
Deep Embedded Hybrid CNN-LSTM Network for Lane 

Detection on NVIDIA Jetson Xavier NX 

Yassin Kortli 1.2,3, Souhir Gabsi 3, Lew F. C. Lew Yan Voon2, Maher Jridi 1, 
Mehrez Merzougui 3,4, and Mohamed Atri 3,4 

          1: LABISEN, VISION-AD, ISEN site de Nantes, 33 Quater Chemin du Champ de 
Manœuvre 44470 Carquefou, France 

          2: Laboratoire ImViA, Université de Bourgogne, France 
3: Electronic and Micro-electronic Laboratory, Faculty of Sciences of Monastir, 
University of Monastir, Tunisia 
4: College of Computer Science, King Khalid University, Abha 61413, Saudi Arabia 

Email: yassin.kortli@isen-ouest.yncrea.fr ; souhir.gabsi@fsm.rnu.tn ; lew.lew-yan-voon@u-bourgogne.fr; maher.jridi@ 

isen-ouest.yncrea.fr  ; mhrez@kku.edu.sa  ;  mohamed.atri@fsm.rnu.tn 

Abstract  

In recent years, lane detection has become one of the most important factor in the progress 

of intelligent vehicles. To deal with the challenging problem of low detection precision and 

real-time performance of most traditional systems, we proposed a real-time deep lane 

detection system based on CNN Encoder-Decoder and Long Short-Term Memory (LSTM) 

networks for dynamic environments and complex road conditions. The CNN Encoder 

network is used to extract deep features from a dataset and to reduce their dimensionality. A 

corresponding decoder network is used to map the low resolution encoder feature maps to 

dense feature maps that correspond to road lane. The LSTM network processes historical 

data to improve the detection rate through the removal of the influence of false alarm 

patches on detection results. We propose three network architectures to predict the road lane: 

CNN Encoder-Decoder network, CNN Encoder-Decoder network with the application of 

Dropout layers and CNN Encoder-LSTM-Decoder network that are trained and tested on a 

public dataset comprising 14235 road images under different conditions. Experimental 

results show that the proposed hybrid CNN Encoder-LSTM-Decoder network that we have 

integrated into a Lane-Departure-Warning-System (LDWS) achieves high prediction 

performance namely an average accuracy of 96.36, a Recall of 97.54%, and a F1-score of 

97.42 %. A NVIDIA Jetson Xavier NX supercomputer has been used, for its performance 

and efficiency, to realize an Embedded Deep LDWS. 

Keywords: Embedded Deep LDWS, CNN Encoder-Decoder network, Long Short-Term 

Memory network, Lane Detection. 

1. Introduction 

In recent years, road accidents have become one of the most common causes of fatal 

injuries, numbering in the millions. As a result, intelligent vehicle safety has continued to 

improve year after year, thanks to the advances in the development of many passive safety 

systems, such as seat belts and airbags, which are now found in virtually every commercial 

vehicle[1–3]. However, the latest safety systems are designed not only to minimize potential 

injuries in the case of accidents, but also to prevent accidents from arising. Advanced Driver 

Assistance Systems (ADAS) provide assistance to the driver on the road, therefore, enhance 
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the driving experience. The main objective of ADAS is to improve the vehicle's security and 

protect other vehicles on the road, as well as the driver and pedestrians or cyclists. The 

demand for ADAS systems has exploded in recent years due to the general desire to build 

safer vehicles and roads in order to reduce the number of road deaths[4–7].  

ADAS systems must be able to recognize objects, road signs, the road itself, and any 

other moving vehicles on the road, in order to take real-time decisions to either warn the 

driver or act directly in his place. Due to advances in the applications of Machine Learning 

techniques, mobile robotics, self-driving and driver assistance systems are clear examples of 

areas in which the application of Deep Learning approaches, e.g. Convolutional Neural 

Network (CNN)[8–13], Recurrent Neural Network (RNN)[4,13,14], Long Short-Term 

Memory (LSTM)[3,15], etc., can offer new perspectives. More specifically, Deep Learning 

(DL) techniques are considered as one of the most interesting solutions for computer vision 

problems[16–20]. DL approaches have been used for object detection and recognition, 

segmentation, feature extraction, classification and regression tasks[21–28]. One of the areas 

where DL is opening new perspectives is the development of new ADAS[1,4,18,19] such as 

lane departure warning, forward collision warning, traffic sign recognition , and so on. 

