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Thermal heterogeneity within aqueous materials quantified by 1 H NMR spectroscopy: multiparametric validation in silico and in vitro

We recently suggested a new paradigm for statistical analysis of thermal heterogeneity in (semi-)aqueous materials by 1 H NMR spectroscopy, using water as a temperature probe. Here, we present a comprehensive insilico and in-vitro validation that demonstrates the ability of this new technique to provide accurate quantitative parameters characterizing the statistical distribution of temperature values in a volume of (semi-)aqueous matter.

First, line shape parameters of numerically simulated water 1 H NMR spectra are systematically varied to study a range of mathematically well-defined temperature distributions. Then, corresponding models based on measured 1 H NMR spectra of agarose gel are analyzed. In addition, dedicated samples based on hydrogels or biological tissue are designed to produce temperature gradients changing over time, and dynamic NMR spectroscopy is employed to analyze the resulting temperature profiles at sub-second temporal resolution. Accuracy and consistency of the previously introduced statistical descriptors of temperature heterogeneity are determined: weighted median and mean temperature, standard deviation, temperature range, temperature mode(s), kurtosis, skewness, entropy, and relative areas under temperature curves. Potential and limitations of this method for quantitative analysis of thermal heterogeneity in (semi-)aqueous materials are discussed in view of prospective applications in materials science as well as biology and medicine.

Introduction

We have previously presented a theoretical concept for the quantification of thermal heterogeneity in aqueous and semi-aqueous materials [START_REF] Lutz | Multiparametric Quantification of thermal heterogeneity within aqueous materials by water 1H NMR spectroscopy: Paradigms and Algorithms[END_REF]. This new method is based on statistical analyses of the 1 H NMR line shape of water, a "chemical temperature probe". The new paradigm underlying our technique is grounded in the fact that (i) the chemical shift of a water 1 H NMR resonance,  H2O , is a linear function of the water temperature (with a slope of ca. 0.01 ppm/°C [START_REF] Muller | Temperature dependence of chemical shifts of protons in hydrogen bonds[END_REF]), and (ii) in the presence of temperature gradients, the overall water NMR line shape reflects the statistical distribution of temperature values within the measured sample volume, within certain limits discussed previously in detail [START_REF] Lutz | Multiparametric Quantification of thermal heterogeneity within aqueous materials by water 1H NMR spectroscopy: Paradigms and Algorithms[END_REF]. To analyze thermal heterogeneity with this method, water 1 H NMR spectra are first converted to temperature distribution curves. Then, these temperature profiles are transformed into histograms by an appropriate algorithm. Based on these histograms, further mathematical algorithms developed by us derive at least eight quantitative parameters (descriptors) defining the underlying temperature distribution, i.e., the thermal heterogeneity within the measured sample volume.

The specificity of our new paradigm lies in the fact that we exploit, for the first time, the entire temperature curve (corresponding to an NMR line shape), to quantitatively describe a distribution of temperature values. Here, we present the validation of our method for the following descriptors of temperature distribution: weighted mean and weighted median temperatures [START_REF] Lutz | Multiparametric Quantification of thermal heterogeneity within aqueous materials by water 1H NMR spectroscopy: Paradigms and Algorithms[END_REF], standard deviation, temperature range, one or multiple temperature modes (= temperature curve maxima), kurtosis (peakedness [START_REF] Lutz | Multiparametric Quantification of thermal heterogeneity within aqueous materials by water 1H NMR spectroscopy: Paradigms and Algorithms[END_REF][START_REF] Sokal | Biometry[END_REF]), skewness (asymmetry [START_REF] Doane | Measuring Skewness: A Forgotten Statistic?[END_REF]) and entropy (smoothness [START_REF] Cover | Elements of information theory[END_REF][START_REF] Lesne | Shannon entropy: a rigorous notion at the crossroads between probability, information theory, dynamical systems and statistical physics[END_REF]). Note that temperature skewness, kurtosis and entropy directly provide actual temperature information, akin to temperature mean and standard deviation. From a statistical perspective, the latter two parameters are 1st and 2nd moment descriptors, respectively, of a given (temperature) distribution, whereas skewness and kurtosis are 3rd and 4th moment descriptors, respectively. In other words, skewness and kurtosis provide temperature information in the same way as mean and standard deviation, albeit on a "higher level", i.e., in the form of "higher moments".

In addition, ratios of mode heights, and ratios of areas under individual temperature modes and/or ranges are validated as quantitative measures of the relative sizes of volumes characterized by different temperature values. We assess the validity of our method based on (i) numerically simulated water 1 H NMR spectral lines; (ii) experimen-tally measured 1 H NMR spectra of well-defined aqueous test solutions and hydrogels (agarose gels [START_REF] Lutz | Phantom material for quantitative evaluation of MR images[END_REF]); (iii) dynamic 1 H NMR spectroscopy of hydrogels in the presence of temperature gradients changing over time, using a dedicated experimental design; and (iv) in-vitro 1 H NMR experiments on biological tissue.

