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Abstract—Power systems feature an inherent hierarchical
structure. Ensuring the coherency of renewable production fore-
casts across a hierarchy presents an emerging challenge in energy
forecasting. In this context, proposed reconciliation or end-to-
end learning approaches assume coherent historical observations
by construction; this assumption, however, is often violated in
practice due to equipment failures. This paper proposes an end-
to-end learning approach for hierarchical forecasting that directly
handles missing values. First, we show that a class of off-the-shelf
machine learning models already leads to coherent hierarchical
forecasts. Next, we describe a conditional stochastic optimization
approach based on prescriptive trees for end-to-end learning
with missing values, that fully utilizes the available data. We
validate the proposed approach in two case studies comprising
60 wind turbines and 20 photovoltaic parks, respectively. The
empirical results show that end-to-end learning outperforms two-
step reconciliation approaches and that the proposed solution
mitigates the adverse effect of missing data.

Index Terms—data-driven optimization, decision trees, hier-
archical forecasting, missing data, renewable energy forecasting

I. INTRODUCTION

The increasing penetration of geographically distributed
renewable energy sources brings a plethora of challenges in
the operational management of power systems. To ensure
consistent decision-making, production forecasts at different
aggregation levels should adhere to a set of constraints im-
posed by a hierarchical structure; this presents an increasingly
important challenge in energy forecasting.

Traditional approaches for hierarchical forecasting [1], i.e.,
forecasting a group of time series that satisfy a set of lin-
ear aggregation constraints, include the bottom-up and the
top-down. The bottom-up approach involves forecasting the
bottom-level series and aggregating them; however, it usually
performs poorly as the signal-to-noise ratio tends to be lower
at the bottom-level series. Further, the top-down approach may
introduce forecast bias. Thus, a significant body of research
focuses on two-step methods, where each series is mod-
eled independently, with individual (termed base) forecasts
being reconciled in a post-processing step. In [2] unbiased
base forecasts are reconciled by minimizing the trace of the
forecast error covariance matrix. The authors of [3] propose
reconciliation by weighted projection of base forecasts. A

Parts of this research were carried in the frame of the Smart4RES project
(No. 864337), supported by the Horizon 2020 Framework Program.

constrained multivariate regression framework is described
in [4], considering both batch and online learning, applied
in wind power forecasting. Moving beyond point forecasts,
[5] describes a bottom-up approach for coherent probabilistic
forecasts, while [6] proposes a block bootstrap method for
probabilistic photovoltaic (PV) production forecasts. Recently,
end-to-end learning, i.e., training a single model to predict all
series in one-shot, has begun to attract attention, as it directly
leverages dependencies across series. A deep learning model
with an internal projection step is presented in [7] for coherent
probabilistic forecasts. Lastly, a general framework for end-to-
end forecasting of predictive quantiles is proposed in [8].

A recurring assumption in the literature is that training
observations are coherent by construction. In practice, how-
ever, missing or erroneous values are commonplace due to
communication failures or equipment malfunctions. Two main
approaches are identified for dealing with missing values.
The first is to ignore observations with missing values (com-
plete case analysis), which is typically applied in the works
mentioned above. However, in an end-to-end learning setting,
disregarding observations leads to a significant loss of in-
formation. Further, if data are not missing at random, bias
might be introduced. The second approach involves missing
data imputation; in turn, this raises the problem of ensuring
that imputed values are coherent. To this end, [9] proposes an
iterative algorithm to impute missing values while exploiting
dependencies across series. In the present work, we examine
the case of missing values in the lower levels of the hierarchy,
but accurate measurements in the upper levels, which we
believe to be of practical interest in power system applications.
For example, smart-meters might fail to transmit consumption
data at a household level while the respective distribution
feeder properly measures aggregated demand.

In short, our contributions are as follows:
• First, we show that a class of non-parametric machine

learning models directly derives coherent point and prob-
abilistic hierarchical forecasts, enabling us to use off-the-
shelf tools in an end-to-end learning setting.

