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Abstract—Power systems feature an inherent hierarchical
structure. Ensuring that forecasts across a hierarchy are coherent
presents an important challenge in energy forecasting. In this con-
text, proposed reconciliation or end-to-end learning approaches
assume coherent historical observations by construction; this as-
sumption, however, is often violated in practice due to equipment
failures. This work proposes an end-to-end learning approach
for hierarchical forecasting that directly handles missing values.
First, we show that a class of off-the-shelf machine learning
algorithms already leads to coherent hierarchical forecasts. Next,
we describe a conditional stochastic optimization approach based
on prescriptive trees for end-to-end learning with missing values,
without imputation or disregarding of quality observations. We
validate the proposed approach in two case studies comprising
60 wind turbines and 20 photovoltaic parks, respectively. The
empirical results show that end-to-end learning outperforms two-
step reconciliation approaches and that the proposed solution
mitigates the adverse effect of missing values.

Index Terms—hierarchical forecasting, missing data, renewable
energy forecasting

I. INTRODUCTION

The ongoing digitization and decentralization of modern
power systems brings a plethora of new challenges. To facil-
itate decision-making across various aggregation levels, fore-
casts of geographically distributed renewable energy sources
should adhere to a set of aggregation constraints imposed by a
hierarchical structure; this presents an increasingly important
challenge in energy forecasting.

Bottom-up and top-down comprise traditional approaches
for hierarchical forecasting [1], i.e., forecasting a group of
time series that satisfy a set of linear aggregation constraints.
The bottom-up approach involves forecasting bottom-level
series and aggregating them; however, it usually suffers from
poor performance as the signal-to-noise ratio tends to be
lower at bottom-level series. On the other hand, the top-
down approach may introduce forecast bias. Thus, a significant
body of research focuses on two-step methods where each
series is modeled independently, with individual (termed base)
forecasts being reconciled in a post-processing step. In [2]
unbiased base forecasts are reconciled by minimizing the trace
of the forecast error covariance matrix. Authors of [3] propose
reconciliation by weighted projection of base forecasts. A

Parts of this research were carried in the frame of the Smart4RES project
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constrained multivariate regression framework is described in
[4], considering both a batch and an online learning setting,
applied in wind power forecasting. Moving beyond point
estimation, [5] describes a bottom-up approach for coherent
probabilistic forecasting, while [6] proposes a block bootstrap
procedure for probabilistic photovoltaic (PV) production fore-
casts. Recently, end-to-end learning, i.e., a single model to
predict all series in one-shot, has begun to attract attention, as
it directly leverages dependencies across series during training.
A deep learning model, involving an internal projection step,
is presented in [7] for coherent probabilistic forecasts. Lastly,
a general framework for end-to-end forecasting of predictive
quantiles is proposed in [8].

A recurring assumption in the literature is that training ob-
servations are coherent by construction. In practice, however,
missing or erroneous values are commonplace due to com-
munication failures or equipment malfunctions. We identify
two broad approaches to deal with missing values. The first
is to simply ignore training observations with missing values,
which is typically applied in the previously mentioned works.
However, in an end-to-end learning setting with a single model
predicting all the series, disregarding observations leads to
underutilizing the available data. Alternatively, missing values
can be imputed; in turn, this raises the problem of ensuring
imputed values are coherent. To this end, [9] proposed an
iterative algorithm to impute missing values while exploiting
dependencies across series. In the present work, we examine
the case of missing values in the lower levels of the hierarchy,
but accurate measurements in the upper levels, which we
believe to be of practical interest in power system applications.
For example, smart-meters might fail to transmit consumption
data at a household level, while the respective distribution
feeder properly measures aggregated demand.

In short, our contributions are as follows:
• First, we show that a class of non-parametric machine

learning algorithms directly derives coherent point and
probabilistic hierarchical forecasts, which allows employ-
ing off-the-shelf tools in an end-to-end learning setting.

• Next, we describe a decision tree algorithm for end-to-
end forecasts with missing values which does not require
imputation and fully utilizes the available training data.

