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Abstract

Stochastic gradient descent without replacement or reshuffling (SGDo)
is predominantly used to train machine learning models in practice.
However, the mathematical theory of this algorithm remains underex-
plored compared to its “with replacement” and “infinite data” coun-
terparts. We propose a stochastic, continuous-time approximation to
SGDo based on a family of stochastic differential equations driven by
a stochastic process we call epoched Brownian motion, which encap-
sulates the behavior of reusing the same sequence of data points in
subsequent epochs. We investigate this diffusion approximation by
considering an application of SGDo to linear regression. Explicit con-
vergence results are derived for constant learning rates and a sequence
of learning rates satisfying the Robbins-Monro conditions. Finally, the
validity of continuous-time dynamics are further substantiated by nu-
merical experiments.
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1 Introduction

Consider i.i.d. data (x0, y0), . . . , (xN−1, yN−1) ∈ Rd × R drawn from a (gen-
eralized) linear model

y = g(θTx) + ε,

where θ ∈ Rd is an unknown population parameter, g : R → R a function and
ε centered noise, independent of x, with finite variance σ2

ε . We can estimate
the parameter θ by performing stochastic gradient descent iterations using a
squared error function f(x,y)(p) =

1
2
(g(pTx)− y)T (g(pTx)− y) at every step.

Here we assume that the data is already centered, so there is no need to fit
an intercept as well.

After N steps we have seen all our data and then decide to restart the
next epoch with the same sequence of data points in the same order.

The dynamics of this SGDo process, i.e. stochastic gradient descent with-
out replacement (or reshuffling), are then given by

χn+1 = χn − ηn∇f(xnmodN ,ynmodN )(χn), (1.1)

where (ηn)n∈N is a non-increasing sequence of learning rates (LR).
Dynamics (1.1) should be contrasted with those of SGD with replacement

given by
χn+1 = χn − ηn∇f(xγ(n),yγ(n))(χn), (1.2)

where γ(0), γ(1), . . . are independent and uniformly distributed on {0, . . . , N−
1}, and further contrasted with SGD with infinite data

χn+1 = χn − ηn∇f(xn,yn)(χn), (1.3)

where (xn, yn)n∈N is now an infinite sequence of i.i.d. data.
For the sake of this discussion we focus on online learning, but an ex-

tension to mini-batch methods is possible. Furthermore, we focus on simple
linear models, i.e. we assume that g is the identity function, but we believe
that the following discussion gives insight beyond the linear setting.

Under the Robbins-Monro conditions

∞∑
n=0

ηn = ∞,

∞∑
n=0

η2n < ∞, (1.4)

and boundedness conditions of the data x, y one can show the convergence
of infinite-data SGD (1.3) to the population parameter θ, say in L2, while
with-replacement SGD (1.2) is converges in L2 to the ordinary-least squares
(OLS) estimator θ̂ of θ (cf. [8]).
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A natural question to ask is then whether convergence still holds in the
SGDo setting of (1.1). In this article we show for the sequence of learning
rates

ηn =
1

1 + n
, n ≥ 0,

which satisfies (1.4), that a continuous-time approximation to SGDo con-
verges to a limiting distribution with mean and variance coinciding with the
mean and variance of the OLS estimator θ̂. A more formal result is given in
our main Theorem 2.1 (b) and experimentally substantiated in Section 5.2.
Additionally, we consider the convergence properties for constant learning
rates in Theorem 2.1 (a).

In order to better understand the dynamics of both (1.2) and (1.3) several
authors have proposed approximating them by the dynamics of diffusion, i.e.
a process satisfying a stochastic differential equation. In particular in the
case of a constant learning rate h ∈ (0, 1), Mandt et. al propose in [5] the
following family of stochastic differential equations as an approximation of
(1.3)

dXh
t = −∇Ef(x0,y0)(X

h
t ) dt+

√
hΣ dWt,

where Σ is a covariance matrix based on the SGD increments and W is a
Brownian motion. Other works ([3], [4], [1]) further investigate the case of
a non-constant LR schedule u with ηn = hunh and supply arguments for the
following non-homogeneous dynamics

dXh
t = −ut∇Ef(x0,y0)(X

h
t ) dt+ ut

√
hΣ dWt. (1.5)

In these works in general the authors consider Σ as a function of X. For
simplicity we forgo doing this here and focus on the additive noise case in
the spirit of Mandt et. al.

