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ABSTRACT
Objectives: In this work, a new deep learning model for relevant myocardial infarction seg-
mentation from Late Gadolinium Enhancement (LGE)-MRI is proposed. Moreover, our novel
segmentation method aims to detect microvascular-obstructed regions accurately. Material and
methods: We first segment the anatomical structures, i.e., the left ventricular cavity and the my-
ocardium, to achieve a preliminary segmentation. Then, a shape prior based framework that
fuses the 3D U-Net architecture with 3D Autoencoder segmentation framework to constrain the
segmentation process of pathological tissues is applied. Results: The proposed network reached
outstanding myocardial segmentation compared with the human-level performance with the av-
erage Dice score of ’0.9507’ for myocardium, ’0.7656’ for scar, and ’0.8377’ for MVO on the
validation set consisting of 16 DE-MRI volumes selected from the training EMIDEC dataset.
Conclusion: It is concluded that our approach’s extensive validation and comprehensive compar-
ison against existing state-of-the-art deep learning models on three annotated datasets, including
healthy and diseased exams, make this proposal a reliable tool to enhance MI diagnosis.

1. Introduction
Cardiovascular disease is a worldwide health emergency of which myocardial infarction (MI) is the most frequent.

Myocardial ischemic necrosis is caused by coronary artery occlusion, resulting in blockage of flowing blood to the
myocardium [1]. However, patients with acute MI may contain MVO region, which is characterized by deficient
hypo-perfusion due to decreased blood flow [2, 3].

DE-MRI is a sophisticated clinical MRI examination for assessing myocardial viability and quantification of my-
ocardial scar. Myocardium zones, including infarcted and MVO tissues, can be highly identified in LGE-MR images,
which are typically acquired after several minutes of a gadolinium-based contrast agent injection. Furthermore, accu-
rate segmentation of the clinically significant myocardial damaged areas (scar and MVO tissues) provides a significant
predictive value for MI diagnosis and therapeutic strategies such as revascularization [4, 5, 6, 7].

Fig.1 illustrates two slices from two myocardial infraction subjects, the corresponding left ventricular cavity,
healthy myocardium, scar, and MVO annotations. Both over-enhanced (infarcted myocardium) and hypo-enhanced
(no-reflow) regions have low contrast and ambiguous contours.

Manual annotation is mainly a time-consuming, qualified-reliant task and subject to inter-and intra-experts hetero-
geneity. Therefore, developing an accurate and automatic myocardial segmentation network is essentially required to
assist medical experts; however, it is still a challenging task due to bad delineations regions contrast, image acquisition
artifacts and respiratory motion.

Recently, deep learning-based networks have achieved state-of-the-art results for different clinical applications and
have successfully shown great potential in various medical image segmentation tasks. In this work, we propose a
deep learning algorithm for automatic and accurate MI segmentation from LGE-MRI. The EMIDEC segmentation
challenge [8] supplies a large dataset to evaluate different methods. We used the EMIDEC STACOM 2020 challenge
dataset to validate our model.
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Figure 1: Visual examples of two slices from two different cases. From left to right: DE-MR images and annotations.
In the 2nd column, the red, green, blue, and yellow colors represent the left ventricular cavity, healthy myocardium,
scar, and MVO.

This paper is organized as follows: Related Works are described in Sect. 2. Material and Method are explained in
Sect. 3. Comparative results are outlined in Sect. 4 and Sect. 5 concludes the paper.

2. Related work
In medical imaging, deep learning-based models have received researchers’ interest because of their feature ex-

traction efficiency. Among the developed models for medical image segmentation, U-Net [9] is the most popular. It
is based on an encoder-decoder pipeline with intermediary skip connections, including low-level spatial information
for definite delineation. U-Net-based models performed state-of-the-art results on different segmentation challenges
[10, 11]. This popular architecture has been adjusted to various tasks focusing on cardiac magnetic resonance imag-
ing [12, 13, 14, 15]. Poudel et al. [16] proposed a 2.5-dimensional network based on a recurrent fully convolutional
network used during learning and retaining inter-slice information across a gated recurrent unit at the bottom of the
algorithm pipeline. This network produces a coherent spatial boundary of the left ventricle cavity. Oda et al. [17] in-
troduced a new deep learning model called Boundary-Enhanced Segmentation Network for the semantic segmentation
of cells on histopathological images. As compared to U-Net, the proposed applied two decoding paths for restoring
the original image resolution. Results on ganglion cells reveal that the mean Dice score representing segmentation
accuracy achieves 74.0%.

