) ) = δ i,j for all i, j ∈ {1, 2}.
These are matrix elements of two-dimensional representations of KP.

Proposition 2.1. For all a ∈ {-1, 1} and all λ ∈ T, let us x

X a,λ = X (11) X (12) X (21) X (22) =     1 + a + -a + -1 + 0 0 0 0 0 + 0 + 0 + 0 + 0 λ ıaλ 0 0 + 0 + 0 + 0 + 0 λ -ıa λ 0 1 + -a + a + -1 + 0 0 0 0     .
Then X a,λ is a fundamental representation of KP, it means that its coecients generate the algebra A.

Remark 2.2. Remark 2.1, about [START_REF] Izumi | Kac algebras arising from composition of subfactors: general theory and classication[END_REF], holds again. Moreover, since all X a,λ are unitary equivalent, Izumi and Kosaki x a = -1 and λ = e ı π 4 . Proof. First of all, let us check that X (11) is a matrix element of a two-dimensional representation of KP. The computation for X [START_REF] Timmermann | An invitation to quantum groups and duality[END_REF] , X (21) and X (22) are similar. We have on the rst hand 

+ |λ| 2 E 12 ⊗ E 12 -ıa|λ| 2 E 12 ⊗ E 21 + ıa|λ| 2 E 21 ⊗ E 12 + a 2 |λ| 2 E 21 ⊗ E 21 . Hence, ∆(X (11) ) = X (11) ⊗ X (11) + X (12) ⊗ X (21) .
Moreover, we can show that X a,λ and X a,λ are unitary matrices and that

KP χ(X a,λ ) * χ(X a,λ ) = 1.
Hence X a,λ denes a unitary irreducible representation of KP.

Finally, the family X (11) , X [START_REF] Timmermann | An invitation to quantum groups and duality[END_REF] , X (21) , X (22) generates A, since To do this, we have to dene the adjoint x * of an element x in A. It is given by the following formula:

e 1 = 1 4 X 2 (11) + X (11) X (22) + 1 4 X (11) + X (22) e 4 = 1 4 X 2 (11) + X (11) X (22) - 1 4 X (11) + X (22) e 2 = 1 4 X 2 (11) -X (11) X (22) + a 4 X (11) -X (22) e 3 = 1 4 X 2 (11) -X (11) X (22) - a 4 X (11) -X (22) E 11 = 1 2 X (12) X * (12) + ıaX (12) X (21) E 22 = 1 2 X (12) X * ( 
x 1 + x 2 + x 3 + x 4 + c 11 c 12 c 21 c 22 * = x 1 + x 2 + x 3 + x 4 + c 11 c 21 c 12 c 22 .
First, let us compute the powers of X a,λ . Let {e ij } 1≤i,j≤2 denote the family of matrix unit in M 2 (C). Then

X a,λ = 2 i,j=1 e ij ⊗ X (ij)
as an element of M 2 (C) ⊗ A. The usual multiplication in the tensor product of algebra gives, going back to the matrix notation,

(X a,λ ) 2 =     1 + 1 + 1 + 1 + -ıa 0 0 ıa 0 + 0 + 0 + 0 + 0 0 0 0 0 + 0 + 0 + 0 + 0 0 0 0 1 + 1 + 1 + 1 + ıa 0 0 -ıa     .
By similar calculations, using (X a,λ ) 2n = (X a,λ ) 2 n , for all non negative integers n, (X a,λ )

2n is a diagonal matrix and

(2)

(X a,λ ) 2n =     1 + 1 + 1 + 1 + (-ıa) n 0 0 (ıa) n 0 + 0 + 0 + 0 + 0 0 0 0 0 + 0 + 0 + 0 + 0 0 0 0 1 + 1 + 1 + 1 + (ıa) n 0 0 (-ıa) n     Lemma 2.1. For all non negative integer n, χ (X a,λ ) 2n+1 = χ (X a,λ ) and χ (X a,λ ) 2n = 2 + 2 + 2 + 2 + ((ıa) n + (-ıa) n ) I 2 , where I 2 is the identity matrix in M 2 (C).
Proof. The second relation comes from equation ( 2) and the componentwise addition. The classical formula (X a,λ ) 2n+1 = (X a,λ ) 2n X a,λ leads to the following expression for (X a,λ ) 2n+1 :

    1 + a + -a + -1 + 0 0 0 0 0 + 0 + 0 + 0 + 0 (-ıa) n λ (ıa) n+1 λ 0 0 + 0 + 0 + 0 + 0 (ıa) n λ (-ıa) n+1 λ 0 1 + -a + a + -1 + 0 0 0 0    
and the trace does not depends on n.