In the case of linear regression, ∇fγ(n) is a linear function for all n ∈ N0

and the dynamics (1.5) simplify to

dXt = −utκ(Xt − θ) dt+ ut

√
hσ dWt, (1.6)

where θ ∈ Rd is the mean-reversion level, which corresponds to the global
minimum of the mean squared error function, and κ, σ ∈ Rd×d are symmetric
matrices, which are assumed to be positive-definite.

Analogously, we model the dynamics of (1.1) in the continuous setting
with an approximation similar to (1.6). To this end, based on the given
Brownian motion W and a (continuous-time) epoch T > 0, we define

Ŵ T
t := Wt−⌊t/T ⌋T + ⌊t/T ⌋WT . (1.7)
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Note that on Ŵ T is a Brownian motion on [0, T ) and satisfies

Ŵ T
t+mT = Ŵ T

t +mWT , t ≥ 0, n ∈ N0. (1.8)

Notice that the increments of Ŵ on [mT, (m+ 1)T ] coincide with the incre-
ments of W on [0, T ].

We call Ŵ T a T -epoched Brownian motion. Replacing the driving path of
the diffusion in (1.6) by epoched Brownian motion we arrive at the following
linear stochastic differential equation with additive noise

dXt = −utκ(Xt − θ) dt+ ut

√
hσ dŴ T

t . (1.9)

The driving noise Ŵ T repeats itself when time T elapses, up to a shift which
makes it continuous.

Intuitively the dynamics (1.9) mirror SGDo. In the first epoch we draw
data i.i.d. to estimate the direction of steepest descent. So up until then it is
reasonable to use a Brownian motion to approximate these discrete dynamics
in a continuous, stochastic setting as evidenced by a functional version of the
central limit theorem. In the following epochs we do not draw any new data,
nor do we permute the order of the data points. This is captured, in the
continuous setting, by the property (1.8). Note that in (1.8) the mWT -term
is present to ensure that epoched Brownian motion is a continuous process.

Approximating SGD with replacement (1.2) yields an SDE of the form

dXt = −utE[∇fxγ(0),yγ(0) |x, y](Xt) dt+
√
hΣ(Xt) dWt, (1.10)

where in contrast to (1.5) the coefficients are now random, though indepen-
dent of W , as they are defined in terms of the random variables
(x0, y0), . . . , (xN−1, yN−1). The mean and covariance matrix Σ of the gra-
dient noise in (1.2) is instead taken with respect to sequence of random
integers (γ(n))n∈N, conditional on the data x, y. We call this kind of diffu-
sion approximation with random coefficients depending on the data x, y an
empirical diffusion approximation of SGD. An advantage of this empirical
approximation is that it requires no knowledge of the true model generating
the data.

In the case of linear regression (1.10) simplifies to

dXt = −utκ̂(Xt − θ̂) dt+ ut

√
hσ̂ dWt, (1.11)

where κ̂, θ̂ and σ̂ are functions of the data x, y.
An analogous empirical diffusion approximation seems to be infeasible

for SGDo. To recover the without-replacement behavior on the given data
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set (xk, yk)
N−1
k=0 the draws are no longer independent, nor are they identically

distributed, which makes the choice of a reasonable, data-dependent diffusion
driver highly non-obvious.

Previous works on SGDo have mainly focused on comparing the con-
vergence rates of SGD with replacement (1.2) and SGDo (1.1), where em-
pirically the latter is known to converge faster. In [7] Shamir establishes
convergence results for set of algorithms enjoying regret bounds, which in-
cludes SGDo. In [6] Nagraj et. al use the method of exchangeable pairs
to derive non-asymptotic convergence results for general smooth, strongly
convex functions.

In general SGDo is rarely studied in the mathematical literature compared
to SGD with replacement or with infinite data. However, this is likely because
the latter two are mathematically easier to discuss because of i.i.d. gradient
noise. On the flip side SGDo is almost universally used in machine learning
practice and therefore of great importance.

2 Main result

To motivate and state the main results, let us first discuss more in detail
how to derive equation (1.9) and how to choose the coefficients in the case
of linear regression.