• Next, we describe a decision tree algorithm for end-to-
end forecasts with missing values that does not require
imputation and fully utilizes the available training data.

• Lastly, we validate the proposed solution in two case stud-
ies of day-ahead forecasting considering an aggregation



of 60 wind turbines and 20 PV parks, respectively.
The rest of this paper is organized as follows. Section II

introduces the mathematical background and the proposed
methodology. Section III presents the experimental setting and
the results. We conclude and provide directions for further
research in Section IV.

II. BACKGROUND AND METHODOLOGY

A. Hierarchical forecasting

We examine a group of time series that satisfy a set of
linear aggregation constraints, thus forming a hierarchy. Let
yit ∈ R denote a realization of the i-th series, associated with
features xit ∈ Rp, for t = 1, . . . , T . We define yt ∈ Rn as the
realization of the n series and xt := [x1t, . . . ,xnt] ∈ Rn×p.
Following [5], let yb

t ∈ Rnb denote the bottom-level series
(i.e., series at the leaf nodes), ya

t ∈ Rna denote the series
formed by aggregation, with n = nb+na, and S ∈ {0, 1}n×nb

denote an aggregation matrix. For a specific hierarchy, obser-
vations for all the levels are derived by

yt = Syb
t ⇐⇒

[
ya
t

yb
t

]
=

[
Sa

Inb

]
yb
t ∀t ∈ [T ], (1)

where Sa ∈ {0, 1}na×nb aggregates the bottom-level series yb
t ,

Inb
is an nb-size identity matrix, and [T ] := {1, . . . , T}. The

notation is illustrated in Fig. 1. Following [7], a convenient
way to represent (1) is given by

Ayt = 0 ∀t ∈ [T ], (2)

where A = [Ina
,−Sa]

⊺ and Ina
is an na-size identity matrix.

Let ŷt+k denote a set of base point forecasts issued at time t
with horizon k, i.e., independent forecasts for each series. The
notion of additive coherency (coherency hereafter) is defined
as follows.

Definition 1. Forecasts ŷt+k are said to be coherent if they
satisfy Aŷt+k = 0.

Typically, base forecasts ŷt+k will not satisfy the coherency
constraints, thus a post-processing step is required. Let us
further define S := {y | Ay = 0} to be the feasible set
that satisfies the linear aggregation constraints. From (1), the
following assumption is in place.

Assumption 1. Historical observations yt are coherent by
construction, i.e., yt ∈ S ∀t ∈ [T ].

This assumption is standard in the forecasting literature. In
the following, we show that a class of non-parametric machine
learning models directly provides coherent point forecasts.
First, we state a standard result from convex analysis.

Proposition 1. Any convex combination of historical obser-
vations yt satisfies the coherency constraints.

Proof. This follows from convexity of S and Assumption 1.

The above holds for additional convex constraints, e.g., non-
negativity of forecasts. A corollary of Proposition 1 is that a

ya1

ya2

yb1 yb2

ya3

yb3 yb4 yb5

S =


1 1 1 1 1
1 1 0 0 0
0 0 1 1 1

I5


Fig. 1: Example of a 3-level hierarchy (top) and the respective
aggregation matrix (bottom) with n = 8, na = 3, and nb = 5.

class of machine learning models, including, among others,
k-nearest neighbors, kernel regression, and decision trees,
directly leads to coherent forecasts. These models are based on
the idea of local averaging or smoothing of historical obser-
vations. For an out-of-sample observation xt+k, we derive a
set of non-negative weights ωt(·), with

∑
t∈[T ] ωt(xt+k) = 1,

and the respective point forecast ŷt+k is given by

ŷt+k =
∑
t∈[T ]

ωt(xt+k)yt, (3)

i.e., a convex combination of historical observations. From
Proposition 1, we see that ŷt+k are coherent. The practical
implication is that off-the-shelf machine learning tools are
readily applicable for end-to-end hierarchical forecasting. This
result is somewhat trivial; nonetheless, it seems to have
escaped the respective forecasting literature.