Let E[Z n ] denotes moment of order n of a classical random variable Z. We obtain four dierent discrete probability distributions for χ (X a,λ ) k , depending on the power k.

Theorem 2.1. Let k be a non negative integer. Let us denote by µ 0 , µ 1 , µ 2 and µ 4 the following distributions:

µ 0 = δ 2 , µ 1 = 1 8 δ -2 + 3 4 δ 0 + 1 8 δ 2 , µ 2 = 1 2 δ 0 + 1 2 δ 2 and µ 4 = 1 2 δ -2 + 1 2 δ 2 .
Then for all a ∈ {-1, 1} and λ ∈ T, χ (X a,λ ) k is self-adjoint and admits µ κ as * -distribution, with

κ =          1 if k ≡ 1[2] 2 if k ≡ 2[4] 4 if k ≡ 4[8] 0 if k ≡ 0[8]
. Moreover, we have

χ (X a,λ ) k =          2 + 0 + 0 + -2 + 0 2 , if k ≡ 1[2] 2 + 2 + 2 + 2 + 0 2 , if k ≡ 2[4] 2 + 2 + 2 + 2 + -2I 2 , if k ≡ 4[8] 2 + 2 + 2 + 2 + 2I 2 , if k ≡ 0[8]
.

Proof. Assume that k is odd, then χ (X a,λ ) k = χ (X a,λ ), by Lemma 2.1, and, by denition, we have

χ (X a,λ ) = X (11) + X (22) = 2 + 0 + 0 + -2 + 0 0 0 0 so, χ (X a,λ ) * = χ (X a,λ )
, and for all non negative integer n, we obtain that

KP (χ (X a,λ )) n = 1 8 (2 n + 0 n + 0 n + (-2) n + 2(0 n + 0 n )) = (-2) n 8 + 3 4 × 0 n + 2 n 8 = E[Z n 1 ]
where Z 1 is a µ 1 -distributed random variable. Now, assume that k is even. Then

χ (X a,λ ) k = 2 + 2 + 2 + 2 + (ıa) k 2 + (-ıa) k 2 0 0 (ıa) k 2 + (-ıa) k 2 is self-adjoint and KP χ (X a,λ ) k n = 1 2 2 n + (ıa) k 2 + (-ıa) k 2 n .
Let us note that (ıa) 2 = -1, and (ıa) 4 = 1. Hence, we obtain that the distribution of χ (X a,λ We are now able to study the independence relations between the four distinct variables obtained in the previous theorem. To do this, we work with joint cumulants. It vanishes whenever there is a random variable independent from the others. Let us denote by P r the set of all partitions of {1, 2, . . . , r}, and for π ∈ P r , |π| is the number of its blocks. Theorem 2.2. For i ∈ {0, 1, 2, 4}, let Z i be a µ i -distributed random variable such that Z 0 and Z 1 are independent from all the others.

) k equals µ 2 if k = 4p + 2, µ 4 if k = 8p +
Then, for all a ∈ {-1, 1}, λ ∈ T, and

(k 1 , . . . , k r ) ∈ N r , KP χ (X a,λ ) k1 . . . χ (X a,λ ) kr = E [Z m1 . . . Z mr ] = 2 #{i,ki=0} E Z #{i,ki=1} 1 E Z #{i,ki=2} 2 Z #{i,ki=4}
with

m i =          1 if k i ≡ 1[2] 2 if k i ≡ 2[4] 4 if k i ≡ 4[8] 0 if k i ≡ 0[8]
.

Proof. Let us note that the χ (X a,λ ) i 's commute.

Hence KP r i=1 χ (X a,λ ) ki = KP 2 r + α(k) + α(k) +(-1) #{i,ki=1} 2 r + β(k) = 1 8 2 r 1 + (-1) #{i,ki=1} + 2α(k) + 2Tr(β(k))
where α(k) is 0 if there exists i such that k i = 1 and 2 r otherwise, and β(k) is the matrix null if there exists i such that k i ∈ {1, 2} and (-1) #{i,ki=4} 2 r I 2 otherwise. So, we have

KP r i=1 χ (X a,λ ) ki =          0 if 2 #{i, k i = 1} 2 r-2 if #{i, k i = 1} ∈ 2(N \ {0}) 2 r-1 if #{i, k i = 1} = 0, #{i, k i = 2} ≥ 1 2 r-1 1 + (-1) #{i,ki=4}
otherwise Clearly, χ (X a,λ ) 0 is independent from the other χ (X a,λ ) i 's. To study the independence of χ (X a,λ ), let us look at classical cumulants. Let {p 1 , p 2 , . . . , p r } be a subset of {1, 2, 4}, and κ(p 1 , . . . , p r ) be the joint cumulant of χ ((X a,λ ) p1 ) , . . . , χ ((X a,λ ) pr ). By denition, we have