To ease notation consider first the one-dimensional setting d = 1. Then
for linear regression (g(x) = x) (1.1) simplifies to

χn+1 =χn − ηn∇f(xn,yn)(χn)

=χn − ηn(χnx
2
n − xnyn)

=(1− ηnx
2
n)χn + ηnxnyn, (2.1)

where (x0, y0), . . . , (xN−1, yN−1) ∼ ν are i.i.d. and (xn+mN , yn+mN) = (xn, yn)
for all m,n ∈ N0. By decomposing the steps as n+mN with n ∈ {0, . . . , N−
1} the number m specifies the current epoch.

Solving recursion (2.1), cf. Lemma 3.1 below, we have

χn = χ0

n−1∏
k=0

(1− ηkx
2
k) +

n−1∑
l=0

(
n−1∏

k=l+1

(1− ηkx
2
k)

)
ηlxlyl.

For n > N the products feature dependent factors. We may rewrite this
equation at a completed epoch as

χ(m+1)N =χ0

N−1∏
k=0

m∏
j=0

(1− ηk+Njx
2
k) +

N−1∑
l=0

m∑
i=0

(m+1)N−1∏
k=l+1

(1− ηkx
2
k)

 ηlxlyl.
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Computing the expectation of χn+mN is cumbersome, but even more so is it
to compute its variance, as the two summands are correlated.

Our idea is to pass to the continuous-time limit, since it is considerably
easier to study distributional properties of the limit than of the discrete-time
process (2.1).

To this end, let us rewrite (2.1) as

χn+1 = χn − ηn(µ
2
xχn − µx,y)− ηnMn,

where
µk
x := E[xk

0], µ
k,l
x,y := E[xk

0y
l
0],

and µx,y := µ1,1
x,y are (marginal) moments and joint moments associated with

the distribution ν, and

Mn := (x2
n − µ2

x)χn − xnyn + µx,y, n ∈ N0

Then for n ∈ {0, . . . , N − 1} we have E[Mn|χn] = 0 and so the conditional
variance matrix satisfies

Var[Mn|χn] =E[(x2
n − µ2

x)
2χ2

n − 2(x2
n − µ2

x)(xnyn − µx,y)χn + (xnyn − µx,y)
2|χn]

=(µ4
x − (µ2

x)
2)χ2

n − 2(µ3,1
x,y − µx,yµ

2
x)χn + µ2,2

x,y − (µx,y)
2.

For a diffusion approximation it is therefore natural to choose the state-
dependent diffusion coefficient σ(p) =

√
Var[Mn|χn = p]. However, we want

to use a constant coefficient instead and in this case there is some flexibility
in choosing σ.

In general

µ3,1
x,y =E[x3

0(θx0 + ε)] = θµ4
x,

µx,y =E[x0(θx0 + ε)] = θµ2
x,

µ2,2
x,y =E[x2

0(θx0 + ε)2] = θ2µ4
x + µ2

xσ
2
ε ,

and so
σ(p)2 = (µ4

x − (µ2
x)

2)(p− θ)2 + µ2
xσ

2
ε .

A decent constant approximation is given by setting p = θ so that

σ =
√
σ2
εµ

2
x.

Since the drift coefficient −µ2
x(p − θ) pushes us to θ exponentially fast it is

more important that the diffusion term is accurate around the mean-reversion
level θ than anywhere else. We shall set

κ := µ2
x, σ :=

√
σ2
εµ

2
x.
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Then we can rewrite (2.1) as

χn+1 = χn − ηnκ(χn − θ)− ηnMn, (2.2)

where Var[Mn|χn] ≈ σ2 for n ∈ {0, . . . , N − 1} and χn close to θ.
Analogously, for d > 1 by defining the symmetric and positive semi-

definite matrices
κ := µ2

x = E[x0x
T
0 ], σ :=

√
σ2
εµ

2
x

we have
χn+1 = χn − ηnκ(χn − θ)− ηnMn,

where the conditional covariance matrix Cov[Mn|χn] is close to σ2 for n ∈
{0, . . . , N − 1} and χn close to θ. Here

√
µ2
x is the unique symmetric and

positive semi-definite matrix, such that
√
µ2
x

√
µ2
x = µ2

x.
By decomposing ηn = huh

nh for an initial learning rate h ∈ (0, 1) and a
learning rate schedule u : (0, 1) × [0,∞) → [0, 1], (h, t) 7→ uh

t , bounded in h
and t, we can see that the iterations (2.2) with n ∈ {mN, . . . , (m+1)N − 1}
restricted to a single epoch and started at a deterministic value χmN ∈ Rd

at the beginning of said epoch are well approximated by the solution to the
h-indexed family of linear stochastic differential equations

dXh
t = −κut(X

h
t − θ) dt+

√
hutσ dWt,

with t ∈ [mT, (m + 1)T ), XmT = χmN , W is a d-dimensional Brownian
motion and T = Nh (cf. e.g. [5]).

