
HAL Id: hal-03527839
https://hal.science/hal-03527839v1

Submitted on 5 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

The Cauchy-Lagrange method for 3D-axisymmetric
wall-bounded and potentially singular incompressible

Euler flows
Tobias Hertel, Nicolas Besse, Uriel Frisch

To cite this version:
Tobias Hertel, Nicolas Besse, Uriel Frisch. The Cauchy-Lagrange method for 3D-axisymmetric wall-
bounded and potentially singular incompressible Euler flows. Journal of Computational Physics, 2022,
449, pp.110758. �10.1016/j.jcp.2021.110758�. �hal-03527839�

https://hal.science/hal-03527839v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

The Cauchy-Lagrange method for 3D-axisymmetric
wall-bounded and potentially singular incompressible Euler

flows

Tobias Hertel∗ Nicolas Besse† Uriel Frisch‡

Laboratoire J.-L. Lagrange,
Observatoire de la Côte d’Azur,

Université Côte d’Azur,
Bd de l’observatoire CS 34229,
06300 Nice, Cedex 4, France.

September 27, 2021

Abstract

We treat the incompressible, and axisymmetric Euler equations for a three-dimensional cylin-
drical domain with boundaries. The equations are solved by the novel Cauchy-Lagrange algorithm
(CLA), which uses the time-analyticity of the Lagrangian trajectories of an incompressible Eu-
ler flow and computes the time-Taylor coefficients of the Lagrangian map via recursion relations.
This semi-Lagrangian algorithm uses a pseudo-spectral type approach in space by approximating
the flow fields by Chebyshev-Fourier polynomials. New methods are presented to solve the resulting
Poisson problems directly for their second-order space derivatives. The flow fields, known on the
Lagrangian trajectories after one time-step, are interpolated back onto the Eulerian grid to start
a new recursion cycle. The time-step is only limited by the radius of convergence and, thus, inde-
pendent of any Courant-Friedrichs-Lewy (CFL) condition. This allows to advance the flow with
larger time-steps independently of the mesh. Stationary and swirl-free flows are used to thoroughly
test our implementation for the given geometry. In this work, our ultimate goal is to apply the
CLA to a flow, which might develop finite time singularities, resulting in a loss of smoothness.
This demands either 3D, or 2D with swirl, and may well require the presence of solid boundaries,
as indicated in recent numerical work (Luo and Hou, Multiscale Model Simul., 12.4, 1722-1776,
2014).

1. Introduction

The setting is that of the basic three-dimensional incompressible Euler equations in a wall-bounded
infinite cylinder D, with boundary ∂D,

vt + v · ∇v = −∇p,
∇ · v = 0, in D,
v · ν = 0, on ∂D,

v |t=0 = v0,

(1)

where ν is the unit outward normal vector to ∂D and the velocity field v = v(a, t) is assumed to be
axisymmetric and periodic along the cylinder. In the classical sense, the Euler equations are solvable,
at least until a finite time of existence T > 0, whenever v0 ∈ C1,α, α > 0. In this case, one defines the

∗tobias.hertel@oca.eu
†nicolas.besse@oca.eu, corresponding author
‡uriel@oca.eu

1

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0021999121006537
Manuscript_4cb60a4481069e5a0775ab041a49f0e6

mailto:tobias.hertel@oca.eu
mailto:nicolas.besse@oca.eu
mailto:uriel@oca.eu
https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0021999121006537
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0021999121006537

Lagrangian particle trajectories via the characteristic map X, unique solution to the characteristic
equation

∂ tX (a, t) = v (X (a, t) , t) ,

X (a, 0) = a,
(2)

for a ∈ D, t ∈ [0, T).
A historical remark is in order here. The above equations still constitute some of the hardest

problems in physics and applied mathematics. Especially the Lagrangian view point, using the particle
trajectories, has proved to be a useful tool to address those problems. After the postulation by Euler
[20] in 1757, the hydro-dynamical part of the equations (without the rigid boundary conditions) were
well known to Cauchy in 1815. He proposed rewriting the equations in Lagrangian coordinates, thereby
introducing the now called Cauchy-invariants formulation (CIF) [12, 25, 8]. In 1858, Helmholtz stated
remarkable results concerning vorticity conservation laws. Even though these results were expressed in
Lagrangian language, the proof was established using Eulerian variables. Shortly after this, Riemann
noticed that these results could perhaps be derived directly using Lagrangian variables. Due to
Riemann’s suggestion, Goettingen university proposed a prize for giving a direct Lagrangian proof
of Helmholtz’s theorems. This prize was awarded to Hankel [62], who proved Helmholtz’s vorticity
conservation laws in a purely Lagrangian framework using the Cauchy-invariants formulation, see also
[24]. However, it was only in the beginning of the nineteenth century, that a rigorous mathematical
proof for the above existence and uniqueness result was proved by Gyunter [33] and Lichtenstein [44]
for the case of the whole space, and by Ebin and Marsden [18] in 1970, for the case of bounded
domains and manifolds with boundaries (see also [6] for the case of manifolds with boundaries and in
the context of the Cauchy-Lagrange approach). At the present moment, one of the most important
questions, namely the global existence and uniqueness of an initially smooth solution, is still open.
Current mathematical and numerical work (e.g. [19, 45, 13]) suggests that the presence of boundaries
plays a crucial role in answering this question.

Remarkably, the particle trajectories, also called characteristics, are analytic in time, i.e. the
characteristic map X is the sum of an absolutely converging Taylor series locally in time [55, 56, 27,
60, 31, 26, 14, 7, 6]. Thus, we may conveniently write

X (a, t; t0) =

∞∑
s=0

X(s) (a) (t− t0)s, t0 ∈ [0, T), (3)

where t must lie within the disc of convergence with radius % around t0. In the sequel of this article,
we will drop the argument t0 in eq. (3), because we use t0 = 0 throughout the text. All the referenced
proofs show that the temporal analyticity of X holds even under the lowest regularity assumptions
on the initial flow, namely v0 ∈ C1,α, α > 0 (or a weak alternative). While most of the proofs in the
cited references above make use of singular integral calculus and start directly from the Euler equa-
tions, the references [26, 7, 6] make use of the revived CIF. This reformulation of the incompressible
Euler equations1 is written entirely in terms of the characteristic map and gives rise to a constructive
proof of the temporal analyticity of X. As a byproduct, the authors obtain recursion relations for
the time-Taylor coefficients X(s) of eq. (3). In [51], it has been shown that this constructive nature of
the CIF-approach leads to an effective algorithm for an incompressible Euler-flow in two dimensions
with periodic boundary conditions. This numerical scheme, known as the Cauchy-Lagrange algorithm
(CLA), belongs to the large class of semi-Lagrangian methods which are very popular in the fields of
numerical weather prediction and numerical plasma physics, and also fluid mechanics and gas dynam-
ics. The present work is inspired by the preceding papers and builds on the findings in [7]. In this
work, we describe the CLA for wall-bounded Euler flow and investigate numerically a periodic, and
axisymmetric incompressible flow in the cylinder2 D.

A common numerical method to advance an incompressible Euler flow in time is the Runge-Kutta
time-stepping scheme on an underlying Eulerian mesh. A major drawback of this method is the
limitation of the time-step size depending on the mesh spacing and the flow itself, well known as the
Courant-Friedrichs-Lewy (CFL) condition. This is problematic especially in turbulent flows, where a

1It is explicitly given in eqs. (5) and (6) in beginning of section 2.
2See Section 3 for a precise definition of the modeled cylindrical domain.

2

necessarily high resolution enforces narrow time-steps and, thus, slows down the overall algorithm. The
time-step in the CLA is only limited by the convergence radius %, which behaves roughly as cst./ ‖ω0‖α
where ω0 is the vorticity field at t0 and ‖ . ‖α denotes the Hölder norm. Therefore, the algorithm is
entirely independent of a CFL condition. This advantage makes the CLA a suitable candidate for
simulations of potentially singular flows, where high resolutions are needed to accurately represent
large developing gradients. A celebrated result connects the blow-up event to the time-integrated
vorticity modulus [3, 21]. More accurately, if a blow-up occurs at a finite time T ∗, then the time-
integrated L∞-norm of the vorticity ω until T ∗ becomes infinite and in particular

lim sup
t→T∗

‖ω‖L∞ =∞. (4)

In the spirit of this result, broad numerical studies have been executed in the last decades, e.g. [32,
52, 39], mainly searching for an initially smooth flow that eventually verifies (4). See also [29] for a
thorough inspection of the concerned literature. However, even with steadily growing computational
power, it seemed that the blow-up problem could hardly be answered numerically, because earlier
claims of finite time singularities were later attributed to numerical artifacts or under-resolution (see
e.g. [17, 36, 10]). Nonetheless, efforts have been continued and now reference [45] provides ample
numerical evidence for a blow-up of an axisymmetric flow in a cylinder. To verify their blow-up result,
either a rigorous mathematical proof or more simulations of the same singular flow by other, different,
numerical schemes have to be established. We believe that the here presented CLA can take on that
challenge since almost no parallels to the algorithm in [45] can be drawn, as discussed in Section 10.
The absence of a CFL condition makes the CLA a well-suited candidate to approach the strong
gradients near the potential blow-up with larger time-steps on arbitrarily fine3 grids. Furthermore,
special attention has been employed to solve the appearing Poisson problems directly for the deriva-
tives of the solutions. This minimizes the errors in the computation of the time-Taylor coefficients
X(s) and allows to choose larger time-steps in the disc of convergence. The CLA is implemented in
Fortran for high performance and is found to be accurate, stable, and fast. Furthermore, a wide pa-
rameter palette is available, including different Poisson solving schemes, interpolation methods (with
refinement options), truncation and time-stepping settings, limits for conserved quantities, de-aliasing
options, etc. The present work is refined from [35], where the implemented CLA and the connected
theory is discussed in greater detail.

The article is organized as follows. An overview of the different steps of the CLA is given in
Section 2. The technical frame in form of the recursion relations for the time-Taylor coefficients X(s)

and the used Helmholtz—Hodge decomposition (HHD) of X(s) in cylindrical coordinates are stated
in Sections 3 and 4. Particular attention has been attributed to the appearing Poisson problems in
the HHD. Their treatment can be found in Section 5 together with the used spectral Chebyshev-
Fourier discretization. How the flow fields (velocity and vorticity) are re-interpolated onto the original
Eulerian grid, after they have been computed along the particle trajectories, is described in Section 6.
In Section 7, the choice of a possible time-step is discussed, and validation criteria for one iteration are
presented in Section 8. Subsequently, the CLA is tested on stationary and swirl-free (non-stationary)
solutions in Section 9, before it is applied to the potentially singular solution of [45] in Section 10.

2. Description of the Cauchy-Lagrange Algorithm

The main goal of the Cauchy-Lagrange algorithm (CLA) is the computation of the particle trajectory
map X as defined in eq. (3). The Cauchy-invariants formulation of the three-dimensional incompress-
ible Euler equations (1), together with the incompressibility condition, reads∑

k=1,2,3

∇Ẋk(a, t)×∇Xk(a, t) = ω0(a), (5)

det (DX(a, t)) = 1, (6)

in the Cartesian coordinates a = (a1, a2, a3)>. The symbol ω0 denotes the initial vorticity and D

indicates the total derivative with respect to the spatial variable a, ∇ denotes the nabla operator and
the dot-notation has been adopted to indicate temporal derivatives. Equations (5) and (6) give rise to

3as far as the computational limits, i.e. working precision, storage, etc., allow.

3

recursion relations for the curl and divergence of the time-Taylor coefficients X(s), such that the latter
can be expressed in terms of lower order time-Taylor coefficients X(s′), s′ < s. From [7], we gather
those recursion relations, but abbreviate here the appearing sums by calligraphic capital letters F and
G to simplify the notation. Note that, in the given reference, the recursions are given in terms of the
displacement map ξ = X − Id, but since the Taylor coefficients are time derivatives at t = 0, we have
ξ(s) = X(s), for s > 0 and X(0) = Id, the identity map. The first recursion step starts with X(1) = v0,
and therefore, ∇ ·X(1) = 0 and −∇×X(1) = −ω0. For a time-Taylor coefficient with orders s > 1 we
have

∇ ·X(s) = F
(

(DX(s′))0<s′<s

)
(7)

−∇×X(s) = G
(

(DX(s′))0<s′<s

)
, (8)

Subsequently, the time-Taylor coefficient X(s) is expressed by a Helmholtz-Hodge decomposition
X(s) = ∇φ+∇×Ψ , where the potentials result from two Poisson problems, namely ∆φ = ∇·X(s) and
∆Ψ = −∇×X(s). Those Poisson problems are supplemented with appropriate boundary conditions
that are obtained from the boundary defining map S : R3 7→ R, for which S(X(∂Ω, t)) = 0 holds true
for all times t ≥ 0. In the case of a periodic cylinder, the explicit boundary conditions are specified
in Section 4. After a predefined number of recursions S, we may proceed with the time-step insertion
by directly computing

X (a,4t) ≈
S∑
s=0

X(s) (a)4ts, (9)

provided a suitable time-step 4t has been found. The only limitation of the latter is the radius of
convergence of the time Taylor series. This radius is typically of the form % = C/ ‖ω0‖Cα , but the
constant C = C(Ω,α) is difficult to obtain analytically. We have achieved good results in setting the
time-step small enough such that the highest order terms do not contribute to the sum anymore for
moderate S due to limitations in machine precision. For a detailed inspection of the time-stepping,
we refer the reader to Section 7.
Once a time-step has been set, we obtain the velocity field on the trajectories via the characteristic
equation

u (X (a,4t) ,4t) = Xt (a,4t) ≈
S∑
s=1

sX(s) (a)4ts−1, (10)

the vorticity is similarly obtained via the vorticity transport formula (i.e. [46, p. 20])

ω (X (a,4t) ,4t) = DX(a,4t) · ω0(a) ≈
S∑
s=0

DX(s) (a) · ω0(a)4ts. (11)

Numerically, the characteristics deform the underlying discrete grid and the velocity and vorticity
fields are only known on that distorted grid, i.e. at the end points of the particle trajectories. Hence,
an interpolation is needed to obtain the values of the advanced flow fields on the Eulerian grid. This
three-dimensional scattered interpolation needs, in principal, only to be performed for the vorticity
field, but it is better to re-interpolate the velocity field as well, because it appears in the 1st order
term in the next time-Taylor series of the characteristics (in X(1)). These interpolated flow fields are
then taken as the new initial conditions and, therefore, we may set t0 = 0 after each time-step, where
t0 appeared in eq. (3).
In this paper, a three-dimensional axisymmetric flow in a cylindrical domain is modeled to understand
the challenges and advantages of this novel algorithm for wall-bounded incompressible Euler flow. The
axisymmetry of the problem simplifies both the Poisson solvers and the interpolation procedure to two
dimensions. Best results in the interpolation step have been achieved using the cascade interpolation
scheme [53].

4

3. Recursion relations for axisymmetric flow

In this section, we would like to introduce our notations for cylindrical domains and give the recursion
relations for our particular setting of an axisymmetric and periodic flow in the cylindrical region

D(1, L) :=

{
a = (a1, a2, a3) ∈ R |

√
a21 + a22 ≤ 1 and a3 ∈ [0, L]

}
. (12)

Note that the real flow takes place inside of an infinite cylinder, but because of the periodicity we
can restrict our computations to the region D(1, L). The Lagrangian particles, however, may leave
this region and disperse into the whole cylinder, but they can always be remapped into D(1, L). See
Section 6 for a more detailed discussion on that matter. An axisymmetric flow in D(1, L) takes the
form

v(a, t) = vr(r, z, t)er + vα(r, z, t)eα + vz(r, z, t)ez, (13)

where v and a = rer + zez are represented in the cylindrical basis er = (cosα, sinα, 0)>, eα =

(− sinα, cosα, 0)>, ez = (0, 0, 1)>. As usual we have, for a = (a1, a2, a3)>,

r =
√
a21 + a22, α = A(a1, a2), z = a3,

with (r, α, z) ∈ [0, 1]× (−π, π]× [0, L] and

A(a1, a2) :=

0, if a1 = a2 = 0

arcsin(a2r), if a1 = 0, a2 6= 0

arctan(a2a1), if a1 > 0

π − arcsin(a2r), if a1 < 0 .

(14)

The cylindrical vorticity corresponding to eq. (13) reads

ω(a, t) = ωr(r, z, t)er + ωα(r, z, t)eα + ωz(r, z, t)ez, (15)

and is obtained by
ω = ∇c × v = −vαz er + (vrz − vzr)eα + 1

r (rvα)r, ez, (16)

where
∇c := er∂r + 1

r eα∂α + ez∂z (17)

denotes the cylindrical nabla operator. The components of v and ω are independent of the angular
variable α and periodic in z ∈ [0, L]. The α-dependence of the flow fields only lies in the basis
vectors er and eα. The same is true for the the characteristics X = X(a, t) and the displacement map
ξ := X − Id, which are denoted by

X(a, t) = Xr(r, z, t)er +Xα(r, z, t)eα +Xz(r, z, t)ez, (18)
ξ(a, t) = R(r, z, t)er +A(r, z, t)eα + Z(r, z, t)ez. (19)

We recall the Cauchy-invariants formula in Cartesian coordinates in terms of the displacement map
ξ = (ξ1, ξ2, ξ3), namely eqs. (16)-(17) in [7],

∇× ξ̇ +
∑

1≤k≤3

∇ξ̇k ×∇ξk = ω0 (20)

∇ · ξ +
∑

1≤i<j≤3

(∂ iξi∂ jξj − ∂ iξj∂ jξi) + det (Dξ) = 0. (21)

Here, the dot-notation is used to indicate temporal derivatives. An insertion of eq. (19) into eqs. (20)
and (21) yields after a slight rearrangement

−∇c × ξ̇ = er
1

r
∂z
(
ṘA− ȦR

)
+ eα

[{
Ṙ, R

}
+
{
Ȧ, A

}
+
{
Ż, Z

}]
+ ez

1

r
∂r
(
ȦR− ṘA

)
− ω0 (22)

∇c · ξ =
1

r

(
A
({
A,Z

}
−Ar

)
+R

({
R,Z

}
−Rr − Zz

))
+
{
R,Z

}
, (23)

5

where
{
f, g
}

:= fzgr − frgz denotes the Poisson bracket for functions f = f(r, z) and g = g(r, z). An
insertion of the formal time-Taylor series

Λ(r, z, t) =
∑
s≥1

Λ(s)(r, z) ts, Λ̇(r, z, t) =
∑
s≥1

sΛ(s)(r, z) ts−1, Λ = R,A,Z, (24)

into the expressions of the rotation (eq. (22)) and divergence (eq. (23)) above yields component-wise

(−∇c × ξ(s))r = −δ1sωr0 +
∑

1≤m<s

m

rs
∂z

[
R(m)A(s−m) −A(m)R(s−m)

]
(25)

(−∇c × ξ(s))α = −δ1sωα0 +
∑

1≤m<s

m

s

[{
R(m), R(s−m)

}
+
{
A(m), A(s−m)

}
+
{
Z(m), Z(s−m)

}]
(26)

(−∇c × ξ(s))z = −δ1sωz0 +
∑

1≤m<s

m

rs
∂r

[
A(m)R(s−m) −R(m)A(s−m)

]
, (27)

and

∇c · ξ(s) ={
R,Z

}(s)
+

∑
1≤m<s

A(m)

r

({
A,Z

}(s−m) −A(s−m)
r

)
+
R(m)

r

({
R,Z

}(s−m) −R(s−m)
r − Z(s−m)

z

)
(28)

with {
Λ,Z

}(n)
:=

∑
1≤m<n

(
Λ(m)
z Z(n−m)

r − Λ(m)
r Z(s−m)

z

)
, n = 1, 2, . . . ,

such that
{
Λ,Z

}
=
∑

1≤s
{
Λ,Z

}(s)
ts for Λ = R,A. By convention, empty sums evaluate to zero.