• Lastly, we validate the proposed solution in two case stud-
ies of day-ahead forecasting considering an aggregation



of 60 wind turbines and 20 PV parks, respectively.
The rest of this paper is organized as follows. Section II

introduces the mathematical background and the proposed
methodology. Section III presents the experimental setting and
the results. We conclude and provide directions for further
research at Section IV.

II. BACKGROUND AND METHODOLOGY

A. Hierarchical forecasting

We examine a group of time series that satisfy a set of
linear aggregation constraints, thus forming a hierarchy. Let
yit ∈ R denote a realization of the i-th series, associated with
features xit ∈ Rp, for t = 1, . . . , T . We define yt ∈ Rn as the
realization of the n series and xt := [x1t, . . . ,xnt] ∈ Rn×p.
Following [5], let yb

t ∈ Rnb denote the bottom-level the series
(i.e., series at the leaf nodes) and ya

t ∈ Rna denote series
formed by aggregation, with n = nb + na. Lastly, let S ∈
{0, 1}n×nb be an aggregation matrix. For a specific hierarchy,
observations for all levels are derived by

yt = Syb
t ⇐⇒

[
ya
t

yb
t

]
=

[
Sa

Inb

]
yb
t , ∀t ∈ [T ] (1)

where Sa ∈ {0, 1}na×nb aggregates the bottom-level series yb
t ,

Inb
is an nb-size identity matrix, and [T ] := {1, . . . , T}. The

notation is illustrated in Fig. 1. Following [7], a convenient
way to represent (1) is given by

Ayt = 0, ∀t ∈ [T ], (2)

where A = [Ina
,−Sa]

⊺ and Ina
is an na-size identity matrix.

Let ŷt+k denote a set of base point forecasts issued at time t
with horizon k, i.e., independent forecasts for each series. The
notion of additive coherency (coherency hereafter) is defined
as follows.

Definition 1. Forecasts ŷt+k are said to be coherent if they
satisfy Aŷt+k = 0.

Typically, base forecasts ŷt+k will not satisfy the coherency
constraints, thus a post-processing step is required. Let us
further define S := {y | Ay = 0} to be the feasible set
that satisfies the linear aggregation constraints. From (1), the
following assumption is in place.

Assumption 1. Historical observations yt are coherent by
construction, i.e., yt ∈ S ∀t ∈ [T ].

This assumption is standard in the forecasting literature. In
the following, we show that a class of non-parametric local
learning algorithms directly leads to coherent point forecasts.

Proposition 1. Any convex combination of historical obser-
vations yt satisfies the coherency constraints.

Proof. This is a direct result of convexity of S.

The above proposition holds for additional convex con-
straints, for example non-negativity of forecasts. A corollary
of Proposition 1 is that a large class of non-parametric ma-
chine learning models directly leads to coherent hierarchical

ya1

ya2

yb1 yb2

ya3

yb3 yb4 yb5

S =


1 1 1 1 1
1 1 0 0 0
0 0 1 1 1

I5


Fig. 1: Example of a 3-level hierarchy (top) and the respective
aggregation matrix (bottom) with n = 8, na = 3, and nb = 5.

point forecasts. This class includes, among others, k-nearest
neighbors, kernel-based methods, decision trees, and tree en-
sembles. For an out-of-sample feature observation xt+k, all of
these models derive a set of non-negative weights ωt(·), with∑

t∈[T ] ωt(xt+k) = 1, and the respective point forecast ŷt+k

given by
ŷt+k =

∑
t∈[T ]

ωt(xt+k)yt, (3)

i.e., a convex combination of historical observations. The
practical implication is that off-the-self machine learning
algorithms are readily applicable for end-to-end hierarchical
forecasting. This result is somewhat trivial; nonetheless, it
seems to have escaped the respective forecasting literature.

