Cyril Gorlla
email: cyril.m.gorlla@jacobs.ucsd.edu

Jared Thach
email: j1thach@ucsd.edu

Hiroki Hoshida
email: hhoshida@ucsd.edu

Development of Input Libraries With Intel XLSDK to Capture Data for App Start Prediction

Keywords: logging, threading, performance

Introduction

Despite computer processor speeds increasing year after year, there are still high usage programs and processes that interrupt workflows in our daily lives. Whether that interruption be lag when opening Zoom to join a meeting, or waiting for Google Chrome to open a link embedded in a Word document, these micro (or in some cases, major) stutters can cause a process meant to be relatively smooth to be a large source of frustration in the daily lives of an end user. One key point, however, is that these processes are actually often "scheduled" in a sense. That is, most people often repeat the same or similar tasks every day, and have a set routine. One example could be an office worker who opens Microsoft Excel almost every time they turns on their laptop at the office. These sorts of patterns can be studied, and by using machine learning, we can create predetermined schedules for users, allowing us to preload apps, or have processes ready before the user needs them. In other words, by analyzing user behavior, we can load an application the user would likely use next in advance, reducing wait and loading times.

By using Intel's System Usage Reporting library and the accompanying XLSDK, we can create "monitors" of user and computer activity, known as collectors or Input Libraries, and create activity logs which we can then analyze to provide preloading solutions for the user. We have been focused on the creation of these input libraries to have data to use in future collaboration with Intel, in which we would use the data we collected for analysis.

In order for us to create our own Input Libraries, the XLSDK provides a wide range of examples which can be used either as references or templates. Throughout the first ten weeks of working with Intel, we developed four different Input Libraries, each using a different template and measuring different categories of inputs from the user and computer. The first, the mouse_input Input Library, keeps a log of the cursor coordinates as the user moves the mouse around. Second, the user_waiting Input Library, keeps a timer based log of the cursor icon as the user uses the computer. The third, a foreground_window Input Library, creates a log entry whenever the foreground window (the window in front of all other windows) changes whether it be automatically (such as a notification pop up) or by user input (clicking the taskbar). Finally, the fourth Input Library is the desktop_mapper, which, when triggered by a change in the foreground window, maps all the windows on the desktop in z-order and stores pertinent information about each window e.g. position and size.

Each of these Input Libraries are coded differently in fundamental ways, and measure changes in different ways as well. By using the data provided by Libraries like these, we can determine preloading schedules for the individual user.

Methods

Understanding the structure of Input Libraries is essential in creating our own. In essence, Input Libraries are dynamiclink libraries (DLLs) that consist of four main functions. modeler_init_inputs specifies the number of variables the Input Library will track. For example, the "mouse inputs" Library would keep track of two, the x and y coordinates of the cursor location. modeler_open_inputs identifies the collected data by declaring the type of data as well as the variable names each point of data will be stored as.

modeler_read_inputs contains the code that pulls the data from the user or computer to log. For example, the mouse_input Library would obtain the mouse coordinate values from the OS. Finally, modeler_close_inputs closes the collector. Though every Input Library uses the above four main functions, depending on how the data is collected, they are used in different ways, and may contain even more separate standard functions. These differences can stem from how the polling for data is conducted, which are the main differences between the Input Libraries we created. "Mouse inputs" works as a static standard Input Library, which polls for values on a set timer. In modeler_read_inputs, we wrote a block of code that checks the coordinates of the mouse pointer every 100 milliseconds until the collector is stopped.

However, for the user_waiting and foreground_window Libraries, different methods of logging are used. More specifically, the user_waiting Library is a static pure event-driven Library, meaning that the collector only logs whenever some event happens, in this case when the cursor icon changes. The foreground_window Library is a static event-driven Library, as it collects data both on a set timer and on an event (polls every 1000 milliseconds, but also collects data whenever a mouse click is detected). In these two latter Input Libraries, a different function, modeler_listen_inputs, is used. The collector runs the code contained within in a dedicated thread, which allows for asynchronous data collection. From a general perspective, static standard Libraries run synchronously, and poll on a set timer. Static pure event-driven Libraries function only asynchronously, and static event-driven Libraries function both synchronously and asynchronously. The desktop_mapper Library is purely event driven, and is triggered when the foreground window changes or there is a click. This triggers a mapping of the desktop. Dynamic memory allocation and the use of critical sections was required to be able to store data for an arbitrary amount of windows at each mapping.