As medical images are volumetric data, Deep learning models were further extended from 2D to 2.5D and then to
3D architectures. These methods, which served as an insight for our approach, were trained to provide a segmentation
mask, contouring the whole image’s relevant structures. Various 3D FCN demonstrate superior performance in the
segmentation of cardiovascular volumes [18, 19]. 3D U-Net [20] was developed to extract volumetric spatial and
intra-slice information using 3D convolutions efficiently. The proposed model demonstrates remarkable results in
comparison with an equivalent 2D implementation performance for the segmentation of the highly variable structures
of the Xenopus kidney. Yang et al. [21] used a 3D U-Net with pre-trained parameters brought from a C3D temporal
transfer learning framework [22] to produce higher performance and fast convergence of theirmethod. The authors have
validated their approach using the Automated Cardiac Diagnosis Challenge 2017 datasets for MR image segmentation.
The proposed network is a powerful deep CNNs. Milletari et al. [23] proposed V-Net deep-based model. As compared
to U-Net architecture, V-Net counts more on the convolutional process and evenly moves to a deeper stage by joining
a small learnable function at every stage.

As organs have a constrained shape (specific anatomy), a constrained position (relative to other organs), and a
constrained topology, various 3D-U-Net models were developed based on these "a priori". Zotti et al. [14, 24] de-
veloped a novel CNN method called grid-Net for MRI cardiac anatomy segmentation. A modified U-Net architecture
with convolution kernels on stridden functions for each depth level between encoding and decoding paths, whence
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results were compared and constrained with a volumetric probability map illustrating the entire heart shape. It used a
shape prior, which forces the algorithm to provide anatomically accurate results. Oktay et al. [25] presented a generic
training framework that includes prior anatomical knowledge into CNNs as a regulariser model, making predictions
attending the anatomical features (e.g., shape, tissue structure) of the anatomy structure via the learned shape. The
latest models incorporate individual blocks such as the inception module, attention module, inception residual block,
and convolutional block attention module (CBAM). Oktay et al. [26] proposed attention module in U-Net network that
integrates attention module in skip connection from the encoder to the decoder path to extract spatial localization. The
attention module does not require multiple training models that need more training parameters. The attention gating
(AG) module progressively overwhelms the feature response in the irrelevant background regions and reinforces the
foreground’s learning capability. The attention module improved segmentation accuracy by driving attention coeffi-
cients. These coefficients are obtained by computing and combining "rich feature maps with low spatial information"
attained from the 2D upsample decoder layers with the corresponding encoder layer’s high-level semantic outputs.
Shankaranarayana et al. [27] proposed a retinal depth estimation model based on a dilated residual inception (DRI)
block for multi-scale features extraction. Ibtehaz and Rahman et al. [28] introduced a U-Net with residual inception
modules on various multimodal medical imaging datasets.

Several medical imaging attempts based on deep learning models have also been included in the 2020 EMIDEC
MICCAI challenge to support the clinicians in the early detection ofMI and treatment. Zhang [29] proposed a cascaded
convolutional neural framework which firstly used a 2D U-Net to extract the intra-slice information, and then a 3D
U-Net to focus on the volumetric spatial information for final segmentation. Feng et al.[30] presented a rotation-
based augmentation approach and proved its effectiveness. 2D dilated U-Net was applied as the backbone framework
structure. Yang and Wang [31] developed a hybrid modified U-Net architecture which uses the squeeze-and-excitation
residual (SE-Res) module and selective kernel (SK) block in the encoding and decoding paths, respectively producing
robust segmentation performance. Huellebrand et al. [32] proposed to compare a hybrid mixture model based on [33]
and a CNN for myocardial Pathologies’ segmentation in DE-MRI. Zhou et al. [34] developed anatomy prior based
network, which fuses the U-Net segmentation method with attention blocks. Their approach proposed a neighborhood
penalty technique to measure the inclusion relationship between the different myocardial tissues. Results prove the
validity of the proposed network in pathology segmentation.