Our simulations are entirely unrelated to conventional NMR lineshape simulations based on spin dynamics or Bloch equations. The purpose of our numerical simulations is to examine the following questions: 1) How are the quantitative descriptors of statistical temperature distribution obtained through our algorithm interpreted in terms of distribution curve properties? 2) What are the ranges of the statistical descriptor values for distribution curves to be expected from actual experiments? 3) How sensitive are the resulting temperature distribution curves, and their associated descriptor values, to actual temperature gradients vs. spurious effects, i.e., curve shape contributions unrelated to temperature distribution? 4) What are the effects of water 1 H NMR line shape correction by our empirical deconvolution method on the resulting distribution curve shapes and, consequently, on the derived descriptors of temperature profiles? 5) How do temperature distribution descriptors derived from simulated spectra compare with those from measured NMR spectra? Thus, our simulations do not serve to elucidate NMR physics, but to study temperature distributions, albeit derived from water NMR resonances.

All calculations are performed employing the preprogrammed EXCEL spreadsheet provided in our previously published paper [START_REF] Lutz | Multiparametric Quantification of thermal heterogeneity within aqueous materials by water 1H NMR spectroscopy: Paradigms and Algorithms[END_REF]. We also investigate how temperature profile measurements can be used to efficiently and quantitatively study dynamic phenomena such as heat transfer and thermal conduction, as water 1 H NMR spectra can be acquired with sub-second temporal resolution. Our findings for basic hydrogels and biological samples have significant implications for studying the relationship between temperature variations and other physical, chemical and biological properties in a variety of (semi-)aqueous materials. A broad scope of research ranging from materials science and physical chemistry of soft matter to biology and medicine [START_REF] Raue | Sodium NMR relaxation: a versatile non-invasive tool for the monitoring of phase transitions and the estimation of effective pore sizes of supramolecular hydrogels. Intelligent hydrogels[END_REF][START_REF] Kopecek | Hydrogel biomaterials: a smart future?[END_REF][START_REF] Mehta | The collagen I mimetic peptide DGEA enhances an osteogenic phenotype in mesenchymal stem cells when presented from cell-encapsulating hydrogels[END_REF][START_REF] Chaudhuri | Hydrogels with tunable stress relaxation regulate stem cell fate and activity[END_REF] may benefit from our approach.

Results and Discussion

The most relevant results of our study are presented in this section. Additional data are included in the Results section of S1 Supplemental Materials 1 that also comprises Figs. S-1 through S-29, and in S2 Supplemental Materials 2 with Figures S-30 through S-45 and Tables S-1 through S-5. Taken together, the values given in our tables indicate the ranges to be expected for statistical descriptors in experimental distribution curves.

Studies of unimodal, bimodal and trimodal temperature profiles -overview

When subjected to a heating or cooling process, most materials are likely to experience irregularly shaped internal temperature distributions, due to thermal gradients that are more or less continuous and variable over time.

However, for the purpose of validating our method we initially focused on numerically simulated unimodal, bimodal and trimodal temperature distributions, because the concept of quantitative parameters of thermal heterogeneity is best tested and verified on the basis of models representing well-defined temperature distribution functions [START_REF] Lutz | Multiparametric Quantification of thermal heterogeneity within aqueous materials by water 1H NMR spectroscopy: Paradigms and Algorithms[END_REF]. In fact, most quantitative parameters suggested in this report are universally applicable to any given distribution of temperature values; their use does not depend on the existence of distinct temperature modes. Our first in-silico validations were based on temperature modes at t 1 = 32.0, t 2 = 34.5 or t 3 = 37.0 °C (Table 1, for simulated Gaussian spectral lines at 11.7 T). Different bimodal (or trimodal) temperature distributions were modeled by varying the relative intensities or amplitudes i 1 (or i 1 and i 2 ) of 32.0 °C (or 32.0 and 34.5 °C) modes, added to an i 2 (or i 3 ) 37.0 °C mode. Subsequently, statistical descriptors were derived for unimodal (Table 1, column A), bimodal (columns B through E) and trimodal (columns F through I) temperature distributions, as a function of the relative mode intensities characterizing each distribution. For the unimodal and bimodal distributions of this series, the relative intensities of the 32 °C vs. 37 °C modes were used to scale the abscissae of the diagrams in Fig. 1. Analogous validations were performed for simulated Gaussian spectral lines at 3 T (Table S- 