By extension we expect that the iterations (2.2) are well approximated
by the solution to the sequence of stochastic differential equations

dXt+mT = −ut+mTκ(Xt+mT − θ) dt+
√
hut+mTσ dWt, t ∈ [0, T ). (2.3)

More succinctly we may describe X as the solution to the equation 1.9.
We now state our main result. To this end we recall that for any symmet-

ric and positive-definite matrix A the hyperbolic cotangent of A is defined,
and given by

cothA := (e2A − 1)−1(e2A + 1).

Theorem 2.1. Let X be the solution to the linear stochastic differential
equation

dXt = −utµ
2
x(Xt − θ) dt+ ut

√
hσ2

εµ
2
x dŴ

Nh
t (2.4)

driven by Nh-epoched Brownian motion. Then we have the following.
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(a) If u = 1 (a constant), then X converges in distribution

Xt → N
(
θ,

1

2
σ2
εh
√
µ2
x coth(µ

2
xNh/2)(µ2

x)
−1
√

µ2
x

)
,

as t → ∞.

(b) If ut =
1

1+ t
h

, so that unh = 1
1+n

, and h−1 is not an eigenvalue of µ2
x, then

X converges in distribution

Xt → N
(
θ,

σ2
ε

N
(µ2

x)
−1

)
,

as t → ∞.

Some remarks on Theorem 2.1 are in order.
According to the Taylor approximation

cothx = x−1 +
x

3
+O(x3)

the variance of the limiting distribution in (a) is

1

2
σ2
εh
√

µ2
x

(
2

Nh
(µ2

x)
−1 +

Nhµ2
x

2
+O(N3h3)

)
(µ2

x)
−1
√
µ2
x

=
σ2
ε

N
(µ2

x)
−1 +O(Nh2)

as h ↓ 0. This should be compared with the fact the OLS estimator1

θ̂ =

∑N
n=1 xnyn∑N
n=1 x

2
n

has mean θ and variance σ2
ε

N
(µ2

x)
−1. Thus, for small learning rates Xt attains

the variance of the minimum-variance unbiased estimator (MVUE) in the
limit t → ∞.

Similarly, the limiting distribution for uh
t = 1

1+ t
h

in (b) has the same mean

and variance as the OLS estimator. Since the OLS estimator is the MVUE
one may be tempted to conclude that in fact Xt → θ̂ in (b), as t → ∞ in
some sense, say almost surely. This cannot technically be true, since Xt is
not a function of the data (xn, yn)

N−1
n=0 and therefore not a point estimator at

all. Nevertheless, in spirit this is what Theorem 2.1 (b) tells us.

1θ̂ is the OLS estimator according to the Gauss-Markov theorem, as long as we use our
assumption that x and y are centered.
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3 Linear differential equations driven by epoched

Brownian motion

Let (Ω,F∞,P) be a complete probability space, d ∈ N and W be a d-
dimensional Brownian motion defined on Ω. Consider again the definition of
T -epoched Brownian motion in (1.7) and the proposed diffusion approxima-
tion of (1.1) given by

dXt = −utκ(Xt − θ) dt+ utσ dŴ T
t , (3.1)

where κ, σ ∈ Rd×d are symmetric and positive-definite, and θ ∈ Rd.
For ease of notation we have absorbed the

√
h-term into σ. Let m ∈

N0. Then in epoch m we can write equation (3.1) as the linear stochastic
differential equation

dXt+mT = −ut+mTκ(Xt+mT − θ) dt+ ut+mTσ dWt, t ∈ [0, T ). (3.2)

driven by the Brownian motion W . If the initial condition XmT was deter-
ministic, then the solution of (3.2) is known to be given by

Xt+mT = ft+mTf
−1
mTXmT +

(∫ t

0

ft+mTf
−1
s+mTus+mT ds

)
κθ

+

(∫ t

0

ft+mTf
−1
s+mTus+mT dWs

)
σ, (3.3)

where ft = exp(−κ
∫ t

0
us ds) and exp denotes the matrix exponential. Ob-

serve that the RHS of (3.3) is meaningful also for arbitrary non-deterministic
XmT . Therefore, we use the pathwise representation (3.3) for defining a so-
lution of (3.1). Notice that for m ≥ 1 the initial value XmT of (3.2) is not
independent of the driving Brownian motion. Thus, the process (3.3) is not a
solution of (3.2) in the Itô sense with respect to F , the augmented filtration
generated by W . We remark, however, that (3.3) can be be shown to be a
solution in the Itô sense under the enlarged filtration (Ft ∨ σ(XmT ))t∈[0,T ).