Compared to these methods, the proposed anatomical model consists of encoders and decoders based on expansion,
depth-wise, squeeze and excitation blocks, and projection layers with the progressive pattern. We used various depths
at each encoder block to get multiscale features at a different place within the encoder path. Our anatomical proposed
model is designed based on a proposed kernel-based atrous spatial pyramid pooling module that caters to the encoder
side’s information. Our pathology approach’s novelty has incorporated prior knowledge to 3D U-Net, and optimized
loss function adapted to the anatomy structures. The final objective function fuses Jaccard based loss function with a
shape constraint loss to significantly re-weight the training for all tissues. The proposed 3D Autoencoder regulariser
represents a process-specific training goal. It encodes the probability of a voxel being part of a particular tissue. More
importantly, our approach learns high-level features (useful for differentiating anatomical structures) and low-level
features (helpful for producing refine segmentation results). Extensive results demonstrated the promising performance
of our method.

3. Material and Method
3.1. Clinical Images and Metadata

The dataset for EMIDEC challenge [8] provides 150 exams, including LGE-MRI associated with 12 clinical phys-
iology characteristics. The image data was obtained on Siemens MRI scanners on 1.5T and 3T. The training set (67
pathological cases, 33 normal cases) and the testing set (33 pathological cases, 17 normal cases) consist of 1/3 normal
and 2/3 of myocardial damage subjects. There are no overlapped exams in the training and testing sets. Each exam
includes a series of 5-10 short-axis slices covering the whole left ventricle myocardium from the base to the apex.
Manual delineations (contours of the relevant cardiac regions, including left ventricular cavity, healthy myocardium,
MI, and MVO) are given to challengers for the training set and drawn by a biophysicist with more than 15 years of skill
in medical imaging. More details of EMIDEC challenge dataset can be found in http://www.emidec.com/ and [8].
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3.2. Image Pre-processing
LGE-MRI in the EMIDEC Challenge has an irregular shape. To surmount the shape mismatch and to remove

irrelevant anatomical structures, original volumes were cropped to a normalized set whose center was the centroid of
the left ventricular cavity annotation. Hence, all present subjects are reshaped to 96 × 96 × 16 by adding empty slices
[35]. A standard adaptive histogram equalization algorithm is further adjusted slice-wise to enhance the local image
contrast [36, 37]. The noise was reduced using the non-local mean denoising algorithm that achieved good results
when applied to previous images [38]. Finally, 16 testing cases were randomly chosen from the training dataset of
EMIDEC challenge to validate our approach (Table 1).
Table 1: Stratification of the EMIDEC dataset, including pathological and normal cases used for myocardial segmen-
tation in LGE-MRI. An example is given for one fold as 5 fold-cross validation is done.

EMIDEC dataset (n=100) Healthy Cases Pathological CasesHealthy Cases Infarcted Cases Infarcted + MVO (a subclass of MI) Cases
Training dataset (n=68) 29 12 27
Validation dataset (n=16) 2 6 8
Testing dataset (n=16) 2 9 5

3.3. Method
In this section, we propose our shape prior based approach for myocardial pathology segmentation. As shown in

Fig. 2, our proposal consists of two stages. Firstly, we introduce the architecture of the anatomical network to segment
the myocardium and left-ventricular cavity structures. Secondly, the 3D pre-trained Autoencoder network and the
3D U-Net model were merged to yield the final myocardial segmentation output, including damaged areas (MI and
no-reflow). Details of each step are presented in the following paragraphs.

Anatomical Network 
(Myocardium and Cavity
segmentation network)

Pathological Network (MI 
and MVO segmentation 

network)

Original Input Image SegmentationWhole LV ROI

Figure 2: Pipeline of the proposed segmentation network. We first crop the LV region of interest (ROI). A new
anatomical network is then used to segment the left ventricular cavity and the myocardium areas from the ROI images.
Finally, a pathological network is used to detect pathological tissues (MI and MVO). The red, green, blue, and yellow
colors present the left ventricular cavity, the myocardium, MI, and MVO.

3.3.1. Anatomical Network
The proposed model is built based on the architecture of encoder-decoder with skip connections. We have in-

troduced the proposed Inception residual block with CBAM in the encoding path and the proposed EDP (expansion,
depth-wise, and projection layers) block module after 2D upsampling layer in the decoding path. The attention module
has been used in skip connections, which had been constructed between the analysis and synthesis paths in the same
stage. Channels’ number is doubled at each Inception residual block, and feature maps’ input size is divided by two
using depth-wise convolution layer in encoding path.