The above-mentioned class of models can also be em-
ployed for probabilistic hierarchical forecasting. For example,
historical observations yt identified as neighbors in a k-
nearest neighbor model can be treated as (coherent) sample
path realizations of the joint predictive density of all the
series in the hierarchy. Similarly, one could treat the output
of individual trees within a tree ensemble as realizations of
the multivariate predictive density. Therefore, these off-the-
shelf machine learning models are readily applicable to the
problem probabilistic hierarchical forecasting, presenting a
computationally cheaper alternative to the internal sampling
and projection approach proposed in [7] and the bottom-up
method described in [5].

B. Dealing with missing values

Next, we examine the case where bottom-level series have
missing values due to equipment failures, but aggregated
series maintain correct measurements. For simplicity, assume
missing values are set at 0, therefore Ayt ̸= 0 and yt are not
coherent. Without loss of generality the term “missing” refers
both to missing and erroneous measurements, as long as these
are identified and do not propagate through the hierarchy. We
study this problem under a conditional stochastic optimization



lens, integrating predictive and prescriptive analytics [10],
and formulate prescriptive trees for end-to-end hierarchical
forecasting. Prescriptive trees [11] refer to decision trees
that output prescriptions rather than predictions. In our case,
and with a slight abuse of terminology, the prescriptions
correspond to hierarchical point forecasts, which must satisfy
the coherency (and possibly additional) constraints. Out-of-
sample conditional prescriptions are derived via a weighted
Sample Average Approximation (SAA) of the original stochas-
tic optimization problem [10].

We follow the popular CART method [12] by recursively
partitioning the feature space with locally optimal splits.
Mathematically, a node split separates a feature space R ⊆
Rn×p at feature j and point s into two disjoint partitions
R = Rl ∪ Rr, such that Rl = {t ∈ [T ] | xtj < s} and
Rr = {t ∈ [T ] | xtj ≥ s}, with scalar xtj denoting the t-th
observation of the j-th feature1. Here, we minimize a generic
cost function subject to a set of linear aggregation constraints.
The problem of finding the locally optimal split is given by

min
j,s

min
zl∈S

∑
t∈Rl(j,s)

c(zl;xt) + min
zr∈S

∑
t∈Rr(j,s)

c(zr;xt)

 , (4)

with subscripts l, r referring to the left and right child node,
z{l,r} ∈ Rn being the locally constant decisions (i.e., hier-
archical forecasts), which satisfy the coherency constraints
S, R{l,r} are index sets, and c(·) is the cost function to
be minimized. Thus, the main difference from the CART
algorithm is requiring tree predictions to satisfy a set of
constraints and using a generic, task-based loss function.

In a typical regression setting, c(·) would correspond to the
squared ℓ2 norm. Here, we want to ignore missing values,
without disregarding any quality data points. To this end, we
employ an indicator matrix Γ ∈ Rn×T that checks whether
historical observations are missing. A single entry γ of Γ is
given by

γit =

{
1, if yit is missing
0, otherwise

∀i ∈ [n], t ∈ [T ], (5)

and the cost function to be minimized is given by

c(·) = ∥yt − (1− γt)⊙ z∥22, (6)

with γt denoting the t-th column vector of Γ and ⊙ the
elementwise multiplication. Note that series without missing
values are weighted more heavily in the objective, therefore,
reliable nodes within the hierarchy assume greater importance
during training, which we consider to be a desirable property
for this application.

As discussed, forecasts are required to satisfy the coherency
constraints imposed by S. Note the subproblems in (4) are
equality constrained quadratic problems. It can be shown that
an analytical solution exists, which is equivalent to solving a
system of linear equations derived from the KKT optimality

1for brevity of exposition we focus on quantitative features, although it is
straightforward to also include categorical features

conditions (see Appendix A). Other possible constraints, e.g.,
non-negativity or monotonicity, can be readily included. In this
case, a general-purpose convex solver can be called to evaluate
(4). For an out-of-sample observation xt+k point forecasts are
derived via a weighted SAA given by

ŷt+k = argmin
z∈S

∑
t∈[T ]

ωt(xt+k)∥yt − (1− γt)⊙ z∥22. (7)

