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Path-Connectedness of the Hyperspace of Compact Subsets of R n

When one considers the collection H (R n ) of all compact subsets of R n and equip it with a topology, many questions can be asked about the topological space one ends up with. This is an example of a hyperspace, a mathematical object which has been studied in a more abstract setting since the beginning of the 20th century. Here we give an elementary proof of the path-connectedness of H (R n ), with the topology induced by the Hausdoff metric, by exploring the vector structure of R n and using only basic ideas of topology of metric spaces that undergraduate students with just a basic knowledge of these concepts will be able to understand.

H (X) and Hausdorff Metric

Given a metric space (X, d), take the collection of all non-empty compact subsets of X and denote it by H (X). When one provides a topology to this collection, it is called a hyperspace.

In this text we will provide this collection with a metric, the Hausdorff metric, and use the topology induced by it. First we start with the usual idea of distance between a point and a set: Definition 1.0.1. Given a metric space (X, d), let B be a non-empty subset of X. If x ∈ X, the distance between x and B is defined as:

d(x, B) = inf b∈B d(x, b).

□

Recall that if B is compact, then the infimum is attained so one can just use the minimum. This notion could be extended as usual to define the distance between subsets, taking the infimum over the first entry, but then the distance between every pair of distinct subsets that intersect each other would be zero which would do nothing to help us distinguish them. Worse, this would not give us a metric, so we will use the supremum instead. Definition 1.0.2. Given a metric space (X, d), let A and B be points of H (X), that is, compact and non-empty subsets of X. It is important that this definition and what it implies is well understood by the reader, so we illustrate it with an example. Fixing a point a of A, the point b of B that is nearer to a, hence the one that realizes d(a, B), is the point in the intersection of B and the orthogonal line to B that passes through a, whose length is 1. This is the case that draws our attention to the fact that we still do not have a metric since d is not symmetric. Indeed, fixed b, there are two possibilities: either there exists a line passing through b and orthogonal to A or there is not such a line. In the first case, as we did when calculating d(A, B), we have d(b, A) = 1, while in the other case we have d(b, A) > 1 by the triangle inequality. In fact, this happens to every point of b with x coordinate greater than 1 and in this situation the point a ∈ A that minimizes the distance is the right end of A. 

(B, A). □

There is a simple way to solve this problem which will lead us to the already mentioned (but not yet defined) Hausdorff metric: Proposition 1.0.5 (Hausdorff metric). Given a metric space (X, d), let A and B be elements of H (X). The function h : X × X → R given by

h(A, B) = max{d(A, B), d(B, A)} is a metric on H (X).
Proof: To show that h is a metric, we need to prove that given A, B and C in H (X), we have

(i) 0 ≤ h(A, B) < ∞; (ii) h(A, B) = 0 if and only if A = B; (iii) h(A, B) = h(B, A); (iv) h(A, B) ≤ h(A, C) + h(C, B).
From the definition of h it can be immediately seen that (i) and (iii) are satisfied. In order to prove (ii), notice that if A = B, for every a ∈ A we have d(a, A) = 0, thus h(A, A) = 0. Thus, doing the same thing for d(B, A), we conclude that

h(A, B) = max{d(A, B), d(B, A)} ≤ max{d(A, C) + d(C, B), d(B, C) + d(C, A)} ≤ max{d(A, C), d(C, A)} + max{d(B, C), d(C, B)} = h(A, C) + h(C, B).
■ This metric space (H (X) , h), called by Barnsley "the space where fractals live"[1, pp. 27], is an example of a hyperspace and this metric is the so-called Hausdorff metric or distance, and appeared first in Hausdorff's book Grundzüge der Mengenlehre in 1914.

Before moving on to the next section, let us consider an important example that will help a lot in the understanding of our main result.

Example 1.0.6. Consider the rectangular curves below, denoted by A and B respectively. We will compute h(A, B) keeping always in mind that the sets A and B are just the boundaries of the rectangles, excluding their interiors. 