κ(p 1 , . . . , p r ) = π∈Pr (|π| -1)! (-1) |π|-1 B∈π KP k∈B χ ((X a,λ ) p k )
hence, if 1 is in {p 1 , p 2 , . . . , p r } the cumulant is 0, it means that χ (X a,λ ) is independent from the others. Moreover,

κ(2, 4) = KP χ (X a,λ ) 2 χ (X a,λ ) 4 - KP χ (X a,λ ) 2 KP χ (X a,λ ) 4 = 2
thus χ (X a,λ ) 2 and χ (X a,λ ) 4 are not independent.

3. The Sekine Finite Quantum Groups KP n 3.1. Denition. We will follow the denition of [START_REF] Mccarthy | Random Walks on Finite Quantum Groups: Diaconis-Shahshahani Theory for Quantum Groups[END_REF], but for convenience of the reader, we recall here the notations. Consider the multi-matrix algebra A n = i,j∈Zn Ce (i,j) ⊕ M n (C) together with usual multiplication and involution. This is a 2n 2 -dimensional algebra, with basis {e (i,j) } i,j∈Zn ∪ {E i,j } 1≤i,j≤n . The unit is naturally

1 = i,j∈Zn e (i,j) + n i=1 E i,i
The following denes the coproduct:

∆(e (i,j) ) = k,l∈Zn e (k,l) ⊗ e (i-k,j-l) + 1 n k,l∈Zn η i(k-l) E k,l ⊗ E k+j,l+j ∆(E i,j ) = k,l∈Zn e (-k,-l) ⊗ η k(i-j) E i-l,j-l + k,l∈Zn η k(j-i) E i-l,j-l ⊗ e (k,l) with η = e 2ıπ n
a primitive nth root of unity. The counit is given by

ε   i,j∈Zn
x (i,j) e (i,j) + 1≤i,j≤n

X i,j E i,j   = x (0,0)
and the antipode satises S(e (i,j) ) = e (-i,-j) and S(E i,j ) = E j,i . This denes a nite quantum group, denoted by KP n = (A n , ∆), called Sekine quantum group. We shall also need its Haar state, denoted by KPn and given by the following formula:

KPn   i,j∈Zn x (i,j) e (i,j) + 1≤i,j≤n X i,j E i,j   = 1 2n 2   i,j∈Zn x (i,j) + n n i=1 X i,i   .
Remark 3.1. As noted in [START_REF] Mccarthy | Random Walks on Finite Quantum Groups: Diaconis-Shahshahani Theory for Quantum Groups[END_REF], with this denition, KP 2 is cocommutative and equal to the virtual object D 4 , i.e. A 2 CD 4 .

Representation theory. Let us rst determine the representation theory of

the Sekine nite quantum groups. We list here the irreducible unitary representations of KP n , for each n ≥ 2. Note that it depends on the parity of n.

3.2.1.

Case n odd. Theorem 3.1 ([11]). If n is odd, the nite quantum group KP n admits 2n onedimensional non equivalent unitary representations,

∀l ∈ {0, 1, . . . , n -1}, ρ ± l = i,j∈Zn η il e (i,j) ± n i=1 E i,i+l .
It also admits n(n-1) 2 non equivalent unitary two-dimensional irreducible representations, indexed by u ∈ {0, 1, . . . , n -1} and v ∈ {1, 2, . . . , n-1 2 }, given by their matrix-coecients:

X u,v 11 = i,j∈Zn η iu+jv e (i,j) X u,v 12 = n i=1 η -iv E i,i+u X u,v 21 = n i=1 η iv E i,i+u X u,v 22 = i,j∈Zn
η iu-jv e (i,j) 

       ρ ± l = i,j∈Zn η il e (i,j) ± n i=1 E i,i+l σ ± l = i,j∈Zn (-1) j η il e (i,j) ± n i=1 (-1) i E i,i+l
.