Once we decided the format and general structure we wanted to use for each Input Library, we had to decide on the specifics of the implementation. As the mouse_input Library is relatively simple, we just had to implement the coordinate-checking code in the static standard template. However, we had more choices available to us when implementing the other two. To create the user_waiting Input Library, we started with the static event-driven template. This allowed us to use polling as well as asynchronous logging of events and after performing the usual configurations and setups. Then, we initialized our global variables to keep track of the cursor icon state, cursor info object, and the various cursor handles to compare to. These were const char* cursor, CURSORINFO ci, and HCURSOR cursorArray[5], respectively. Once we had our global variables, we placed our cursor icon checks within the modeler_read_inputs function. First, the function fetches the current cursor icon shape and stores it in ci. Then, the function attempts to match the ci to a specific preloaded HCURSOR object in the cursorArray. We stored commonly seen cursor icons in the array, such as IDC_ARROW for the standard mouse arrow and IDC_IBEAM for the I-beam shown when hovering over text. Once found, cursor would then be reassigned to its respective IDC value. Finally, cursor is cast to a string and we log the result using the SET_INPUT_STRING_ADDRESS function. For the desktop_mapper, we iterate through all (up to a reasonable point we define, e.g. 20) windows open at a certain time in z-order and collect relevant information and collect relevant data for each window, storing them in the same inputs with multiplex logging. We implemented our window logger function in a dedicated thread, so that we can analyze a particular window independently of the main thread. Some of the information we capture includes the window's coordinates on the screen, whether it is covered by other windows, what z position it is in on the desktop, etc.

To help automate the collection of the data enabled by these Input Libraries, we created a batch script that would start the Intel ESRV and use Input Libraries that we specified. We then set this script to run on the startup of the computer, so that we would always be collecting data when the computer was in use. This allowed us to ensure that we were getting a fully representative collection of data that represented normal use as well as simplified our collecting process in general. In a production setting, we would utilize automation tools similar to the batch file to ensure that data collection was seamless and didn't impact the user's activities.

Data Science/Data Analysis

Data collection is only one step of the process. In order to uncover useful insights with our collected data from mouse_input, user_waiting, foreground_window, and desktop_mapper we must validate our data and then select the appropriate machine learning model to predict user patterns. Each of the four Input Libraries we have created collects different information from our user.

Beginning with our mouse_input library, we used a static standard template to capture user mouse coordinates at a fixed interval or sampling rate. Our library first gets the user mouse as an object which can then be used to save its X and Y coordinates every 1000 ms, for example. Finally, these X and Y coordinates are outputted as unsigned long long variables to our database file. These will serve as numeric features for our model. Next, our user_waiting library uses a static event driven template to both sample our user cursor icon every fixed interval as well as capture events (specifically, changes in cursor icon shape). We chose to sample every 1000 ms to ensure that we capture all cursor icon changes at a reasonable speed to minimize storage utilization. At the same time, we capture the cursor icon at every instance of icon change. These are then outputted as strings into our database file. These outputs will be useful in predicting a user's pattern as they are somewhat indicative of their desktop tasks.

Our third Input Library, foreground_window, uses a static event driven template as well. This library uses the same polling tactic as user_waiting to capture the foreground window even during unexpected events such as error messages appearing which would otherwise not be captured with a mouse hook. This library also uses event signaling to capture when a user clicks onto a new foreground window. Both methods capture the .exe file of the foreground window and outputs it as a string to a database file. These .exe strings will be highly useful data for our model because of the immediate information given about a user's activity and what they interact with the most. Here, we may also decide to capture whether or not a window is an immersive process because this feature may add predictive value to our model. Finally, our last Input Library, desktop_mapper, maps the Z-axis of a user's desktop as a series of windows layered on other windows. This library also captures the monitor specifications and links them to the different data structures as additional features in our data science approach. This last Input Library yields highly useful data as well because it "maps" the importance of various windows and may give predictive power for understanding what a user interacts with the most (when the window is at the top of the Z-axis) and what a user interacts with the least (when the window is at the bottom of the Z-axis).

After collecting the necessary data, it is important to ensure that it accurately reflects the user behavior we will eventually predict. We will now detail some of the points of interest for each IL that we must ensure is correctly collected. For mouse_input, it should be ensured that the input library records coordinates from all areas of the screen. For user_waiting, all relevant states of the cursor should be captured and the frequency of polling should be such that important changes are not missed. Next, the foreground_window IL should report the window name when a click happens, as well as through periodic sampling in case the window changes without user interaction. As such, the IL should be tested with both scenarios. Finally, the desktop mapper should give a comprehensive view of the windows currently open on the desktop as well as the relative importance of each window. When multiple windows are open simultaneously, with some occluded, the IL should also report this detail.

Results

Our data collected by the Input Libraries are stored in SQL database files upon exiting the collector. As each IL captures different sets of properties and attributes of the computer, the formats of each .db file created by each IL is slightly different. Every Input Library combined, however, allows for the tracking of the attributes in Figure 2.