B A d(a, B) = 1 1 < d(a, B) < 2 d(a, B) = 2 2 < d(a, B) < 2.5 d(a, B) = 2.5
Therefore, d(A, B) = 2.5. We do the same to compute d(B, A):

B A d(b, A) = 1 1 < d(b, A) < √ 5 d(b, A) = √ 2 √ 5 < d(b, A) < √ 13 d(b, A) = √ 5 d(b, A) = 3 d(b, A) = √ 10 d(b, A) = 2 d(b, A) = √ 13 So d(B, A) = √ 13 and consequently h(A, B) = √ 13. □ Remark 1.0.7.
In other texts the hyperspace of compact subsets of X is denoted as K(X) or 2 X as in [START_REF] Illanes | Hyperspaces: fundamentals and recent advances[END_REF].

2 H (R n ) is path-connected Definition 2.0.1.
If a and b are two elements of a topological space X, a path from a to b is a continuous function

f :[0, 1] → X, such that f (0) = a and f (1) = b.
If there exist a path for every pair of elements of X, then X is called pathwise connected. □

It is interesting to note that the hyperspace inherits properties from its base space. For example, if (X, d) is complete, then (H (X) , h) will be too [1, pp.35] and the same happens when the base space is compact. Now, what about connectedness? In [3, pp.113] it is proven that if (X, d) is a continuum, meaning a compact and connected metrizable space, then it will be more than pathwise connected, it will be arcwise connected which means that there is a path between any pair of elements and the inverse function of this path exists and is continuous (that is, there exists a path between the elements that contains no self-intersections). This is sufficient to establish that H (R n ) is pathwise connected, since every pair of compact sets of R n is contained in a continuum. Here we are going to use a different and simpler approach (in the sense that nothing new is needed) to prove that H (R n ) is pathwise connected, inspired by the proof of the path connectedness of H (R) in [1, pp.38-40].

Paths in H (R n )

From now on we will assume that R n is equipped with the euclidean metric and by H (R n ) we mean (H (R n ) , h). Our goal is to prove that given two elements A and B in H (R n ) there is a path from A to B, that is, there exists

f : [0, 1] → H (R n ) continuous such that f (0) = A and f (1) = B.
A natural question is: can we interpret geometrically these paths in H (R n )? Since we want something continuous in the space of compact sets, does this mean that something happens to A while the parameter changes? Well, yes, continuity has a fundamental role. If f as above is continuous, given

t 0 ∈ [0, 1] and ε > 0, there is a δ > 0 such that if t ∈ (t 0 -δ, t 0 + δ) ∩ [0, 1] then h(f (t 0 ), f (t)) < ε.
This means that any point of f (t) is not further than ε from some point of f (t 0 ). So, we can think of paths as deformations of A into B and fortunately, since we are working in R n , we can have a better idea because it is possible to visualize R 2 . Trying to make this as clear as possible, we are going to check some examples visualizing in R 2 paths that are in H (R 2 ). The first one will make it easier to understand the proof of our main result.

Example 2.1.1. Let A be the set consisting of the single point (a x , a y ) and B be the rectangle

[c 1 , c 3 ] × [c 2 , c 4 ]. We deform A into B through the following function f : [0, 1] → H (R 2 ) that will work as a path from A to B in H (R 2 ): f (t) = [a x + t(c 1 -a x ), a x + t(c 3 -a x )] × [a y + t(c 2 -a y ), a y + t(c 4 -a y )].
Below, we illustrate the evolution of f for some values of t. The most interesting thing here is that these paths can start with a pathwise connected set and end up with a discrete set or vice-versa, it can create holes or fill some, there are a lot of possibilities. Let's check more three examples, now with some description.

(a) Set in R 2 composed of a circumference and a dot that is taken to the same circumference by the path f defined in [0, 1] as f (t) = S(0; 1) ∪ S(0; t).

(b) Unitary disc deformed into a circumference by the path f defined in [0, 1] as f (t) = B(0; 1)\B(0; t) (c) A square can be "transformed" into a discrete set composed by nine points. To have such a path, describe the square as a union of nine Cartesian products and use ideas explored until now, shrinking the intervals as t increases.