The main subject of this paper is the design of a deep-based network that uses vision 

and Artificial Intelligence (AI) techniques to predict road lane, based on images acquired in 

real time by a camera installed inside the vehicle. One of the specificity of our method is that 

the deep learning model is also trained with data acquired directly by the camera. 

Furthermore, the proposed deep-based network may be integrated into a Lane-Departure-

Warning-System (LDWS) capable of avoiding potential lane departure situations[30]. Due 

to its performance and efficiency, a NVIDIA Jetson Xavier NX supercomputer is used to 

realize an Embedded Deep LDWS for automatic driving movement control. Compared to 

state-of-the-art systems, this paper highlights the following main contributions: 

• A novel solution to predict road lane for vehicle movement control through deep 

learning architecture. 

• A combination of three deep networks: CNN Encoder-Decoder network, CNN Encoder-

Decoder network with Dropout layer network and CNN-LSTM network, to, 

automatically and efficiently, predict road lane. 

• A false alarm removal solution based on a combined deep CNN-LSTM network. The 

LSTM network is proposed to improve the detection rate through the removal of false 

alarm patches. 

• A post-processing step that enabled us to realize a Deep Embedded Lane Departure 

Warning System (LDWS) using A NVIDIA Jetson Xavier NX supercomputer. 

• A detailed experimental analysis in terms of Loss, Accuracy, Precision, Recall or 

sensitivity, F1-score and IOU to evaluate the proposed networks and system 

performance. 

The rest of the paper is organized in the following way: A review of recent related 

work is presented in Section 2. Section 3 describes the proposed networks for lane 

prediction and dataset collection and preparation. Section 4 presents a series of experimental 

results and comparative performance to verify the effectiveness of the proposed networks 

and to select the best one to realize an Embedded Deep LDWS based on a NVIDIA Jetson 



Xavier NX supercomputer. Section 5 discusses and compares the performance of our system 

with existing systems. Finally, Section 6 concludes the paper. 

2. State-of-the-Art 

The increase in the number of vehicle ownerships each year has made traffic safety an 

important factor in the development of a city. Traffic accidents are mainly caused by 

subjective reasons related to the driver, such as fatigue, drunkenness and driving errors. 

With intelligent vehicles, these human factors can be eliminated to some extent[1][4][29] 

[30]. Recently, the manufacturing of intelligent vehicles has begun to attract the attention of 

researchers in related fields around the world. They can intelligently assist humans in 

driving tasks based on real-time traffic information, highlighting their importance in 

improving driving safety and freeing humans from tedious driving environments[32][5].  

Road lane detection system is an important factor in the development of intelligent 

vehicle, which directly affects the driving behaviors. Using this system, it is possible to 

determine an effective driving direction and provide the accurate position of the car in the 

road lane. Therefore, it is necessary to conduct a comprehensive study on this topic. 

Current lane detection systems use mainly visual sensors that capture the road scenes 

in front of the vehicle through cameras [4,30,33]. These sensors have a wide response 

spectrum that they can detect infrared rays and can operate continuously with high 

adaptability and for long periods. However, many challenges complicate the accuracy of 

lane detection, such as complex backgrounds on both sides, insufficient light, vehicle 

occlusion problems, and daily natural condition, etc[34–38]. Lane detection techniques are 

mostly divided into feature-based detection[30,32,39–46] and model-based 

detection[1,4,50,5,29–31,33,47–49]. 

The first techniques separate the lane from the road scene based on the color and edge 

features. Ghazali, et al. [51] proposed a fast and improved system based on H-MAXIMA 

transform and improved Hough transform algorithm to detect unexpected lane changes. 