In general, decision trees are highly prone to overfitting.
Randomization-based ensembles provide a remedy and lead to
impressive predictive performance; these are readily applicable
within the proposed framework, leading to a prescriptive for-
est. A single tree is fully compiled, with its leaves outputting
coherent forecasts. The corresponding weights are given by

ωt(xt+k) =
I[R(xt) = R(xt+k)]

|R(xt+k)|
, (8)

where R(xt+k) is the leaf that out-of-sample observation xt+k

falls into, | · | the leaf cardinality and I[·] an indicator function
that checks whether training observation xt falls into R(xt+k).
Lastly, for an ensemble of B trees the weights are obtained

ωt(xt+k) =
1

B

B∑
b=1

I[Rb(xt) = Rb(xt+k)]

|Rb(xt+k)|
. (9)

III. EXPERIMENTAL SETTING AND RESULTS

This section details the experiment and respective results.
We examine performance for day-ahead hourly forecasting of
wind and PV production, examining only point forecasting.
As this case study involves renewable energy forecasting, we
also require forecasts to be non-negative, thus S := {y|Ay =
0,y ≥ 0}; Proposition 1 holds as S remains convex.

1) Data: For the experiments, we use power measurements
from 60 wind turbines and 20 PV parks located in mid-west
France, with a nominal capacity of 120 MW and 4 MW,
respectively. The available data sets span the period from
December 2018 to September 2020 with an hourly resolution.
Approximately 15 months of data are used for training and
tuning, with the remaining 5 months used for testing the
performance. For the PV data, only measurements recorded
at a zenith angle smaller than 85o are considered, thus the
effective sample size is smaller. Table I provides a summary
of the two data sets. We examine performance in day-ahead
point forecasting, with a horizon of 12-36 hours ahead. This
setting is typical in market-related applications. In both cases,
a 3-level hierarchy is considered. Wind production data are
naturally aggregated at park level (13 in total); for the PV
production data we construct a fictitious hierarchy based on
spatial k-means clustering. Figure 2 provides an overview of
the geographical distribution of the power plants.

For feature data we consider a grid of numerical weather
predictions (NWPs) obtained from ECMWF, issued daily at
00:00 UTC with a spatial resolution of 0.1o× 0.1o. The 5 ex-
tracted features are: surface solar radiation downwards, 100m
U- and V-wind speed, 2m temperature and total cloud cover.
We do not consider historical production lags as features, as



TABLE I: Data set description

Train / test sample size nb na Capacity (MW)

Wind 13875 / 3671 60 14 120
PV 6355 / 2322 20 4 4

0.2 0.0 0.2 0.4 0.6 0.8
Longitude

46.0

46.2

46.4

46.6

46.8

La
tit

ud
e

PV
Wind
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Fig. 2: Overview of the NWP grid points and the wind and
PV plants.

these typically do not improve forecasts in the horizon of
interest. Further, including historical lags would also introduce
missing values in x, which is outside of our scope. For the i-th
series, respective feature vector xit comprises the NWPs from
the closest grid point in terms of Euclidean distance; when
forecasting a group of series in one-shot, respective features
are concatenated in a single vector.

2) Verification: Individual production data are normalized
by the nominal capacity and performance is assessed in terms
of normalized root mean squared error (NRSME). Further,
following [4], the Scaled RMSE (SRMSE) is used by dividing
by the total number of child notes. For a set of T forecasts,
the SRMSE for the i-th series is defined as:

SRMSEi =

 1

T

∑
t∈[T ]

(
ϵit
si

)2
 1

2

, (10)

where si the number of child nodes.
3) Benchmark models: We compare the efficacy of a va-

riety of post-processing and end-to-end learning approaches.
Note that for post-processing methods, any learning algorithm
can be used to generate base forecasts. To allow for a fair
comparison, similar base learners are considered in all cases,
i.e., randomized tree ensembles based either on the Random
Forest [13] or the ExtraTrees [14] algorithm. The following
approaches are examined:

• BASE: Base forecasts with a Random Forest model for
each series, without reconciliation. Typically, these will
not be coherent.

• BASE-BU: Bottom-up reconciliation applied to the base
forecasts of the bottom-level series.