Numerically it makes sense to store the time-Taylor coefficients of
{
R,Z

}
and

{
A,Z

}
. Although this

increases storage demand, it speeds up the recurrence computations tremendously for high orders, as
the summation terms in eq. (28) consist only of two factors instead of three.
In sight of the envisaged Helmholtz-Hodge decomposition in Section 4 we state the boundary value
R(1, z, t) for t > 0. As a matter of fact, for a boundary point a, X(a, t) lies on the boundary for all
t > 0. In the case of our periodic flow in the cylinder D(1, L), this boundary reduces to the mantle
of the cylinder which is discribed by the kernel of the boundary map S(a1, a2, a3) = a21 + a22 − 1. An
insertion of X(a, t), a ∈ ∂D(1, L), yields, in terms of the cylindrical components of ξ,

0 = S(X(a, t)) = X2
1 (a, t) +X2

2 (a, t)− 1

= (R(1, z, t) + 1)2 +A(1, z, t)2 − 1 = 2R(1, z, t) +R(1, z, t)2 +A(1, z, t)2 . (29)

and, thus,

R(1, z, t) = −1

2

(
R(1, z, t)2 +A(1, z, t)2

)
.

An insertion of the power series of the components (24) into the last term, with subsequent grouping
of coefficient orders s ≥ 1, entails

R(s)(1, z) = −1

2

s−1∑
n=1

(
R(n)R(s−n) +A(n)A(s−n)

)
(1, z). (30)

We have stated all the needed recursion formulas for the rotation, divergence and boundary terms of
the coefficients ξ(s) (they equate the X(s)), which are needed for the Helmholtz-Hodge decomposition
that is discussed in the next section. Note that those recursion formulas depend only on (r, z) ∈
[0, 1]× [0, L] due to the imposed axisymmetry of the flow, which reduces the computational complexity
tremendously when compared to general 3D flow.

6

4. Helmholtz—Hodge Decomposition and Computational
Simplifications

In order to exploit the formerly found recursion relations of the divergence and rotation we state
the Helmholtz—Hodge decomposition (HHD) of the trajectory’s time-Taylor coefficients in cylindrical
coordinates. In the following, let s ≥ 1 be fixed. ξ(s) can be expressed by a HHD in the cylindrical
domain D(1, L) as

ξ(s) = ∇φ+∇× Ψ . (31)

The potentials φ and Ψ should read φ(s) and Ψ (s), since those potentials depend on s. We omit
the superscripts only to increase the readability. The scalar potential φ is uniquely described by the
Poisson problem

∆φ = ∇ · ξ(s), in D(1, L),

∂νφ = ν · ξ(s), on ∂D(1, L),
(32)

and the vector potential Ψ by
∆Ψ = −∇× ξ(s),
∇ · Ψ = 0, in D(1, L),

Ψ × ν = 0, on ∂D(1, L),

(33)

where ν denotes the unit outward normal vector to the boundary, and in our case we simply have
ν = er. See [30] for a detailed analysis of the HHD and the above statements for a bounded domain.
In principle, we treat a flow inside of an infinite cylinder, which is unbounded in vertical direction,
but we do not need to impose a decay of the solution for z →∞, because of the periodicity in [0, L].
In this particular case, the validity of the above statement is verified without difficulty by a slight
adaptation of the arguments in [30]. Note that the boundary conditions for Ψ are different from those
in [7]. Indeed, Ψ = 0 on the boundary of the domain is not sufficient for a general HHD in a bounded
domain, but accounts only for a special situation. We refer the reader to [6], where the boundary value
problem eq. (33) from above has been addressed in Remark 6. We reformulate the above problems
in cylindrical coordinates a = (a1, a2, a3) 7→ (r cosα, r sinα, z), and keep the symbols for the vector
potentials by an abuse of notation. Thus, we are looking for functions φ = φ(r, z) and Ψ = Ψ(r, α, z),
with

Ψ(r, α, z) = Ψr(r, z)er + Ψα(r, z)eα + Ψz(r, z)ez, (34)

defined in the domain D(1, L). Under the assumption of axisymmetry we may fix momentarily α = 0

which implies er = (1, 0, 0)>. The boundary conditions for φ translate to

∂rφ |r=1= er · ξ(s) |r=1= R(s)(1, z),

and those for Ψ , namely Ψ |r=1 ×er = 0, imply

Ψz(1, z) = Ψα(1, z) = 0 . (35)

Moreover, the divergence-free condition, ∇ · Ψ = 1
rΨ

r + ∂rΨ
r + ∂zΨ

z = 0, is assumed to hold up to
the boundary and delivers the boundary condition on Ψr,

Ψr(1, z) + ∂rΨ
r(1, z) = −∂zΨz(1, z) = 0, (36)

where eq. (35) is used. Let us define the linear differential operators

L :=
1

r
∂r (r .) =

1

r
+ ∂r , (37)

L1 := L(∂r .) =
1

r
∂r (r∂ r .) = ∂2

r +
1

r
∂r, (38)

L2 := ∂r(L .) = ∂r
(
1
r ∂r(r .)

)
= ∂2

r +
1

r
∂r −

1

r2
, (39)

G := L1 + ∂2
z = ∂2

r +
1

r
∂r + ∂2

z , (40)

H := L2 + ∂2
z = ∂2

r +
1

r
∂r −

1

r2
+ ∂2

z. (41)

7

Subsequently, the translation of eqs. (32) and (33) in cylindrical coordinates entails four partial dif-
ferential equations

G φ(r, z) =
(
∇ · ξ(s)

)
(r, z) ,

∂rφ(0, z) = 0, (42)

∂rφ(1, z) = R(s)(1, z),

HΨr(r, z) = (−∇× ξ(s))r(r, z),
Ψr(0, z) = 0, (43)

Ψr(1, z) + ∂rΨ
r(1, z) = 0,

HΨα(r, z) = (−∇× ξ(s))α(r, z),

Ψα(0, z) = 0, (44)
Ψα(1, z) = 0,

G Ψz(r, z) = (−∇× ξ(s))z(r, z),
∂rΨ

z(0, z) = 0, (45)
Ψz(1, z) = 0,

for φ, Ψr, Ψα, Ψz ∈ C2
L([0, 1] × [0, L]), where the subscript (.)L indicates periodicity in [0, L]. The

radial regularity at the boundary is understood to be a limit. The pole conditions stem from the
continuity constraints, as the operators must stay bounded for r ∈ [0, 1]. After solving the above
equations, one obtains the coefficients A(s), R(s) and Z(s) in cylindrical coordinates via eq. (31), i. e.

R(s) = ∂rφ− ∂zΨα (46)

A(s) = ∂zΨ
r − ∂rΨz (47)

Z(s) = ∂zφ+ ∂rΨ
α + 1

rΨ
α, (48)

where all functions only depend on (r, z) ∈ [0, 1]× [0, L].

4.1. Computational simplifications for the implementation

In consulting the recursion relations eqs. (25) to (28), the overall algorithm demands the spatial
derivatives of the time-Taylor coefficients R(s), A(s) and Z(s) in radial and vertical direction, i.e. second
derivatives on the potentials. Second-order derivatives imply large numerical errors, especially if
produced via standard spectral differentiation methods, which potentially limits the possible time-
step that can be inserted into the truncated time-Taylor series. Therefore, we aim to directly solve
for the needed second-order derivatives, which is discussed in later sections. In the following, we state
the derivatives of φ and the components of Ψ that need to be found. Fortunately, not all (mixed)
second-order derivatives of the potentials need to be solved for, but only a few, which results from the
simplifications that are discussed here.

While eqs. (42), (44) and (45) are pure Neumann or Dirichlet type boundary value problems, is
eq. (43) a mixed boundary value problem. However, in consulting eqs. (46) to (48), the component
Ψr is only used for the construction of A(s) and derivatives thereof. In the following we show that it
is not necessary to solve eqs. (43) and (45) in the case of our cylindrical geometry. Instead of solving
eqs. (43) and (45) for Ψr, Ψz, we will directly solve for A(s) and its derivatives. As a matter of fact,
we have

∂zA
(s) = −(∇× ξ(s))r (49)

LA(s) =
A(s)

r
+ ∂rA

(s) = (∇× ξ(s))z, (50)

8

stemming from the definition of the curl operator in cylindrical coordinates, namely

∇c × ξ(s) = −A(s)
z er + (R(s)

z − Z(s)
r)eα + 1

r (rA(s))rez, (51)

with ∇c defined in eq. (17). The RHSs of eqs. (49) and (50) are given via the recursion relations
eqs. (25) and (27), which are computed and saved in the CLA. Integrating the operator L = 1

r ∂r(r .)

in eq. (50) directly yields

A(s)(r, z) =
1

r

∫ r

0

t (∇× ξ(s))z(t, z) dt (52)

A
(s)
1 (r, z) :=

A(s)(r, z)

r
=

1

r2

∫ r

0

t (∇× ξ(s))z(t, z) dt, (53)

where we have used that A(s)(0, z) = 0 for all z ∈ [0, L] and s ∈ N0. However, our implementation of
the CLA solves directly for ∂rA(s) by calculating ∂rL−1 in a later defined way. Subsequently, A(s)

1 is
obtained in using eq. (50), i.e. A

(s)
1 = (∇× ξ(s))z − ∂rA(s), and A(s) = rA

(s)
1 . Furthermore, provided

we know ∂rR
(s), ∂zR

(s) and R(s)
1 , we compute in a straight forward way

∂rZ
(s) = ∂zR

(s) + (−∇× ξ(s))α (54)

∂zZ
(s) = −R(s)

1 − ∂rR(s) +∇ · ξ(s), (55)

where we have used again eq. (51) and the definition of the divergence, namely

∇c · ξ(s) = 1
r (rR(s))r + Z(s)

z . (56)

The RHSs of eqs. (54) and (55) are given by the recursion relations eqs. (26) and (28). Therefore,
we only need to compute those expressions of the Helmholtz—Hodge potentials that appear in the
following RHSs,

∂rR
(s) = ∂2

rφ− ∂r∂zΨα (57)

∂zR
(s) = ∂z∂rφ− ∂2

zΨ
α (58)

R
(s)
1 =

∂rφ

r
− ∂zΨ

α

r
(59)

Z(s) = ∂zφ+ ∂rΨ
α + 1

rΨ
α . (60)

In fact, the coefficients R(s), A(s) and Z(s) are not needed for the recurrence mechanism itself, but
for the actual computation of the particle trajectories. This information is mainly needed for the
interpolation step after the time-step insertion. The coefficients R(s) and A(s) are simply obtained by
multiplying R(s)

1 and A(s)
1 by r respectively.

5. Discretization in space and Poisson solvers

A crucial part of the investigated algorithm is the accurate computation of the Calderon-Zygmund
operators of order zero, namely the double derivatives of an inverse Laplacian, applied to the diver-
gence and rotation of the trajectory’s time-Taylor coefficients. The appearing errors from the second
derivatives on top of the errors in the solutions themselves may recursively cascade into higher orders
s. This amplification of errors can lead to a lower order scheme and a very limited time-step. Thus,
the better the above-mentioned operators are computed, the better the time-step can be chosen and
the more accurate the overall algorithm becomes with fewer time-steps. It is desirable to preserve
the possible range of a time-step as much as possible by maximally reducing the accumulation of
numerical errors.

In this first implementation of the CLA for a domain with boundaries, we refrain from finite
difference methods for the Calderon-Zygmund operators, because of their slow convergence and limited
accuracy in the derivatives. Instead, a pseudo-spectral approach was chosen and a representation of
the trajectory’s coefficients by shifted Chebyshev series in the radial dimension and Fourier series in
the vertical dimension is applied:

X(s)(r, z) =

∞∑
|k|=0

∞∑
l=0

X
(s)
kl T

∗
l (r) eik̃z, (61)

9

where T ∗l (r) = Tl(2r − 1) are the shifted Chebyshev polynomials and

k̃ :=
2πk

L
. (62)

A truncation to M + 1, N + 1 ∈ N modes yields a spectrally discrete approximation of the latter, i.e.

X(s)(r, z) ∼= (INMX
(s))(r, z) =

M/2∑
|k|=0

N∑
l=0

X
(s)
kl T

∗
l (r) eik̃z . (63)

See Section A for a basic overview of the shifted Chebyshev polynomials and series.
The Chebyshev-Fourier basis has been chosen due to the underlying numerically fast discrete

Fourier transforms, and also to initialize this novel method for wall-bounded incompressible Euler
flow in using widely known and well studied spectral representations. The applied methods allow for
fast numerical convergence and, thus, for an accurate representation of the solutions to the Helmholtz-
Hodge decomposition and the flow itself in low to moderate resolutions. Although the choice for a
spectral approach introduces difficulties for higher resolutions, as spectral derivatives become progres-
sively more erroneous and unstable, we have found ways to overcome those pitfalls and find that the
overall algorithm is stable, accurate, and fast. This is to a large extent due to sophisticated Poisson
solvers, which solve directly for the second-order radial derivatives and divisions by the radial argu-
ment. One major advantage of shifted Chebyshev series is that they are obtained from function values
known on the shifted Chebyshev extrema, namely ((cos (iπ/N) + 1)/2)i=0,...,N . Those are clustered
near (and contain) the boundary of the cylindrical domain as well as the pole r = 0. This clustering
is important, as the numerical studies in [45] indicate a singularity directly at the boundary. In sum-
mary, we choose to deal with unstable spectral derivatives in exchange for very good approximation
properties and a high point density at the boundary and pole of the cylinder.

5.1. Decoupling of the Poisson problems.

Let in the following u = u(r, z) and w = w(r, z) be sufficiently smooth z-periodic functions [0, 1] ×
[0, L]→ R. In sight of eqs. (42) and (44) and the fact that in our approach we will not solve eqs. (43)
and (45) explicitly, we will treat the following homogeneous model problems

Gu :=
(
∂2
r + 1

r ∂r + ∂2
z

)
u(r, z) = f(r, z)

∂r |r=0,1 u(r, z) = 0,
(64)

and
Hw :=

(
∂2
r + 1

r ∂r −
1
r2 + ∂2

z

)
w(r, z) = g(r, z),

w(0, z) = w(1, z) = 0 .
(65)

As discussed in the discretization Section 5, we use the periodicity in vertical direction and antici-
pate an approximation of the solutions in truncating the Fourier expanded differential equations. In
replacing the appearing functions by truncated Fourier series, i.e.

ΛM (r, z) =
∑M/2

|k|=0
Λ̂k(r) eik̃z, Λ ∈ {u, f, w, g}, (66)

the equations decouple and for each k ∈ [0,M/2] we are left to solve the ordinary differential equations

(L1 − k̃2)ûk(r) = û′′k(r) + 1
r û
′
k(r)− k̃2ûk(r) = f̂k(r),

û′k(0) = û′k(1) = 0,
(67)

and
(L2 − k̃2)ŵk(r) = ŵ′′k(r) + 1

r ŵ
′
k(r)− (1

r2 + k̃2)ŵk(r) = ĝk(r),

ŵk(0) = ŵk(1) = 0,
(68)

where L1 and L2 are defined in eqs. (38) and (39). Since only real valued functions, whose complex
modes verify ûk = û−k, are treated, we may restrict ourselves to positive modes. Note that eqs. (67)
and (68) are commonly known as the modified Bessel ODEs of order 0 and 1 respectively. Their
solutions, well known yet hard to compute numerically, are described later in this section.

10

Remark. To obtain the solution of the inhomogeneous problem eq. (42), with Neumann boundary
data b = b(z) at r = 1, from a homogeneous problem eq. (64), one simply solves the latter with
the modified right hand side f̃ = f̃(r, z) = f(r, z) − G(r

2

2 b(z)) for a solution ũ = ũ(r, z). The
inhomogeneous solution is then given by ũ(r, z)+ r2

2 b(z). The smoothness requirement for b is neglected
here, because the procedure is directly applied to the truncated problem, where all involved functions
are C∞.