It also admits n(n-2)

2
non equivalent unitary two-dimensional irreducible representations, indexed by u ∈ {0, 1, . . . , n -1} and v ∈ {1, 2, . . . , n 2 -1}, given by their matrix-coecients:

X u,v 11 = i,j∈Zn η iu+jv e (i,j) X u,v 12 = n i=1 η -iv E i,i+u X u,v 21 = n i=1 η iv E i,i+u X u,v 22 = i,j∈Zn η iu-jv e (i,j)
Proof. The computations done for ρ ± l and X u,v in the odd case in [START_REF] Mccarthy | Random Walks on Finite Quantum Groups: Diaconis-Shahshahani Theory for Quantum Groups[END_REF] On the other hand, we have

σ ± l ⊗ σ ± l = i,j,s,t∈Zn
(-1) j+t η (i+s)l e (i,j) ⊗ e (s,t)

+ n s,t=1 (-1) s+t E s,s+l ⊗ E t,t+l ± n m=1 s,t∈Zn (-1) t+m η sl e (s,t) ⊗ E m,m+l ± n m=1 s,t∈Zn (-1) m+t η sl E m,m+l ⊗ e (s,t)
which is the same, up to re-indexation (s + i → i, t + j → j, i → s and j → t in the rst term, t -s → j in the second one, m -t → m in the third one and m + t → m in the last one).

Remark 3.2. This is another way to see that the Kac-Paljutkin KP nite quantum group is dierent from KP 2 , since they do not have the same representation theory. The quantum group KP admits four one-dimensional representations and one two-dimensional irreducible representation, whereas the Sekine quantum group KP 2 admits eight one-dimensional representations and no two-dimensional irreducible representation.

3.3. Characters. We will now consider the traces of powers of the two-dimensional irreducible representations X u,v . In the following, we (incorrectly) call kth character associated to X u,v the trace of the kth power of this representation.

Lemma 3.1. The even powers of X u,v are diagonal matrices. Proof. By denition and orthogonality of the e (i,j) 's and the E i,j 's, we have

(X u,v ) 2 12 = X u,v 11 X u,v 12 + X u,v 12 X u,v 22 = 0 KPn (X u,v ) 2 21 = X u,v 21 X u,v 11 + X u,v 22 X u,v 21 = 0 KPn so (X u,v ) 2 is a diagonal matrix and therefore (X u,v ) 2k = (X u,v ) 2 k is also a diag- onal matrix in M 2 (A n ). Proposition 3.1. The characters associated to X u,v are χ (X u,v ) k = 2 s,t∈Zn η ksu cos 2ktvπ n e (s,t) + 1 2Z (k) 2 cos kuvπ n n r=1 E r,r+ku
where 1 2Z denotes the indicator function of the even integers. Proof. By denition, we have

(X u,v ) 2 11 = (X u,v 11 ) 2 + X u,v 12 X u,v 21 = i,j,k,l∈Zn
η iu+jv e (i,j) η ku+lv e (k,l)

+ n i,j=1 η -iv E i,i+u η jv E j,j+u = s,t∈Zn η 2su+2tv e (s,t) + n r=1 η uv E r,r+2u
and by similar calculations, and by Lemma 3.1 we have

(X u,v ) 2k 11 = s,t∈Zn η 2ksu+2ktv e (s,t) + n r=1 η kuv E r,r+2ku (X u,v ) 2k 22 = s,t∈Zn η 2ksu-2ktv e (s,t) + n r=1 η -kuv E r,r+2ku
which leads to the result for even powers.

Let k = 2p + 1, then (X u,v ) 2p+1 = (X u,v ) 2p X u,v , hence we obtain (X u,v ) k 11 = (X u,v ) 2p 11 (X u,v ) 11 + (X u,v ) 2p 12 (X u,v ) 21 =   i,j∈Zn η 2piu+2pjv e (i,j) + n i=1 η puv E i,i+2pu   k,l∈Zn η ku+lv e (k,l) = s,t∈Zn
η ksu+ktv e (s,t)

and similarly

(X u,v ) k 22 = s,t∈Zn
η ksu-ktv e (s,t) which leads to the result for odd powers.

3.4. Character spaces. Let us look more precisely at relations between the characters before to study their asymptotic distributions.