At every completed epoch m ∈ N0 we have

X(m+1)T = f(m+1)Tf
−1
mTXmT +

(∫ T

0

ft+mTf
−1
s+mTus+mT ds

)
κθ

+

(∫ T

0

ft+mTf
−1
s+mTus+mT dWs

)
σ. (3.4)

The following lemma is standard and well-known, but repeated here for the
reader’s convenience.
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Lemma 3.1. Let A : N0 → Rd×d and x,B : N0 → Rd be sequences. Then
the linear recurrence

xn+1 = Anxn +Bn

has the solution

xn = x0

n−1∏
k=0

Ak +
n−1∑
l=0

(
n−1∏

k=l+1

Ak

)
Bl.

Proof. The statement holds for n = 0. Suppose it holds for n ∈ N. Then,

xn+1 =Anxn +Bn

=x0

n∏
k=0

Ak +
n−1∑
l=0

(
n∏

k=l+1

Ak

)
Bl +Bn

=x0

n∏
k=0

Ak +
n∑

l=0

(
n∏

k=l+1

Ak

)
Bl.

We next apply Lemma 3.1 to equation (3.4). First note that we have

m−1∏
k=l

f(k+1)Tf
−1
kT = fmTf

−1
lT .

We define

Um
T :=

m−1∑
l=0

fmTf
−1
(l+1)T

∫ T

0

f(l+1)Tf
−1
s+lTus+lT ds =

m−1∑
l=0

∫ T

0

us+lTfmTf
−1
s+lT ds,

V m
T :=

m−1∑
l=0

fmTf
−1
(l+1)T

∫ T

0

f(l+1)Tf
−1
s+lTus+lT dWs =

m−1∑
l=0

∫ T

0

us+lTfmTf
−1
s+lT dWs.

By applying Lemma 3.1 we arrive at the following explicit epoch-wise dy-
namics.

Lemma 3.2. The solution X of (3.1) at the end of epoch m ∈ N0 is given
by

XmT = fmTX0 + Um
T κθ + V m

T σ. (3.5)

The lemma implies that the solution X is a Gaussian process with

EXmT = fmTX0 + Um
T κθ,
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and

VarXmT =σVarV n
T σ

=σ

∫ T

0

(
m−1∑
k=0

us+kTfmTf
−1
s+kT

)(
m−1∑
l=0

us+lTfmTf
−1
s+lT

)T

ds

σ

=σ

(∫ T

0

m−1∑
k,l=0

us+kTus+lTfmTf
−1
s+kTf

−T
s+lTf

T
mT ds

)
σ.

4 Proof of the main result

By Lemma 3.2 the solution to (3.1) at the end of any completed epoch is
given by

XmT = fmTX0 + Um
T κθ + V m

T σ, (4.1)

where

Um
T =

m−1∑
l=0

∫ T

0

us+lTfmTf
−1
s+lT ds, V m

T =
m−1∑
l=0

∫ T

0

us+lTfmTf
−1
s+lT dWs,

and

ft = exp

(
−κ

∫ t

0

us ds

)
.

If
∫∞
0

us ds = ∞ and κ is positive-definite, then fmT → 0, as m → ∞. The
condition

∫∞
0

us ds = ∞ is fulfilled for u = 1 and ut =
1

1+at
with a > 0.

It remains to discuss the behavior of Um
T and V m

T as m → ∞ in these
cases. We will prove the following proposition. Our main result Theorem 2.1
follows by simply plugging T = Nh and considering the specific coefficients
in (2.4), whereas Proposition 4.1 is meaningful regardless of our statistical
motivation.

Proposition 4.1. Let X be the solution to (3.1). Then we have the following.

(a) If u = 1 (a constant), then X converges in distribution

Xt → N
(
θ,

1

2
σ coth(κT/2)κ−1σ

)
,

as t → ∞.