Quantification of oligomodal temperature distributions

We have previously shown that under high-field conditions, up to three distinct regions of similar size can be identified based on differing temperature values, within a temperature range close to 5 °C (no assumptions are made with respect to the size and spectral distribution of the underlying sample volume elements) [START_REF] Lutz | Multiparametric Quantification of thermal heterogeneity within aqueous materials by water 1H NMR spectroscopy: Paradigms and Algorithms[END_REF]. This finding takes into account that any experimentally obtained NMR resonance has a finite linewidth even in the absence of any temperature gradient, essentially due to T 2 and T 2 * effects [START_REF] Lutz | Multiparametric Quantification of thermal heterogeneity within aqueous materials by water 1H NMR spectroscopy: Paradigms and Algorithms[END_REF]. In the absence of such spurious effects, our simulated uni, bi and trimodal temperature distribution curves, and the associated spectra, would have the shape of one, two or three delta functions, respectively. The influence that removing these spurious effects has on statistical descriptors of temperature distributions is discussed in S1 Supplemental Materials 1. In the following, we focus on "raw" lineshapes, i.e., before any correction for spurious effects. changes in statistical descriptors of temperature distributions with increasing mode 1 contribution (see also Table 1).

In our simulated oligomodal curves, the corresponding mode areas may strongly overlap. The implications of this situation for temperature profile quantitation will be discussed in the following. Changes of quantitative temperature distribution descriptors as a function of the shape of bimodal temperature profiles are best visualized by diagrams plotting descriptor values against increasing contribution of mode t 1 to a distribution dominated by mode t 2 , as indicated by increasing intensity ratios, i 1 :i 2 (Fig. 1, Figs. S-2 through S-4 for simulated, and Figs. S-5 and S-42 for measurement-based distributions). For distributions derived from high-field spectra, t 1 and t 2 were rather stable because peak overlap was negligible for a difference of 5 °C (Figs. 1 and S-3 for simulated, and Figs.

S-5 and S-42 for measured distributions). By contrast, the relatively broad lines derived from simulated low-field spectra resulted in high-temperature mode values decreasing, and in low-temperature mode values increasing with increasing contribution of mode t 1 (Figs. S-2 and S-4). In many cases, the temperature of the less intense mode, t 1 , could only be estimated, notably for i 1 :i 2 = 0.125 and 0.25. As was to be expected for left-skewed distributions, < for i 1 :i 2 = 0.125, 0.25 and 0.5. For i 1 :i 2 = 1.0, only simulated distributions were perfectly symmetric and, therefore, yielded identical values for, and , whereas measured distributions were slightly right-skewed due to an increased right foot (or tail) of the underlying NMR resonances (spurious effect due to magnetic-field inhomogeneity). This resulted in somewhat smaller values for vs.

(Figs.

S-5 and S-42). In summary, mode errors were small but not entirely negligible for modes of small intensity located very close to one or two modes of much larger intensity. Since our simulation predicted rather poor resolution for low-field spectra, we decided not to acquire experimental low-field NMR spectra.

The concepts of skewness, kurtosis and entropy are generally employed to characterize unimodal probability distributions [START_REF] Jensen | Operations Research Models and Methods[END_REF]. However, they can also reveal global characteristics of temperature profiles with more than one mode [START_REF] Lutz | Multiparametric Quantification of thermal heterogeneity within aqueous materials by water 1H NMR spectroscopy: Paradigms and Algorithms[END_REF]. For instance, the symmetric distributions formed by two identical, simulated high-field resonances displayed in Figs. distributions continuously increased with i 1 :i 2 increasing from 0.125 to 1.0, i.e., with decreasing asymmetry as indicated by modes of unequal peak heights. Due to the relatively broad bases of Lorentzians, the symmetry of Lorentzian distributions is less influenced by the difference in heights between the two modes, than are Gaussian distributions. This is reflected by (i) relatively low absolute skewness values, and (ii) relatively small increases in skewness with i 1 :i 2 increasing from 0.125 to 1.0 for high-field Lorentzians vs. Gaussians. However, in low-field spectra, the bases of Gaussians also become relatively broad, which approaches the skewness behavior of Gaussians to that of Lorentzians. Kurtosis continuously decreased over the same range of i 1 :i 2 values, notably for distributions composed of narrow peaks, because the overall distribution becomes less peaked with increasing t 1 contribution. More generally, distributions made up of broad and, therefore, strongly overlapping mode areas vary little in shape with increasing i 1 :i 2 ratio; therefore, quantitative descriptors of curve shape also show relatively little change, although there was a drastic difference between the kurtosis values of a single narrow Gaussian (G2 = 0, Fig. 1) and a single narrow Lorentzian (G2 = 14, Fig. S-3). In summary, the skewness, kurtosis and entropy values of our bimodal curves can be readily interpreted in accordance with the underlying line shapes [START_REF] Lutz | Multiparametric Quantification of thermal heterogeneity within aqueous materials by water 1H NMR spectroscopy: Paradigms and Algorithms[END_REF].