3.4.1. Algebra of characters. Proposition 3.2. The algebra of characters, generated by all one-dimensional representations and all the χ(X u,v ), contains all

χ (X u,v ) k , k ≥ 1. Proof. If n does not divide kv, consider w the absolute value of kv (mod n). If w belongs to {1, . . . , n-1 2 }, then χ (X u,v ) k = χ X ku,w + 1 2Z (k) cos kuvπ n (ρ + ku -ρ - ku )
otherwise, n is even and w = n 2 , and

χ (X u,v ) k = σ + ku + σ - ku + 1 2Z (k)1 2Z (u)(-1) u 2 (ρ + ku -ρ - ku )
. If kv = an then, for s the sign of (-1) au ,

χ (X u,v ) k = ρ + ku + ρ - ku if k is odd 2ρ s ku if k is even .
Remark 3.3. This proposition gives us another reason to call character the χ (X u,v ) k since, for the classical groups, every linear combination χ, with coecients in Z, of characters such that χ(e) > 0 is again a character. Let us note once again that this is not true in general for quantum groups, a counterexample is given by the dual quantum group KP n in subsection 3.7. Proposition 3.3. The algebra of characters is commutative if n is odd. Proof. We have for s = s or t = t , e (s,t) e (s ,t ) = 0 KPn , e 2 (s,t) = e (s,t) and e (s,t) E i,j = E i,j e (s,t) = 0 KPn . On the other hand, we also have, for all natural numbers a, b, 3.4.2. A commutative (sub)algebra. For all n, the algebra generated by all the χ(X u,v )'s and all the ρ ± l 's is a classical commutative algebra. Thus, by the spectral theorem, it is * -isomorphic to C k for some k ∈ N. In order to keep track of the restriction of the Haar state, we can view it as a subalgebra of some L ∞ (Ω n , µ n ), for a compact space Ω n and a probability distribution µ n . It means that we can see these characters as classical random variables on the classical probability space

(Ω n , µ n ).
By the Gelfand-Naimark Theorem, Ω n is the spectrum of the algebra, it means the set of all its characters, which are all the non zero * -multiplicative linear forms. To determine this space and the measure µ n , we need to investigate deeper the structure of the * -algebra

C n = *-alg ρ ± l , χ (X u,v ) , 0 ≤ l, u ≤ n -1, 1 ≤ v ≤ n - 1 2 
. Lemma 3.2. For all non negative integers k and l smaller than n-1, ρ

+ k ρ + l = ρ + k+l , ρ - k ρ - l = ρ + k+l and ρ + k ρ - l = ρ - k+l = ρ - k ρ +
l , where the sum k + l is taken in Z n . We also have that, for all integer v between 1 and n-1

2

, and for all integer u between 0 and n -1, there exist integers a i ∈ Z such that

χ (X u,v ) = ρ ± u χ X 0,1 v + a v-2 χ X 0,1 v-2 + . . . + a 1 χ X 0,1 if v is odd, or, if v is even χ (X u,v ) = ρ ± u χ X 0,1 v + a v-2 χ X 0,1 v-2 + . . . + a 0 ρ + 0 + ρ - 0 .
Proof. The rst assertion follows from the denition of the componentwise multiplication.

For the second part of the lemma, by the same way, we easily see that

ρ ± u χ X 0,v = χ (X u,v
). Therefore, we only need to consider the χ X 0,v . Let us note that the Tchebychev polynomials T n satisfy, for all real θ, T n (cos(θ)) = cos(nθ) , so we have

χ X 0,v = 2 s,t∈Zn cos 2πtv n e (s,t) = 2 s,t∈Zn T v cos 2πt n e (s,t) = 2 Tv χ X 0,1 2 
given by the following formula ρ - 1 (a, b, c) = a , ρ + 1 (a, b, c) = ab , χ (X 0,1 )(a, b, c) = c . 3.5. Asymptotic laws. Denition 3.1. We say that a complex random variable Z is C-arcsine(α) distributed, if it admits z → 1 αD (z) 

E[Z k Zl ] = 2k k if k = l 0 otherwise .
Proof. We need to compute

1 π 2 2 0 2π 0 r k+l e ı(k-l)θ √ 4 -r 2
dθ dr .

The integral with respect to θ vanishes, except if k = l. In this case, we are left with the 2kth moment of the arcsine distribution on (-2 ; 2).

This helps us to nd the * -distribution of characters associated to the irreducible representations X u,v . Theorem 3.4. For all u, v ≥ 1, χ (X u,v ) is asymptotically (when n → +∞) a 1 2 δ 0 + 1 2 µ C-arc(2) -distributed random variable, and χ X 0,v admits asymptotically (when n → +∞) the * -distribution 1 2 δ 0 + 1 2 µ arc(-2,2) , where µ arc(-2,2) represents the classical arcsine distribution on the open interval (-2 , 2).

Moreover, the same holds for all χ (X u,v ) k , with k odd.