(b) If ut =
1

1+at
and a is not an eigenvalue of κ, then X converges in distri-

bution

Xt → N
(
θ,

1

T
σκ−2σ

)
,

as t → ∞.
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4.1 Proof of main result

In the case u = 1, we have

Um
T =

m−1∑
l=0

∫ T

0

fmTf
−1
s+lT ds, V m

T =
m−1∑
l=0

∫ T

0

fmTf
−1
s+lT dWs,

and ft = exp (−κt). Then,

Um
T =

m−1∑
l=0

∫ T

0

e−κ(mT−(s+lT )) ds

=
m−1∑
l=0

(eκT − 1)e−(m−l)κTκ−1

= (1− e−κmT )κ−1

−→ κ−1,

as m → ∞. Similarly,

VarV m
T =

m−1∑
k,l

∫ T

0

e−κ(mT−(s+kT ))e−κ(mT−(s+lT )) ds

=
1

2

m−1∑
k,l

e−κ(2m−k−l)T (e2κT − 1)κ−1

=
1

2
e−2κmT

(
m−1∑
l=0

eκlT

)2

(e2κT − 1)κ−1

=
1

2
(eκT − 1)−2e−2κmT (eκmT − 1)2(e2κT − 1)κ−1

=
1

2
(eκT − 1)−2(1− 2e−κmT + e−2κmT )(e2κT − 1)κ−1,

where we have repeatedly used commutativity of the given matrices. Letting
m → ∞, we obtain

lim
m→∞

V m
T =

1

2
(eκT − 1)−2(eκT − 1)(eκT + 1)κ−1

=
1

2
coth(κT/2)κ−1,

where
cothA = (e2A − 1)−1(e2A + 1),

12



for any symmetric and positive-definite matrix A ∈ Rd×d. In total,

Xt → N
(
θ,

1

2
σ coth(κT/2)κ−1σ

)
.

This proves Proposition 4.1 (a) and by extension Theorem 2.1 (a).
Now, consider (b), i.e.

ut =
1

1 + at
, t ≥ 0

for some a > 0. By defining

cA := exp((log c)A)

for every matrix A ∈ Rd×d and c > 0, we have
∫ t

0
us ds =

1
a
log(1 + at) and

ft = (1 + at)−
κ
a .

Recalling the dynamics of XmT in (4.1) we compute

m−1∑
l=0

us+lTfmTf
−1
s+lT =

m−1∑
l=0

(1 + a(s+ lT ))−1(1 + amT )−
κ
a (1 + a(s+ lT ))

κ
a

=(1 + amT )−
κ
a

m−1∑
l=0

(1 + a(s+ lT ))
κ
a
−1d×d , (4.2)

since ca1d×d = ca1d×d for all a ∈ R and c > 0. For ease of notation we write
A− c := A− c1d×d for any A ∈ Rd×d and c ∈ R.

We need the following well-known lemma to compute exactly the limits
of Um

T and V m
T as m → ∞.

Lemma 4.2. Let a ≤ b ∈ N0 and f : [a, b] → Rd×d be a matrix-valued
function in C1, i.e. continuously differentiable. Then,

b∑
n=a+1

f(n) =

∫ b

a

f(r) dr +

∫ b

a

{r}f ′(r) dr,

where {x} = x− ⌊x⌋ is the fractional part of x ∈ R.

13



Proof. We have∫ n+1

n

{r}f ′(r) dr =

∫ n+1

n

(r − n)f ′(r) dr

=

∫ n+1

n

rf ′(r) dr − n

∫ n+1

n

f ′(r) dr

=(n+ 1)f(n+ 1)− nf(n)−
∫ n+1

n

f(r) dr − n

∫ n+1

n

f ′(r) dr

=f(n+ 1)−
∫ n+1

n

f(r) dr,

and so

b∑
n=a+1

f(n) =
b−1∑
n=a

f(n+ 1)

=
b−1∑
n=a

∫ n+1

n

f(r) dr +
b−1∑
n=a

∫ n+1

n

{r}f ′(r) dr

=

∫ b

a

f(r) dr +

∫ b

a

{r}f ′(r) dr.