The special case, where k̃ = 0 can be treated explicitly, since the operators L,L1 and L2 are readily
inverted. Note that L does not appear in the Poisson problems but is needed to solve directly for A(s)

and its derivatives as described in Section 4. Suppose h = h(r), r ∈ [0, 1], is a generic function that is
represented by a truncated shifted Chebyshev series

h(r) =

N∑
l=0

hlT
∗
l (r) . (69)

The inverses of the linear differential operators are

L−1h(r) =
1

r

∫ r

0

t h(t) dt =

N∑
l=0

hl

(
1

r

∫ r

0

t T ∗l (t) dt

)
, (70)

L−11 h(r) =

∫ r

0

1

t

∫ t

0

yh(y) dy dt =

N∑
l=0

hl

(∫ r

0

1

t

∫ t

0

yT ∗l (y) dy dt

)
, (71)

L−12 h(r) =

∫ r
0
t
(
c(h) +

∫ t
0
h(x) dx

)
dt

r
=

N∑
l=0

hl

∫ r0 t
(
c(T ∗l) +

∫ t
0
T ∗l (x) dx

)
dt

r

 , (72)

where

c(.) = −2

∫ 1

0

t

∫ t

0

(.)(x) dx dt

ensures homogeneity at r = 1. Any bounded differential operator can then be applied to the inverses,
and, thus, the derivatives of the solutions to the above ODEs can be obtained on a fixed grid via
a matrix vector multiplication. For example, the solution of eq. (67), with k = 0, subject to the
differential operator Dr ∈ {∂r, ∂2

r, ∂r/r, 1/r} is approximated by

(Drû0(xi))i=0,...,N = (DrL−11 T ∗l (xi))i,l=0,...,N · (f̂0l)l=0,...,N , (73)

on the fixed grid (xi)i=0,...,N . Here (f̂0l)l=0,...,N denote the coefficients of the shifted Chebyshev series
that approximate f̂0 in eq. (67) with k = 0. In our CLA code, the matrices (DrL−11 T ∗l (xi))i,l=0,...,N

are pre-computed for the needed derivatives and stored for continuous re-application. This method,
to directly obtain the derivatives of the solution to an ODE, is very accurate and of usual complexity
of O(N2) for spectral solving methods with full matrices. If k > 0, then the operators L1 − k̃2 and
L2− k̃2 are known as the modified Bessel ODEs of order 0 and 1 respectively. Those special operators
are also invertible and discussed in Section 5.3. But first we will apply to eqs. (67) and (68), with
k > 0, well known spectral solvers and propose a slight modification, which allows us to use the here
presented technique to solve for the radial derivatives directly.

Notation. The application of a bounded differential operator ∂ ir/rj to an inverse operator L−1 will
be indicated by superscripts of the form L−1,(i)/r

j

, e.g. L−1,(2) := ∂2
rL
−1 and L−1,(0)/r := 1

rL
−1.

5.2. Chebyshev-Galerkin solver based on a modified Galerkin method

Let us start with the homogeneous Dirichlet problem eq. (68). In [57], the author introduced a
Chebyshev-Galerkin scheme for the homogeneous Helmholtz equation in a disc. As a matter of fact,
the operators in use are almost identical to ours and, therefore, we may apply his findings to our case.
A Galerkin scheme consists of a variational formulation of a given problem together with a suitable
test function space. A finite-dimensional sub-space of the latter, spanned by a complete, sometimes
orthogonal, set of basis functions, entails a discrete approximation of the solution to the problem. The

11

Lax-Milgram theorem ensures existence and uniqueness if continuity and coercivity conditions on the
variational form hold true. For a complete introduction on Galerkin schemes, we would like to refer
the reader to [58]. Here, we aim directly at a suitable formulation for Chebyshev polynomials.

Notation. The method described below is called Chebyshev-Galerkin (CG) method and abbreviated
by CGDir1 , where the super-/subscripts indicate the Dirichlet boundary condition and the used set of
basis functions (B1 from eq. (80))4. The Neumann case, which treats another operator, will be later
referred to as CGNeu.

Starting from eq. (68), the radial interval is expanded via the coordinate transformation r =

(t+ 1)/2, t ∈ I := [−1, 1] to give

y′′(t) +
1

t+ 1
y′(t)−

(
1

(t+ 1)2
+
k̃2

4

)
y(t) =

1

4
ĝk((t+ 1)/2), (74)

with y(t) := ŵk((t+ 1)/2), k ∈ [0,M/2] fixed, which we multiply by (t+ 1) to obtain

(t+ 1)y′′(t) + y′(t)︸ ︷︷ ︸
=((.+1)y′)′(t)

−

(
1

t+ 1
+
k̃2

4
(t+ 1)

)
y(t) = h(t), (75)

where h(t) = 1
4 (t+ 1)ĝk((t+ 1)/2), k̃ = (2πk)/L as in eq. (62), and y(0) = y(1) = 0. A suitable test

function space is Y0 := H1
0,ω(I), where the subscript ω indicates that the inner product in

H1
0 (I) := {θ ∈ H1(I) = W 1,2(I) | θ(−1) = θ(1) = 0 in the trace sense} (76)

is weighted by ω(t) = (1 − t2)−1/2, i.e. the Chebyshev weight from Section A. In the following let
v ∈ Y0, we apply the inner product (. , v)ω =

∫
I
. vω dt to both sides of eq. (75), execute an integration

by parts in the LHS and multiply by (−1) to obtain∫
I

(t+ 1)y′(t)(vω)′(t) dt+

∫
I

1

t+ 1
y(t)v(t)ω(t) dt+ k̃2

∫
I

1

4
(t+ 1)y(t)v(t)ω(t) dt

= −
∫
I

h(t)v(t)ω(t) dt .

(77)

The variational formulation to our problem eq. (75) now reads as follows: find y ∈ Y0, such that
eq. (77) holds for each v ∈ Y0. In defining

Y N0 := {p ∈ PN | p(−1) = p(1) = 0} ⊂ Y0, (78)

with PN being the polynomial space of maximal degree N ∈ N, we may state the Galerkin scheme
for our homogeneous Dirichlet problem eq. (75):{

find y = yN ∈ Y N0
s.t. eq. (77) holds ∀v = vN ∈ Y N0 ,

(79)

in other words, we look for an approximation of the solution y ∈ Y0 in the finite dimensional space
Y N0 . The advantage of the scheme in [57] (see also [58]) is that it uses special basis functions that
fulfill the boundary conditions exactly and allow additionally for simple structured solving matrices.
Those basis functions in the Dirichlet case are given by

Φl := Tl − Tl+2, l = 0, . . . , N − 2,

B1 := {Φ0, . . . , ΦN−2} .
(80)

The set B1 is a basis of Y N0 and (79) must, therefore, only hold for any v = Φ0, . . . , ΦN−2. Thus, we
seek a solution in the form

yN (t) =
∑N−2

l=0
alΦl(t), t ∈ I, (81)

4Other sets of basis functions are possible, e.g. B2 := {(1 − t2)Tl(t)}l=0,...,N−2, (see [35] for more details on this
choice).

12

which we insert into eq. (77) to find

N−2∑
l=0

al

(∫
I

(t+ 1)Φ′l(t)(Φiω)′(t) dt+

∫
I

1

t+ 1
Φl(t)Φi(t)ω(t) dt+ k̃2

∫
I

(t+ 1)

4
Φl(t)Φi(t)ω(t) dt

)

= −
∫
I

h(t)Φi(t)ω(t) dt = −
N∑
j=0

ĝkj

(∫
I

1

4
(t+ 1)Tj(t)Φi(t)ω(t) dt

)
,

(82)

for each i = 0, . . . , N − 2. In the last line we have inserted the Chebyshev approximation of g in
order to approximate the integral on the RHS. In fact, since we know the values of ĝk on the shifted
Chebyshev nodes, we have ĝk(r) =

∑N
j=0 ĝkjT

∗
j (r) and, therefore, ĝk((t+ 1)/2) =

∑N
j=0 ĝkjTj(t). To

complete the Galerkin scheme CGDir1 , we solve the following linear system of equations

(A+B − k̃2C) · (al)l = −D · (ĝkj)j , (83)

where the entries of the solving matrices (Λ = (Λi,l)) are given by

Ai,l =

∫ 1

−1
(t+ 1)Φ′l(t)(Φiω)′(t) dt,

Bi,l =

∫ 1

−1

1

t+ 1
Φl(t)Φi(t)ω(t) dt,

Ci,l =

∫ 1

−1

1

4
(t+ 1)Φl(t)Φi(t)ω(t) dt,

Di,j =

∫ 1

−1

1

4
(t+ 1)Tj(t)Φi(t)ω(t) dt,

(84)

for i, l = 0, . . . , N−2 and j = 0, . . . , N . The above integrals integrate exactly and have to be computed
only once. The entries of the first three matrices are stated in [57] and are not repeated here. The
entries of D, which are not stated in [57], read

Di,j =

(δi1 + 1)π/16, j = i− 1,

(δi0 + 1)π/8, j = i,

δi0π/16, j = i+ 1,

−π/8, j = i+ 2,

−π/16, j = i+ 3,

for i = 0, . . . , N − 2 and j = 0, . . . , N . The system (83) is solved for a solution in the form (81) and
transformed to the solution ŵNk of eq. (68) in form of a shifted Chebyshev series, namely

∑N
j=0 ŵkjT

∗
j ,

in using the variable transform t = 2r − 1, r ∈ [0, 1] and the coefficient transform

ŵkj = aj − aj−2, j = 0, . . . , N,

where we set a−2 = a−1 = aN−1 = aN = 0.
Let us come to the Poisson problem with Neumann boundary conditions (67). The approach is

identical to the Dirichlet case and, hence, abbreviated. The same procedure as before turns eq. (67)
into

((. + 1)z′)′(t)− k̃2

4
(t+ 1)z(t) = l(t), t ∈ I,

z′(−1) = z′(1) = 0,

(85)

with z(t) = ûk((t+1)/2) and l(t) = 1
4 (t+1)f̂k((t+1)/2), k ∈ [0,M/2] fixed. A variational formulation

of the latter reads∫
I

(t+ 1)z′(t)(vω)′(t) dt+ k̃2
∫
I

1

4
(t+ 1)z(t)v(t)ω(t) dt = −

∫
I

h(t)v(t)ω(t) dt, (86)

for v ∈ Y := {θ ∈ H1
ω(I) | ∂θ(−1) = ∂θ(1) = 0}. We look for an approximation zN , N ∈ N, of the

solution z in a finite dimensional polynomial subspace Y N := {p ∈ PN | p′(−1) = p′(1) = 0} ⊂ Y ,
that is spanned by the basis functions

Ψl := Tl − γlTl+2, l = 0, . . . , N − 2, (87)

13

where

γl =
l2

(2 + l)2
.

Inserting the basis functions together with the representations z(t) =
∑N−2
l=0 zlΨl(t) and f̂k((t+1)/2) =∑N

j=0 f̂kjTj(t) into eq. (86) entails the system of linear equations

(E + k̃2F) · (zl)l≤N−2 = G · (f̂kj)j≤N , (88)

with matrices E,F ∈ RN−2×N−2 and G ∈ RN−2×N , whose entries are defined by

Ei,l =

∫ 1

−1
(t+ 1)Ψ ′l (t)(Ψiω)′(t) dt,

Fi,l =

∫ 1

−1

1

4
(t+ 1)Ψl(t)Ψi(t)ω(t) dt,

Gi,l =

∫ 1

−1

(t+ 1)

4
Tj(t)Ψi(t)ω(t) dt .

Once eq. (88) is solved, we find the Chebyshev series representation of the approximated solution
ûNk =

∑N
j=0 ûkjT

∗
j in using the coefficient transform

ûkj = zj − γj−2zj−2, j = 0, . . . , N, (89)

with γj = 0 for j = −2,−1, N−1, N . It is rather tedious to find the exact values of the matrix entries,
yet they can also be computed via Chebyshev-Gauss integration. This quadrature rule is accurate for
polynomials with a maximal degree of 2n−1, where n is the number of nodes on which the integrands
are evaluated (see eq. (190) in Section A). As a matter of fact, the above expressions are weighted
integrals over polynomials (t + 1)TiTj = 1

2 (t + 1)(Ti+j + T|i−j|). Therefore, those polynomials are
of maximal degree i + j + 1 and, for the application of the Chebyshev-Gauss quadrature, it suffices
to evaluate the integrands on n = (i+ j)/2 + 1 Chebyshev nodes (i.e. on Chebyshev zeros). The
matrices have to be computed only once and to make sure that the values are correctly stored and
to minimize rounding errors, the matrices in the present implementation are computed in quadruple
precision and rounded to working precision. Also, the programming effort reduces to a minimum,
because this method can be applied to all the preceding matrices in this section. Moreover, once
computed for a high number of rows and columns, the matrices can be saved to disc in quadruple
precision and read in for an extraction of any inferior or equal (Chebyshev-)dimension.

A slight modification of the Chebyshev-Galerkin solvers is undertaken in order to solve directly
for the second vertical derivative of the periodic solution u = u(r, z), resp. w = w(r, z). By the help
of this modification, one may, subsequently, use the methods of inverted operators from further above
to solve directly for radial derivatives. Instead of solving for the modes ûk, the solution of eq. (67), we
will solve directly for the terms −k̃2ûk, which are the Fourier modes of the second vertical derivative
of u. This is readily achieved in dividing the solving matrix by −k̃2. More precisely, for the Neumann
problem we will solve, instead of eq. (88),

Q · (āl)l = G · (f̂kj)j≤N , (90)

where Q = −(E + k̃2F)/k̃2 and āl = −k̃2al. Note that only the solving matrix is modified and not
the RHS of eq. (67). Once we have solved eq. (90) for all k ∈ [0,M/2], the second vertical derivative
of u may be back-transformed to physical space and subtracted from the RHS function to entail

L1u
M (r, z) = fM (r, z)− ∂2

zu
M (r, z) =: f̄M (r, z) . (91)

The latter equation may be accurately solved for radial derivatives and divisions by means of the
methods L−1,(2)1 and L−1,(1)/r1 from before. Exactly the same procedure may be applied to the Dirichlet
boundary problem eq. (68) with the associated linear system eq. (88). One solves(

−k̃−2(A+B − k̃2C)
)
· (z̄l)l≤N−2 = −D · (ĝkj)j , (92)

14

Figure 1: Convergence and accuracy verification for the methods L−1,(2)
1 and L−1,(1)/r

1 with the test function
u1(r) = e1−cos(2πr)−1. The RHS function is analytically calculated as f1(r) = L1u1(r) and im-
plemented exactly, the relative errors are computed in the l2-norm on the fixed grid. The legend
references the graphs by the method that was used to obtain them. Here, the CGNeu method was
used to solve L1u1 = f1 for the solution itself, to which standard spectral differentiation and di-
vision methods (see Section A) were applied. Those spectral differentiation and division methods,
applied directly to the implemented function u1 (no solving is involved, u1 is directly projected into
the finite dimensional Chebyshev-Fourier space), are referenced with spec.

for z̄l = −k̃2zl, and obtains the radial divisions and derivatives via

L2w
M (r, z) = gM (r, z)− ∂2

zw
M (r, z) =: ḡM (r, z) . (93)

Note that the term k̃ = 2πk/L may become very large, especially for large grid sizes and small
lengths of periodicity L > 0, and it may quickly dominate eqs. (67) and (68). Therefore, a back-
transform of the second vertical derivative to physical space before subtraction from the RHS function
is recommended. As a matter of fact, the condition number of the solving matrix is not altered by
the division and, hence, the system is solved as accurately as for the solution itself.

Notation. The methods that divide the solving matrices by −k̃2 and, subsequently, apply the meth-
ods of inverted operators for the treatment of eqs. (91) and (93) will be referred to by CGDir,(1),
CGDir,(0)/r, CGNeu,(2) and CGNeu,(1)/r.

Figure 1 shows a comparison between the Chebyshev-Galerkin solver CGNeu from this section and
the method of inverted operators for L−11 in the particular case k̃ = 0. Of course, in this particular
case, there is no division by −k̃2 in the solving matrices.

As visualized in the referenced figure, the solving method for L−11 produces the needed expressions
close to machine precision. This implies for eq. (91) that one obtains the radial derivatives and division
by r close to the accuracy of the formerly found second vertical derivative, which is in principle as
accurate as the solution without the division by −k̃2, because of the unaltered condition number.

5.3. Bessel-Chebyshev solver based on exact solutions to truncated problems

Initially, set the focus on the homogeneous Neumann Problem (64). Here, we will state the exact
analytical solution for an approximated RHS and propose an algorithm that will give rise to a very
precise approximation to the discrete solution and its derivatives. Moreover, as we have the analytical
solutions at hand, we can get a formula for the second derivatives in a straight forward way and obtain
a precise approximation of the latter. The resulting algorithm for this method is of complexity O(N2)

for each (relevant) Fourier mode, but its precision is striking, and efficient parallelization of the code
assures the applicability of the method.

15

Let us depart directly from the Fourier truncated problem eq. (67), namely (L1− k̃2)ûk(r) = û′′k(r) +
1
r û
′
k(r)− k̃2ûk(r) = f̂k(r), û′k(0) = û′k(1) = 0, where k̃ = 2πk/L, k ∈ [0,M/2].

The case where k = 0, has been treated further above, so let us fix k > 0 in the following. If k > 0,
then eq. (67) is well known as the modified Bessel ODE of order 0. Its fundamental solutions are the
modified Bessel functions of order 0, namely I0(k̃ .) and K0(k̃ .).

Notation. In order to increase readability, for j = 0, 1, we will abbreviate

J [Ijh](k̃, r) :=

∫ r

0

tIj(k̃t)h(t)dt,

J [Kjh](k̃, r) :=

∫ r

0

tKj(k̃t)h(t)dt,

(94)

for a generic function h. If h = h(x) is a power function with exponent n, then we will write xn in
place of h, i.e. J [Ijx

n] and J [Kjx
n].