• BASE-PRJ: Base forecasts are post-processed with a
Euclidean projection step. The reconciled forecasts are
given by

argmin
y∈S

∥y − ŷt+k∥2, (11)

where ŷt+k are the base forecasts at time t with horizon
k. Alternative reconciliation methods, such as MinT [2]
and constrained multivariate least squares [4], were also
examined. However, as these methods require additional
training, results with missing values were not robust and
thus are omitted.

• EtE: A single Random Forest model predicting the whole
hierarchy, to examine the efficacy of end-to-end learning.

• EtE-PF: End-to-end learning with prescriptive forests to
deal with missing values.

In all cases except for EtE-PF, missing values are disre-
garded during training. For the EtE approach, this means that
training observation yt is disregarded if at least two of the
n series have a missing value, thus we expect this approach
to be affected the most from missing values. A grid search is
performed to tune the hyperparameters of the Random Forest
models. For the EtE-PF, we employed random node splits
to speed-up computations, following the ExtraTrees algorithm
[14], and similarly performed grid search for hyperparameter
tuning.

4) Results: We simulate the effect of missing values due to
equipment malfunctions by sampling a subset of bottom-level
nodes and permutating a percentage of training observations.
We vary both the number of nodes and the percentage of
missing values per node and repeat the experiment 5 times
to derive aggregate statistics. For simplicity, we assume that
missing values occur at the same timestamp for all nodes,
therefore the number of malfunctioning nodes by design does
not affect the EtE approach.

Fig. 3 shows aggregated SRMSE as a function of sampled
nodes and percentage of missing values per node. Overall,
the following are observed: i) end-to-end learning (EtE)
outperforms post-processing methods but is also more heavily
affected by missing values, ii) post-processing methods are
robust against missing values, and iii) the proposed EtE-PF
combines the best of both worlds. Regarding the results for the
wind data set (Fig. 3a), both EtE and EtE-PF improve accu-
racy for a low number of missing values, with the performance
of EtE gradually degrading as the percentage of missing
values increases. On the other hand, EtE-PF is proven to be
robust against missing values, consistently outperforming the
reconciliation methods; this result persists both for the case
of increased number of malfunctioning nodes and increased
percentage of missing values per node. Lastly, BASE-PRJ
shows improved, albeit slightly, performance compared to
BASE and BASE-BU, corroborating previous findings on the
benefits of post-processing. Similar results are observed for the
PV data set (Fig. 3b), which has a smaller size. Overall, the
relative increase in average SRMSE for EtE from the smallest
(5%) to the largest (50%) percentage of missing observations
is 0.8% for the wind and 0.6% for the PV data set.

We further study the accuracy of end-to-end learning ap-
proaches as a function of number of sampled nodes and
percentage of missing observations. On one hand, the number
of malfunctioning nodes turns out to have a negligible effect
in overall performance; this is partly attributed to the design of
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Fig. 3: Aggregated SRMSE for the hierarchy as a function of the number of sampled nodes and the percentage of missing
values per node over 5 iterations. Bars correspond to one standard deviation.

TABLE II: Average SRMSE (± one standard deviation) per hierarchy level, with the best perfoming model highlighted.
Superscript ∗ indicates result differs from the best performing model at the 1% level (Welch’s t-test).

Data set Level (# nodes) BASE BASE-BU BASE-PRJ EtE EtE-PF

Wind
1 0.0969∗± 0.0002 0.0977∗± 0.0001 0.0968 ± 0.0002 0.0972∗± 0.0005 0.0971∗± 0.0003
2 (13) 0.1327∗± 0.0132 0.1322∗± 0.0132 0.1326∗± 0.0123 0.1306 ± 0.0128 0.1305 ± 0.0127
3 (60) 0.1453∗± 0.0144 0.1453∗± 0.0144 0.1452∗± 0.0138 0.1429 ± 0.0141 0.1428 ± 0.0141