Each input in the aggregate table is labeled with the Input Library that it came from. The user_waiting Input Library The mouse_input Library captures X and Y coordinates of the mouse cursor as integers, and samples the coordinates every 1000 milliseconds. The foreground_window Library captures the foreground window, or the topmost window showing on the screen. The executable process name of the window is stored as a string, along with two boolean values representing whether the window is immersive and whether the window is hung. This value is logged every 1000 milliseconds, but is also logged whenever a click is detected. For example, if a user clicks away from teams.exe to chrome.exe, the timestamp, chrome.exe, and the two properties are logged in the database. As of writing, desktop_mapper is in the final stages of development, and covers even more properties of the user's computer than foreground window. For example, it would log the locations and order of all windows, not just the foreground window.

The information gathered is robust enough to be able to discern some simple patterns and properties even before any sort of machine learning. For example, Figure 4 shows a histogram of the most commonly found executable file names in an Input Library output of a particular user. By seeing the programs used, such as devenv.exe, VsDebugConsole.exe, and DB Browser for SQLite.exe, we can be led to believe that the particular user tracked is a DSC180A student from this B14 Intel section, as all these are tools we used heavily throughout the quarter. Figure 6 shows the most commonly occurring mouse state is IDC_ARROW followed by IDC_BEAM and IDC_HAND, which makes sense as most of the time the mouse state should be in the arrow state. This information can be vital in discovering which programs exactly are causing hang ups and lag in a system. For example, if a particular dataset contains many IDC_WAITs at certain times during usage, we could investigate where exactly the wait times are occurring, and decide to do something to the culprit application, whether to preload it earlier in the background or lower its overall load on the system by disabling unnecessary features. Another simple analysis that could be done using the data collected can be seen in Figure 8, which illustrates the distribution of the X coordinate of the mouse with a histogram. The bimodal distribution with peaks at the 600 and 1400 coordinates show that the user likely uses some sort of split screen layout on their screen, which can be used as information to determine what should be preloaded earlier. For example, if the user often splits the screen between Chrome and Visual Studio, Visual Studio may be preloaded if the user opens and places Chrome on one side of their screen. After data collection, we will validate the dataset and clean up the data if needed. Then, we will evaluate the optimal model for our prediction task. As we are working with multidimensional time series data, we predict that our solution will use a model or a combination of models that emulate human interaction with computers. Because computer usage is typically rhythmic, that is, usage is often closely related to a daily schedule, we should be able to discern patterns with enough data gathered. We intend to convert our raw data from our Input Libraries into a structure that clarifies further which applications are opened when, and when they are opened. With this, we should be able to apply different models to create predictions. As previously mentioned, models of interest include a recurrent neural network, which captures a notion of "memory" such that periodic data can be modeled. Another is a hidden Markov model, which works by making the assumption that prior events influence future events in a chain-like structure, essentially matching the format and concept of our collected data. Computer usage usually has a set linear structure. Here is a simple example: A browser is used to download a PDF file -> A file explorer window is opened to access the file -> A PDF viewer is used to view the file. So, by using these time-series based models, we intend to find and develop commonly used chains of actions by each user, and use these to create predictions on which applications are most likely to be used next.

To make our predictions more accurate, we will have to pre-process our data generated from the ILs and ensure that they are valid inputs for our potential models. For example, we may wish to normalize numeric coordinate values generated from the mouse_input IL to better discern differences in the data. For desktop_mapper, windows that are not visible are unlikely to be predictive of what the user will open, so we may filter the windows that are not visible out of the dataset before training our model with the data. After we apply considerations such as these to our data and select features from each IL, with the timestamp tying a particular sample of the data together, we will train our model. We will first test the model on data that we didn't train it on in order to determine its accuracy in predicting the window that will open next, given information about windows the user has recently opened. We will then train the hyperparameters of our model on yet another unseen validation set to optimize its performance. Finally, we will be able to fully deploy our model to predict what window a user will launch next at a given time, and the output of this model could be used to launch that application preemptively so the user will not have to wait. Our final deliverable after our second quarter will be an all-in-one solution, from data collection to processing to prediction. Ideally, the user should be able to run the collector, have the data processed, and preloads applied, all in the background of their daily usage of their computer.

Figure 2 .

 2 Figure 2. .db file with multiple ILs

Figure 3 .

 3 Figure 3. Cursor States, Source: MSDN

Figure 4 .

 4 Figure 4. Distribution of foreground window

Figure 6 .

 6 Figure 6. Distribution of cursor type

Figure 7 .

 7 Figure 7. Cursor type over time

Figure 8 .

 8 Figure 8. Distribution of mouse X coordinate

Acknowledgments

Jamel Tayeb and Bijan Arbab, Intel; Intel DCA Team