For trimodal distributions with modes in 2.5 °C intervals, mode temperature values (t 1 , t 2 and t 3 ) did not change with intensity ratios, i 1 :i 2 :i 3 , when simulated high-field Gaussians were compared (Table 1, columns F -I). Very small variations (by ca. 0.1 °C) with intensity ratios were observed for measured high-field (near-)Gaussians (Table S-4, columns F -I), and for simulated high-field Lorentzians (Table S-2, columns F -I). For the remaining trimodal distributions tested, the resolution was often insufficient to determine the exact value, or even the presence, of all three modes. This confirms for trimodal distributions the same conclusions presented above for bimodal distributions, namely that working under high-resolution conditions (high magnetic fields, (near-) trend toward stronger left skew and increased kurtosis from column F to column I (Table 1, simulated high-field Gaussians). This reflects the gradual transition from a rather symmetric and flat temperature profile with equal mode intensities (i 1 =i 2 =i 3 ), to a more asymmetric and peaked profile with intensities strongly increasing from lower to higher temperatures (i 1 <i 2 <i 3 ). As a consequence, the overall temperature distribution curve increasingly takes on the shape of a steep slope (see Gaussian temperature modes, but less consistently so. Obviously, the increased overlap between mode areas, caused by broader bases in all three modes, modified the characteristics of temperature distributions significantly.

As opposed to skewness and kurtosis, standard entropy only exhibited relatively small variations within any given series of mode intensity variations. However, there were consistent differences between series, i.e., between distributions based on high-field and low-field NMR spectra, and between distributions based on Gaussian and Lorentzian-like areas under the modes. This finding underlines the validity and the complementary character of the statistical descriptors of temperature distributions used in this work. These and further results for multimodal temperature distributions are presented in more detail in S1 Supplemental Materials 1.

Effects of global vs. local heat exchange in gel phantoms

The first experiment with a dedicated temperature gradient sample (gel phantom) was performed as presented in and lower them into the NMR probe (8-10 s), resulted in significant heat exchange (i) between the NMR tubes and the surrounding air, and (ii) between the two phantom compartments, even before the first spectrum was measured. For this reason, the first temperature profile exhibited two broad, partially overlapping mode areas, instead of two narrow, well-separated mode areas, thus mimicking an irregularly shaped temperature distribution which may occur in many real-life situations of rapid sample heating or cooling. [Note that particular NMR singlets with temperature-invariant chemical shifts, used as chemical-shift references, were obtained simultaneously with the water resonances, and from the same sample volumes. These singlets were constant, narrow and regularly shaped, as was to be expected. See S1 Supplemental Materials 1 for details.] The hightemperature mode was below, and the low-temperature above the starting temperature of the respective individual tube. The behavior of the temperature profile was followed over a period of ca. 3 h, with increasing time intervals between measurements. The lists of intervals for all relevant experiments are given in S1 Supplemental Lists.

Five of a total of 146 subsequent measurements performed in this series were selected to document the most significant changes in curve shape occurring over time (Fig. S-40 a -e, height-normalized profiles; see also Fig. 2). In the initial phase of these measurements, the two mode areas progressively merged to form one unimodal, phantom compartments (= local effect), as is the subsequent narrowing of the curve. By contrast, the fact that the phantom temperature progressively approached the final temperature of about 60 C is owed to heat exchange with the surrounding gas stream, influencing and, ultimately, determining the temperature of both inner and outer tubes (= global effect). Obviously, both effects were not strictly separated in time as the sample heating by the gas stream must have started as soon as the phantom was exposed to the gas stream. However, local heat exchange initially dominated and was responsible for the early, major changes in the temperature profile, while the subsequent drift of the overall sample temperature to high values was caused by the then dominating global heat exchange with the gas stream. Note that the curve shapes discussed above are based on NMR spectra processed with Lorentzian filtering (1-Hz apodization). Alternative filtering parameter values and methods can slightly modify details of curve shapes, as discussed in S1 Supplemental Materials 1. Apodization with LB = 1 Hz, followed by enhanced baseline correction.

The general behavior of our phantom design was confirmed by quantitative evaluation as described in the following paragraphs. Results from the above experiment are shown in Figure 2 (height-normalized curve shapes)

and Figure 3 (values of descriptors of thermal heterogeneity). Both figures present data for the same time points, in the same measurement series. Until 14.1 s after the first measurement, there was little change in weighted mean temperature and almost no change in median temperature (Fig. 3, top left), suggesting very little net heat exchange between the phantom as a whole and its environment (gas stream). After 32.3 s, mean and median temperatures increased in a sigmoidal fashion, approaching the final temperature (see S1 Supplemental Materials 1 for the choice of time points). At 14.1 s following the first measurement, the low and high-temperature mode areas began to merge (Fig. 2), and at 28.8 s only one mode (= global temperature maximum; Fig. 3, bottom left) was distinguishable. Interestingly, neither entropy nor kurtosis changed uniformly over time (Fig. 3, top right).