PV
1 0.0761∗± 0.0001 0.0762∗± 0.0001 0.0759 ± 0.0001 0.0765∗± 0.0005 0.0764∗± 0.0002
2 (3) 0.0812 ± 0.0040 0.0811 ± 0.0041 0.0811 ± 0.0037 0.0808 ± 0.0035 0.0807 ± 0.0035
3 (20) 0.1008∗± 0.0176 0.1008∗± 0.0176 0.1009∗± 0.0170 0.0980 ± 0.0153 0.0980 ± 0.0153

the experiment, as missing values occur at the same timestamp
for all nodes. On the other hand, the percentage of missing
values has a more pronounced effect, see Fig. 4 for an
illustration. It is evident that the performance of EtE steadily
declines, while EtE-PF attains similar results regardless the
percentage, thus successfully mitigating the adverse effects of
missing values.

Lastly, we examine performance for each level of the
hierarchy. From Table II we observe that for all the examined
models the SRMSE is lower for higher levels of aggregation
due to the smoothing effect. This effect is more pronounced for
the wind production data, which we partly attribute to the fact
that a larger number of wind production series are examined.

For both data sets, the EtE-PF leads to the best performance
in the 2nd and 3rd (bottom) level, while BASE-PRJ leads to
the best performance for the 1st (top) node, with the results
being, generally, statistically significant. Overall, both EtE
and EtE-PF consistently improve performance for bottom-
level nodes, highlighting the benefits of exploiting dependen-
cies across time series in an end-to-end learning setting. Note
that results in Table II are obtained over all the considered
experiments; when examining only adverse scenarios (higher
percentage of missing values) the difference between EtE-PF
and EtE becomes statistically significant, as the performance
of EtE declines.
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IV. CONCLUSIONS

In this work, we examined the problem of forecasting
the production of geographically distributed renewable energy
sources with missing values under a conditional stochastic
optimization lens. First, we showed that a large class of non-
parametric machine learning algorithms produces coherent
hierarchical forecasts. The main practical implication is that
off-the-shelf machine learning algorithms can be utilized for
hierarchical forecasting, presenting an easy way to create
benchmarks. Then, we proposed a prescriptive trees algorithm
for end-to-end learning with missing values. Performance was
evaluated in two case studies of wind and PV production
point forecasting in the day-ahead horizon. On one hand,
end-to-end learning showed improved performance against
two-step reconciliation approaches; for the bottom-level series
this improvement was 1.7% and 2.8% for the wind and PV
data, respectively. On the other hand, reconciliation approaches
proved to be more robust against the number of missing values.
The proposed solution managed to combine the best of the two
worlds as it led to improved performance while also mitigating
the adverse effect of missing data for end-to-end learning.

In future work, we plan to study probabilistic hierarchical
forecasting with missing values and extend to other relevant
power systems case studies, such as demand forecasting.
Another interesting direction is to also examine missing or
corrupt values in the feature vector.
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APPENDIX

In this section we show how to derive analytical solutions
for the SAA subproblems that arise in (4). Consider evaluating
the SAA for t ∈ [T ] given by

min
z

1

2

∑
t∈[T ]

∥yt − (1− γt)⊙ z∥22 | Az = 0

 . (12)

For simplicity, the objective is scaled. The KKT optimality
conditions for this problem can be written as∑

t∈[T ]

(yt − (1− γt)⊙ z) +A⊺v = 0,Az = 0, (13)

where v ∈ Rna denotes the dual variables. We write (13) as[
P −A⊺

A 0

] [
z
v

]
=

[∑
t∈[T ] yt

0

]
, (14)

where P = diag
(∑

t∈[T ](1− γ1t), . . . ,
∑

t∈[T ](1− γnt)
)

is
an n-size diagonal matrix whose entries equal the number of
non-missing values for each series. Therefore, we need to solve
this set of n + na linear equations in the n + na variables.
Lastly, note it is possible for P to become singular; in this
case, the least-squares solution of (14) can be used.


	Introduction
	Background and Methodology
	Hierarchical forecasting
	Dealing with missing values

	Experimental Setting and Results
	Data
	Verification
	Benchmark models
	Results


	Conclusions
	References
	Appendix