First, the region of interest of the input image is defined to reduce the search space, and then 

the Hough transform is applied to detect the lane markers after image noise filtering. Zheng 

et al.[52] applied a system that directly identifies the boundary line in the Hough space, so as 

to simplify the Hough transform-based boundary line detection algorithm. The image is 

subjected to the Hough transform, and the points corresponding to the parallelism, length 

and angle, and intercept features of the line are selected in the Hough space. Compared to 

the traditional algorithm, experimental results showed that the identification is effectively 

improved on fast lanes and structured roads. Huang et al. [6] used the linear Hough 

transform (HT)-based straight lane detection algorithm to evaluate possible perception 

problems in challenging scenarios, including altered lighting conditions, different weather 

and hue conditions, and different road types. In fact, the HT-based algorithm was found to 

have an acceptable detection rate in simple contexts, such as driving on a highway or in 

conditions with distinct contrast between lane boundaries and their surroundings. In contrast, 

it failed to detect roadway boundaries under a variety of lighting conditions. Ghanem et al. 

[3] developed a novel lane detection and tracking method for autonomous vehicle in the IoT-

based framework (IBF). It consists of three blocks: Vehicle Board (VB), Cloud Module 



(CM) and Vehicle Remote Control. In addition, to detect lane markers under different light 

conditions, an illumination invariance operation is introduced. Simulation results present a 

lane-keeping rates of 95.3% in tunnels and 95.2% on highways and a processing time of 31 

ms/frame, which meets the real-time requirements. Dorj et al. [32] presented a cutting edge 

curve lane detection system based on Kalman filter algorithm for autonomous cars. To 

estimate the parameters of a curved lane, parabola equation and circle equation models are 

applied inside the Kalman filter. The developed system has been tested with an autonomous 

driving vehicle. Simulation results show a high detection success rate in the curved lane. 

Suder et al. [7] proposed three systems to extract and detect lane road under environmental 

conditions: (1) horizontal road lane detection based on image segmentation in the HSV color 

space, (2) optimal path finding using the edge detection-based hyperbolic fitting line 

detection algorithm, and (3) road lane detection based on edge detection, Scharr mask, and 

Hough transform algorithm. Embedded devices such as NVIDIA Jetson Nano and 

Raspberry Pi 4B were used to develop and test the proposed systems. Yoo and Kim [53]  

presented a robust method for extracting road marking features using a graph model based-

approach. The hat filter with adaptive sizes is applied to extract the local maximum values of 

the filter response, which are introduced as nodes in a connected graph structure, and the 

graph edges are constructed using the proposed neighbor search method. The nodes related 

to the lane markings are then selected, and fitted to the line segments as the proposed 

features of the lane markings. The experimental results outperform existing methods on the 

KIST and Caltech datasets. Furthermore, the proposed method requires an average 

processing time of 3.3ms, which is fast enough for real-time applications. The accuracy of 

feature-based lane detection was significantly reduced when the lane was damaged or 

visibility was low, these methods are only applicable to real road scenes where the lane 

edges are clear and under simple road conditions [7,30,32,46,53–58]. 

Recently, deep learning-based techniques have been used to address the problem of 

road lane or traffic signs detection, and thus, they have boosted the development of Self-

Driving Systems and Advanced Driver Assistance Systems (ADAS). Badrinarayanan et al. 

[59] presented a novel deep convolutional neural network architecture for segmentation 

called SegNet. Their architecture consists of an encoder network that is topologically 

identical to the 13 convolutional layers of the VGG16 network, a corresponding decoder 

network for mapping low-resolution feature maps from the encoder, and a per-pixel 

classification layer. The proposed architecture is compared with the well-known FCN, 

DeepLab-LargeFOV and DeconvNet architectures. SegNet architecture was mainly 

motivated by scene understanding applications. The experimental results show the good 

segmentation performance of the proposed network. The SegNet architecture is widely used 

in object detection [4,59,59,60]. Almeida et al.[4] proposed a new road representation by 

combining two simultaneous Deep Learning models, based on two adaptations of the ENet 

model. The results show that the combined solution is capable to cope with the failures or 

under-performance of each model and produces a more reliable route detection rate than that 

given by each approach individually. Zhao et al. [31] introduced a model based on deep 

reinforcement learning for surface lane detection, which is composed of two steps: the 

bounding box detector and the landmark point localizer. Specifically, a bounding box level 

convolution neural network is used to locate the road lane, then, a reinforcement-based Deep 