Kurtosis reached a moderately pronounced maximum when the two modes were still clearly identifiable (6.4 s), then went through a minimum at 14.1 s (before complete merger of the mode areas), followed by an increase as the temperature distribution curve became very narrow (partial Lorentzian character). This behavior is linked to the well-known fact that kurtosis can increase as a consequence of two different influences: either due to tails extending far from the mode (6.4 s, left tail, Fig. 2), or due to a peak top that is narrow compared to the tails (end of series: 2h54m). Two phases can be identified in the temporal behavior of skewness: an almost constant, moderate left skew as long as the two modes were still clearly distinguishable (6.4 s), then a slow increase up to a slightly positive value for the final narrow curve, but still close to symmetry (G1 = 0). Thus, quantifying both skewness and kurtosis permits a more detailed description of the changing temperature profile than would be possible by simply using mean, median and mode temperature values. Range and standard deviation also changed in a biphasic fashion, albeit in a more uniform way, with inflection points close to the point of complete merger of the mode areas (between 14.1 and 28.8 s). As was to be expected, peak height ratios and peak area ratios reflected the relative decrease in t 1 mode area vs. t 2 mode area (a 1 vs. a 2 ) during the early phase of the experiment, where heat exchange between phantom compartments is dominating (Fig. 3, bottom right). As a result, the combination of multiple statistical descriptors of temperature heterogeneity was able to give a detailed quantitative view of the heat exchange processes occurring over time.

We complemented this analysis with an overview "at a glance", enabling easy visualization of the evolution of all temperature profiles over the entire period of serial measurements. This was achieved by plotting all profiles together as a stacked plot (Fig. 4 a), and connecting the individual profiles as to generate a virtual threedimensional surface plot (Fig. 4 b). Top projections of this surface plot give an immediate impression of the time course of the underlying temperature distributions (Fig. 4, c -e). However, it is also very instructive to view the three-dimensional shape of the entire surface plot from different angles. This is achieved by rotating the virtual three-dimensional object on a computer screen (S1 Horizontal rotation of 3D temperature profiles, and S2 Vertical rotation of 3D temperature profiles), thus fully exploiting the fact that the surface plot is assembled of a series of complete temperature profiles. Horizontal rotation by 360° (Video S-1), and vertical rotation by 90° from front view to top projection (Video S-2) can be performed under manual control by using the video scrollbar. Close inspection reveals that, for instance, temperature modes appear as "mountain ridges" in these pseudo-3D renderings. Following the appearance and disappearance of this and other 3D structural features as a function of measurement time provides additional insight into the dynamics of thermal processes in the material of interest.

Note that in these videos, as in Fig. 4 a and b, narrow temperature profiles appear significantly higher than broad profiles, which is a consequence of using area normalization (for details see S1 Supplemental Materials 1). 

Effects of heat exchange in biological tissue

Prompted by previously published findings that the temperature dependence of water chemical shift (0.01 ppm per °C, [START_REF] Lutz | Multiparametric Quantification of thermal heterogeneity within aqueous materials by water 1H NMR spectroscopy: Paradigms and Algorithms[END_REF]) is virtually identical for aqueous solutions and biological tissue, we decided to test the congruence of the results obtainable for bovine muscle tissue as a model for mammalian tissue, with those obtained above for hydrogels. Bovine muscle tissue that was initially at thermal equilibrium, was first measured being externally cooled from 45 to ca. 0 °C, then being heated from 0 °C to 80 °C by analogy with the gel experiments mentioned above. Due to the relatively small temperature gradients generated during the cooling period, changes in line shape were very minor. By contrast, line shape alterations were readily discernable for the heating period (Fig. 5)

where the initial difference between sample temperature (ca. 0 °C) and N 2 stream (80 °C) caused marked temperature gradients across the sample. These gradients even resulted in two discernible, albeit heavily However, the temperature distribution remained rather symmetric throughout the measurement series; this is reflected by the fact that mean  median  mode(s)  global maximum temperature, and that skewness values are close to zero (at start of series: small and decreasing left skew) [START_REF] Lutz | Multiparametric Quantification of thermal heterogeneity within aqueous materials by water 1H NMR spectroscopy: Paradigms and Algorithms[END_REF]. Kurtosis was highest for the first measurement, where lines were very narrow (limit of zero temperature gradient). The decreasing values for peak area and height values are consistent with a globally increasing temperature. The qualitatively similar behavior of biological tissue and gel phantoms hints at the possibility to apply our method to in-vivo measurement in future projects.

deconvolution-based curve shape correction concept previously introduced by us was validated for an in-silico model of an asymmetric temperature distribution.

Future perspectives include full implementation and evaluation of our deconvolution method for compensating spurious influences on temperature profiles, and its adjustment to temperature-dependent response functions.