Idea of the Proof

We are going to start with two definitions that will simplify the process. We will denote the coordinates of a point x ∈ R n by x = (x 1 , x 2 , . . . , x n ). Definition 2.2.1. Let x, y ∈ R n . The points x and y define the rectangle

n i=1 [min{x i , y i }, max{x i , y i }].
Indeed, x and y are vertices of this rectangle. □ Remark 2.2.2. Pay attention to the fact that here a rectangle need not to be a n-dimensional object. It can even be a point or a 3-dimensional cube if n ≥ 3. Everything depends on the coordinates of x and y.

x 1 = (0, 2)

y 1 = (4, 0)
x 2 = (0, 0)

y 2 = (4, 2)
Figure 6: Two ways to define the same rectangle, using the pairs of vertices x 1 , y 1 or x 2 , y 2 .

Remark 2.2.3. Note, as shown in the last figure, that there is more than one choice of pairs of vertices that define the same rectangle R. For any given rectangle R, we will choose as its vertices the ones that satisfy

x i = min{x i , y i }, y i = max{x i , y i } and R = n i=1 [x i , y i ].
The next definition relies on the vector structure of R n and will allow us to define a special class of paths. Definition 2.2.4. Let A be a subset of R n and #" v ∈ R n . The translation of A by #" v is denoted by

A + #" v = {a + #" v : a ∈ A}.

□

Having understood what is a path in H (R n ) and the definitions above, we can start discussing the proof of path connectedness of H (R n ). It is simple but a bit long, so we split it in three parts: 1) Show that any translation of a set is pathwise connected to the original set. In particular, this means that any one point sets are pathwise connected.

2) Show that any one point set is pathwise connected to any rectangle which contains the set.

3) Show that any compact set is pathwise connected to any rectangle which contains it.

Therefore, if we have two compact sets A and B, there are rectangles A R and B R that contains A and B respectively and we can take A R and B R such that one is a translation of the other one. Doing this, we just need to juxtapose the paths from A to A R , A R to B R and B R to B, ending up with a path from A to B which concludes the proof of the path-connectedness of H (R n ).

Proof

Lemma 2.3.1. Let A ∈ H (R n ) and #" v ∈ R n . The map f :[0, 1] → H (R n ) t → A + t #" v
is a path from A to A + #" v . This is called the translation path.

Proof: Clearly f (0) = A and f (1) = A + #" v . Moreover, f is well defined because translations do not affect compactness. It remains to show that f is continuous, but we will do more than this, we will prove that it is uniformly continuous. When #" v = #" 0 , f is the constant path, so it is uniformly continuous. Assume for every a ∈ A we have

d(a + t 1 #" v , A + t 2 #" v ) ≤ d(a + t 1 #" v , a + t 2 #" v ) = |t 1 #" v -t 2 #" v | = |t 1 -t 2 || #" v | < δ| #" v |. Let ε > 0 be given. Setting δ = ε | #" v | , if |t 1 -t 2 | < δ, we get d(a + t 1 #" v , A + t 2 #" v ) < ε. Thus, d(A + t 1 #" v , A + t 2 #" v ) = max a∈A d(a + t 1 #" v , A + t 2 #" v ) < ε. Similarly, if |t 1 -t 2 | < δ then we also have d(A + t 2 #" v , A + t 1 #" v ) < ε. This proves uniform continuity because if δ < ε | #" v | then h(f (t 1 ), f (t 2 )) = max{d(f (t 1 ), f (t 2 )), d(f (t 2 ), f (t 1 ))} = max{d(A + t 1 #" v , A + t 2 #" v ), d(A + t 2 #" v , A + t 1 #" v )} < ε. ■ Figure 7: A translation path in H (R 2 ) visualized in R 2 .
Now we prove a lemma that will be very helpful for our next result. 