Q-Learning Localizer (DQLL) is applied to accurately localize the lanes as a group of 

landmark points for better representation of curved lanes. This proposed model achieves 

competitive performance in the NWPU Lanes and the TuSimple Lanes datasets. Heo et 

al.[5] designed a combination of lightweight deep learning models on an embedded GPU 

platform (eGPU) to identify car movement on the road. Their system analyzes discrete 

images and creates a continuous trace of a vehicle's movement trajectory. The evaluation 

results show that the proposed system can well extract horizontal and vertical movements of 

a vehicle. Model-based lane detection methods (based on deep learning) are suitable for 

situations where the lane is damaged or visibility is low. But, when the road traffic 

information is overly complicated or when there are interfering obstacles, the detection is 

considerably reduced, which easily produces false detections[1,3,4,6,30,31,33]. Using deep 

learning-based approaches, the accuracy and robustness of lane detection can be 

significantly improved. At the same time, these approaches have a higher hardware 

requirement and over-complex structures, which still leads to some limitations[13–15,61–

64]. It is therefore necessary to continue to improve lane detection systems and to implement 

them on embedded platforms for faster execution time so as to meet the Embedded 

Intelligence (EI) constraints. 

In this paper, we propose a solution that addresses the above-mentioned drawbacks of 

existing approaches. It is a deep-based lane detection system for intelligent vehicles under 

complex road conditions and dynamic environments. Basically, traffic road images are first 

pre-processed. Then, the proposed neural networks, CNN Encoder, CNN Decoder and 

LSTM, are applied to predict the road lane area or Region of Interest (ROI) in order to select 

the best one. Lastly, a post-processing step is done in which the radius of curvature and the 

center offset from the road are computed in order to detect any departure of the car from the 

lane.  So as to meet the constraints of embedded intelligence, our selected system is 

implemented in an embedded NVIDIA Jetson Xavier NX device for fast execution time. 

3. Development of Lane Prediction Networks 
The architecture of the lane prediction and detection system that we propose is illustrated in 

Fig. 1. It is a combination of three segmentation networks: a CNN Encoder-Decoder, a CNN 

Encoder-Decoder with Dropout layer, and a CNN Encoder-LSTM–Decoder. The networks 

are based on SegNet, a Deep Encoder-Decoder architecture which is composed of two CNN 

architectures with convolution layers, residual unit, maximum pooling layers, upper 

sampling layers and batch normalization layers. 

Firstly, some preprocessing such as data resizing, shuffling, and normalization are 

done on the road lane. Secondly, the three-network system that we propose is applied to a 

single RGB channel to predict lanes and road markings. The functions of the three networks 

are as follows: the CNN Encoder-Decoder network allows to predict lane markings on the 

road. The CNN Encoder-Decoder network including Dropout layer is used for regularization 

and for uncertainty estimation, and the Encoder-LSTM-Decoder network architecture uses 

the LSTM network to improve the detection rate through the suppression of the influence of 

false alarm patches on the detection results. Last, the road lane markings is located by 

selecting the feature. Finally, a post-processing step that includes the following operations is 

applied: edge detection using the Canny detector, perspective transform to obtain 



perpendicular view of the lane, and polynomial curve fitting to determine the quadratic 

function of the curve of the lane from which the radius of curvature and the offset from the 

center of the road are computed. The performance of the proposed networks has been 

measured according to the following metrics: loss, accuracy, precision, Recall, F1-score, and 

IOU. 
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Fig. 1. The overall structure proposed for lane detection based on three architecture networks. 