The above-mentioned models can also be employed for
probabilistic hierarchical forecasting. For example, the se-
lected neighbors yt in a k-nearest neighbor model can be
treated as (coherent) sample path realizations of the joint
predictive density of all the series in the hierarchy. Similarly,
one could treat the output of individual trees within an
ensemble as realizations of the multivariate predictive den-
sity. Therefore, off-the-shelf machine learning tools are also
applicable to probabilistic hierarchical forecasting, presenting
a computationally cheaper alternative to the internal sampling
and projection approach proposed in [7] and the bottom-up
method described in [5].

B. Prescriptive trees for learning with missing values

Next, we examine the case when bottom-level series have
missing values due to equipment failures, but aggregated series
maintain correct measurements. We assume that missing val-
ues are set at 0, therefore Ayt ̸= 0 and yt ̸∈ S. Without loss
of generality, the term “missing” refers both to missing and
erroneous measurements, as long as these are identified, e.g.,
by applying an outlier detection filter, and do not propagate



through the hierarchy. We examine this problem under a
conditional stochastic optimization lens, integrating predictive
and prescriptive analytics [10], and formulate prescriptive trees
for end-to-end hierarchical forecasting. Prescriptive trees [11]
refer to decision trees that output prescriptions rather than
predictions. In our case, and with a slight abuse of terminology,
the prescriptions correspond to hierarchical point forecasts,
which must satisfy the coherency constraints (and possibly
additional ones). Out-of-sample conditional prescriptions are
derived via a weighted Sample Average Approximation (SAA)
of the original stochastic optimization problem [10].

We follow the popular CART method [12] by recursively
partitioning the feature space with locally optimal splits.
Mathematically, a node split separates a feature space R ⊆
Rn×p at feature j and point s into two disjoint partitions
R = Rl ∪ Rr, such that Rl = {t ∈ [T ] | xtj < s} and
Rr = {t ∈ [T ] | xtj ≥ s}, with scalar xtj denoting the t-th
observation of the j-th feature1. Here, we minimize a generic
cost function subject to a set of linear aggregation constraints.
The problem of finding the locally optimal split is given by

min
j,s

min
zl∈S

∑
t∈Rl(j,s)

c(zl;xt) + min
zr∈S

∑
t∈Rr(j,s)

c(zr;xt)

 , (4)

with subscripts l, r referring to the left and right child node,
z{l,r} ∈ Rn being the locally constant decisions (i.e., hier-
archical forecasts), which satisfy the coherency constraints
S, R{l,r} being index sets, and c(·) being the cost function
to be minimized. Thus, the main difference from the CART
algorithm is the requirement for predictions to satisfy a set of
constraints and the use of a generic, task-based loss function.

In a typical regression setting, c(·) would correspond to the
squared ℓ2 norm. Here, we want to ignore missing values,
without disregarding any quality data points. To this end,
we employ an indicator matrix Γ ∈ {0, 1}n×T that checks
whether historical observations are missing. A single entry γ
of Γ is given by

γit =

{
1, if yit is missing
0, otherwise

∀i ∈ [n], t ∈ [T ], (5)

and the cost of sample t is given by

c(·) = ∥yt − (1− γt)⊙ z∥22, (6)

with γt denoting the t-th column vector of Γ and ⊙ denoting
the elementwise multiplication. Note that reliable nodes that
lead to series without missing values are weighted more
heavily in the objective, thus assuming greater importance
during training, which we consider to be a desirable property
for this application.

As discussed, forecasts are required to satisfy the coherency
constraints imposed by S. Note that (4) involves two equality
constrained quadratic sub-problems. An analytical solution is
derived by solving a system of linear equations obtained from

1For brevity of exposition we focus on quantitative features, although it is
straightforward to also include categorical features

the Karush–Kuhn–Tucker (KKT) optimality conditions (see
Appendix A). Other possible constraints, e.g., non-negativity
or monotonicity, can be readily included. In this case, a
general-purpose convex solver can be called on to evaluate
(4). For an out-of-sample observation xt+k point forecasts are
derived via a weighted SAA given by

ŷt+k = argmin
z∈S

∑
t∈[T ]