By an application of the method of variation of parameters (e.g. see [40]), under consideration of
the homogeneous boundary conditions, one obtains the complete analytical solution to problem (64)
as

ûk(r) = I0(k̃r) · J [K0f̂k](k̃, r)−K0(k̃r) · J [I0f̂k](k̃, r) + ckI0(k̃r) . (95)

The solution can be verified by a direct insertion into the differential equation. The exact first order
derivatives read

û′k(r) = k̃I1(k̃r)
(
J [K0f̂k](k̃, r) + ck

)
+ k̃K1(kr)J [I0f̂k](k̃, r) (96)

û′′k(r) =
1

2
k̃
(
− k̃(K0(k̃r) +K2(k̃r))J [I0f̂k](k̃, r) + k̃

(
I0(k̃r) + I2(k̃r)

) (
J [K0f̂k](k̃, r) + ck

)
+2rf̂k(r)

(
I0(k̃r)K1(k̃r) + I1(k̃r)K0(k̃r)

))
. (97)

Using eq. (96), one easily shows that

ck = −J [K0f̂k](k̃, 1) +
K1(k̃)

I1(k̃)
· J [I0f̂k](k̃, 1)

ensures the Neumann homogeneity. Subsequently, we approximate the Fourier mode f̂k by a truncated
shifted Chebyshev series,

f̂k(r) =

N∑
l=0

f̂klT
∗
l (r), (98)

and insert it into the precedingly found formulas. Since the expressions for the solution, and derivatives
thereof, are linear in f̂k, we may pull out the sum and conveniently write

ûk(r) =

N∑
l=0

f̂klN (0)(k̃, l, r), (99)

where
N (0)(k̃, l, r) := I0(k̃r) · J [K0T

∗
l](k̃, r)−K0(k̃r) · J [I0T

∗
l](k̃, r) + c∗kI0(k̃r), (100)

and

c∗k = −J [K0T
∗
l](k̃, 1) +

K1(k̃)

I1(k̃)
· J [I0T

∗
l](k̃, 1) .

Similarly, we find expressions for the derivatives, namely

û′k(r) =

N∑
l=0

f̂klN (1)(k̃, l, r), (101)

û′′k(r) =

N∑
l=0

f̂klN (2)(k̃, l, r), (102)

16

with

N (1)(k̃, l, r) := k̃
(
I1(k̃r) · J [K0T

∗
l](k̃, r)−K1(k̃r) · J [I0T

∗
l](k̃, r) + c∗kI1(k̃r)

)
, (103)

N (2)(k̃, l, r) :=
1

2
k̃
(
− k̃(K0(k̃r) +K2(k̃r))J [I0T

∗
l](k̃, r)

+ k̃
(
I0(k̃r) + I2(k̃r)

) (
J [K0T

∗
l](k̃, r) + c∗k

)
+ 2rT ∗l (r)

(
I0(k̃r)K1(k̃r) + I1(k̃r)K0(k̃r)

))
. (104)

To obtain the expression û′k(r)/r, eq. (103) and eq. (101) are directly divided by r. We extend the
definitions of the N (j) by the k = 0 terms in using the exact form of L−11 in eq. (71) (here in an
integrated form):

N (0)(0, l, r) := ln(r)

(∫ r

0

yT ∗l (y) dy

)
−
∫ r

0

yT ∗l (y) ln(y) dy

N (1)(0, l, r) :=

∫ r
0
yT ∗l (y) dy

r

N (2)(0, l, r) := T ∗l (r)−
∫ r
0
yT ∗l (y) dy

r2
.

For the first derivative divided by r we define furthermore

N (1)/r :=
1

r
N (1) . (105)

Hence, given a Chebyshev-Fourier approximation of the RHS of (64) in the domain [0, 1]× [0, L], with
modes f̂kl, the derivatives of the solution uMN = uMN (r, z) to the spectrally truncated Neumann
problem take the form

∂ jru
MN (r, z) =

M∑
|k|=0

N∑
l=0

f̂klN (j)(k̃, l, r) eik̃z, j = 0, 1, 2 . (106)

Equally, the first derivative divided by r is given by

1

r
∂ru

MN (r, z) =

M∑
|k|=0

N∑
l=0

f̂klN (1)/r(k̃, l, r) eik̃z . (107)

Notation. These particular methods of matrix-vector multiplications to obtain ∂2
ru
MN
k (r, z) and

∂ru
MN
k (r, z)/r will be referred to as the Bessel-Chebyshev (BC) method for the Neumann problem

and denoted by N (2) and N (1)/r respectively. Other expressions do not need to be computed in the
current implementation of the CLA.

Let us come to the Dirichlet problem (65), for which we proceed in the same manner as for the
Neumann problem before. We recall the truncated problem eq. (68), for all k ∈ [0,M/2]: (L2 −
k̃2)ŵk(r) = ŵ′′k(r) + 1

r ŵ
′
k(r) − (1

r2 + k̃2)ŵk(r) = ĝk(r), ŵk(0) = ŵk(1) = 0, where we further assume
that ĝk(r) is approximated by a truncated Chebyshev series

∑N
l=0 ĝklT

∗
l (r).

• For k = 0, the operator L2 = ∂r
(
1
r ∂r(r .)

)
integrates exactly, as already seen in eq. (72), to give

ŵ0(r) =

∫ r
0
t
(
c+

∫ t
0
ĝ0(x) dx

)
dt

r
=

N∑
l=0

ĝ0l

∫ r
0
t
(
cl +

∫ t
0
T ∗l (x) dx

)
dt

r

=:
N∑
l=0

ĝklD(0)(0, l, r),

∂rŵ0(r) =

N∑
l=0

ĝ0l

−∫ r0 t
(
cl +

∫ t
0
T ∗l (x) dx

)
dt

r2
+ cl +

∫ r

0

T ∗l (x) dx

 (108)

17

=:
N∑
l=0

ĝklD(1)(0, l, r),

∂2
rŵ0(r) =

N∑
l=0

ĝ0l
1

r

2
∫ r
0
t
(
cl +

∫ t
0
T ∗l (x) dx

)
dt

r2
− cl −

∫ r

0

T ∗l (x) dx

+ T ∗l (r)

=:
N∑
l=0

ĝklD(2)(0, l, r), (109)

where

c = −2

∫ 1

0

t

∫ t

0

ĝ0(x) dx dt and cl = −2

∫ 1

0

t

∫ t

0

T ∗l (x) dx dt .

• For k > 0, eq. (68) is the modified Bessel ODE of first kind, whose fundamental solutions are I1
and K1. The particular solutions to the homogeneous Dirichlet problem eq. (68) are, by the method
of variation of parameters,

ŵk(r) = I1(k̃r)
(
J [K1ĝk](k̃, r) + dk

)
−K1(k̃r)J [I1ĝk](k̃, r), (110)

with

dk = −J [K1ĝk](k̃, 1) +
K1(k̃)

I1(k̃)
· J [I1ĝk](k̃, 1)

to enforce homogeneity at r = 1. An insertion of the shifted Chebyshev representation of ĝk(r) and
subsequent simplifications, which exploit the linearity of the involved integrals, give

ŵk(r) =

N∑
l=0

ĝkl
(
I1(k̃r)

(
J [K1T

∗
l](k̃, r) + d∗k

)
−K1(k̃r)J [I1T

∗
l](k̃, r)

)
=:

N∑
l=0

ĝklD(0)(k̃, l, r), (111)

with

d∗k = −J [K1T
∗
l](k̃, 1) +

K1(k̃)

I1(k̃)
· J [I1T

∗
l](k̃, 1) .

The same procedure applied to the derivatives of the analytic solution produces

∂rŵk(r) =

N∑
l=0

ĝkl

(
k̃
2

(
(I0(k̃r) + I2(k̃r))

(
J [K1T

∗
l](k̃, r) + d∗k

)
+ (K0(k̃r) +K2(k̃r))J [I1T

∗
l](k̃, r)

))
=:

N∑
l=0

ĝklD(1)(k̃, l, r)

∂2
rŵk(r) =

N∑
l=0

ĝkl
k̃
4

[
− k̃(3K1(k̃r) +K3(k̃r))J [I1T

∗
l](k̃, r)

+ k̃(3I1(k̃r) + I3(k̃r))
(
J [K1T

∗
l](k̃, r) + d∗k

)
+ 2rT ∗l (r)

(
I1(k̃r)K0(k̃r) + I1(k̃r)K2(k̃r)

+ I0(k̃r)K1(k̃r) + I2(k̃r)K1(k̃r)
)]

=:
N∑
l=0

ĝklD(2)(k̃, l, r) .

To obtain the expression ŵk(r)/r, eq. (111) is directly divided by r, such that we may define

D(0)/r :=
1

r
D(0) . (112)

18

We have found the representations of the exact derivatives of the solution wMN = wMN (r, z) to the
spectrally discretized version of eq. (65) in the form

∂ jrw
MN (r, z) =

M∑
|k|=0

N∑
l=0

ĝklD(j)(k̃, l, r) eik̃z, j = 0, 1, 2, (113)

where D(0)/r replaces D(j) to obtain wMN (r, z)/r.

Notation. We will refer to the particular methods of matrix-vector multiplication to obtain ∂rwMN (r, z)

and wMN (r, z)/r as D(1) and D(0)/r respectively. We will refer to them as Bessel-Chebyshev (BC)
methods for the Dirichlet problem. Other expressions do not need to be computed in the current
implementation of the CLA.

Computation of the solving matrices Above we have stated the exact solutions and their deriva-
tives, eqs. (106) and (113), to the truncated problems eqs. (67) and (68) respectively. In order to calcu-
late them numerically, the exact values of the expressions N (.) and D(.) are needed, where (.) can be
any of (0), (1), (2), (1)/r and (0)/r as defined above. Given a discrete set of points {r0, . . . , rN} ⊂ [0, 1],
we aim at the computation of the 3-dimensional cubic matrices N (.) and D(.) with entries

N
(.)
kli := N (.)(2π

L k, l, ri),

D
(.)
kli := D(.)(2π

L k, l, ri),
(114)

for k = 0, . . . ,M/2 and l, i = 0, . . . , N , where M + 1 and N + 1 are the Fourier and Chebyshev dimen-
sions respectively. However, not all matrices have to be computed, if only a particular derivative is
needed. Also, inferior orders of differentiation may be obtained by integration of a higher derivative
if more orders are needed. The latter only works provided a supplementary function value in the
interval is known. For instance, one could integrate the second derivative of the Neumann solution
to obtain the first derivative, in knowing that the last must vanish at r = 0 to keep the operator L1

bounded. Once the matrices N (.), D(.) are computed, one may save them to the disc and reuse them
any number of times. We will see in the following that the numerical computation of the above entries
is by no means straightforward or low in complexity and a non-negligible effort has been employed
to obtain them. Therefore, the needed matrices have been computed for a moderately high number
of Chebyshev-Fourier modes on the nested grid {ri}0≤i≤N of the shifted Chebyshev-extrema. This
enables us to use the matrix for M/2 = N = 512 modes (5133 entries) to solve on all (2n + 1) × 2m

with n ≤ 9,m ≤ 10, physical Chebyshev-Fourier sub-grids of 513 × 1024 points. Note that the odd
numbers 2n + 1 have been chosen deliberately because the underlying fast Chebyshev transform on
the Chebyshev-extrema grid, namely the DCT-I in FFTW3, shows the best performance for these
numbers (see [23, 22] for details on the FFTW3).
The most involved part of the matrix computations is the evaluation of the integrals in (94). The
modified Bessel functions expose such extreme behavior at r = 0 and r = 1 that any standard
quadrature formula even in quadruple precision is insufficient to find accurate values. The functions
Kj , j = 0, 1, . . . possess (logarithmic) singularities at the pole r = 0 and Ij , j = 0, 1, . . . grow expo-
nentially for large arguments (k̃r). Also, these integrals need to be evaluated to a very large number
of digits, because the summands in the exact analytical solutions and their derivatives show violent
cancelations. To be sure to calculate all entries correctly to more than 36 digits, a precision of roughly
4
5
2π
L k digits is needed, being especially costly for small heights L or large k, but the cancellations do

dependent on the actual values of 2π
L k, l and r so that the working precision may be adapted. The

amount of needed computational power and time seems to be in no proportion to the seemingly stan-
dard goal of inverting a Calderon-Zygmund operator of order zero. For very accurate computations
of incompressible Euler flow, with a possible goal of detecting finite-time singularities, however, this
one-time effort might be appropriate.
Because of steep singularities at r = 0 and exponential growth at r = 1, the integrals in (94) are not
amenable to treatment by standard quadrature schemes and we will thus proceed in mathematical
theory, which will allow for a direct evaluation of the latter integrals in terms of Hypergeometrical
and Meijer-G functions.

19

Lemma 1. The following holds for k̃ = 2π
L k, n ∈ N0 and r ∈ [0, 1],

J [I0x
n](k̃, r) =

∫ r

0

I0(k̃t)tn+1dt

=
rn+2

1F2

(
n
2 + 1; 1, n2 + 2; k̃

2r2

4

)
n+ 2

, (115)

J [K0x
n](k̃, r) =

∫ r

0

K0(k̃t)tn+1dt

=
rn+2

(n+ 2)2

[
(n+ 2)K0(k̃r) 1F2

(
1;
n

2
+ 1,

n

2
+ 2;

k̃2r2

4

)

+ k̃rK1(k̃r) 1F2

(
1;
n

2
+ 2,

n

2
+ 2;

k̃2r2

4

)]
, (116)

J [I1x
n](k̃, r) =

∫ r

0

I1(k̃t)tn+1dt

=

[
tn+1

k̃
I0(k̃t)

]t=r
t=0

− (n+ 1)J [I0x
n](k̃, r) (117)

=
1

4
k̃rn+3 Γ

(
n+3
2

)
Γ (n+5

2)
1F2

(
n+ 3

2
; 2,

n+ 5

2
;
k̃2r2

4

)
, (118)

J [K1x
n](k̃, r) =

∫ r

0

K1(k̃t)tj+1dt

=
1

4
rn+2G2,1

1,3

(
k̃r

2
,

1

2
;

−n2
− 1

2 ,
1
2 ,−

n
2 − 1

)
(119)

(n>0)
=

[
− t

n+1

k̃
K0(k̃t)

]t=r
t=0

+ (n+ 1)J [K0x
n](k̃, r), (120)

J [K1x
0](k̃, r) =

πr(L0(kr)K1(kr) + L1(kr)K0(kr))

2k
, (121)

where 1F2 is a generalized hypergeometric function, G the Meijer-G function and L the Struve-L
function, see [50] for a comprehensive introduction to these special functions.

Proof. The identities eqs. (117) and (120) are obtained by partial integration. Equation (121) is
obtained from eq. (6.561-4) on page 676 in [37] by setting a = kr and a change of variables. Equa-
tions (115) and (118) are adapted from eq. (84) on page 198 in [2] again via a change of variables.
Equations (116) and (119) originate from eq. (6.592-2) on page 690 in [37] and references therein,
see also [49] page 365. These identities have additionally been verified by Mathematica’s symbolic
integration and via its arbitrary precision integration and evaluation for arbitrarily chosen values of
k, r and n.

We may now use the explicit polynomial expression (183) of a shifted Chebyshev polynomial
T ∗l (r) = Tl(2r − 1) =

∑l
j=0 aj,l r

j , where

aj,l =

{
1, l = 0, j = 0,
4j l(−1)l−j(j+l−1)!

(2j)!(l−j)! , l > 0, j = 0, . . . , l,

and find the explicit formulas for the integrals in (94) by inserting I0, I1,K0 and K1 into

J [. T ∗l](k̃, r) =

l∑
j=0

aj,lJ [. xj](k̃, r) . (122)

The cubic matrices N (.) and D(.) from eq. (114) can then be obtained as a sum of special functions
which are evaluated to a high enough precision. The working precision for these computations has to

20

Figure 2: Derivative of the approximated solution to eq. (64) divided by r and derivative of the approximated
solution to eq. (65) for L = 2π and L = 1/6. The analytic solutions are u(r, z) = w(r, z) =

u1(r) e
sin(2πz/L), with u1 as in Figure 1. The relative errors are computed with the l2-norm on the

fixed Chebyshev-Fourier grid.

be large enough to provide for the range of the cancellations. The evaluation of the involved special
functions is very costly and can only be achieved by modern arbitrary precision packages, which have
the needed functions implemented. An efficient parallelization is also mandatory for moderate to
high resolutions. To reduce the computational amount, eqs. (117) and (120) are implemented and
re-use the entries of J [I0x

n](k̃, r) and J [K0x
n](k̃, r), n ≥ 1. Currently, eq. (119) is implemented for

J [K0x
n](k̃, r), n = 0, but eq. (121) is faster and the involved Struve-L functions are easier to find as

components of arbitrary precision libraries. The Library that is used to compute the values of the
solving matrices N (.) and D(.) is ARBLIB [38]. This C library uses ball arithmetic and has a large
number of special functions implemented.

Figure 2 shows an example test and comparison of the methods CGNeu,(1)/r and N (1)/r, as well
as CGDir,(1)1 and D(1). The analytic test function is chosen to have several Chebyshev-Fourier modes
whose modulus are above machine epsilon, it is given in the caption of the figure. All the presented
solving methods prove to be stable and accurate for L = 2π. In this case the resulting relative errors
almost overlap. If L = 1/6, then the accuracy levels shift higher but the methods stay stable and

21

comparatively accurate. The blue-dotted curves in Figure 2, labeled by ’spec.’ are the result of
standard spectral projection of the solutions themselves with no solving involved, i.e. the relations
in eqs. (191) and (192) are applied to the Chebyshev modes directly. In this test scenario, the BC
methods N (.) and D(.) give the most accurate results, their relative errors stay close to machine
epsilon even for L = 1/6, where k̃ becomes large. In summary, both, the CG and BC methods are far
superior to the standard spectral methods for the derivative and division in the radial argument. For
further tests of the presented Poisson solving methods, we would like to refer the reader to [35].

Remark. By the virtue of Lemma 1, the presented methods for the computation of the analytical
solutions to truncated problems may also be applied to other polynomial basis functions. Instead of
Chebyshev polynomials, one may use Lagrange, Laguerre, Jacobi, or any other useful polynomials in
the approximation of the RHS function. Also, the choice of evaluation points may be deliberately
chosen and can differ from the grid points that are related to the basis functions. The CLA code
uses Chebyshev polynomials, mainly because of their connection to Fourier transforms, which are
computed by the FFT algorithm.

6. Flow fields along the trajectories and spatial interpolation

Once sufficiently many coefficients X(s) have been computed, a suitable time-step can be inserted into
the truncated time-Taylor series in order to approximate the new particle positions via

X(a, t) ∼=
S∑
s=0

X(s)(a) ts =

S∑
s=0

(
R(s)(r, z)er +A(s)(r, z)eα + Z(s)(r, z)ez

)
ts, (123)

where S ∈ N is the truncation order. Clearly, the cylindrical components of X are approximated by
their respective truncated time-Taylor series, e.g.