̸ ∈ J 1 ∪ J 2 .
Because y ̸ ∈ A, at least one of them is nonempty. Therefore, if we want to find x ∈ A that is closest to y, it is reasonable to take x y such that:

• x i = a i , if i ∈ J 1 ; • x i = b i , if i ∈ J 2 ; • x i = y i , if i ̸ ∈ J 1 e i ̸ ∈ J 2 .
In this case

d(y, A) = d(y, x y ) = i∈J 1 (y i -a i ) 2 + i∈J 2 (y i -b i ) 2 1 2
since there cannot be another element of A closer to y. Since we want to maximize d(y, A) over y ∈ C \ A, that is, we want to make the sum inside the square root as large as possible, it suffices to choose y such that {1, . . . , n} = J 1 ∪ J 2 and with associated x y satisfying

|y i -x i | = max{a i -c i , d i -b i },
which means that y i = c i or y i = d i for each i = 1, . . . , n. In other words, y is a vertex of C and by construction x y is a vertex of A. With this, we conclude that h(A, C) = d(x, y). ■ Lemma 2.3.3. Let a, m, M ∈ R n with m ̸ = M and such that the rectangle defined by m and

M contains a. The map f a,m,M : [0, 1] → H (R n ) defined by f a,m,M (t) = n i=1 [(m i -a i )t + a i , (M i -a i )t + a i ]
is a path in H (R n ) from {a} to the rectangle defined by m and M .

Proof: Notice that f a,m,M is well defined since f a,m,M (t) is a rectangle for every t hence compact. In order to prove continuity again we show that f a,m,M is uniformly continuous. Assume t 2 > t 1 and denote T j = f a,m,M (t j ) for j = 1, 2. We have

T 1 ⊂ T 2 since [(m i -a i )t 1 + a i , (M i -a i )t 1 + a i ] ⊂ [(m i -a i )t 2 + a i , (M i -a i )t 2 + a i ],
for all i. (Notice that a ∈ f a,m,M (t) for all t, so m i -a i ≤ 0 and M i -

a i ≥ 0 for all i.) a M m (M 1 -m 1 )t 1 (M 1 -m 1 )t 2 (M 2 -m 2 )t 1 (M 2 -m 2 )t 2 (M 1 -a 1 )(t 2 -t 1 ) (m 1 -a 1 )(t 2 -t 1 ) (M 2 -a 2 )(t 2 -t 1 ) (m 2 -a 2 )(t 2 -t 1 )
Figure 9: Map f a,M,m (t) visualized in R 2 for some values of t.

From the last lemma we have h(T 1 , T 2 ) = d(x, y), where x and y are vertices of T 1 and T 2 , respectively, such that

|x i -y i | = max{(t 2 -t 1 )(M i -a i ), (t 2 -t 1 )(a i -m i )}. Setting S = max max i |m i -a i |, max i |M i -a i | we have d(x, y) = n i=1 max [(m i -a i )(t 2 -t 1 )] 2 , [(M i -a i )(t 2 -t 1 )] 2 1 2 ≤ n i S 2 (t 2 -t 1 ) 2 1 2 = n 1 2 S(t 2 -t 1 ). Thus, given ε > 0, if we take δ = ε n 1 2 S , for all t 1 , t 2 ∈ [0, 1] such that |t 1 -t 2 | < δ there holds h(f (t 1 ), f (t 2 )) = h(T 1 , T 2 ) = d(x, y) < ε.
■ Now we show that any compact set is pathwise connected to any rectangle in which it is contained. 

a) f A,m,M (0) (b) f A,m,M (t 1 ) (c) f A,m,M (t 2 ) (d) f A,m,M (t 3 ) m M (e) f A,m,M (1)
Figure 10: Mapping f A,m,M (t) when A is a set of two points. For each t, f A,m,M (t) is the union of two rectangles. In this figure we have 0 < t 1 < t 2 < t 3 < 1.

Proof: The proof will be done in two steps. In the following, we write f a in place of f a,m,M and f A in place of f A,m,M .