ωt(xt+k)∥yt − (1− γt)⊙ z∥22. (7)

In general, decision trees are prone to overfitting.
Randomization-based ensembles provide a remedy and lead
to impressive predictive performance [13]; these are readily
applicable within the proposed framework, leading to a pre-
scriptive forest. A single tree is fully compiled, with its leaves
outputting coherent forecasts. The corresponding weights are:

ωt(xt+k) =
I[R(xt) = R(xt+k)]

|R(xt+k)|
, (8)

where R(xt+k) is the leaf that out-of-sample observation xt+k

falls into, | · | the leaf cardinality, and I[·] an indicator function
that checks whether training observation xt falls into R(xt+k).
Lastly, for an ensemble of B trees the weights are given by

ωt(xt+k) =
1

B

B∑
b=1

I[Rb(xt) = Rb(xt+k)]

|Rb(xt+k)|
. (9)

III. EXPERIMENTAL SETTING AND RESULTS

This section details the experiment and respective results.
We examine performance for day-ahead forecasting of wind
and PV production, considering only point forecasts of hourly
resolution. As this case study involves energy production, we
also require forecasts to be non-negative, thus S := {y|Ay =
0,y ≥ 0}; Proposition 1 holds as S remains convex.

1) Data: We use power measurements from 60 wind tur-
bines and 20 PV parks located in mid-west France, with a
nominal aggregated capacity of 120 MW and 4 MW, respec-
tively. The available data sets span the period from December
2018 to September 2020 with an hourly resolution. The first
15 months of data are used for training and tuning, with the
remaining 5 months used for testing the performance. For
the PV data, only measurements recorded at a zenith angle
under 85o are considered, thus the effective sample size is
smaller. Table I provides a summary of the two data sets.
We examine performance in point forecasting, with a horizon
of 12-36 hours ahead, which is typical in electricity market
applications. In both cases, a 3-level hierarchy is considered.
Wind production data are naturally aggregated at park level (13
wind parks in total); for the PV production data we construct a
fictitious hierarchy based on spatial k-means clustering. Fig. 2
provides an overview of the geographical distribution of the
power plants.

For feature data we employ a grid of numerical weather
predictions (NWPs) obtained from ECMWF, issued daily at
00:00 UTC with a spatial resolution of 0.1o × 0.1o. The
5 extracted features are: surface solar radiation downwards,
100m U- and V-wind speeds, 2m temperature, and total cloud



TABLE I: Data set description

Train / test sample size nb na Capacity (MW)

Wind 13875 / 3671 60 14 120
PV 6355 / 2322 20 4 4

0.2 0.0 0.2 0.4 0.6 0.8
Longitude

46.0
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tit
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Fig. 2: Overview of the NWP grid points and the wind and
PV plants.

cover. Historical production lags are not considered, as these
typically do not improve forecasts in the horizon of interest.
Further, including historical lags would introduce missing
values in x, which is outside of our scope. For the i-th
series, respective feature vector xit comprises the NWPs from
the closest grid point in terms of Euclidean distance; when
forecasting a group of series in one-shot, respective features
are concatenated in a single vector.

2) Verification: Individual production data are normalized
by the nominal capacity and performance is assessed in terms
of normalized root mean squared error (NRSME). Further,
following [4], the Scaled RMSE (SRMSE) is used by dividing
by the total number of child notes. For a set of T forecasts,
the SRMSE for the i-th series is defined as:

SRMSEi =

 1

T

∑
t∈[T ]

(
yit − ŷit

si

)2
 1

2

, (10)

where si the number of child nodes.
3) Benchmark models: We compare the efficacy of a va-

riety of post-processing and end-to-end learning approaches.
Note that for post-processing methods, any learning algorithm
can be used to generate base forecasts. To allow for a fair
comparison, similar base learners are considered in all cases,
i.e., randomized tree ensembles based either on the Random
Forest [14] or the ExtraTrees [15] algorithm. We focus on tree
ensembles exclusively, due to their impressive performance
[13]. The following approaches are examined:

• BASE: Base forecasts with a Random Forest model for
each series, without reconciliation. Typically, these will
not be coherent.