A modified inception module has been proposed on the encoder side of our anatomical network. In Inception
residual block, the features maps are aggregated from different branches using kernels of various sizes. The residual
connections supply smooth learning concerning the input feature maps, instead of learning an unreferenced function
[39]. The proposed network is shown in Fig. 3.

The Fig. 4a presents the proposed Inception residual block. Compared with the original Inception residual module,
Batch Normalization (BN) layer has been used after each convolutional layer except for bottleneck layers. We applied
Khawla Brahim et al.: Preprint submitted to Elsevier Page 4 of 14
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Figure 3: Anatomical network based on Inception residual, CBAM, and Decoder (EDP) blocks.

1 × 1 and 3 × 3 kernel, and also proposed 5 × 5 kernel branch as inspired by the DeepLab architecture [40]. BN layer
yields smooth training and may avert gradient vanishing while retaining convolutional layers. The feature maps are
aggregated by convolving with three kernels, namely 1 × 1, 3 × 3, and 5 × 5. The 3 × 3 and 5 × 5 kernels are further
reduced into 1 × 3, 3 × 1, 1 × 5 and 5 × 1 to reduce the number of parameters.

Assuming that xl is the output of the ltℎ layer, c(n×n)(.) is a n × n kernel convolutional layer, cb(.) denotes the BNlayer, and 1 × 1 Conv designates the bottleneck layer. The output of each Inception residual block is given in Eq. 1.

xl+1 = c1×1(c1×1(xl).cb(c3×3(c1×1(xl))).cb(c3×3(cb(c3×3(c1×1(xl))))).cb(c5×5(cb(c5×5(c1×1(xl))))) + xl (1)
In the synthesis path, we have introduced EDP block to extract relevant semantic information. The entire layer

structure for the decoder block is presented in Fig. 4b.
Sanghyun Woo et al. [41] presented the CBAM that extracts attention maps and multiplied them with input feature

maps to obtain adaptive refinement features. The channel attention map exploits the inter-channel relationship of
features, and the feature map obtained from this is considered a feature detector. The spatial attention module focuses
on what is meaningful, given an input image through the benefit of the combination of average-pooling and max-
pooling. In the spatial attention module, the features were refined channel-wise based on spatial attention. The spatial
attention map is generated by exploiting the inter-spatial relationship of features. The feature descriptors are extracted
using average-pooling and max-pooling operations along the channel axis and concatenated. The pooling operations
along the channel axis is supposed to be effective in informative prominence regions. The 1×1 2D convolutional layer
is applied on the 2D descriptor to get the raw attention map, and the batch-normalization layer produced an adequate
response. After the batch normalization layer, the swish based sigmoid function is used on the final attention map. The
proposed two attention modules can be placed in a parallel or sequential way. The sequential arrangement produced
better performance. In our design approach, the spatial attention module used before the channel attention module
provided a slightly better response. We inserted the CBAM module at the encoder side to extract delicate features
from every Inception residual block stage. The proposed CBAM block is shown in Fig. 5.

YeHuang et al. [42] proposed a kernel-sharing atrous convolutional (KSAC) layer in atrous spatial pyramid pooling
(ASPP) module. The 3 × 3 kernel is shared with atrous convolutional layers with various dilation rates. In this work,
we have extended KSAC based ASPP module and fused different features extracted from the down-sampling path with
the various scale features (five scales) in the KASPP as illustrated in Fig. 6. The proposed KASPP module extracts
multiscale contextual information from the encoder side of the anatomical network.
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Figure 4: Proposed Inception residual block and EDP block.
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Figure 5: Proposed Convolutional block attention module (CBAM).

3.3.2. Pathological Network
The experiments revealed that extracting volume patches of size 12 × 12 × 12 pixels 3 from the EMIDEC training

dataset achieves excellent results for diseased myocardial tissues’ segmentation.
As illustrated in Fig. 7, our 3D pathological network fuses 3D U-Net with a Super-Resolution (SR) module to

constrain prior knowledge shape. 3D Autoencoder aims to correctly encode and minimize the original volume that
can be reconstructed from the encoded representation. Thus a pre-trained 3D Autoencoder is efficient to regularize
the segmentation result into a realistic shape. Pre-trained 3D Autoencoder is linked to the 3D U-Net and takes the
segmented volume as input. A regularization term is introduced for restraining the segmentation output.