Step 1 -Show that f A,m,M (t) is compact for every t ∈ [0, 1]. For t = 0 and t = 1 f A (t) is trivially compact since it is a rectangle. Fixed t, f A (t) is a bounded set in R n since for each a ∈ A the set f a (t) is contained in f a (1) = f A (1), therefore f A (t) ⊂ f A (1) which is a rectangle. Thus, we just need to prove that f A (t) is closed. To this end, let (x n ) be a sequence contained in f A converging to x. Since (x n ) ⊂ f A (t), for every n there is a a n ∈ A such that x n ∈ f an (t). This gives us a sequence (a n ) ⊂ A and from the compactness of A there is a subsequence, which we will continue to denote by (a n ) in order to simplify the notation. We claim that x ∈ f a (t) and consequently x ∈ f A (t). a x Figure 11: In green we have a sequence (x n ) and in black a sequence (a n ) in A (not depicted). The dashed rectangles represent some of the f an (t). From the figure it is natural to think that x ∈ f a (t).

Suppose that x ̸ ∈ f a (t). Since f a (t) is a closed set, there is an open ball B(x, δ) ⊂ R n \ f a (t). We will find an element of f a (t) in this ball obtaining a contradiction. Given ε > 0, let N ∈ N be such that if n ≥ N , then d(a n , a) < ε. We will estimate h(f a (t), f an (t)) in terms of ε. First, the sets f an (t) and f a (t) are

f an (t) = n i=1 [(m i -a i n )t + a i n , (M i -a i n )t + a i n ] f a (t) = n i=1 [(m i -a i )t + a i , (M i -a i )t + a i ].
Lemma 2.3.2 we obtain our estimate

h(w n , W n ) = n i=1 max{|R i n -r i n | 2 , |Q i n -q i n | 2 } 1 2 = n i=1 (1 -t) 2 |a i -a i n | 2 1 2 = (1 -t) n i=1 |a i -a i n | 2 1 2 = (1 -t)d(a, a n ) < (1 -t)ε. Thus, choosing ε = δ 2(1 -t)
for n ≥ N , we have

h(f a (t), f an (t)) ≤ h(w n , W n ) < δ 2 .
This means that for

x n ∈ f an (t) there is some b ∈ f a (t) such that d(x n , b) < δ/2. Since (x n ) → x, there is N ′ ∈ N such that if n ≥ N ′ , then d(x n , x) < δ/2. Taking N 0 = max{N, N ′ }, if n ≥ N 0 then d(x, b) ≤ d(x, x n ) + d(x n , b) < δ 2 + δ 2 = δ so B(x, δ) ∩ f a (t) ̸ = ∅,
the expected contradiction. We now have that f a (t) is closed and hence a compact set.

Step 2 -Show that f A (t) is a path, that is, it is continuous. Indeed it is uniformly continuous. We will use the uniform continuity of f a (t). As we saw in the proof of Lema 2.3.3, given ε > 0 and a ∈ A, there exists δ

(a) = ε n 1 2 S a such that if |t 1 -t 2 | < δ then h(f a (t 1 ), f a (t 2 )) < ε, where S a = max max i |m i -a i |, max i |M i -a i | . Set S = sup a∈A S a = max a∈A S a ≤ max i |M i -m i |
where the last inequality is due to the fact that

m i ≤ a i ≤ M i
for all i since a is in the rectangle defined by m and M . Therefore, if d (x, f a (t 1 )) = d(f a (t 2 ), f a (t 1 )) < ε.

|t 1 -t 2 | < δ = ε nS , we have h(f a (t 1 ), f a (t 2 )) < ε for all a ∈ A, since δ < δ(a) for all a ∈ A. Now, h(f A (t 1 ), f A (t 2 )) = max{d(f A (t 1 ), f A (t 2 )), d(f A (t 2 ), f A (t 1 
Intuitively, this distance is smaller then ε because for every x ∈ ∪ a f a (t 2 ) there is a point y in some f a (t 1 ) whose distance to x is smaller than ε. Thus, h(f A (t 1 ), f A (t 2 )) = d(f A (t 2 ), f A (t 1 )) < ε and f is a path since it is uniformly continuous. ■ Notice that in the process we have shown that a particular uncountable union of compact sets is compact, which is particularly interesting. 