Xr(r, z, t) ∼=
S∑
s=0

R(s)(r, z) ts, R(0) = r, (124)

and Xα, Xz alike. Due to the assumed axisymmetry of the underlying flow, it is sufficient to compute
the time-Taylor coefficients for particles that lie initially on a slice of the cylinder D(1, L). The dis-
crete grid points on that slice, seen as distinct particles, disperse into the cylinder with time. Some
particles may also leave the region D(1, L) since the actual flow takes place in an infinite cylinder
along the vertical axis. The periodicity property allows us to re-map those leaving particles back
inside the modeled region. It is important to note, that, again, due to the axisymmetric, the angular
displacements of the particles from a chosen slice can be neglected and only the radial and vertical
movements of the particles are relevant. Therefore, a scattered two-dimensional interpolation has to
be executed to interpolate the flow fields, known only at the endpoints of the particle trajectories,
onto the regular Chebyshev-Fourier grid.

The velocity field along the trajectories is given by the characteristic equation ∂ tX(a, t) = v(X(a, t), t),
which reads in cylindrical coordinates

∂ t(R̃eR̃ + Z̃ez) = v(R̃, Θ̃, Z̃, t) = vr(R̃, Z̃, t1)eR̃ + vα(R̃, Z̃, t1)eΘ̃ + vz(R̃, Z̃, t1)ez . (125)

Here, we have used the representation of the characteristic map (18) in its local basis

X(r, α, z, t) = R̃(r, z, t)eR̃ + Z̃(r, z, t)ez (126)

where eR̃ = (cos Θ̃, sin Θ̃, 0) and eΘ̃ = (− sin Θ̃, cos Θ̃, 0) with

R̃ :=
√

(Xr)2 + (Xα)2, Θ̃ := A (Xα, Xr) + α, Z̃ := Xz, (127)

and A as in eq. (14). With these definitions we obtain the correspondences

vr(R̃, Z̃, t) = Ẋr cos (A (Xr, Xα)) + Ẋα sin (A (Xr, Xα)) , (128)

vα(R̃, Z̃, t) = −Ẋr sin (A (Xr, Xα)) + Ẋα cos (A (Xr, Xα)) , (129)

22

(a) Particles move onto the slice that contains the
Chebyshev-Fourier grid.

(b) Particle displacement on the (r, z)-
plane on a 5 × 4 grid. The upper row
of particles have been added by period-
icity.

Figure 3: The modelled slice of the cylindrical domain D(1, 2) with the underlying Chebyshev-Fourier grid
is shown. Only the radial and vertical movements of the particles are relevant. The top particle
positions in (b) are obtained by periodicity of the flow from those that correspond to the first
horizontal grid line.

vz(R̃, Z̃, t) = Ẋz. (130)

The vorticity ω(r, α, z, t) = ωr(r, z, t)er + ωα(r, z, t)eα + ωz(r, z, t)ez is interpolated in the same way
once it is obtained via the vorticity transport formula ω (X (a, t) , t) = DX(a, t) · ω0(a), which entails

ωr(R̃, Z̃, t) = cos(A (Xr, Xα))

(
−X

αωα0
r

+Xr
r ω

r
0 +Xr

zω
z
0

)
+ sin(A (Xr, Xα))

(
Xα
r ωr0 +Xα

z ω
z
0 +

Xrωα0
r

)
, (131)

ωα(R̃, Z̃, t) = − sin(A (Xr, Xα))

(
−X

αωα0
r

+Xr
r ω

r
0 +Xr

zω
z
0

)
+ cos(A (Xr, Xα))

(
Xα
r ωr0 +Xα

z ω
z
0 +

Xrωα0
r

)
, (132)

ωz(R̃, Z̃, t) = ωr0X
z
r + ωz0X

z
z . (133)

The displacement inside the cylinder and the relevant radial and vertical movements inside of the
slice in the cylinder are illustrated in Figure 3 (a). After a time-step insertion and the computation
of the components Xr, Xα and Xz, we seek to interpolate the components of the flow fields from the
scattered Lagrangian points (R̃(ri, zj , t1), Z̃(ri, zj , t1))i,j back onto the fixed grid (ri, zj)i,j . Clearly,
the difficulty here lies in the fact that one has to interpolate from an irregular grid onto a regular
grid. Furthermore, particles may leave the convex hull of the Chebyshev-Fourier grid points in vertical
direction or show a contraction, such that there are grid points that do not lie in the convex hull of
the scattered particles. In the latter case one could perform an extrapolation, but it is better to use
the periodicity of the flow and simply include more particles from above and below the first and last
horizontal grid lines as visualized in Figure 3 (b) .

Several methods for the needed two-dimensional scattered interpolations have been tested, such as
radial basis functions, fitting of bi-cubic splines, as well as Delaunay tesselation with subsequent linear

23

barycentric interpolation. However, we found that the best results by far are achieved with the cascade
interpolation [53]. This method was developed explicitly for the setting of Lagrangian displacements
in a fluid flow and reduces the two-dimensional problem to a sequence of one-dimensional problems.
Those one-dimensional problems may then be tackled by any other (scattered) interpolation method,
e.g. Lagrange or B-spline interpolations, which are both implemented. We refer to [53, 51, 35] for
details on the cascade interpolation.

For brevity, we recall the Lagrange polynomial interpolation here and refer the reader to [15] for a
an introduction to B-splines and the involved interpolation schemes. For a number n ∈ N of strictly
increasing sites x0 < x1 < . . . < xn−1, the Lagrange basis polynomials of order n (and degree n− 1)
are defined by

Il(x) :=
∏

0≤i≤n−1
i6=l

x− xi
xl − xi

, l = 0, . . . , n− 1 . (134)

A function y, with function values y(x0), . . . , y(xn−1), may be interpolated by a Lagrange polynomial
as

y(x) ∼=
n−1∑
l=0

y(xl)Il(x) . (135)

The fact that this method does not involve a linear system, which needs to be solved, makes it very
fast, and numerous implementations can be found in public libraries5. In the implemented Lagrange
routine, the sites are chosen such that the interpolation point is in their center, if possible, i.e. a
centered Lagrange polynomial is computed with the same amount of sites to one side as to the other
side of the interpolation point. In vertical direction, this can always be fulfilled, because of the
periodicity of the interpolated functions. In radial direction, especially close to the boundary or pole,
a periodicity, or parity with respect to the interval end points, is not known and, thus, no valid
extension outside of the interval [0, 1] can be constructed. In this case, the interpolation polynomial
is still constructed as above with sites that lie closest to the boundary or pole. In this scenario, the
Chebyshev extrema (also their zeros) are well known to reduce the Runge phenomenon [9, 15], such
that the Lagrange interpolation is stable even if an un-centered site distribution is used.

In the B-spline interpolation, one has to solve for the coefficients αi in

n−1∑
i=0

αiNi,p−1(xj) = y(xj), (136)

where Ni,p−1 are the B-splines of order p (and degree p − 1) based on n + p non-decreasing knots
uj , j = 0, . . . , n+p−1. The xj are the strictly increasing interpolation points from before. A B-spline
interpolation module, which is based on routines from [15], is publicly available on Github6. Parts
of this module were extracted and included in the CLA code after an adaptation to our needs. In
these routines, the n+ p+ 1 knots ui of the B-splines from above are distributed in the interpolation
interval, such that 2p knots are placed on the interval endpoints, p on each end point, and the rest is
placed on the data points starting from xp/2, if p is even, and in between the data sites, if p is odd,
starting after x(p−1)/2. See [15] for more information on knot placing.

7. Time-Stepping

A central question to the CLA is how to obtain the radius of convergence of eq. (3) that limits the
possible time-step in an accurate way, or, if that’s not possible, how to choose an appropriate time-
step. Unfortunately, there is currently no explicit formula for the convergence radius available. Thus,
the choice of the time-step becomes a challenging aspect of this algorithm. In principle, it would be
possible to obtain an explicit formula for the convergence radius from the constructive proof in [7].
However, the estimates that are used in [7] involve constants that originate from Schauder estimates
of the Newton potentials. Those constants are in general hard to compute and slight variations in

5e.g. https://people.sc.fsu.edu/~jburkardt/f_src/lagrange_interp_1d/lagrange_interp_1d.html
6The author of this module is Jacob Williams, it can be obtained from https://github.com/jacobwilliams/

bspline-fortran/blob/master/src/bspline_sub_module.f90.

24

https://people.sc.fsu.edu/~jburkardt/f_src/lagrange_interp_1d/lagrange_interp_1d.html
https://github.com/jacobwilliams/bspline-fortran/blob/master/src/bspline_sub_module.f90
https://github.com/jacobwilliams/bspline-fortran/blob/master/src/bspline_sub_module.f90

Figure 4: Approximation of the limit in eq. (139) in the l∞-norm on the underlying gird. The curves overlap
to at least s = 30, from which a possible limit at around 0.4 can be inferred. The sudden drop in
values indicates that the working precision is insufficient to accurately represent the time-Taylor
coefficients.

their determined value might have a strong influence on the value of the later computed radius of
convergence. As a result, in the space C1,α, α > 0, the convergence radius %α > 0 for (3) can be
bound by

%α ≥
C

‖ω0‖α
, (137)

where C = C(Ω,α) is a positive constant that depends only on the geometry of the domain Ω and
‖ . ‖α denotes the Hölder norm.

Classically, there are other ways to approximate the radius of convergence, e.g. via the Cauchy-
Hadamard formula

1

%
= lim sup

s→∞
‖X(s)‖ 1

s , (138)

or via the ratio rule

% = lim
s→∞

∥∥X(s−1)
∥∥∥∥X(s)
∥∥ , (139)

if the limit exists. The norms in the above expressions can be those of C1,α, but also of Hs, s > 5/2

or simply of an Lp space, in short, from any space where the convergence needs to be established.
The Cauchy-Hadamard formula eq. (138) is less useful in numerical computations, because of the
strong growth of the coefficients X(s) and the difficulty that arises when computing the root of large
orders s. A straight forward attempt to use the ratio rule can be made in computing a large number
S of time-Taylor coefficients and use extrapolation techniques to approximate the limits in eq. (138)
or (139). This method is emphasized here for a stationary flow from [43]. The regarded stationary
vorticity in the periodic cylinder D(1, 2π) reads

ωr(r, z) =
√
c21 + 1 sin(z)J1 (rc1) ,

ωα(r, z) =
(
c21 + 1

)
cos(z)J1 (rc1) ,

ωz(r, z) = c1

√
c21 + 1 cos(z)J0 (rc1) ,

where r ∈ [0, 1], z ∈ [0, 2π] and c1 is the first positive root of the Bessel function J1. The coefficients
X(s), 0 ≤ s ≤ 100 for this flow have been computed via the recursion relations stated in Section 3.
Figure 4 shows an application of the ratio rule, which seems to suggest a bound of the convergence
radius in L∞ around 0.4. At this point, we would like to remind the reader that a time-step below an
approximated radius of convergence stays valid regardless of the underlying resolution, because this

25

radius is independent of resolution. These computations are, however, not very practical, because
many coefficients need to be computed accurately, which slows down the CLA.
Here we would like to present a different approach, which is based on a self-adapting time-stepping
scheme. In this method, the convergence radius is not computed in the running program, but only
once in the beginning to give a valid initial time-step. More precisely, let the truncated time-Taylor
series of X(s), evaluated at t1, be abbreviated by

bs(t1) =

s∑
s̃=0

X(s̃)ts̃1 (140)

and define

F (s, t1) :=
‖b′s−1(t1)− b′s(t1)‖∞
‖b′s−1(t1)‖∞

(141)

where b′s denotes the temporal derivative of bs. Then after each time-step insertion the following
property is checked:

εm > F (S − 1, t1) > F (S, t1), (142)

where εm is machine epsilon, i.e. ∼ 10−16 in double precision computations. In case this property
is not fulfilled by a certain time-step t1, then this time-step may be adapted accordingly. Condition
(142) is meant to assure that additional terms of order higher than the truncation order S would not
alter the result of the truncated time-Taylor sum in the working precision. Surely this approach is
only valid, if the coefficients show a point-wise monotone growth, which must be checked before hand,
i.e. by computing a larger number of coefficients in certain iteration intervals. In fact, this method also
accounts for alternating signs in the entries of X(s)(a), which is internally given by a two dimensional
array. The derivative b′s is used in definition eq. (141), because it represents the approximation of the
velocity field by the characteristic equation, and it implies that the same property (eq. (142)) holds
with bs instead of b′s in the definition of F (s, t1).
The method adjusts a suitable and initially fixed time-step at the event of an insufficient number of
coefficients. But it can also be used to implement a fully adaptive time-stepping scheme. In this
scenario, with a fixed truncation order S, a time-step is set to fulfil

F (S, t1) ∼= εm . (143)

This can be achieved by slowly reducing an initial value of t1 until eq. (143) is met. In this scenario,
higher numbers of S imply a larger time-step due to the growth behavior of the coefficients: It holds∥∥X(s)

∥∥
∞ < cst./%s for s large enough, where % is the minimal radius of point-wise convergence. The

time-step is chosen such that the time-Taylor sum and its first temporal derivative, truncated to S
coefficients, is not altered by the last terms. This implies a bound on the last term in the Taylor sum
of the form |X(S)|tS < ε, for some ε > 0. Thus, the bound from before allows choosing t closer to %
for larger S.

8. Conserved quantities and testing of the implementation

This section is intended to recall the de facto standard methods for validating numerical simulations
of the (axisymmetric) incompressible Euler equations and adds original methods for the CLA. To
date, there is no reliable method to verify the validity of a non-stationary incompressible Euler flow.
There are, however, many propositions to approach this problem. A non-exhaustive list of numerical
validation techniques can be found in [45]. The most prominent conserved quantities to watch in an
incompressible Euler simulation are the total kinetic energy7 (E) the total helicity (H), as well as
the total angular momentum (I1) and total angular helicity (H1). They are given respectively by the
following expressions

E =
1

2

∫ 1

0

∫ L

0

((vr)2 + (vα)2 + (vz)2)r drdz (144)

H =

∫ 1

0

∫ L

0

(vrωr + vαωα + vzωz)r drdz (145)

7In the sequel of this article we shall refer to this quantity as the total energy, or simply energy.

26

Figure 5: Plot of the function F defined in (142) for different time-steps. The recursion mechanism may
be stopped, when the values of F drop below machine epsilon εm, here in double precision and
indicated by a dotted line in the plot. All higher order terms X(s) after the criterion has been
met give the same summation result in the time-Taylor series in the working precision. A break
in the linear behavior of F indicates the depletion of the number range in double precision in the
coefficients X(s).

I1 =

∫ 1

0

∫ L

0

vαr2 drdz (146)

H1 =

∫ 1

0

∫ L

0

vαωαr drdz . (147)

If the velocity field v solves the incompressible Euler equations and ω is the corresponding vorticity
field, then the above quantities are conserved for all times. The converse is clearly not true. The check
for this conservation can, therefore, only serve as a control mechanism to verify that the computed
solution is not too far from the actual solution. Furthermore, the conservation of such quantities
should not be trusted too much. Indeed, tests with stationary solutions show that the relative energy
loss does not correlate well to the actual relative errors in the flow fields, which could give a false
impression on the validity of the computation.

In the literature, the majority of Euler flow simulations are carried out on an Eulerian grid.
The Lagrangian viewpoint allows in return to carry out additional quality measurements regarding
an implementation. Note, however, that since we discuss a semi-Lagrangian algorithm, we only
have access to a set of characteristics departing from a fixed grid within one time-step. This set of
characteristics is different from one time-step to another. The following validation criteria are thus only
applicable within one time-step and not with respect to the initial state (as it would be in a purely
Lagrangian scheme without interpolation). One of those criteria is the movement of the boundary
particles. Theoretically, they stay on the boundary, but numerically, an error in the distance to the
boundary after every iteration can be measured. In our cylindrical domain, this is easily achieved in
computing

max
z∈[0,L]

|1−
√
R(1, z, t1)2 +A(1, z, t1)2|, (148)

where t1 is a time-step. In the aftermath, this error is usually very close to the error in the energy
conservation, even though the current implementation of the CLA resets by default the boundary
value to 1 after every iteration.

Unique to the implemented Cauchy-Lagrange formalism is also the possibility to verify directly
the Cauchy invariants equation (CIE), eq. (5), together with the incompressibility condition eq. (6)
after every time-step insertion. Instead of checking only some necessary conditions for a solution, this

27

method verifies directly the CIE and thus, the Euler equations. On the contrary, in a purely Eulerian
setting, the verification of the Euler equations appears to be tricky and impractical. Note that the
initial vorticity in eq. (5) is replaced with the current vorticity after the time-step on the grid, hence,
the CIE is not verified with the initial vorticity at t = 0, but with that at time tn−1, as mentioned
before.