Proof. We only do the computation for χ (X u,v ). The case χ (X u,v ) k , with k > 1 odd, is similar. Let us remember that, by Proposition 3.1,

χ (X u,v ) = 2 s,t∈Zn η su cos 2tvπ n e (s,t) .
Therefore, χ (X u,v ) commutes with χ (X u,v ) * , and for all m ≥ 1

(χ (X u,v )) m = 2 m s,t∈Zn η msu cos 2tvπ n m e (s,t) so we have KPn (χ (X u,v )) r1 (χ (X u,v )) * r * = 2 r1+r * 2n 2 s,t∈Zn η (r1-r * )su cos 2tvπ n r1+r * = 1 2n 2 s∈Zn η (r1-r * )su r1+r * l=0 r 1 + r * l t∈Zn η (2l-(r1+r * ))tv = 1 2 1 nZ ((r 1 -r * )u) r1+r * l=0 r 1 + r * l 1 nZ ((2l -(r 1 + r * ))v) . For all u ≥ 1, r 1 = r * , n ≥ u(r 1 -r * ) + 1, we have 0 < u(r 1 -r * ) < n, so KPn (χ (X u,v )) r1 (χ (X u,v )) * r * = 0 . Otherwise, if r 1 = r * = r ≥ 1, for n great enough (n ≥ 2rv + 1), we obtain KPn (χ (X u,v )) r (χ (X u,v )) * r = 1 2 2r r . Hence, if u = 0, χ (X u,v ) is asymptotically a 1 2 δ 0 + 1 2 µ C-arc(2) -distributed random variable.
If u = 0, let us note that χ X 0,v is selfadjoint, and

KPn (χ (X u,v )) m = 1 2 m l=0 m l 1 nZ ((2l -m)v) .
Hence, for n great enough, if m is odd, the moment vanishes, and if m = 2p, it is Theorem 3.5. For all integers u, v ≥ 1 and any even k, χ (X u,v ) k is asymptotically (when n → +∞) a 1 2 U(2T) + 1 2 µ C-arc(2) -distributed random variable, and χ X 0,v k admits 1 2 δ 2 + 1 2 µ arc(-2,2) as asymptotic * -distribution (when n → +∞). Proof. The only dierence with the characters in the preceding theorem is the part "+2 cos kuvπ n n r=1 E r,r+ku " in the even characters. By the properties of the multiplication in KP n we only need to study it, and show that its moments are asymptotically one half of those for a random variable uniformly distributed on 2T.

Let us denote this normal matrix by (1) χ X a,b k e and χ X c,d l f are asymptotically independent [START_REF] Diaconis | Linear functionals of eigenvalues of random matrices[END_REF] at least one of the following conditions holds

• ka = lc • e = f
• k or l is odd, and kb = ld 3.7. Dual groups. We can dene a notion of duality for a nite quantum group G = (C(G), ∆). This dual, denoted Ĝ = (C( Ĝ), ∆), is again a nite quantum group. The algebra C( Ĝ) is the set of all linear forms dened on C(G). It is also isomorphic to the direct sum of the non-equivalent unitary irreducible corepresentations of C(G), thanks to the Fourier transform. All the structures are dened by duality.

In particular, for the case of the Sekine family, let us denote by e (i,j) and E i,j the elements of the dual basis. Then, we have the coproduct, dual of the multiplication on A n , given by ∆(e (i,j) ) = e (i,j) ⊗ e (i,j) and ∆(E i,j ) = x (i,j) e (i,j) + 1≤i,j≤n X i,j E i,j   = x (0,0) .

We clearly obtain that the unitary irreducible representations of KP n are the n 2 e (i,j) 's and the n-dimensional representation X, given by its matrix-elements Xi,j = E i,j . Let us note that X is a fundamental representation of KP n . Moreover, these representations are non-equivalent, so there is no other non-equivalent unitary irreducible representation.

The characters, e (i,j) , i, j ∈ Z n , and χ( X) = n i=1 E i,i , generate a commutative algebra, for the product in C( KP n ). This central algebra is the linear span of these characters and may not contain all the traces of powers of X, given for all positive integer k by

χ Xk =          s,t∈Zn kt≡0 mod n E s,s+t if k is odd s,t∈Zn kt≡0 mod n η -st e (s,t k 2 )
if k is even .