F (t) =                      (f • α)(t), se 0 ≤ t ≤ 1 3 (g • γ • α)(t), se 1 3 < t ≤ 2 3 (h • γ 0 • α)(t), se 2 3 < t ≤ 1.
■

  The distance from A to B is d(A, B) = sup a∈A d(a, B) = max a∈A d(a, B). □ Again, because of the compactness of A and B, we have that there are points x ∈ A and ŷ ∈ B such that d(A, B) = d(x, ŷ).
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 1031 Figure 1: Line segments A and B.
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 2 Figure 2: Calculating d(a, B).
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 3 Figure 3: Illustration of the two cases when calculating d(B, A).

  If h(A, B) = 0, assume by contradiction that A ̸ = B. With this assumption, d(a, B) = 0 and d(b, A) = 0 for all a ∈ A and b ∈ B. This implies that, A ⊂ B and B ⊂ A since d(x, y) = 0 if and only if x = y. Therefore, A = B, a contradiction. For the triangle inequality, take c ∈ C such that d(a, C) = d(a, c) and note that d(a, B) = min b∈B d(a, b) ≤ min b∈B {d(a, c) + d(c, b)} = d(a, c) + min b∈B d(c, b) ≤ d(a, C) + d(C, B). So, choosing the point a ∈ A satisfying d(A, B) = d(a, B), we end up with d(A, B) = d(a, B) ≤ d(a, C) + d(C, B) ≤ d(A, C) + d(C, B).

  computing d(A, B). Since we are dealing with rectangular curves, it is possible to split A in sets according to the distance of the point from B by inspection without much trouble, as shown in the figure below:
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 4 Figure 4: Illustration of how we can interpret a path from A to B.
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 23218 Figure 8: An illustration of a possible choice of y. In this case 1 ∈ J 1 and 2 ̸ ∈ J 1 ∪ J 2 .

Lemma 2 . 3 . 4 .

 234 Let A be a compact subset of R n and m, M ∈ R n with m ̸ = M such that the rectangle defined by m and M contains A. The map f A,m,M :[0, 1] → H (R n ) defined by f A,m,M (t) = a∈A f a,m,M (t)is a path in H (R n ) from A to the rectangle of vertices m and M .
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 12 Figure 12: The situation assumed in the contradiction.
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 2 3.5. H (R n ) is pathwise connected.Proof: Let A and B be elements of H (R n ). Since they are compact subsets of R n , we can find two rectangles A R and B R such thatA ⊂ A R , B ⊂ B R and B R is a translation of A R .Putting together everything we made, we know that there exist1) a path f : [0, 1] → H (R n ) such that f (0) = A and f (1) = A R by Lemma 2.3.4; 2) a path g : [0, 1] → H (R n ) such that g(0) = A R and g(1) = B R by Lemma 2.3.1; 3) a path h : [0, 1] → H (R n ) such that h(0) = B and h(1) = B R by Lemma 2.3.4.Using the parametrizationsα : [0, 1] → [0, 3], α(t) = 3t; γ : [1, 2] → [0, 1], γ(t) = t -1; γ 0 : [2, 3] → [0, 1], γ(t) = 3 -t,we obtain a path F : [0, 1] → H (R n ) from A to B defining

  ))} so we can assume without loss of generality that t 1 < t 2 and just analyze d(f A (t 2 ), f A (t 1 )) since d(f A (t 1 ), f A (t 2 )) will be zero. From the definition,d(f A (t 2 ), f A (t 1 )) = d Since x ∈ f a (t 2 )for some a ∈ A, f a (t 1 ) ⊂ ∪ a f a (t 1 ) and h(f a (t 1 ), f a (t 2 )) < ε for all a ∈ A, we have (t 1 ) < d (x, f a (t 1 )) ≤ max x∈fa(t 2 )

		d x,
	x∈	fa(t 2 )
	a∈A	
	d x,	

a f a (t 2 ), a f a (t 1 ) = max a f a (t 1 ) . a f a
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In order to find an upper bound for the Hausdorff distance, we will define two special rectangles for each n. One of them will be denoted by W n and is determined by the vertices Q n and R n , where

and

while the other one will be denoted by w n and is determined by the vertices r n and q n , where Note that we have