• BASE-BU: Bottom-up reconciliation applied to the base
forecasts of the bottom-level series.

• BASE-PRJ: Base forecasts post-processed with a Eu-
clidean projection step. The reconciled forecasts are given

by
argmin

y∈S
∥y − ŷt+k∥2, (11)

where ŷt+k are the base forecasts at time t with horizon
k. Alternative reconciliation methods, such as MinT [2]
and constrained multivariate least squares [4], were also
examined. However, as these methods require additional
training, results with missing values were not robust and
thus are omitted.

• EtE: A single Random Forest model predicting the whole
hierarchy, to examine the efficacy of end-to-end learning.

• EtE-PF: End-to-end learning with prescriptive forests to
deal with missing values.

In all cases, except for EtE-PF, observations with missing
values are disregarded prior to training. For the EtE approach,
this means that observation yt is disregarded if at least two
of the n series have a missing value, thus this approach deals
with the largest loss of information. A grid search is performed
to tune the hyperparameters of the Random Forest models.
For the EtE-PF, we employ random node splits to speed-up
computations, following the ExtraTrees algorithm [15], and
similarly perform a grid search for tuning.

4) Results: We simulate the effect of missing values due
to equipment malfunctions by sampling a subset of bottom-
level nodes and setting a percentage of training observations
to zero. We vary both the number of nodes and the percentage
of missing values per node and repeat the experiment 5 times
to derive aggregate statistics. For simplicity, we assume that
missing values occur at the same timestamp for all nodes.

Fig. 3 shows the aggregated SRMSE as a function of the
number of sampled nodes and the percentage of missing values
per node. Overall, the following are observed: i) end-to-end
learning (EtE) outperforms post-processing methods but is
also more heavily affected by missing values, ii) post-pro-
cessing methods are robust against missing values, and iii) the
proposed EtE-PF combines the best of both worlds. Re-
garding the wind data set (Fig. 3a), both EtE and EtE-PF
show improved accuracy for lower percentage of missing
values, with the performance of EtE gradually degrading
as the percentage of missing values increases. Conversely,
the EtE-PF proves to be robust, consistently outperforming
the reconciliation methods. This result persists both for the
case of an increased number of malfunctioning nodes and
an increased percentage of missing values per node. Further,
BASE-PRJ performs, albeit slightly, better than the BASE and
BASE-BU, corroborating previous findings on the benefits of
post-processing. Similar results are observed for the PV data
set (Fig. 3b), which has a smaller sample size. Overall, the
relative increase in average SRMSE for EtE from the smallest
(5%) to the largest (50%) percentage of missing observations
is 0.8% for the wind data set and 0.6% for the PV data set.

By examining the accuracy of end-to-end learning as a
function of the number of selected nodes and the percentage
of missing observations we observe that the former has a
negligible effect in overall performance; this is partly attributed
to the design of the experiment, as missing values occur at
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Fig. 3: Aggregated SRMSE for the hierarchy as a function of the number of sampled nodes and the percentage of missing
values per node over 5 iterations. Bars correspond to one standard deviation.

TABLE II: Average SRMSE (± one standard deviation) per hierarchy level. The best-performing model is underlined in bold
font. Bold font indicates that a result does not differ from the best-performing model at the 1% level (Welch’s t-test).

Data set Level (# nodes) BASE BASE-BU BASE-PRJ EtE EtE-PF

Wind
1 0.0969 ± 0.0002 0.0977 ± 0.0001 0.0968 ± 0.0002 0.0972 ± 0.0005 0.0971 ± 0.0003
2 (13) 0.1327 ± 0.0132 0.1322 ± 0.0132 0.1326 ± 0.0123 0.1306 ± 0.0128 0.1305 ± 0.0127
3 (60) 0.1453 ± 0.0144 0.1453 ± 0.0144 0.1452 ± 0.0138 0.1429 ± 0.0141 0.1428 ± 0.0141