Note that χ Xk equals χ( X) when k is odd and gcd(k, n) = 1. If gcd(k, n) is greater than 1 for some odd k, then χ Xk is not in the character space. However, these traces are all self-adjoint, and commute. Using the corepresentations basis, we can get that, for all positive integers In particular, by the moments method, the normalized character 1 n χ( X) admits the * -distribution 1 2n 2 (δ -1 + δ 1 ) + (1 -1 n 2 )δ 0 . Moreover, let us note that # {t ∈ Z n , ∀1 ≤ i ≤ r, n | k i t} = gcd(n, k 1 , . . . , k r ). Thus, for any k ≥ 1, the normalized trace 1 n χ( Xk ) admits the * -distribution gcd(k,n) 2n 2

(δ -1 + δ 1 ) + (1 -gcd(k,n)

n 2
)δ 0 if k is odd, and gcd(k,n)

n 2 δ 1 + (1 -gcd(k,n) n 2
)δ 0 if k is even.

  1 A ⊗ A)∆(A) = span {(1 A ⊗ a)∆(b), a, b ∈ A} and (A ⊗ 1 A )∆(A) = span {(a ⊗ 1 A )∆(b), a, b ∈ A}.

4 -

 4 ∆(X (11) ) = e 1 ⊗ e 1 + e 2 ⊗ e 2 + e 3 ⊗ e 3 + e 4 ⊗ e (e 1 ⊗ e 4 + e 4 ⊗ e 1 + e 2 ⊗ e 3 + e 3 ⊗ e 2 ) + a (e 1 ⊗ e 2 + e 2 ⊗ e 1 + e 3 ⊗ e 4 + e 4 ⊗ e 3 ) -a (e 1 ⊗ e 3 + e 3 ⊗ e 1 + e 2 ⊗ e 4 + e 4 ⊗ e 2 ) + E 12 ⊗ E 12 + E 21 ⊗ E 21 + ıaE 21 ⊗ E 12 -ıaE 12 ⊗ E 21 and, on the other hand X (11) ⊗ X (11) + X (12) ⊗ X (21) = e 1 ⊗ e 1 + ae 1 ⊗ e 2 -ae 1 ⊗ e 3 -e 1 ⊗ e 4 + a (e 2 ⊗ e 1 + ae 2 ⊗ e 2 -ae 2 ⊗ e 3 -e 2 ⊗ e 4 ) -a (e 3 ⊗ e 1 + ae 3 ⊗ e 2 -ae 3 ⊗ e 3 -e 3 ⊗ e 4 ) -(e 4 ⊗ e 1 + ae 4 ⊗ e 2 -ae 4 ⊗ e 3 -e 4 ⊗ e 4 )

(- 1 )

 1 which leads to the commutativity of the algebra. Remark 3.4. If n is even, the subalgebra generated by the ρ ± l 's and the χ(X u,v ) is also commutative. But the σ ± l 's do not commute with the ρ ± l 'r+b E r,r+b+a when b is odd.

1 2 mp , which corresponds to the distribution 1 2 δ 0 + 1 2

 1211 µ arc(-2,2) .

4 .

 4 M k,u,v,n . Then, for all m ≥ 1 Let a, b, c, d, e, f , k and l be as above. The followings are equivalent

E

  i,k ⊗ E k,jand the Haar state, dual of the counit on A n ,

2 #

 2 k 1 , k 2 , . . . , k r KPn χ Xk1 . . . χ Xkr = n r-2 1 +(-1) {t ∈ Z n , ∀1 ≤ i ≤ r, n | k i t} .

  e 2 + e 3 + e 4 + E 11 + E 22 . The following denes the coproduct, where ı is the imaginary unit: ∆(e 1 ) = e 1 ⊗ e 1 + e 2 ⊗ e 2 + e 3 ⊗ e 3 + e 4 ⊗ e 4 ) = e 1 ⊗ e 2 + e 2 ⊗ e 1 + e 3 ⊗ e 4 + e 4 ⊗ e 3 ) = e 1 ⊗ e 3 + e 3 ⊗ e 1 + e 2 ⊗ e 4 + e 4 ⊗ e 2

	+	1 2	E 11 ⊗ E 11 +	1 2	E 12 ⊗ E 12 +	1 2	E 21 ⊗ E 21 +	1 2	E 22 ⊗ E 22
	∆(e 2 +	1 2	E 11 ⊗ E 22 +	1 2	E 22 ⊗ E 11 -	ı 2	E 12 ⊗ E 21 +	ı 2	E 21 ⊗ E 12
	∆(e 3 +	1 2	E 11 ⊗ E 22 +	1 2	E 22 ⊗ E 11 +	ı 2	E 12 ⊗ E 21 -	ı 2	E 21 ⊗ E 12

∆(e 4 ) = e 1 ⊗ e 4 + e 4 ⊗ e 1 + e 2 ⊗ e 3 + e 3 ⊗ e 2 + 1 2

  [START_REF] Banica | De Finetti theorems for easy quantum groups[END_REF] and µ 0 if 8 divides k. For instance, in the free orthogonal group O + N , χ(u 2 ) is not a linear combination of characters, where u is the fundamental representation of O + N . For further examples, the reader can also look at the dual quantum group KP n in subsection 3.7.