Potential applications of our suggested method concern a broad range of aqueous materials used in various disciplines, such as investigations of the formation and alterations of hydrogels and similar aqueous materials currently being developed in materials science. Furthermore, research and development in food science, quality control for industrial purposes, and biomedical procedures such as in-vivo examination of tissue properties may be of particular interest for our method [START_REF] Raue | Sodium NMR relaxation: a versatile non-invasive tool for the monitoring of phase transitions and the estimation of effective pore sizes of supramolecular hydrogels. Intelligent hydrogels[END_REF][START_REF] Kopecek | Hydrogel biomaterials: a smart future?[END_REF][START_REF] Mehta | The collagen I mimetic peptide DGEA enhances an osteogenic phenotype in mesenchymal stem cells when presented from cell-encapsulating hydrogels[END_REF][START_REF] Chaudhuri | Hydrogels with tunable stress relaxation regulate stem cell fate and activity[END_REF], notably in the context of tumor treatment by hyperthermia (e.g., thermoablation) or cryotherapy, and other processes involving major perturbations of temperature regulation.

Caution should be exercised if our technique is to be applied to special materials such as hydrated solids, e.g., porous materials loaded with water. Since our method has been developed for typical aqueous materials, it does not currently account for situations characterized by a nonlinear relationship between water 1 H chemical shift and temperature. However, the latter condition may be accommodated by future developments based on our approach.

Methods

In this section, the in-silico and in-vitro procedures employed in the validation of our new approach are described; additional technical details are presented in the Methods section of S1 Supplemental Materials 1.

In-silico calculations

The purpose of our in-silico calculations was twofold: (i) to study statistical descriptors characterizing the overall temperature distributions resulting from the addition, in varying proportions, of up to three simulated temperature curves, and (ii) to enable quantitative comparisons between heterogeneity parameter values derived from models of theoretical (i.e., simulated) and measured temperature distributions. A range of well-defined temperature distributions were computer simulated to calculate at least eight descriptors for each of these distributions [START_REF] Lutz | Multiparametric Quantification of thermal heterogeneity within aqueous materials by water 1H NMR spectroscopy: Paradigms and Algorithms[END_REF].

The temperature distributions investigated were chosen as to represent different degrees of heterogeneity; they range from narrow (very homogeneous) distributions about a single mode (= dominating temperature value) to broad (very heterogeneous) distributions about up to three modes of varying intensities. The temperatures studied in our in-silico H2O and temperature, distribution patterns are invariant to shifts on the absolute temperature scale. Further specifics on the rationale [START_REF] He | Selecting the number of bins in a histogram: A decision theoretic approach[END_REF][START_REF] Hargas | Sophisticated biomedical tissue measurement using image analysis and virtual instrumentation[END_REF][START_REF] Kohler | Data analysis using stata[END_REF][START_REF] Frigg | Entropy: A Guide for the Perplexed[END_REF][START_REF] Güçlü | Maximizing the entropy of histogram bar heights to explore neural activity: a simulation study on auditory and tactile fibers[END_REF] for the choice of our in-silico parameters are given in S1 Supplemental Materials 1.

Acquisition of 1 H NMR spectra

Gel phantoms for temperature gradients

Combined test samples designed to provide genuine temperature gradients, herein called phantoms, were generated as follows. An alkaline (pH 8.2) gel sample containing 1 % agarose and 80 mM PCho was heated to about 90 °C and filled into a 5-mm NMR tube which was then put on ice. In addition, an alkaline gel sample containing 1 % agarose and 80 mM NAA was heated to about 90 °C and filled into a 10-mm NMR tube, which was then maintained at 60 °C in a water bath. Subsequently, the heated 10-mm tube was removed from the water bath, and the cooled 5-mm NMR tube was immediately inserted into the 10-mm tube, upon which the combined phantom was quickly lowered into a 10-mm NMR probe. Simultaneously, a series of 1 H NMR experiments was started by way of home-made AU programs (Bruker macros based on the C programming language; see Appendix in S1 Supplemental Materials 1). These experiments consisted of pulse-acquisition sequences [START_REF] Lutz | Inflammatory multiplesclerosis plaques generate characteristic metabolic profiles in cerebrospinal fluid[END_REF] executed in increasing intervals ranging from 0.82 s to > 1 h. In the NMR probe, the sample was actively heated 

Test samples consisting of biological tissue

To demonstrate the applicability of our approach to mammalian tissue, we have designed a test sample consisting of bovine muscle tissue (lean veal). Tissue was cut into small pieces that were progressively transferred to a 10mm NMR tube partially filled with phosphate buffered saline (pH 7.2). Occasional air bubbles were removed by moving the pieces of tissue in the buffer solution. After each addition, tissue was pushed to the bottom of the tube by exerting vertical pressure to minimize any space between tissue pieces, and between tissue and the wall of the tube. Once the available space was filled with muscle tissue to a height of 1-2 cm above the sensitive volume of the probe, the supernatant buffer solution was removed with a pipette. This procedure ensured that nearly all the material in the sensitive volume consisted of muscle tissue, and that the residual buffer volume was no more than a few percent of the total volume. The filled NMR tube was brought to ca. 40 °C in a water bath. 1 H NMR spectra were acquired according to the protocols described in the preceding paragraph for temperature gradient gel phantoms, first for temp nom progressively decreasing to 278 K, then progressively increasing from 278 K to 340 K. See S1 Supplemental Materials 1 and our preceding paper [START_REF] Lutz | Multiparametric Quantification of thermal heterogeneity within aqueous materials by water 1H NMR spectroscopy: Paradigms and Algorithms[END_REF] for further details concerning acquisition, processing and post-processing of 1 H NMR spectra [START_REF] Marshall | Use of Voigt lineshape for quantification of in vivo 1H spectra[END_REF][START_REF] Soher | Noninvasive temperature mapping with MRI using chemical shift water-fat separation[END_REF].