3.1. Encoder-Decoder network Structure  

CNN is a special type of deep learning algorithms and an effective technique for feature 

extraction, which has shown excellent results in many computer vision and signal processing 

applications such as medical image analysis, object detection, automatic speech recognition, 

classification and wind speed forecasting. The advantage of CNNs is that the feature 

extraction and classification processes are combined in a single CNN core, which allows 

CNNs to optimize feature extraction from the raw data during the training phase. The 

fundamental concept of a CNN consists in obtaining local features from higher-layers inputs 

and transferring them to lower-layers to obtain more complex features. 

The Encoder-Decoder network proposed in this paper is composed of two main 

modules: (1) an Encoder network and (2) a Decoder network. The latter is basically a 

convolutional neural network (CNN). A typical CNN architecture comprises convolutional 

layers, pooling layers, and fully connected layers. 

a. Encoder Network 

To identify the pixel-level region which is abnormally similar to the road region, taking into 

account the importance of spatial information for the localization of the road region, we 

exploit the convolution layer to design the encoder network, so that the network can identify 

the similar region based on the shape, appearance, and spatial association between the road 

lane and non-road lane regions. However, some deep image segmentation architectures are 

proposed by using the convolution layer[14,59]. Based on these works, we have developed 

an Encoder-Decoder architecture. The encoder network structure is formed by a convolution 

layer, a residual unit and a pooling layer. In each layer, the input data is a 3-dimensional 

arrays with a size of (80 × 160 × 3). 

The convolutional layer is a mathematical operation has a set of kernels that determine 

a feature maps. The input data dimensions decrease after this layer is used to perform the 

striding process. The operation of the convolutional layer between two time-series is a linear 

operation that is given as: 

                                                 �(�, �) = (� ∗ 
)(�, �) = �(∑∑�(� + �, � + �)
(�, �))                   (1) 

where � represents the output of a feature map,  � represents the input matrix, 
 represents a 

2D filter of size � ×  � and � is the activation function. The Rectified Linear Unit Layer 

(ReLU) is employed to increase the non-linearity of the feature maps by the activation 

function which consists of fixing the input threshold to zero, which is expressed 

mathematically as follows: 

                                    �(�)  =  ���(0, �)                                                                 (2) 

The convolution layer is formed by different self-learning filters with kernel size is 

(3 ∗ 3 ∗ �), where � is the filter depth. In each layer, these filters create feature maps 

corresponding to the local regions of the previous layer. If the filter depth is too high, it is 

easy to lead to over fitting, otherwise, it is easy to lead to under fitting if the filter depth is 

too low, and so it is necessary to choose an appropriate value. The proposed Encoder 

network in this paper is composed of four layers use 8, 16, 32 and 64 convolution kernels, 

respectively. 



The pooling layer reduces the size of the features and minimizes the number of 

parameters, which is used max pooling function to obtain the maximum value in the selected 

input region. This layer is added in the middle of multiple convolution layers. In this paper, 

each pooling has a pool-size of 2x2 and stride size is 2. 

The Dropout layer is widely used to regularize deep neural networks which is 

generally applied to fully connected layers and convolutional layers. In this paper, the 

Dropout layer is applied to convolutional and pooling layers in the second proposed 

network. The regularization factor is: 

       � =  �� + �
� ∑ ���                                                                   (3) 

b. Decoder Network 

The decoder network architecture is formed by three layers of the CNN network. Each 

layers is composed with an upper sampling layer and two or three deconvolution or 

transpose of convolution layers. The upper sampling layer carries out an upper sampling 

operation on the feature mapping trained from the previous convolution layer. The 

deconvolution layer employs a range of multi-channel filters to convolve with the sparse 

representation of the upper sampling heat map, and then applies the batch normalization 

layer to generate a more dense heat map. Overall, 64, 32 and 16 transpose of convolution 

kernels of size (3�3) are applied in the first, second and third layers of our proposed 

decoder network architecture. Finally, the network produces a binary mask represent the 

road lane region in the image. 