The 3D U-Net is a classical encoder-decoder segmentation framework in which, firstly, the encoder uses an ensem-
ble of convolution-pooling layers to extract more high-level semantic features. Then the feature maps are up-sampled
to recover the localization for every voxel. Shortcut connections of multi-scale feature maps between the encoder and
decoder paths in the same stage reach an excellent medical segmentation. Each layer includes two 3 × 3 × 3 convolu-
tions in the encoder path, each attended by a BN, a rectified linear unit (ReLu), and then a 2 × 2 × 2 max pooling with
strides of two in each dimension. In the decoder path, each layer includes an up convolution of 2 × 2 × 2 by strides of
two in each dimension, attended by two 3 × 3 × 3 convolutions, a BN, and then a ReLu. In the last layer, a 1 × 1 × 1
convolution reduces the output channels’ number to the number of predicted classes, which is 5 in our case.
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Figure 6: Proposed K-atrous spatial pyramid pooling layer module.

The employed 3D regulariser model has a fully connected layer, including five neurons representing the predicted
classes (background, left ventricular cavity, healthy myocardium, scar, and MVO annotations). In the training phase,
the weights of the pre-trained 3D Autoencoder model were transferred as a first step, and after that, they were fine-
tuned by applying Adam optimizer over the training set. The pre-trained regulariser model has in-depth knowledge
about segmenting various feature representations’ types, and by fine-tuning its parameters, the 3D Autoencoder model
learns the current task feature representations.

The Jaccard loss is derived from the Jaccard metric, which measures the overlap between two objects [43]. A
weighted Jaccard (wIOU) and a mean weighted Jaccard (mwIOU) are two loss functions using the class weights and
the weight coefficient’s ratio to the sum of the weight coefficients. To overcome the class imbalance between relatively
small segmentation labels and the extensive background, we optimize the summation of a (wIOU) loss / (mwIOU) loss
and a shape constraint loss. The final loss function used for training the pathological network is given in Eq. 2.

LF inal = LSeg + �SR × LSR (2)
(Where LSeg represents the wIOU or mwIOU based loss function, �SR denotes the regularization term and LSR

indicates the L2 loss function that is defined in Frobenius norm Eq. 3. We choose �SR = 10−2.)

LSR =
n
∑

i=1

|

|

|

|

RPi − RGi||||
2
F (3)

(Where n represents the total number of training volumes, RGi is the reconstructed gold standard, RPi indicatesthe reconstructed segmentation results and ||.||F is the Frobenius norm of an m × n matrix.)

4. Results and discussion
4.1. Evaluation Metrics for Segmentation

For the evaluation of networks segmentation results in 3D, we used some common objective criteria including
geometrical metrics such as Dice score (DSC) Eq. 4 for the different areas of interest and Hausdorff Distance (HD) Eq.
5 for themyocardium and clinical metrics including relative volume errors, i.e., Absolute VolumeDifference (AVD) Eq.
6 andAbsolute VolumeDifference Rate according to the volume of themyocardium (AVDR) Eq. 7. [44, 45, 46, 47, 48].
The evaluated metrics were based on the official code https://github.com/EMIDEC-Challenge/Evaluation-metrics.

TheDSC computes the spatial overlap of the network-generated boundary andmanual contouring and is determined
as follows:
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Figure 7: Schematic representation of our pathological approach for myocardial disease segmentation. The number of
channels is presented above each feature map.

DSC =
2 × (N ∩M)
N +M

(4)
(Where N and M designate the corresponding network and manually segmented tissues.)
The HD metric computes how far the network-generated delineations and gold standard are from each other and is

determined as follows:
HD = max

x∈N
min
y∈M

||x − y|| (5)

AV D = |

|

VN − VM |

|

(6)

AV DR =
|

|

VN − VM |

|

VMYO
(7)

(Where VN is the volume of the network-generated segmentation, VM is the volume of the manual annotation, and
VMYO is the Myocardial volume of the manual annotation.)
4.2. Results
4.2.1. Evaluation results of the proposed model on EMIDEC dataset

There are a total of 100 cases with published labels to train, validate, and test our network’s performance. We make
random 5-fold cross-validation by shuffling the scan sequence and splitting the EMIDEC dataset into 5 folds using 68
MR scans for training. Table 2 and Table 3 represent the cross-validation results of our segmentation output before the
application of post-processing removal of correlated errors in myocardial disease segmentation from LGE-MRI data
and two methods segmentation output.