  1 and Fig. S-2); and for simulated Lorentzian spectral lines at 11.7 T (Table S-2 and Fig. S-3) and 3 T (Table S-3 and Fig. S-4). These and similar temperature distributions based on measured 1 H NMR spectra are discussed in S1 Supplemental Materials 1.

Figure 1 .

 1 Figure 1. Temperature distributions as a function of relative contributions of mode 1 (t 1 = 32 °C) and mode 2 (t 2 = 37 °C), based on numerically simulated Gaussian water 1 H NMR resonances (line width, 7.5 Hz) for a high-field

  1 and S-3 (top right curves) result in (nearly) zero skewness (Tables 1 and S-2, columns B). Also the less ideal, but theoretically symmetric temperature profiles based on two identical resonances, simulated for low field (Figs. S-2 and S-4, top right curves) or measured (Figs. S-5 and S-42, top right curves) had very low absolute skewness values (Tables S-1, S-3 through S-5, columns B). Predictably, skewness values [1] of bimodal

Fig. S- 6 ,

 6 bottom row, for visualization of intensity ratios used in all Tables, and in Figs. S-6 and S-43). Trimodal distributions composed of Lorentzian, low-field and experimental temperature modes, exhibited skewness and kurtosis trends that corresponded to those observed for high-field

Figure S- 41

 41 Figure S-41 a. Before insertion of the narrow tube into the wide tube, the former was brought to about -15 C, and

  broad temperature distribution curve (Fig. S-40 a -c). Subsequently, the line width of the resulting curve decreased over time, and the temperature mode asymptotically approached ca. 60 C. The emergence of a uniform, stable temperature throughout the gel phantom was imposed by a temperature-regulated gas stream (Fig. S-41 a). These results can be explained by a combination of local and global heat exchange. The initially observed thermal equilibration is the result of heat exchange between the two

Figure 2 .

 2 Figure 2. Selected height-normalized temperature profiles (with delays after first measured profile) obtained from

Figure 3 .

 3 Figure 3. Descriptors of temperature heterogeneity calculated from temperature profiles presented in Fig. 2.

Figure 4 .

 4 Figure 4. Generation of surface plots by combining all 136 temperature profiles (2 h 53 min starting from the

Figure 5 .

 5 Figure 5. Selected height-normalized temperature profiles (with delays after first measured profile) obtained from a series of high-field (9.4 T) water 1 H NMR measurements on bovine muscle tissue, contained in a 10-mm

overlapping, modes for 9

 9 to 27 s after the first measurement (Fig.S-34). Note that at the end of the experiment, the muscle tissue structure degraded due to heat exposure. At this time, we decided to reduce the N 2 stream temperature to 60 °C. This resulted in an atypically broad line shape and a slightly reduced measured sample temperature (Figs. 5 and S-34, last time points). This return to somewhat lower temperatures can also be seen in the corresponding surface plot (Fig.S-35 d). It is obvious that temperature range and standard deviation exhibit a broad maximum at 18 s after the first measurement (Fig. S-34), corresponding to the largest line width (Fig.5).

  by a 60 °C, or cooled by a 0 °C nitrogen stream, respectively, during the entire series of NMR sequences (Fig. S-41 a). The experiment was repeated with both tubes being heated together to about 90 °C (Fig. S-41, top right) and adjusted to 60 °C before starting NMR acquisitions as described above. During these NMR experiments, the sample was either kept in the probe initially adjusted to room temperature (Fig. S-41 a), without sample spinning or temperature regulation; or was actively cooled by a 0 °C nitrogen stream. In a fifth series of phantom measurements, the 5-mm NMR tube was inserted into the 10-mm NMR tube shortly after the start of data acquisition (Fig. S-41 b; NMR experiments as in preceding experiments, except for minimum delay of 0.41 ms between two subsequent spectrum acquisitions). This experimental design was suitable for close inspection of the fast temperature gradient changes occurring immediately after the combination of high and low-temperature gels in the phantom.

Table 1 . Statistical parameters characterizing simulated temperature heterogeneities.