Another conserved quantity is the circulation about a closed material curve C that moves with
the fluid ([42, 4]). Kelvin’s circulation theorem states that

∂ tΓ (t) = 0, (149)

with

Γ (t) =

∫
X(C,t)

v(x, t) · dσ(x) =

∫ 1

0

v(X(C(s), t), t) · ∂sX(C(s), t) ds, (150)

if C is parametrized by s ∈ [0, 1], such that C(0) = C(1). Differently formulated, the quantity∫
C

v(a, t) · dσ(a) (151)

is constant under the material derivative Dt = ∂ t + (v · ∇). Numerically, this conservation is difficult
to verify for arbitrary closed curves, but is in principle possible with spectral representations and the
ability to evaluate them anywhere in the covered domain. An Evaluation of a non-trivial closed curve
in the cylindrical domain D(1, L) would need to be done very thoroughly in order to let the integral
converge accurately to its conserved value. A considerable numerical complexity and large errors seem
to be implied, which practically rules out this circulation method for general curves in ambitious Euler
flow simulations, i.e. with the purpose of finding finite time singularities. In return, for simple circular
curves around the axis, this task is readily feasible. Such a curve is of the form

r̄er + z̄ez, for fixed r̄ ∈ [0, 1], z̄ ∈ [0, L], (152)

and is parametrized by α ∈ [0, 2π]. With the notation of eq. (126), Γ in cylindrical coordinates takes
the form ∫ 2π

0

v(R̃, Θ̃, Z̃, t) · ∂α(R̃eR̃ + Z̃ez) dα =

∫ 2π

0

v(R̃, Θ̃, Z̃, t) · R̃eΘ̃dα (153)

=

∫ 2π

0

(
vr(R̃, Z̃, t)eR̃ + vα(R̃, Z̃, t)eΘ̃ + vz(R̃, Z̃, t)ez

)
· R̃eΘ̃ dα

= 2πR̃ vα(R̃, Z̃, t) . (154)

Kelvins circulation theorem tells us that Equation (154) stays constant, which can be easily verified
in every time iteration via

‖rvα(r, z, ti)− R̃(r, z, ti+1)vα(R̃(r, z, ti+1), Z̃(r, z, ti+1), ti+1)‖l2(D#)

‖rvα(r, z, ti)‖l2(D#)

, (155)

where ti is the time after i iterations and D# the underlying grid. This verification method is quite
simple, low in numerical complexity and implemented in the CLA code. Note that in eq. (155) one
cannot use the initial velocity vα0 = vα0 (r, z, 0), because, in the CLA implementation, R̃(r, z, ti+1) is
the spatial displacement with respect to the underlying grid within one time-step and not within the
whole integration period [0, ti+1]. In order to compare to the initial velocity vα0 , one would need to
track the particle positions (R̃(r, z, t), Z̃(r, z, t)) from t = 0 to the time where the conservation of
eq. (155) is checked.

9. Testing of the CLA

9.1. Tests on Stationary Solutions

The stationary velocity field, which is the principal test flow for the CLA and taken from [43], reads
component-wise

vr(r, z) = κJ1(cjr) sin(κz),

28

vα(r, z) =
√

(cj + κ2)J1(cjr) cos(κz), (156)

vz(r, z) = cjJ0(cjr) cos(κz) .

The Jk denote the k-th order Bessel functions of first kind, cj is the j-th positive root of J1, and
κ can be any natural number. In taking the cylindrical curl of the velocity field, one obtains the
corresponding vorticity components, namely

ωr(r, z) = κ
√
c2j + κ2J1 (rcj) sin(κz),

ωα(r, z) =
(
c2j + κ2

)
J1 (rcj) cos(κz), (157)

ωz(r, z) = cj

√
c2j + κ2J0 (rcj) cos(κz) .

See Figure 6 for an illustration of this initial vorticity field with two different values of κ and roots cj .
One of the advantages of knowing such stationary solutions, is the fact that we are able to compute
analytically the time-Taylor coefficients to some order. The details on this method are stated in
Section B.
In the following, if not stated otherwise, then the relative errors in vector-fields are computed on the
underlying Chebyshev-Fourier grid D# in the l2-norm. More precisely, for a two-dimensional array g,
which is approximated by g̃, we compute

‖g − g̃‖l2(D#)

‖g‖l2(D#)

. (158)

The l2-norm returns a scalar with the square root of the sum of all elements squared, and if g equals
zero, then only the difference g−g̃ is measured with the given norm (absolute error). The relative error
in vector fields with higher dimensions is defined as the maximum over the l2-relative errors in all the
(cylindrical) components. Figure 7 shows the relative errors in the first nine time-Taylor coefficients of
X, belonging to the stationary flow from above, and computed via the recursion mechanism stated in
Sections 3 and 4. The figure shows that the coefficients are very accurately computed for sufficiently
large grid sizes. The effect of the resolution becomes further apparent in Figure 8, where the relative
errors in the analytically known velocity field is visualized. Even low resolutions deliver good results
due to the approximation qualities of the Chebyshev-Fourier basis.
From our investigations in Section 7 (and in particular Figure 4) we assume a valid time-step for
the given stationary flow below 0.4. It was further analyzed in Figure 5 that a time-step should lie
even below 0.1 to assure accuracy in a double precision computation. For a larger time-step there
would be many more coefficients needed, but the Real64 number format in the arrays is ultimately
not able to contain large order coefficients X(s), as their norms grow steeply with the order s. This

ωr(r,z)

ωz(r,z)

Figure 6: Stationary flow components. Left: radial and vertical vorticity for κ = 1 and with c1 (first root).
Right: same as left with κ = 5 and c5(fifth root).

29

Figure 7: Relative errors (as defined in (158)) in the computed coefficients X(1), . . . , X(9), which belong to
the flow in eq. (156) with κ = 1 and c1. The Poisson problems were solved in double precision
via the Chebyshev-Galerkin solver (left) and in quadruple precision via the Bessel-Chebyshev solver
(right). The true coefficients were obtained via symbolic differentiation inside a computer algebra
system by the method described in Section B.

Figure 8: A visualization of relative errors in the velocity (left) and vorticity (right) fields due to different
resolutions. The fixed run-time parameters are: S = 25, time-step 0.05, 5-th order B-spline cascade
interpolation.

limitation can be observed in Figure 5 as a sudden drop of values in the ratio formula. See in particular
the relation between the critical orders and the employed working precision in Figure 5. Therefore,
we have tested the time-steps 0.1, 0.05 and 0.02 for a truncation order S = 25. The time-step is
maintained as long as eq. (142) is satisfied. If the errors in the computation grow such that eq. (142)
is not verified anymore, then the time-step is halved. The results are illustrated in the left panel of
Figure 9. We clearly see that larger time-steps yield better results, which is a common property of
semi-Lagrangian schemes and stems from the fact that fewer interpolations are carried out to arrive
to a certain point of time. In the right panel of Figure 9 we show the dependence of the relative
errors in the velocity field to the order of B-spline functions inside the cascade interpolation. Lower
to moderate orders produce the best relative errors over the majority of the integration time span,
also if Lagrange interpolation is used instead of B-spline interpolation. This can be explained by the
amplification of errors, namely that high order B-splines, or polynomials in the Lagrange interpolation,
amplify rounding and approximation errors.
Stationary solutions are good candidates for testing the CLA, because one can directly compare the
true relative error in the flow fields to other validation criteria, for instance, those that were discussed
in Section 8. If a good agreement between the relative error in a flow field and a relative change in

30

Figure 9: The effect of different time-steps (left) and orders in the B-Spline cascade interpolation (right).
Larger time-steps and lower interpolation orders yield the best results. The run-time parameters
are as in Figure 8.

Figure 10: Test flow and standard conserved quantities, computed on 513× 1024 points, with S = 40, time-
step 4t = 0.1, Chebyshev-Galerkin solver and 5th order B-spline cascade interpolation.

a conserved quantity is found, then this correlation might help to assert the quality of a simulation
once the flow fields are not known analytically, i.e. for non-stationary flows. In Figure 10, we observe
that the relative changes in most of the classical conserved quantities provide poor correlations to the
actual relative errors in the flow fields. Only the total angular momentum (or first-order Casimir)
aligns roughly with the error in the velocity field. A better alignment is found in the preservation
of Kelvin circulation along perfect circles in planes perpendicular to the vertical axis, see Figure 11.
Other validation criteria that are particular to the CLA, such as the movement of the boundary
particles, the Cauchy-invariants formula (CIF), or the incompressibility condition, do neither show
good indications of the validity of a simulation. The limiting factor here is that those expressions are
checked only within one time-step and not in the whole integration period. The initial vorticity is
replaced by that of the proceeding time-step before a new recursion cycle starts. To verify the CIF
with the initial vorticity, one would also need to know the characteristics since the starting time and
the derivatives thereof. Such verification is not yet implemented in the current CLA code.

31

Figure 11: Test flow and conserved quantities that are particular to the CLA; same run-time parameters as
in Figure 10.

9.2. Tests on a non-stationary flow without swirl

Another possibility to further test the CLA is given by swirl-free flows, whose angular component stays
exactly zero at all times. As the here discussed swirl-free flows are non-stationary, one cannot directly
measure a relative error in the flow fields, but fortunately they are better understood compared to
general three-dimensional flows. For instance, it is shown in [59] that the axisymmetric Euler equations
in a (wall-bounded) cylindrical domain Ω are well-posed globally in time for swirl-free initial data in
Hs(Ω) for s ≥ 3. It is shown furthermore that s > 5/2 is sufficient in case Ω = R3. See also [61, 54,
59, 46] for connected results in R3 with s > 7/2. Moreover, we can verify numerically, next to the
fact that the angular component stays zero at all times, that the pseudo-vorticity ωα/r stays constant
along the trajectories and verifies a maximum principle (see e.g. [46]). More precisely, in the notation
of eq. (126), we have

ωα(R̃(r, z, t), Z̃(r, z, t), t)

R̃(r, z, t)
=
ωα(r, z, 0)

r
. (159)

In order to verify these facts, we simulate a swirl- and divergence-free flow with initial components

vr0(r, z) =
2π

L
(1− r)nra+2 cos (2πz/L) ,

vα0 (r, z) = 0,

vz0(r, z) = −(1− r)n−1ra+1 sin (2πz/L) (a− r(a+ n+ 3) + 3),

where a ≥ 1 and n ∈ N. As ω = ∇ × v, and in using eq. (16), the radial and vertical component of
the vorticity field vanish identically and the initial angular vorticity component reads

ωα0 (r, z) =
1

L2
(1− r)n−2ra sin (2πz/L)

(
L2((a+ 1)(a+ 3) + r2(a+ n+ 1)(a+ n+ 3)

− r(2a2 + 2a(n+ 4) + 5n+ 6))− 4π2(r − 1)2r2
)
.

As a matter of fact, there holds

vα(r, z, t) = ωr(r, z, t) = ωz(r, z, t) = 0 (160)

for all times t. These identities are exactly preserved by our implementation of the CLA, which is
visualized exemplary in Figure 12, right panel. Therefore, all the conserved quantities which only
depend on those components, such as Kelvin circulation etc., stay exactly zero in the computation.
Also, the helicity evaluates exactly to zero, since for its computation vrωr + vαωα + vzωz = 0 is
integrated over the (r, z)-plane. As for the stationary solution in Section 9.1, the results for the swirl-
free flow depend on resolution, the interpolation order, and the chosen time-step. Higher resolutions,

32

Figure 12: Test results for the given swirl-free flow with a = 1 and n = 2, and run-time parameters: S = 20,
4t = 0.1, Chebyshev-Galerkin solver, 5th order B-spline cascade interpolation, no dealiasing,
on a 513 × 1024 Chebyshev-Fourier grid. Left: kinetic energy conservation and movement of
the boundary particles in radial direction, all the conserved quantities, which are not plotted
here, stayed identically zero in the simulation; Right: verification of the min/max principle for
ωα/r |r 6=0, and verification of eq. (160).

lower to moderate interpolation orders, and larger time-steps increase the integration period until a
critical energy loss occurs. The time-step 4t = 0.1 was maintained over the whole simulation and the
run was stopped, when energy conservation exceeded 10−6. The total kinetic energy, in Figure 12 left
panel, seems to be well preserved until t = 1.5. However, we know from the tests with the stationary
solution (see Figure 10 in particular), that the actual error in the flow fields can behave differently
to the error in the energy conservation. The min/max principle, in Figure 12 right panel, is well
demonstrated too, even though a final shift in the min/max values on the fixed grid of around 10−5

is observed. This shift, however, might simply stem from the fact that the real extrema do not lie
on the grid and move towards, or away from the closest grid points. Higher resolutions yield better
results also with respect to this point, although very large resolutions imply other inaccuracies, such
as accumulating rounding errors.

10. Application to a potentially singular flow

In [45], the authors compute an axisymmetric and incompressible Euler Flow in the lower quarter of
the cylindric region D(1, 1/6), and claim a finite time singularity of the maximal vorticity modulus
for the initial swirl-only velocity field with vr0 = vz0 = 0 and

vα0 (r, z) = 100 r e−30(1−r
2)4 sin(2πz/L), L = 1/6 . (161)

A 3×108-fold increase of the quantity ‖ω‖L∞ is reported in [45], where the maximum of |ω| is attained
on the boundary ∂D(1, 1/6) (at r = 1) and more precisely, on the symmetry axis at z = 0. Their
investigations depart from a totally different formulation of the incompressible Euler equations than
that in the CLA. In using a transform of the stream-vorticity formulation of the incompressible Euler
equations, one obtains

v1,t + vrv1,r + vzv1,z = 2v1ψ1,z, (162)
ω1,t + vrω1,r + vzω1,z = (v21)z, (163)

−
[
∂2
r + (3/r)∂r + ∂z

]
ψ1 = ω1, (164)

with
v1 = vα/r, ω1 = ωα/r, ψ1 = ψα/r, (165)

33

where ψα is the angular component of the vector stream function, satisfying −∆ψ = ω = ∇× v. The
sub-scripts, different from 1, indicate partial derivatives as usual. See [45, 46] for further details on
the construction of the above formulation. The radial and vertical components of the velocity field
are then given by

vr = rψ1,z, vz = 2ψ1 + rψ1,r. (166)

The Euler equations in this form are numerically convenient, because they avoid divisions by the
radial argument r. Note that the CLA obtains the terms A1 and R1 in eqs. (53) and (59) also without
divisions by r in its effective implementation.

In [45], eq. (164) is solved via a 6th order B-Spline based Galerkin solver, and a 4th order Runge-
Kutta time-stepping scheme is subsequently applied to eqs. (162) and (163); the appearing derivatives
are obtained by a 6th order centered difference formula. However, the most important part of their
method is an adaptive moving mesh, which keeps shifting grid points into the region with peak
vorticity values. In [45], this adaptive mesh allows to reach an effective maximal resolution of around
(1012)2 per unit square near the location of the potential singularity. Another important facet of their
implementation is the use of the preserved symmetry properties of the initial velocity field, which
allows to only model the flow in the quarter cylinder D(1, L/4) and start with a much higher point
density. The CLA has not yet been adapted to exploit those flow symmetries, it always computes the
flow in the full cylindrical domain D(1, L), here with L = 1/6. This can be seen as a draw-back of our
current implementation because a much higher grid size has to be employed to obtain similar initial
local resolutions. However, even with this drawback, the computational results are convincing, which
highlights the potential of the CLA as a whole.

As in Section 9, we will investigate different parameter settings to show their influence on the
outcome of a simulation. In all the presented runs, the computations were aborted if the time-step
dropped below 5× 10−8. The time-step is halved, whenever the precision criterion in eq. (142) is not
fulfilled at the truncation order S, i.e. if F (S,4t) > εm for a time-step 4t. This halving takes place
until criterion (142) is matched or the code aborted due to insufficient energy or helicity conservation8.
The results here are mainly measured by means of the conservation of helicity, energy, and Kelvin
circulation. Energy and helicity have not proven to be particularly good indicators for correctness, at
least for the stationary solution examined in Section 9.1, but they are very common in computational
fluid dynamics, and in using them, the results become more comparable to other numerical methods.
However, if the limit of 10−5 in relative energy or absolute9 helicity change is reached, then the solution
is likely to be inaccurate. Fortunately, some maximal vorticity values ‖ω‖∞ at specific time instances
are stated in [45] and are, therefore, directly comparable. The list of those maximal values is given
in Table 1 and is appended by an additional value taken from [1]. The author of [1] has repeated

Table 1: The approximate maximal vorticity values in this table are taken from [45] and [1]. They will serve
as orientation points for our simulations and are marked as black crossed in the maximal vorticity
plots. At least three algorithms [45, 1, 41] have good agreement on the value at t = 3.1 · 10−3.

time 0.0 3.0 · 10−3 3.1 · 10−3 3.4 · 10−3 3.5 · 10−3 3.505 · 10−3

‖ω‖∞ 3.76999 · 103 9.0847 · 104 1.54276901 · 105 4.3127 · 106 5.8413 · 109 1.2401 · 1012

the simulation of the same equations as in [45], i.e. system (162)-(164), with a spectral Chebyshev-
Fourier solver on a fixed grid with 769 radial and 2048 vertical points and a Runge-Kutta time-stepping
scheme (for eqs. (162) and (163)). It is important to note that [1] also models the equations on the
quarter cylinder D(1, L/4). It is further stated in [1] that one additional maximal vorticity value was
communicated by one of the authors of [45]. This additional value at t = 0.0031, given in the third
column of Table 1, is verified in [1] with a relative error of 1.9× 10−8. Also very recently the authors
of [41] develop a Chebyshev-Fourier pseudospectral method with a fourth-order Runge-Kutta time-
stepping scheme to solve equations (162)-(164), and to study the Luo-Hou initial condition [45]. The
results of [41] confirm the simulations of [1, 45] at least until the time t = 0.0031. In addition, using
an analyticity-strip method and an extrapolation method based on a linear least-square regression,
the authors of [41] obtain an estimate of the time at which the (potential) singularity occurs, and this

8i.e. when those conserved quantities show an error above 10−5.
9We use |H(0)−H(t)| instead of |H(0)−H(t)|/|H(0)|, since the initial helicity H(0) is zero for this flow.

34

Figure 13: Resolution study with fixed parameters: S = 15, 4t = 10−5, Bessel-Chebyshev solver, 5th order
B-spline interpolation method. The legend in the vorticity growth plots applies to all other panels.
Here and in the following plots, the black crosses in the vorticity plot are the exact coordinates
from Table 1 at times t = 0.003, t = 0.0031 and t = 0.0034. Also the helicity panel displays
absolute errors, because the initial helicity vanishes for this flow.

time value is consistent with that of [45]. Therefore, there are at least three independent simulations
that agree on the leading digits of a maximal vorticity value at a time instance not too far away from
the reported temporal singularity. In the following plots of the maximal vorticity, the second, third,
and fourth column values in Table 1 are indicated by black crosses to show qualitatively how far the
CLA can approach them in those test runs with various parameter settings. These approximations
are given quantitatively in Table 2.