Table 2 gives an extensive evaluation of the conducted experiments’ metrics on the 5-fold cross-validation. Our
approach proves that with the restricted low number of training samples, it is conceivable to segment LGE-MRI scans.
It can be observed that the proposedmethod can accurately segment the anatomical structures aswell as the pathological
tissues. For our 5-fold cross-validation results, the Standard Deviation is relatively small, revealing that our approach
is stable for the myocardial disease segmentation.

Summary of the quantitative results reported in Table 3 demonstrates that our proposed segmentation model
reached the highest DSC and HD compared with two methods included in the 2020 EMIDEC MICCAI challenge.
The comparison study shows the effectiveness of our proposed method.
Khawla Brahim et al.: Preprint submitted to Elsevier Page 8 of 14
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Table 2: Quantitative 5-fold cross-validation results of our myocardial segmentation output in LGE-MRI.

Targets Metrics 5-fold cross-validation
fold0 fold1 fold2 fold3 fold4 Average Standard Deviation

Myocardium
DSC % 95.27 94.40 95.11 95.23 95.49 95.10 0.37

AVD mm3 256.81 343.50 247.88 252.19 231.69 266.41 39.46
HD mm 4.41 5.29 4.36 4.06 3.89 4.40 0.48

Infarction
DSC % 74.93 77.85 76.37 76.52 75.02 76.14 1.08

AVD mm3 342.00 308.69 212.31 176.75 284.81 264.91 61.31
AVDR % 6.82 6.87 4.09 2.99 5.84 5.32 1.54

MVO
DSC % 71.60 77.03 77.64 70.60 72.06 73.79 2.94

AVD mm3 41.06 34.50 60.00 76.31 63.56 55.09 15.28
AVDR % 0.75 0.75 1.10 1.41 1.24 1.05 0.26

Table 3: Comparison study with previous methods on 5-fold cross-validation of EMIDEC dataset. Best values marked
in bold font.

Targets Metrics Methods
Huellebrand et al. [32] Zhang [29] Our proposed model

Myocardium
DSC % 81.00 94.40 95.10

AVD mm3 13655.55 6474.38 266.41
HD mm 16.72 17.21 4.40

Infarction
DSC % 36.08 72.08 76.14

AVD mm3 8980.5 4179.5 264.91
AVDR % 7.07 3.41 5.32

MVO
DSC % 54.15 71.01 73.79

AVD mm3 1501.73 918.69 55.09
AVDR % 1.08 0.69 1.05

We conduct different experiments for a comparative study of methods based on (wIOU) loss and (mwIOU) loss,
which is defined by the ratio of the wIOU to the sum of the weight coefficients in myocardial segmentation. The
proposed model is also compared with the baseline 3D U-Net architecture to highlight the importance of shape regu-
larization in improving segmentation. Fig. 8 and Fig. 9 plot quantitative metrics including the Dice score and AVD
for each myocardial region for the two methods among all loss functions, showing the pertinence of prior shape and
post-processing in making the best trade-off between evaluation metrics. Morphological opening with a kernel of size
3× 3 and iterations’ number equal to 1 and majority voting method (combining results from different models obtained
with varying parameters of the loss function’s weighting) as post-processing operations are used to increase sensitiv-
ity for segmenting infarct and MVO. Our proposed segmentation method produces excellent results representing top
performances for myocardial segmentation in LGE-MRI. For our final segmentation results, the ensembled network
achieves an average DSC score of ’0.9507’, ’0.7656’, and ’0.8377’ for myocardium, MI, and MVO, respectively. The
proposed network successfully outperforms the baseline 3D U-Net architecture (median HD of ’3.16 mm’ vs. ’4.12
mm’).