PV
1 0.0761 ± 0.0001 0.0762 ± 0.0001 0.0759 ± 0.0001 0.0765 ± 0.0005 0.0764 ± 0.0002
2 (3) 0.0812 ± 0.0040 0.0811 ± 0.0041 0.0811 ± 0.0037 0.0808 ± 0.0035 0.0807 ± 0.0035
3 (20) 0.1008 ± 0.0176 0.1008 ± 0.0176 0.1009 ± 0.0170 0.0980 ± 0.0153 0.0980 ± 0.0153

the same timestamp across all nodes. On the contrary, the
percentage of missing values has a more pronounced effect.
In order to present a comprehensive study, we repeat the above
experiment only for EtE-PF with missing values occurring
at different timestamps. The results presented in Fig. 4 are
similar to the ones achieved before, with the forecast accuracy
decreasing only slightly as the number of nodes increases.
Thus, we conclude that the proposed EtE-PF successfully
mitigates the adverse effects of missing values in the lower
levels of the hierarchy.

Lastly, we examine performance for each level of the
hierarchy. From Table II we observe that in all cases the
SRMSE is lower for higher levels of aggregation due to
the spatial smoothing effect. The effect is more pronounced

for the wind production data, which we partly attribute to
the larger number of wind production series examined. For
both data sets, the EtE-PF leads to the best performance
in the 2nd and 3rd (bottom) level, while BASE-PRJ leads
to the best performance for the 1st (top) level, with the
results being, generally, statistically significant. Overall, both
EtE and EtE-PF consistently improve performance for the
bottom-level nodes, highlighting the benefits of exploiting
dependencies across time series in an end-to-end learning
setting. Note that the results shown in Table II are obtained
over all the iterations (for uniform timestamps); the difference
between EtE-PF and EtE becomes statistically significant
if we only examine adverse scenarios (higher percentage of
missing values), as the performance of EtE declines.
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IV. CONCLUSIONS

In this work, we examined the problem of forecasting
the production of geographically distributed renewable energy
sources with missing values under a conditional stochastic
optimization lens. First, we showed that a large class of
non-parametric machine learning models generates coherent
hierarchical forecasts. The main practical implication is that
off-the-shelf machine learning tools can be utilized for hier-
archical forecasting, presenting an easy way to create bench-
marks. Then, we proposed a prescriptive trees algorithm for
end-to-end learning with missing values. Performance was
evaluated in two case studies of wind and PV production
point forecasting on a day-ahead horizon. Overall, end-to-end
learning showed improved aggregate performance against two-
step reconciliation approaches; for the bottom-level series this
improvement was 1.7% and 2.8% for the wind and PV data,
respectively. Conversely, reconciliation approaches proved to
be more robust against the number of missing values. The
proposed solution managed to combine the best of both worlds
as it maintained improved performance while also mitigating
the adverse effect of missing data for end-to-end learning.

In future work, we plan to study probabilistic hierarchical
forecasting with missing values and also examine the effect of
network losses on coherency. Another interesting direction is
to examine missing or corrupt values in the feature vector.
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APPENDIX

This section describes analytical solutions for the SAA sub-
problems in (4). For t ∈ [T ], the respective SAA is given by

min
z

1

2

∑
t∈[T ]

∥yt − (1− γt)⊙ z∥22 | Az = 0

 . (12)

For simplicity, the objective is scaled. The KKT optimality
conditions for this problem can be written as∑

t∈[T ]

(yt − (1− γt)⊙ z) +A⊺v = 0,Az = 0, (13)

where v ∈ Rna denotes the dual variables. We write (13) as[
P −A⊺

A 0

] [
z
v

]
=

[∑
t∈[T ] yt

0

]
, (14)

where P = diag
(∑

t∈[T ](1− γ1t), . . . ,
∑

t∈[T ](1− γnt)
)

is
an n-size diagonal matrix whose entries equal the number of
non-missing values per series. Hence, we need to solve this
set of n+ na linear equations in the n+ na variables. Lastly,
note that it is possible for P to become singular; in this case,
the least-squares solution of (14) can be used.
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