Figure 13 shows the behavior of the error in total kinetic energy, helicity, and Kelvin circulation, as
described in Section 8, as well as the vorticity growth. As seen in the figure, the result strongly depends
on the chosen resolution, when all other run-time parameters stay fixed. The curves of the Kelvin
circulation error, which will henceforth only be referred to as the Kelvin conservation, allow to easily
distinguish the low and moderate grid sizes. The helicity conservation also shows noticeable differences,
while the energy conservation curves are less clearly attributable to the different resolutions. Also,
all curves show very similar behavior with respect to their measured quantity. The appearing sudden
drops in energy and helicity conservation are usually present, but their cause is not yet known to
the authors of this work. The maximal vorticity values that were computed on the largest grid agree

35

Figure 14: Several fixed time-steps are compared on a 513×1024 grid; same run-time parameters, other than
time-step, as in Figure 13. Larger time-steps deliver good and fast results. The legend in the first
panel is valid for the others too. Note that the fourth panel does not show the whole integration
period.

qualitatively with the first values in Table 1, but their exact fulfillment will be studied later together
with runs in higher resolutions. Note that even for the largest grid in Figure 13, only 256 vertical
grid points lie in the modeled region D(1, L/4) of [45] and [1]. For all the curves in Figure 13, the
Bessel-Chebyshev solver (BC) was used, but the Chebyshev-Galerkin (CG) method produces very
similar results. Regarding the second and fourth panel of Figure 13, the maximal vorticity seems to
fall off from its strong growth after a sudden change in the Kelvin conservation. This could indicate
that the breaks in the Kelvin conservation and the fall-off in the vorticity growth are connected and
yield inaccurate computations from these points on.

Concerning the time-steps, the method that was used to obtain the approximate convergence radius
for the stationary solution in Figure 4 fails for the given initial velocity field in eq. (161). The initial
time-Taylor coefficients X(s) cannot be accurately represented for s & 20 even in quadruple precision,
due to a strong growth of their l∞-norms. The early development of the quotient X(s−1)/X(s) seems
to point to 10−4, see [35, Fig. 5.4]. However, time-steps between 5×10−6 and 5×10−5 have proven to
provide good results. The time-step dependence of the outcome is plotted in Figure 14. Remarkably,
the absolute helicity change is lowest for the largest time-step, while the conservation of kinetic energy
and Kelvin circulation seems better with the smallest time-step. Also, if we consider the vorticity
growth, then large time-steps and their corresponding vorticity growth falls off later than the growth

36

Figure 15: The effect of different truncation orders in the adaptive time-stepping. Higher orders imply larger
time-steps and fewer iterations. These runs were executed on a 513×3072 grid, the other param-
eters are the same as in the plots from above. Sudden drops in the size of the time-steps in the
lower left panel at t = 0.003 (and selected later times) are forced time-steps to arrive exactly at
that time for a comparison to the values in Table 1.

37

Figure 16: Energy spectrum at the boundary r = 1 for various time instances. Small modes fill up rapidly
and the flow can soon not be resolved accurately anymore. The underlying grid size was fixed to
513× 4096 Chebyshev-Fourier points. All other fixed run time parameters are given in the text.

with smaller time-steps. When searching for sudden breaks in the Kelvin conservation, then it appears
that those happen later for larger time-steps, and the same is true for the energy conservation curves.
The breaks from a rather regular behavior of the conservation curves seem to indicate a loss of accuracy
and, thus, we interpret a later appearance of those breaks as a sign for better stability. Moreover, the
runs with larger time-steps take a fraction of the total execution time compared to smaller time-steps,
while still providing adequate, if not better, results. The latter property is quite common among
semi-Lagrangian methods and helps us here to achieve very large resolutions (see further below).
The initial time-steps are not maintained throughout the computation, they are adapted to allow for
precision and conservation criteria as mentioned above. However, these adaptations do not happen
very often and one time-step can usually be maintained over many iterations.

The adaptive time-stepping procedure discussed in the end of Section 7 is examined in Figure 15
for the truncation orders S = 8, 10, 12, 15. Again, higher truncation orders, thus larger time-steps,
show a break out in the Kelvin conservation slightly later and seem to maintain the strong vorticity
growth slightly longer than their lower order competitors. The helicity conservation curves are very
close to each other, but the high orders give lower absolute changes than the small orders. The energy
and Kelvin conservation curves behave seemingly opposite to the helicity behavior. There, the relative
errors are lower for lower truncation orders, but those values only depend on the velocity field and are
measured by a quotient, not a difference.

Extensive tests have been carried out, involving higher working precision, different interpolation
orders, the use of de-aliasing techniques, as well as refinement strategies in the interpolation step. We
would like to refer to [35, Chapter 7.2] for illustrations and discussions of those results. In summary, a
higher working precision does not necessarily lead to better results10. The reason for that simply lies
in the fast evolution of the turbulent behavior of the flow. Ever smaller Fourier-scales fill up rapidly
and the flow quickly becomes under-resolved, as seen in Figure 16. Such an under-resolution cannot be
dealt with by increasing the working precision, but only by increasing the resolution. Regarding the
interpolation orders, lower to moderate orders give better performance, as for the stationary flow, due
to lesser error amplification. De-aliasing methods11 seem not to improve the results and refinement
methods in the interpolation fall short also because of the under-resolution.

Clearly, the strongest influence is given by the resolution and will be further investigated. Figure 17
shows a comparison between a few higher resolutions. The largest grid size, which has been plotted,
is 1025× 10240. The grid spacing at the boundary of this flow is 2.35 · 10−6 in radial direction (due

10Here, we mean concerning a larger integration period together with improved conservation of the discussed quanti-
ties.

11mainly the 2/3-rule and double length methods

38

to the clustering of the Chebyshev extrema) and 1.63 · 10−5 in vertical direction. Our mesh spacings
are of course still very far from the mesh spacings that were achieved in [45] close to the reported
singularity, but they are comparable to those in [1]. For higher resolutions, the curves belonging to
conserved quantities stay longer in a regular shape and break their behavior later, when compared to
lower resolution runs, which is also visible in Figure 13. The later those breaks appear, the better is
the approach of the maximal vorticity to the value at t = 0.0034 given in [45] and recalled in Table 1.
This qualitative observation can be examined more closely, together with other values from Table 1,
by comparing the exact values in the following Table 2

Table 2: The body of this table states the computed maximal vorticity at selected times and grid sizes. The
values in the last row are those of Table 1 and come from the given references.

time 3.0 · 10−3 3.1 · 10−3 3.4 · 10−3

513× 1024 9.08451276 · 104 1.54167635 · 105 1.60528443 · 106

513× 4096 9.08466826 · 104 1.54277249 · 105 3.13597705 · 106

1025× 8192 9.08466912 · 104 1.54277317 · 105 3.82533611 · 106

1025× 10240 9.08466912 · 104 1.54277318 · 105 3.94749487 · 106

ref. [45, 1] 9.0847 · 104 1.54276901 · 105 4.3127 · 106

Our maximal vorticity values show good agreement with those from the references for t = 3 · 10−3

and t = 3.1 · 10−3. The value at 3.4 · 10−3 is approached but only agrees in magnitude. Those are
exceptional results, in particular, if the execution time of the simulations is considered. All of the
computations presented in Table 2 and fig. 17 were carried out on a single CPU12 and finished within
one day. Typically, implementations of CFL bound algorithms need multiples of that time span on a
comparable CPU and execute thousands of time-steps. The run of the CLA on the highest resolution in
Table 2 reached t = 3.1 ·10−3 in only 310 iterations and t = 3.4 ·10−3 in 344. Even larger grid sizes and
runs with a higher working precision at those high resolutions are possible. However, larger grid sizes
or a higher working-precision certainly increase the memory consumption of the CLA. The current
implementation is particularly memory demanding, because all the components of the coefficients,
as well as their spatial derivatives and divisions by r, up to the truncation order S, are stored for
direct insertion into the recurrence relations. In return, this allows us to avoid numerical errors from
standard (spectral) differentiation schemes. Surely, for the particular flow that is investigated here
and in the given references, namely a blow-up candidate for the incompressible Euler equations, it is
much better and more efficient to exploit the underlying symmetries, as in [45] and [1], which allows
modeling the flow in only a quarter of the periodicity domain. In the case of the CLA, such symmetry
considerations would cut the memory demands tremendously and would thus allow to achieve highly
resolved Euler simulations in a fraction of the time of CFL bound algorithms for the same problem.
As the presented work gives a first realization of the CLA in a wall-bounded domain, it was intended
to provide a code that can simulate any axisymmetric, periodic flow, which does not necessarily
possess special symmetries. Figure 18 displays the profiles of the flow field components at r = 1.
The vertical derivatives of the angular and vertical velocity components seem to become singular.
The radial velocity component should stay zero at r = 1 for all times, due to the no-slip boundary
condition, but errors build up especially at the symmetry axes of the flow. Better preservation of
the no-slip boundary condition may indicate a higher validity of the simulation and is tracked in our
implementation of the CLA.

12The cluster in use provides Intel Xeon Gold 6148 CPUs with 20 cores and 40 possible threads, which are individually
supplemented by 192GB of memory (RAM).

39

Figure 17: Higher resolution runs are shown. Here, the truncation order was set to S = 18 to maintain the
initial time-step 10−5 longer. The interpolation was done by the 5th order B-spline cascade; no
dealiasing is used here. Sudden breaks in the conserved quantities arrive much later than in the
previous plots, indicating a lasting stability with increased resolution.

40

Figure 18: Upper row: Plot of the velocity components at r = 1 until t = 3.51 × 10−3. The values were
obtained from a simulation with 513 × 4096 grid points, the other run time parameters were the
same as in the preceding figures. The velocity component vr in the top left panel should stay
zero at r = 1 due to the no-flow boundary condition, but large errors appear eventually at the
symmetry axes. Lower row: Plot of the vorticity components at r = 1. Here, the evolution of the
components is only displayed until t = 3.0× 10−3, the growth of the local extrema is too strong to
be conveniently visualized. For surface plots of the flow field components, we would like to refer
the reader to [35].

41

11. Conclusions

In this work, we have implemented and examined the Cauchy-Lagrange algorithm (CLA) for an
axisymmetric flow in a cylindrical domain with boundaries. We have systematically investigated
several methods for the resulting Poisson problems, the choice of suitable time-steps, interpolation
of the flow fields from the distorted Lagrangian grid back onto the regular Eulerian grid, as well as
validation criteria for the computed flow. Special attention has been given to the Calderon-Zygmund
operators of order zero, namely the second-order derivatives of an inverse Laplacian. The accuracy in
those derivatives of the solutions to the Poisson problems, which are boundary value problems, have
strong implications on the overall quality of a simulation with the CLA. In this respect, we have avoided
error-prone standard differentiation methods in spectral space and developed effective techniques
to directly solve for the needed derivatives. Also, common to other semi-Lagrangian methods, the
interpolations of the flow fields introduce larger errors and, thus, larger time-steps yield better results,
as fewer interpolations have to be carried out. In the CLA, the time-steps are only bound by the
convergence radius of the time-Taylor series of the trajectories, and, therefore, they are independent
of any CFL condition. This means that, for a given initial velocity field, we can use a certain time-step,
which is a fraction of the convergence radius, regardless of the underlying mesh. However, due to the
finite working precision in a computation,13 the time-steps cannot be chosen too close to the radius of
convergence, as demonstrated in Figure 5. In our tests, time-steps with the size of around one fourth
of the convergence radius in a double precision computation produced stable and accurate results.
Larger fractions of the convergence radius for a time-step may be achieved, using a higher working
precision. Our current implementation of the CLA allows to choose between double, extended double,
or quadruple precision, whenever the Bessel-Chebyshev (BC) solver is selected. Unfortunately, the
BC method is currently restricted to 513× 1024 Chebyshev-Fourier points with reasons explained in
Section 5.3. The Chebyshev-Galerkin (CG) method only works in double precision, but it can also be
adapted to work in multiple precision modes.14

Regarding the simulation of the potentially singular flow treated in [45], we have seen that a
high resolution is crucial to catch the strong small-scale growth of the vorticity field. Using high
resolutions, we were able to achieve good agreement with the maximal vorticity values given in [45] at
times, which are not too far from the potential singularity. Currently, our CLA implementation only
works on a fixed product grid, but a (locally) adaptive mesh, as used in [45], seems to be mandatory
to reproduce their extreme maximal vorticity values. Furthermore, the CLA results presented here
compute the flow in the whole cylinder D(1, L), instead of in the quarter cylinder D(1, L/4) (as in [45,
1]), which can be seen as a draw-back in computing this particular flow. Future work may consist of
restricting the CLA to the quarter cylinder in combination with a locally adaptive mesh, where grid
points are shifted into the region of high vorticity values. For this, however, the Chebyshev-Fourier
series representation of the flow-fields must be dropped, which could result in a slower algorithm due
to the non-applicability of fast Fourier transforms. A solution, like the one performed in [5], could
be to replace the Chebyshev-Fourier representation by a multi-wavelets representation to obtain a
local adaptive multi-scales representation of the solution on a non-uniform dyadic grid. Indeed, in
the adaptive multiresolution semi-Lagrangian method designed in [5] the authors use interpolating
wavelets (interpolets) which are built on polynomial spaces (Lagrange, Legendre, Chebyshev, ...) and
enjoy a fast wavelet transform (FWT) like the FFT for the Chebyshev-Fourier representation.

An easier alternative approach to spatial adaptivity is to implement a global refinement method
via uniform dyadic grids. This can readily be achieved in our implementation, provided we stay in
the full cylinder. More precisely, in exploiting the nesting property of our Chebyshev-Fourier grid of
sizes (2N + 1)× 2M , one may double the grid size, whenever the spectral dimension is insufficient to
accurately represent the flow fields, i.e. when the smallest modes become non-zero. This refinement
mechanism is described in detail in [35, Section 4.2], but it is yet only implemented in the CLA
to improve the interpolation of the flow fields back onto the Eulerian grid.15 In using a global
refinement method with the mentioned dyadic grids, we can approach a potentially singular time of

13Here, we refer to double (8 Byte floats), extended double (10 Byte floats), or quadruple (16 Byte floats) precision
computations

14The appearing linear systems in the CG method are internally solved with the LAPACK package, which is restricted
to double precision computations.

15For the results in this work, we have not applied the mentioned refinement methods in the interpolations.

42

a flow much faster and with less computer resources, because we can start a simulation on a coarse
grid and refine it when needed. Additional perspectives for future work can be the extension of the
presented CLA to fully three-dimensional non-axisymmetric flow and to flows in other domains with
boundaries. In this spirit, it is crucial to simulate other potentially singular flows in bounded domains
and check numerically the location of blowing-up gradients in the velocity field. Moreover, in the fully
three-dimensional case without symmetries and for potential singularities living on a low-dimensional
subspace (typically a point or a one-dimensional curve) an adaptive multiresolution Cauchy-Lagrange
method, based on a multi-wavelets representation, should be essential. The presence of boundaries
may, after all, be a driving factor for the appearance of finite-time singularities.

Appendices
A. Chebyshev Polynomials and Series Representation

Introductions to Chebyshev polynomials can be found plentiful in the literature (e.g. [47],[9],[28]).
Here, we will only recall from the given references the definitions and properties that are used in our
computations.

Definition. The Chebyshev polynomial of the first kind of order n is defined as

Tn(x) = cos(n arccos(x)), x ∈ I, n ∈ N0, (167)

where I := [−1, 1] and N0 := N ∪ {0} = {0, 1, 2, . . .}.

Setting x = cos(ϑ), ϑ ∈ [0, π], we find

Tn(cos(ϑ)) = cos(nϑ), (168)

from which all the properties in the following may be derived. The Chebyshev polynomials satisfy the
three term recurrence relation

T0(x) = 1,

Tn+1(x) = 2xTn(x)− T|n−1|(x), ∀n ∈ N0 .
(169)

The Chebyshev extrema, i.e. the local extrema of Tn(x) in the interval I, are given by

xi = cos

(
iπ

n

)
, i ∈ {0, . . . n}, (170)

such that Tn(xi) = (−1)i, the zeros are given by

x̃i = cos

(
2i+ 1

2n
π

)
, i ∈ {0, . . . , n− 1} . (171)

Without difficulty, one verifies the nesting property of the Chebyshev extrema, that is{
cos

(
iπ

n

)}
0≤i≤n

⊂
{

cos

(
iπ

2n

)}
0≤i≤2n

, ∀n ∈ N, (172)

or, in other words, the extrema of Tn are also extrema of T2n. Furthermore, there holds the orthogo-
nality relation ∫ 1

−1
Tl(t)Tk(t)ω(t) dt =

∫ 1

−1

Tl(t)Tk(t)√
1− t2

dt = cl
π

2
δlk, (173)

where

cl := δl0 + 1 =

{
2, if l = 0,

1, if l > 0,
(174)

43

and δ(.) denotes the Kronecker symbol. A discrete version of the latter relation, based on the Cheby-
shev extrema (xi)0≤i≤N∈N from above, reads

N∑
i=0

1

cicN−i
Tl(xi)Tk(xi) =

clcN−l
2

Nδlk, (175)

for l, k = 0, . . . , N . In the literature the above summation
∑N
i=0 1/(cicN−i), indicating the halving

of the first and last terms, is often denoted by
∑′′ and ∑N

i=0 1/ci by
∑′. Here we intend to avoid

primed sums, the appearing primes in the text represent derivatives with respect to the sole argument
of a function.
A multiplication of two Chebyshev polynomials entails

2TnTm = Tn+m + T|n−m|, ∀n,m ∈ N0, (176)

with the special case

xTn =
1

2
(Tn+1(x) + T|n−1|(x)). (177)

The derivatives of the Chebyshev polynomials fulfill the relations

T0 = T ′1, 4T1 = T ′2,

2Tn =

(
Tn+1

′

n+ 1
− Tn−1

′

n− 1

)
, n ≥ 2,

(178)

as well as

T ′′n =

n−2∑
k=1

k+n even

1

ck
n(n2 − k2)Tk . (179)

The shifted Chebyshev polynomial of the first kind of order n ∈ N0 is obtained from the ordinary
Chebyshev polynomial by a change of the variable, namely t = 2r − 1 with r ∈ [0, 1], and is denoted
by

T ∗n(r) := Tn(2r − 1), r ∈ [0, 1] . (180)

The shifted Chebyshev polynomials satisfy the three term recurrence relation

T ∗0 (r) = 1,

T ∗n(r) = 2(2r − 1)T ∗n−1 − T ∗|n−2|, n ∈ N,
(181)

which implies

rT ∗n =
1

4

(
T ∗|n−1| + 2T ∗n + T ∗n+1

)
, ∀n ∈ N0 . (182)

An explicit representation of the shifted Chebyshev polynomial of order n > 0 is given by the
polynomial sum

T ∗n(r) =

n∑
j=0

n
4j(−1)n−j(j + n− 1)!