Fig. 10 illustrates good visualization of our final segmented volumes, 3D U-Net results, and corresponding man-
ual myocardial annotation in our own split testing set. We acquire the final prediction of testing set by gathering the
segmentation results of different models using morphological opening and majority voting as post-processing opera-
tions. Two axial slice views and a 3D surface rendering with manual myocardial delineation are illustrated on the first
row. Segmented images obtained using our 2-stage anatomical and pathological overall’s system and 3D U-Net are
shown in the matching row. As compared to manual annotations, our proposed network correctly depicted myocardial
structures and showed a good agreement with the gold standard. Notably, the proposed shape prior based deep method
demonstrated promising performance in segmenting the damaged myocardial areas from DE-MRI.

Table 4 shows how the addition of the pathological network, which is responsible for extracting the damaged
areas, affect the segmentation performance of the myocardium and left-ventricular cavity structures obtained from the
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Figure 8: An illustration of the networks results. The proposed network outperformed the 3D U-Net approaches in
segmenting myocardial tissues.

anatomical network. The table quantitatively demonstrates the anatomical segmentation model’s performances alone
and when adding the shape prior model to it.
Table 4: Performance comparison between the proposed anatomical method and our final proposed model (anatomical
+ pathological) before and after the application of post-processing on EMIDEC dataset. An example is given for one
fold as 5 fold-cross validation is done "fold0".

Targets Metrics Methods
Our proposed anatomical model Our final proposed model before applying post-processing Our final proposed model after applying post-processing

Myocardium
DSC % 91.18 95.27 95.07

AVD mm3 348.62 256.81 315.5
HD mm 23.65 4.41 5.02

Infarction
DSC % – 74.93 76.56

AVD mm3 – 342.00 234.12
AVDR % – 6.82 4.92

MVO
DSC % – 71.60 83.77

AVD mm3 – 41.06 30.25
AVDR % – 0.75 0.60

4.2.2. Validation of the performance of the proposed anatomical model on benchmark datasets
The proposed method (anatomical model) has been evaluated and tested on other publicly available LGE-MRI

datasets such as Myocardial pathology segmentation combining multi-sequence CMR (MyoPS) 2020 dataset in MIC-
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Figure 9: An illustration of the networks results. Our approach shows superior AVD and AVDR-values on the MI, and
MVO areas.

CAI 2020 challenge and a Multi-sequence Cardiac MR (MS-CMRSeg) 2019 in MICCAI 2019. The data has been
preprocessed based on the multivariate mixture model (MvMM) [49]. The performance comparison of our proposed
anatomical method and existing deep learning models on MS-CMRSeg 2019 and MyoPS 2020 datasets are shown in
Table 5 and Table 6 respectively. These tables prove the reliability of our proposed anatomical model on other clini-
cal datasets. The experiments show that our anatomical approach produced excellent Dice similarity as compared to
existing methods.
Table 5: Performance analysis of the proposed anatomical model on MS-CMRSeg 2019 dataset and comparison with
existing deep learning-based models. Best values marked in bold font.
Methods Dataset DSC (%) HD (mm)
Our proposed anatomical model BSSFP+ T1 for training LGE for testing 81.87 9.98
Sulaiman Vesal [50] Used different combination for training LGE for testing 74.90 11.35
Víctor M. Campello [51] Used different combination for training LGE for testing 68.00 12.00
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Figure 10: Visual exemplar segmentations for our 2-stage anatomical and pathological overall system and 3D U-Net
applied for the same subject on the EMIDEC validation set. Each row displays a case on two different heart locations,
followed by a 3D surface rendering. The rows from top to bottom are the ground truth, the proposed method prediction,
and 3D U-Net segmentation.
Table 6: Performance comparison between the proposed anatomical method and existing state-of-the-art deep learning
models on MyoPS 2020 dataset. Best values marked in bold font.

Models DSC(%) HD(mm) AVD(ml)
Our proposed anatomical model 0.8469 16.3190 8.6275
DSNet [52] 0.8217 17.9299 7.3824
X-Net [53] 0.8005 23.2728 11.6204
U-Net [9] 0.7956 114.7892 26.3757

5. Conclusion
This paper proposes a deep learning-based shape prior model for automatic myocardial infarction segmentation

from LGE-MRI. Experiments results have revealed the algorithm’s effectiveness in segmenting the anatomical struc-
tures. As compared to the manual annotation, our proposed model can find its pertinence in assisting experts in
diagnosing different cardiac diseases. In future research, we would fuse features extracted from LGE-MRI and clinical
Metadata information to perform the final segmentation.
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