Clearly, the function

(0,∞) → Rd×d, t → (c+ at)A = exp(log(c+ at)A)

is C1, with derivative given by

∂t exp(log(c+ at)A) =∂t log(c+ at)A exp(log(c+ at)A)

=
a

c+ at
A(c+ at)A

=aA(c+ at)A−1,

for all c, a > 0 and A ∈ Rd×d. Therefore, for all n ∈ N

m−1∑
l=1

(1 + a(s+ lT ))
κ
a
−1 =

∫ m−1

0

(1 + a(s+ rT ))
κ
a
−1 dr

+

∫ m−1

0

{r}aT
(κ
a
− 1
)
(1 + a(s+ rT ))

κ
a
−2 dr.

(4.3)
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Consider arbitrary c1, c2 ∈ R, b > 0 and a matrix A ∈ Rd×d. Assuming 1 is
not an eigenvalue of A,∫ m−1

0

(c2 + bm)−A(c1 + br)A−2 dr =
1

b
(A− 1)−1(c1 + br)A−1

∣∣∣∣r=m−1

r=0

(c2 + bm)−A

=
(A− 1)−1

bc1 + b2(m− 1)

(
c1 + b(m− 1)

c2 + bm

)A

− (A− 1)−1

bc1

(
c1

c2 + bm

)A

−→ 0, (4.4)

as m → ∞. Similarly if A is invertible, we have∫ m−1

0

(c2 + bm)−A(c1 + br)A−1 dr =
1

b
A−1(c1 + br)A

∣∣∣∣r=m−1

r=0

(c2 + bm)−A

=
A−1

b

(
c1 + b(m− 1)

c2 + bm

)A

− A−1

b

(
c1

c2 + bm

)A

−→ 1

b
A−1, (4.5)

as m → ∞.
Applying (4.4) and (4.5) to (4.2) and (4.3), and taking into account the

assumption that 1 is not an eigenvalue of κ
a
and that κ is invertible, we get

lim
m→∞

m−1∑
l=0

us+lTfmTf
−1
s+lT = lim

m→∞
(1 + amT )−

κ
a

m−1∑
l=1

(1 + a(s+ lT ))
κ
a
−1

+ lim
m→∞

(1 + amT )−
κ
a (1 + as)

κ
a
−1

=
1

aT

(κ
a

)−1

=
1

T
κ−1. (4.6)

Note that the Frobenius norm of the matrix exponential of a symmetric and
positive-semidefinite matrix A satisfies

∥∥eA∥∥2
2
= tr[eA(eA)T ] = tr[e2A] =

d∑
k=1

e2λk > 0,
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where λ1, . . . , λd ≥ 0 are the eigenvalues of A. In particular,∥∥∥∥∥
(
c1 + b(m− 1)

c2 + bm

)A
∥∥∥∥∥
2

=

√√√√ d∑
k=1

exp

(
2 log

(
c1 + b(m− 1)

c2 + bm

)
λk

)
for m ≥ 2 is uniformly bounded by its value in m = 2. Similarly,∥∥∥∥∥

(
c1

c2 + bm

)A
∥∥∥∥∥
2

is uniformly bounded by its value in m = 1. Hence, the integrals in (4.4)
and (4.5) are uniformly bounded by integrable matrix-valued functions and
analogously so is the term (1 + amT )−

κ
a (1 + as)

κ
a
−1 in (4.6).

Therefore, we can apply dominating convergence to get

Un
T →

∫ T

0

1

T
κ−1 dt = κ−1,

as m → ∞. Recalling, equation (4.1)

XmT = fmTX0 + Um
T κθ + V m

T σ

and that fmT → 0, we can conclude

EXmT → θ,

as m → ∞, i.e. in expectation X converges to its mean-reversion level θ.
Further, again using (4.6) and dominated convergence we have

VarV m
T =Var

(
m−1∑
l=0

∫ T

0

us+lTfmTf
−1
s+lT dWs

)

=

∫ T

0

(
m−1∑
l=0

us+lTfmTf
−1
s+lT

)(
m−1∑
l=0

us+lTf
−T
s+lTf

T
mT

)
ds

→
∫ T

0

1

T 2
κ−1κ−T ds

=
κ−2

T
,

as m → ∞. So in total

Xt → N
(
θ,

1

T
σTκ−2σ

)
,

in distribution as t → ∞, proving Proposition 4.1 (b) and Theorem 2.1 (b).
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5 Experiments

By performing experiments one can find evidence that (2.4) is indeed a decent
approximation to SGDo and that the results of Theorem 2.1 can be in some
sense applied to SGDo as well. We will focus on the LR schedule

ut =
1

1 + t
h

, t ≥ 0.