(2j)!(n− j)!
rj . (183)

From eq. (178), in using eq. (180), we directly obtain the derivative relations

2T ∗0 = T ∗1
′, 8T ∗1 = T ∗2

′, 4T ∗n =

(
T ∗n+1

′

n+ 1
−
T ∗n−1

′

n− 1

)
, n ≥ 2, (184)

and with it the integral relations∫
T ∗0 (r)dr =

T ∗1
2
,

∫
T ∗1 (r)dr =

T ∗2
8
,∫

T ∗n(r)dr =
1

4

(
T ∗n+1

n+ 1
−
T ∗n−1
n− 1

)
, n ≥ 2,

(185)

44

which are valid up to an additive constant of integration. The next integral relation follows readily
from eqs. (182) and (185),

τ(n, r) :=

∫
rT ∗n(r)dr =

∫
1

4

(
T ∗|n−1|(r) + 2T ∗n(r) + T ∗n+1(r)

)
dr

=

1
4T
∗
1 (r) + 1

16T
∗
2 (r), n = 0

1
16T

∗
1 (r) + 1

16T
∗
2 (r) + 1

48T
∗
3 (r), n = 1

− 1
8T
∗
1 (r) + 1

24T
∗
3 (r) + 1

64T
∗
4 (r), n = 2

1
16

(
−T

∗
n−2(r)

n−2 +
2T∗n+1(r)

n+1 − 2T∗n−1(r)

n−1 +
T∗n+2(r)

n+2

)
, n ≥ 3,

(186)

where the constant of integration has again been omitted. In the following we assume to be given
function values u∗i = u(x∗i), i = 0, 1, . . . , N , of a continuous function u : [0, 1] → R on the shifted
Chebyshev extrema

x∗i :=
xi + 1

2
∈ [0, 1], (187)

with xi as in eq. (170). Note that the shifted Chebyshev extrema fulfill the same nesting property (172)
as the non-shifted Chebyshev extrema. An approximation uN of u is given by the shifted Chebyshev
series

uN (r) =

N∑
l=0

ulT
∗
l (r), (188)

such that uN (x∗i) = u∗i . The series coefficients ul are given by

ul =
1

clcN−l

1

N

(
u∗0 + (−1)lu∗N + 2

N−1∑
i=1

u∗i cos

(
ilπ

N

))
. (189)

The bracketed term is commonly known as the type-I discrete cosine transform, or DCT-I, of the vector
(u∗i)0≤i≤N ; it is implemented in numerous open source software16. The transform from function values
based on the Chebyshev zeros to the Chebyshev coefficients ul is defined by a DCT-II, whose back-
transform is a DCT-III. However, for our numerical needs, namely the inclusion of interval end-points
(boundary points of the cylinder) and the nesting property (172) that is not fulfilled by the Chebyshev
zeros, we use the shifted Chebyshev extrema throughout this work. However, the zeros may be used
for integration purposes in form of the Gauss-integration scheme, which is reviewed here briefly as
well. See [11, 48] for the following statements and proofs thereof.
Gauss integration for Chebyshev Polynomials. Let w0, . . . , wn−1 be the solution of the linear system

n−1∑
j=0

(x̃j)
kwj =

∫ 1

−1
xkω(x) dx, 0 ≤ k ≤ n− 1,

where x̃0 < x̃1 . . . < x̃n−1 are the roots of the n-th Chebyshev polynomial from eq. (171). Then there
holds

wj =
π

n
, for j = 0, . . . , n− 1,

and
n−1∑
j=0

p(x̃j)wj =

∫ 1

−1
p(x)w(x) dx, for all p ∈ P2n−1. (190)

If a function g = g(r) is given by a shifted Chebyshev series with coefficients {g(0)l }l=0,...,N , then
the first-order derivative can be expressed by a shifted Chebyshev series as well, with coefficients
{g(1)l }l=0,...,N−1. The latter coefficients are obtained via the relation

cl−1g
(1)
l−1 = g

(1)
l+1 + 4lg

(0)
l , l = N,N − 1, . . . , 1, (191)

with g(1)N+1 = g
(1)
N = 0 and cl as in (174). Higher order derivatives can be obtained by a re-application

of this relation.
16We use FFTW 3.3.9, see http://www.fftw.org/fftw3_doc/What-FFTW-Really-Computes.html for a definition of

their implemented transforms.

45

http://www.fftw.org/fftw3_doc/What-FFTW-Really-Computes.html

Also the division g(r)/r can be given by a shifted Chebyshev series with coefficients {al}l=0,...,N , in
solving the linear system of equations

A · (al)l = (g
(0)
l)l, (192)

where

A =

1/2 1/4 0 0 . . .
1/2 1/2 1/4 0

0 1/4 1/2 1/4

0 0 1/4 1/2
...

. . .

 . (193)

B. Explicit Computation of the Time-Taylor Coefficients for
Stationary Solutions

We depart from the characteristic equation and leave the dependence on the arguments out for con-
venience (the following is true in any coordinate system),

Ẋ(t) = V (X(t)), X(0) = Id, (194)

for a classical stationary solution V = V (a) to the three dimensional incompressible axisymmetric
Euler equations. If X(t) is analytic in time, then so is the velocity along the trajectories V (X(t)) due
to eq. (194). Let g(t) := V (X(t)), then

g(t) =
∑
s≥0

g(s)ts, with g(s) = 1
s! ∂

s
tV (X(t))|t=0 . (195)

One finds ∑
s≥1

sX(s)ts−1 =
∑
s≥0

g(s)ts, (196)

and after collecting powers of t,
X(s) = g(s−1), s ≥ 1 . (197)

The first coefficients are, thus, given by X(0) = Id, X(1) = V , (2!)X(2) = DV ·X(1) = DV · V ,
(3!)X(3) = X(1)> ·D2V ·X(1) +DV ·X(2) = V > ·D2V · V +DV · (DV · V),...
Despite the fact that the general form may be given by a recursion formula and the formula of Faa di
Bruno [16, 34], here, we are mostly interested in the explicit calculation of the time Taylor coefficients
in cylindrical coordinates. This is possible by hand in the case of the vortex, but rather exhausting
in the case of more intricate solutions as presented in [43]. We will therefore make use of computer
algebra systems, but first state the recursion in cylindrical coordinates.

Acknowledgements

We are very grateful to Claude Bardos, Sai Swetha Venkata Kolluru and Rahul Pandit for fruitful
discussions. This work has been carried out within the framework of the EUROfusion Consortium and
has received funding from the Euratom research and training programme 2014-2018 and 2019-2020
under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect
those of the European Commission.

References

[1] D. Barkley. “A fluid mechanic’s analysis of the teacup singularity”. In: Proceedings of the Royal
Society A 476, 20200348 (2020).

[2] H. Bateman. Tables of integral transforms. Ed. by A. Erdélyi. Vol. II. McGraw-Hill Book Com-
pany, 1954.

46

[3] J. T. Beale, T. Kato, and A. Majda. “Remarks on the breakdown of smooth solutions for the
3-D Euler equations”. In: Communications in Mathematical Physics 94.1 (1984), pp. 61–66.

[4] A. Bennett. Lagrangian fluid dynamics. Cambridge University Press, 2006.

[5] N. Besse, E. Deriaz, and É. Madaule. “Adaptive multiresolution semi-Lagrangian discontinuous
Galerkin methods for the Vlasov equations”. In: Journal of Computational Physics 332 (2017),
pp. 376–417.

[6] N. Besse. “Regularity of the Geodesic Flow of the Incompressible Euler Equations on a Manifold”.
In: Communications in Mathematical Physics 375.3 (2020), pp. 2155–2189.

[7] N. Besse and U. Frisch. “A constructive approach to regularity of Lagrangian trajectories for
incompressible Euler flow in a bounded domain”. In: Communications in Mathematical Physics
351.2 (2017), pp. 689–707.

[8] N. Besse and U. Frisch. “Geometric formulation of the Cauchy invariants for incompressible
Euler flow in flat and curved spaces”. In: Journal of Fluid Mechanics 825 (2017), pp. 412–478.

[9] J. P. Boyd. Chebyshev and Fourier spectral methods. Courier Corporation, 2001.

[10] M. D. Bustamante and R. M. Kerr. “3D Euler about a 2D symmetry plane”. In: Physica D:
Nonlinear Phenomena 237.14-17 (2008), pp. 1912–1920.

[11] C. Canuto et al. Spectral methods: fundamentals in single domains. Springer Science & Business
Media, 2007.

[12] A.-L. Cauchy. “Sur l’état du fluide à une époque quelconque du mouvement”. In: Mémoires
extraits des recueils de l’Académie des sciences de l’Institut de France, Sciences mathématiques
et physiques 1 (1827), pp. 33–73.

[13] J. Chen and T. Y. Hou. “Finite time blowup of 2D Boussinesq and 3D Euler equations with
C1,α velocity and boundary”. In: arXiv preprint arXiv:1910.00173 (2019).

[14] P. Constantin, V. Vicol, and J. Wu. “Analyticity of Lagrangian trajectories for well posed inviscid
incompressible fluid models”. In: Advances in Mathematics 285 (2015), pp. 352–393.

[15] C. De Boor. A practical guide to splines. Applied Mathematical Sciences 27. Springer, 2001.

[16] F. Di Bruno. “Note sur une nouvelle formule de calcul différentiel”. In: Pure and Applied Math-
ematics Quarterly 1 (1857), pp. 359–360.

[17] W. E and C.-W. Shu. “Small-scale structures in Boussinesq convection”. In: Physics of Fluids
6.1 (1994), pp. 49–58.

[18] D. G. Ebin and J. E. Marsden. “Groups of diffeomorphisms and the motion of an incompressible
fluid”. In: Annals of Mathematics 92.1 (1970), pp. 102–163.

[19] T. M. Elgindi and I.-J. Jeong. “Finite-time singularity formation for strong solutions to the
axi-symmetric 3D Euler equations”. In: Annals of PDE 5.16 (2019).

[20] L. Euler. “Principes généraux du mouvement des fluides”. In: Mémoires de l’académie des sci-
ences de Berlin 11 (1757), pp. 274–315.

[21] A. B. Ferrari. “On the blow-up of solutions of the 3-D Euler equations in a bounded domain”.
In: Communications in Mathematical Physics 155.2 (1993), pp. 277–294.

[22] M. Frigo and S. G. Johnson. “FFTW3, 2006”. In: Available from WWW: http://www. fftw. org/#
documentation (2007).

[23] M. Frigo and S. G. Johnson. “The design and implementation of FFTW3”. In: Proceedings of
the IEEE 93.2 (2005), pp. 216–231.

[24] U. Frisch, G. Grimberg, and B. Villone. “A contemporary look at Hermann Hankel’s 1861 pio-
neering work on Lagrangian fluid dynamics”. In: The European Physical Journal H 42 (2017),
pp. 537–556.

[25] U. Frisch and B. Villone. “Cauchy’s almost forgotten Lagrangian formulation of the Euler equa-
tion for 3D incompressible flow”. In: The European Physical Journal H 39.3 (2014), pp. 325–
351.

47

[26] U. Frisch and V. Zheligovsky. “A very smooth ride in a rough sea”. In: Communications in
Mathematical Physics 326.2 (2014), pp. 499–505.

[27] P. Gamblin. “Système d’Euler incompressible et régularité microlocale analytique”. In: Annales
de l’Institut Fourier. Vol. 44. 5. 1994, pp. 1449–1475.

[28] W. Gautschi. Orthogonal polynomials. Oxford University Press, 2004.

[29] J. D. Gibbon. “The three-dimensional Euler equations: Where do we stand?” In: Physica D:
Nonlinear Phenomena 237.14-17 (2008), pp. 1894–1904.

[30] V. Girault and P.-A. Raviart. Finite element methods for Navier–Stokes equations: theory and
algorithms. Vol. 5. Springer Science & Business Media, 2012.

[31] O. Glass, F. Sueur, and T. Takahashi. “Smoothness of the motion of a rigid body immersed in
an incompressible perfect fluid”. In: Annales Scientifiques de l’École Normale Supérieure 45.1
(2012), pp. 1–51.

[32] R. Grauer and T. C. Sideris. “Numerical computation of 3D incompressible ideal fluids with
swirl”. In: Physical Review Letters 67.25 (1991), pp. 3511–3514.

[33] N. Gyunter. “Über ein Hauptproblem der Hydrodynamik”. In: Mathematische Zeitschrift 24
(1926), pp. 448–499.

[34] H. Gzyl. “Multidimensional extension of Faa di Bruno’s formula”. In: Journal of Mathematical
Analysis and Applications 116.2 (1986), pp. 450–455.

[35] T. Hertel. “The Cauchy-Lagrange algorithm for axisymmetric incrompressible Euler flow in a
wall bounded cylindrical domain”. PhD thesis. Université de la Côte d’Azur, 2020.

[36] T. Y. Hou and R. Li. “Dynamic depletion of vortex stretching and non-blowup of the 3-D
incompressible Euler equations”. In: Journal of Nonlinear Science 16.6 (2006), pp. 639–664.

[37] A. Jeffrey and D. Zwillinger. Table of integrals, series, and products. Elsevier, 2007.

[38] F. Johansson. “Arb: efficient arbitrary-precision midpoint-radius interval arithmetic”. In: IEEE
Transactions on Computers 66.8 (2017), pp. 1281–1292.

[39] R. M. Kerr. “Evidence for a singularity of the three-dimensional, incompressible Euler equations”.
In: Physics of Fluids A: Fluid Dynamics 5.7 (1993), pp. 1725–1746.

[40] A. C. King, J. Billingham, and S. R. Otto. Differential equations: linear, nonlinear, ordinary,
partial. Cambridge University Press, 2003.

[41] V. S. S. Kolluru, P. Sharma, and R. Pandit. “A pseudospectral study of a potentially singu-
lar solution of the three-dimensional axisymmetric incompressible Euler equation: tygers and
thermalization”. In: arXiv preprint arXiv:2012.14182 (2020).

[42] S. H. Lamb. Hydrodynamics. Ed. by R. Caflisch. 6th ed. Cambridge Mathematical Library.
Cambridge University Press, 1975.

[43] N. Leprovost, B. Dubrulle, and P.-H. Chavanis. “Dynamics and thermodynamics of axisymmetric
flows: Theory”. In: Physical Review E 73.4, 046308 (2006).

[44] L. Lichtenstein. “Über einige Existenzprobleme der Hydrodynamic”. In:Mathematische Zeitschrift
281 (1928), pp. 387–415.

[45] G. Luo and T. Y. Hou. “Toward the Finite-Time Blowup of the 3D Axisymmetric Euler Equa-
tions: A Numerical Investigation”. In: Multiscale Modeling & Simulation 12.4 (2014), pp. 1722–
1776.

[46] A. J. Majda and A. L. Bertozzi. Vorticity and Incompressible Flow. Cambridge Texts in Applied
Mathematics. Cambridge University Press, 2001.

[47] J. C. Mason and D. C. Handscomb. Chebyshev polynomials. CRC press, 2002.

[48] B. Mercier. Analyse numérique des méthodes spectrales. Tech. rep. 1981.

[49] F. Oberhettinger. Tables of Bessel Transforms. Springer Berlin Heidelberg, 1972.

[50] F. W. J. Olver et al. NIST handbook of mathematical functions hardback and CD-ROM. Cam-
bridge University Press, 2010.

48

[51] O. Podvigina, V. Zheligovsky, and U. Frisch. “The Cauchy–Lagrangian method for numerical
analysis of Euler flow”. In: Journal of Computational Physics 306 (2016), pp. 320–342.

[52] A. Pumir and E. D. Siggia. “Development of singular solutions to the axisymmetric Euler equa-
tions”. In: Physics of Fluids A: Fluid Dynamics 4.7 (1992), pp. 1472–1491.

[53] R. J. Purser and L. M. Leslie. “An efficient interpolation procedure for high-order three-dimensional
semi-Lagrangian models”. In: Monthly Weather Review 119.10 (1991), pp. 2492–2498.

[54] X. Saint Raymond. “Remarks on axisymmetric solutions of the incompressible Euler system”.
In: Communications in Partial Differential Equations 19.1-2 (1994), pp. 321–334.

[55] P. Serfati. “Étude mathématique de flammes infiniment minces en combustion. Résultats de
structure et de régularité pour l’équation d’Euler incompressible”. PhD thesis. Thèse de Doctorat
de l’Université Paris 6, 1992.

[56] P. Serfati. “Structures holomorphes à faible régularité spatiale en mécanique des fluides”. In:
Journal de Mathématiques Pures et Appliqués 74 (Jan. 1995), pp. 95–104.

[57] J. Shen. “Efficient spectral-Galerkin methods III: Polar and cylindrical geometries”. In: SIAM
Journal on Scientific Computing 18.6 (1997), pp. 1583–1604.

[58] J. Shen, T. Tang, and L.-L. Wang. Spectral methods: algorithms, analysis and applications.
Vol. 41. Springer Science & Business Media, 2011.

[59] T. Shirota and T. Yanagisawa. “Note on global existence for axially symmetric solutions of
the Euler system”. In: Proceedings of the Japan Academy, Ser. A, Mathematical Sciences 70.10
(1994), pp. 299–304.

[60] A. Shnirelman. “On the analyticity of particle trajectories in the ideal incompressible fluid”. In:
arXiv preprint arXiv:1205.5837 (2012).

[61] M. R. Ukhovskii and V. I. Yudovich. “Axially symmetric flows of ideal and viscous fluids filling
the whole space”. In: Journal of Applied Mathematics and Mechanics 32.1 (1968), pp. 52–62.

[62] B. Villone and C. Rampf. “Hermann Hankel’s "On the general theory of motion of fluids"”. In:
The European Physical Journal H 42 (2017), pp. 557–609.

49