 1 Gaussian line shapes) is essential for obtaining spectra with highest sensitivity to temperature gradients, and for minimizing spurious effects on temperature profiles. Unlike our bimodal distributions, trimodal distributions have not been generated by systematically varying only one specific intensity parameter value such as i 1 :i 2 , since the focus here was on providing examples for qualitatively different curve shapes. Nonetheless, there was a global

	descriptor		A	B	C		D	E
	weighted mean,	[°C]	37.0	34.5	35.3		35.9	36.4
	weighted median,	[°C]	37.0	34.5	36.5		36.7	36.8
	mode, t 1 [°C]		n/a	32.0	32.1		32.1	32.1
	mode, t 2 [°C]		37.0	37.0	37.0		37.0	37.0
	peak area ratios (a 1 :a 2 )						
	-integrated		n/a	1.00:1	0.50:1	0.25:1	0.13:1
	-theoretical		n/a	1.00:1	0.50:1	0.25:1	0.125:1
	peak height ratios (h 1 :h 2 )	n/a	1.00:1	0.50:1	0.25:1	0.125:1
	skewness, G1		0.000	0.000	-0.6		-1.314	-2.009
	kurtosis, G2		0.000	-1.795	-1.319	0.210	3.124
	standard entropy, H S		4.13	5.13	5.05		4.86	4.64
			[6.10]	[6.64]	[6.59]	[6.47]	[6.35]
	descriptor		F	G		H		I
	weighted mean,	[°C]	34.5	35.2		35.5		35.8
	weighted median,	[°C]	34.5	36.2		36.2		36.4
	mode, t 1 [°C]		32.1	32.1		32.1		32.2
	mode, t 2 [°C]		34.6	34.6		34.6		34.6
	mode, t 3 [°C]		37.0	37.0		37.0		37.0
	peak area ratios (a 1 :a 2 :a 3 )					
	-integrated		1.00:0.99:1	0.51:0.24:1	0.25:0.50:1	0.12:0.50:1
	-theoretical		1.00:1.00:1	0.50:0.25:1	0.25:0.50:1	0.125:0.50:1
	peak height ratios (h 1 :h 2 :h 3 )	1.00:1.00:1	0.50:0.25:1	0.25:0.50:1	0.12:0.50:1
	skewness, G1		-0.031	-0.541		-0.767		-0.891
	kurtosis, G2		-1.266	-1.238		-0.439		0.125
	standard entropy, H S		5.63	5.45		5.43		5.30
			[6.51]	[6.55]		[6.44]		[6.37]
	Data are based on Gaussian lineshapes, corresponding to 1 H NMR resonances at 11.7 T. A, single Gaussian, 37°C; B-E: two
	Gaussians, 32°C and 37°C; B, equal intensities; C, intensity ratio i 1 :i 2 = 1:2; D, intensity ratio i 1 :i 2 = 1:4; E, intensity ratio
	i 1 :i 2 = 1:8; F-I: three Gaussians, 32°C, 34.5°C and 37°C; F: equal intensities; G, intensity ratio i 1: i 2 :i 3 = 2:1:4; H, intensity
	ratio i 1: i 2 :i 3 = 1:2:4; I, intensity ratio i 1: i 2 :i 3 = 1:4:8. Entropy values given in [] are based on peaks simulated for the same

linewidth (in ppm) as for 3 T (Table S-1). a n , h n and i n : areas, peak heights and intensities, respectively, associated with modes t n , with n = 1 to 3.
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Conclusion

The first concept for measuring statistical distributions of temperature values in aqueous materials, whose theoretical basis had been provided previously, has been validated in a comprehensive study. The following quantitative descriptors of thermal heterogeneity were successfully evaluated by numerical simulation (in-silico experiments) and water proton NMR spectroscopy (in-vitro experiments): temperature means, medians, modes, ranges and standard deviations; skewness, kurtosis and entropy; as well as ratios of peak heights and areas under temperature distribution curves. The algorithms underlying our new method are now confirmed for uni-, bi-and trimodal temperature distributions. We further demonstrated that the dynamics of statistical temperature distribution during heat exchange processes in hydrogel can be characterized quantitatively by analyzing the associated temperature profiles at sub-second time resolution. We also confirmed the applicability of our approach to biological materials (muscle tissue).

Fast data acquisition has the added advantage of providing far more realistic temperature snapshots than other, notably image-based, methods based on water proton chemical shift such as MRSI-PRF (magnetic resonance spectroscopic imaging -proton resonance frequency), as the latter methods require far more time for data collection. In the presence of thermal gradients, diffusing water molecules provide a mechanism for thermal equilibration, causing changes in the temperature profile over the data acquisition time. Thus, temperature profiles are "smeared out" across the temperature ranges concerned. In our method, "smearing" takes place over a much smaller time period (a few 100 ms) than it does in the currently available image-based experiments mentioned above. For instance, in MRSI-PRF data acquisition occurs over ca. 10 s per slice, and becomes much longer for an entire volume.

To visualize and guide these analyses, we constructed virtual 3D plots complemented by examples of virtual 3D videos for close inspection of changes in temperature profiles over time. The suggested approach provided consistent and robust results for temperature ranges down to a few degrees Celsius. For very small ranges, the 
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