5.1 Weak approximation error

Fix T = 1. For every initial learning rate h ∈ (0, 1) we draw N = ⌊T/h⌋
i.i.d. data points according to the linear model

y = −x+ 0.5ε,

where x, ε ∼ N (0, 1) are independent.
We estimate the quadratic deviation from the population parameter θ =

−1,
Eg(YN) := E[(YN − (−1))2],

for Y = χ,X,X0, where χ is given by (1.1), X is given by (1.9) and X0 is
the gradient flow approximation given by the ordinary differential equation

Ẋ0
t = −µ2

xut(X
0
t − θ), t ≥ 0. (5.1)

For Y = X0 we can compute the deviation exactly, where as for Y = χ,X we
use Monte-Carlo sampling with M = 500, 000 instances. Finally, we compute
the weak errors

|Eg(χh
N)− Eg(Xh

T )|, |Eg(χh
N)− g(X0

T )|.

The result of one simulation is depicted in Figure 1.
Observe that, the weak error associated with χ and X is lower for small

learning rates h, but can exceed the weak error for gradient flow for h close
to 1. Since weak approximations are only accurate for small h the diffusion
X can still be considered to be a better weak approximation to χ than the
gradient flow approximation X0.

5.2 Limiting distribution of SGDo vs. OLS estimator

For epoch lengths N = 2n, n ∈ {0, . . . , 15} we shall draw N i.i.d. data points
according to the linear model

y = −x+ 0.5ε,
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Figure 1: Weak approximation error of the diffusion approximation (2.4)
(blue) vs. weak approximation error of the gradient flow approximation (5.1)
(orange)

where x, ε ∼ N (0, 1) are independent. Then we run stochastic gradient de-
scent without replacement or reshuffling with epoch lengthN for max(100N, 10000)
iterations.

In order to approximate the standard deviation of the limiting distribu-
tion, i.e. s > 0 with

χn → N (θ, s2)

we estimate s using M = 2000 Monte-Carlo instances and time points n =
(m − 1)N, . . . ,mN, . . . ,mN + r, where n = mN + r with n, r coprime. We
compare the estimated standard deviations with the standard deviation of
the OLS estimator for the population parameter θ = −1 given by

N 7→

√
Var[0.5ε]

N Var(x)
=

1

2
√
N
.

Here we consider the theoretical variance of x, rather than the sample vari-
ance of x0, . . . , xN−1. The result is plotted in Figure 2. It confirms that
the mean and variance of the limiting distribution of X in 2.1 (b) are also
attained by SGDo.
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Figure 2: Standard deviation of the limiting distribution of SGDo (blue) vs.
standard deviation of the OLS estimator (orange).

6 Conclusion and Outlook

Our contribution in this paper is two-fold:
Firstly, we have introduced the (1.9) diffusion approximation based on

epoched Brownian motion to approximate the behavior of SGD without re-
placement or reshuffling (SGDo) for the example of linear regression. In an
experiment we have justified this approximation by estimating its weak error
and comparing it to a deterministic gradient flow approximation.

Secondly, we have used this diffusion approximation as a proxy to predict
the convergence properties of SGDo. For linear regression with a constant
learning rate we have discovered that the limiting distribution of the diffusion
approximation has the same mean as the OLS estimator and its variance
converges to the variance of the OLS estimator as the learning rate converges
to 0. Further, for the sequence of learning rates ηn = 1

1+n
the limiting

distribution has the same mean and the same variance as the OLS estimator.
A direction for future research is to formally state and prove a precise ap-

proximation result relating SGDo to (one of) its diffusion approximation(s),
either using weak approximation techniques similar to [3], [4], [1] or using
strong approximation techniques via a coupling argument, cf. [2].

In general it is then reasonable to allow the diffusion coefficient to be
dependent on the state X. In this case a discussion of an integral of the type∫
σ(X) dŴ T is in order. By a careful construction of a filtration one may
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interpret this as an integral in the Itô sense. Alternatively, one can treat this
integral as a rough integral by lifting Ŵ T to a second-order Gaussian rough
path.

Finally, we believe that the results can be extended to SGDo processes be-
yond linear regression using general drift and diffusion coefficients satisfying
certain regularity conditions.
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