Remark 2.3. Like in the classical case, we are able to express traces of powers of the fundamental representation as linear combinations of irreducible characters, it means one-dimensional representations, listed in

[START_REF] Diaconis | On the eigenvalues of random matrices[END_REF]

, and χ (X a,λ ). Here we have 2 + 2 + 2 + 2 + 2I 2 = 2 1, 2 + 2 + 2 + 2 + -2I 2 = 2 1 + 1 + 1 + 1 + -I 2 and 2 + 2 + 2 + 2 + 0 2 = 2 1 + 1 + 1 + 1 + -I 2 + 1 . Let us note that this is not true in general for quantum groups.

  3.2.2. Case n even. Theorem 3.2. If n is even, the nite quantum group KP n admits 4n one-dimensional non equivalent unitary representations,

∀l ∈ {0, 1, . . . , n -1},

  are still valid. It is clear that ε(σ ±

	n	
	+	(-1) j E m,m+l ⊗ E m+j,m+j+l
	m=1 j∈Zn	
	n	
	±	
	m=1 s,t∈Zn
	n	
	m=1 s,t∈Zn

l ) = 1. By

[START_REF] Timmermann | An invitation to quantum groups and duality[END_REF] Proposition 3.1.7]

, it remains to prove that σ ± l are group-like elements. The same steps as for ρ ± l give

∆(σ ± l ) = i,j,s,t∈Zn (-1) j η il e (s,t) ⊗ e (i-s,j-t)

(-1) m η sl e (s,t) ⊗ E m+t,m+t+l ± (-1) m η sl E m-t,m-t+l ⊗ e (s,t) .

  2 -|z| 2 as density function. Let us denote by µ C-arc(α) the corresponding distribution. Lemma 3.3. If Z is a C-arcsine(2) random variable, for all k and l, we have

	π 2 √	1

α
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thanks to the componentwise multiplication, where the constant term in Tv χ(X 0,1 )

e (s,t) but not 1 KPn , what we should have if we substitute χ X 0,1 in T v (X).

Moreover, the Tchebychev polynomial T v has degree v with leading coecient 2 v-1 , and all its coecients are integers. It is symmetric if v is even, or antisymmetric if v is odd.

This Lemma means that

Remark 3.5. Since, when n is odd, we have (ρ -

Thus, by the properties of the characters, they are dened by their values on ρ + 1 , ρ - 1 and χ X 0,1 . Moreover, σ(a) = {ω(a), ω ∈ Ω}, so Ω n is xed by the spectra of the three elements and some relations. Let us note that C n is a subalgebra of KP n containing the unit. Hence, the spectrum with respect to C n is the spectrum with respect to KP n . Direct calculations show that:

which leads to the relations

Finally, we get the following result Theorem 3.3. For all n, C n , equipped with the Haar state, can be viewed as an algebra of random variables on the probability space

endowed with the measure

where p = n 2 and 1 4Z is the indicator function of 4Z, thanks to the Gelfand transform,

Hence, we have

For u = 0, we get 1 2 2 cos kuvπ n α+β which is one half of 2 α+β . For u ≥ 1 and n great enough, this moment goes to one half of the moment of U(2T), which is zero if α is dierent from β, 2 2α otherwise. This completes the proof of the theorem. . So when n goes to innity, the eigenvalues come out uniformly on 2T if u is not zero, which corresponds to the result of the Theorem 3.5. Remark 3.7. If we let n go to ∞ in Theorem 3.3, we see that, (Ω n , µ n ) converges to (Ω, µ) where

U(T) . And, we can check easily that ρ - 1 , ρ + 1 ∼ U(T) and χ (X 0,1 ) ∼ 

where s and t generate D 2n with s of order 2 and t of order n. Let us denote by χ k,l the class function Tr σ k (•) l . Then by the moments method, the asymptotic law of χ k,l is 1 2 µ arc(-2,2) + δ 2 if l is even and positive, 1 2 µ arc(-2,2) + δ 0 if l is odd or δ 2 when l = 0.

3.6. Asymptotic pairwise independence. Since we only consider χ(X u,v ) or its adjoint, we work in a commutative setting, and we can use classical cumulants κ. Let b, d, k, l, be natural integers, a and c be non negative integers and e, f be in {1, * }. Then direct calculation leads to which proves