3.2. LSTM Network Structure 

Long Short-Term Memory (LSTM) network is an improvement of RNNs proposed by 

Hochreiter and Schmidhuber. The name LSTM means that it can flexibly overcome long or 

short time lags for the matching tasks[3,13–15,53,61–63]. RNNs have a major drawback 

known as the gradient vanishing problem, i.e., they have difficulty learning long-range 

dependencies. Fortunately, this problem has been solved with the creation of LSTM 

network, capable of learning long-term dependencies thanks to their structure has the ability 

to remember information during long delays, forget unnecessary information and carefully 

expose information at each time step. The internal structure of RNN-LSTM network for 

processing sequences is shown in Fig.2.  

It consists of a memory unit called cell and a four gates called a forget gate �� , input 

gate �� , update gate �  , and output gate �!. Each gate contains a Fully Connected (FC) 

layer and an activation function σ. By using these gates, the network can handle the process 

of adding or removing information from its cells. 

The cell state gate remembers the information over time, forget gate controls the 

extent of the value kept in the cell, input gate controls the extent of the value flow in the cell, 

and output gate controls the extent of the value in the cell to be used for computing the 

output. The "# refers to the current input; �#  and �#$% denote the new and previous cell 

states, respectively; and ℎ# and ℎ#$% are the current and previous outputs, respectively. The 

following equations describe the mathematical formulas applied to perform RNN-LSTM 

network: 



��  =  '(�� ["# , ℎ#$%])                                                                     (4) 

��  =  '(�� ["# , ℎ#$%])                                                                      (5) 

�  =  *��ℎ(�  ["# , ℎ#$%])                                                               (6) 

�+  =  '(�+ ["# , ℎ#$%])                                                                     (7) 

�#  = �� ∗ �#$% + �� ∗ �                                                                  (8) 

ℎ#  = �+ ∗ tanh (�# )                                                                         (9) 
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Fig. 2. The internal structure of RNN-LSTM network. 

In more detail, the forget gate is responsible for removing redundant information from 

the cell state. The Equ.4 is applied to multiply the current cell’s input "# and the previous 

cell’s hidden state ℎ#$% with a weight matrix ��. Secondly, the output result is processed by 

a sigmoid function, which produces a vector of values between 1 and 0, in order to assign 

these values to the state of the cell, after that, to decide on which values of the cell state are 

about to be retained and which to be forgotten.  

The input gate receives the same two arguments "# and ℎ#$% . This gate ensures the 

addition of new information to the cell state, where  "# and ℎ#$% are multiplied by a new 

weight matrix ��, after that, a new sigmoid function is used to decide which values must be 

added to the cell state (Equ.5). At the update gate, "# and ℎ#$% are multiplied with another 

weight matrix, the result is passed through the *��ℎ layer, which gives values between -1 



and 1 (Equ.6). Subsequently, a new vector �# is obtained (Equ.8), which comprises all the 

new candidate values that could be added to the cell state. As a result, the output gate of the 

LSTM decides which states are required for continuation by the two inputs arguments "# 

and ℎ#$%according to (Equ.7) and (Equ.9). 

Lastly, it is necessary to compute the time complexity of the Encoder- LSTM -

Decoder network. For this purpose, we first calculate the time complexity of the 

convolutional layers of the Encoder-Decoder network and that of the LSTM layer [65]. The 

time complexity of all convolutional layers is estimated to be 0(∑ �1$%
2
13% . 51

�. �1 . �1
�) 

where �1$% is the number of input channels of the 6#7 layers, 51 is the spatial size of the 

filter, �1is the number of filters in the 6#7 layers,  �1 is the spatial size of the is the spatial 

size of the output feature map and � is the number of convolutional layers. On the other 

hand, the time complexity per weight of an LSTM network is 0(1), since this network is 

local in space and time, which means that the length of the input does not affect the storage 

requirements of the network and for each time step[65]. As a result, the overall complexity 

of an LSTM network per time step is equal to 0(9), where 9 is the number of weights. 

Therefore, the complexity of the Encoder- LSTM -Decoder network per time step can be 

computed as the sum of the complexity of the two networks is equal 

to 0:∑ (�1$%
2
13% . 51

�. �1. �1
�; + 9) and the complexity of the whole training process is equal 

to 0 <:∑ (�1$%
2
13% . 51

�. �1 . �1
�; + 9= �. >) where � is the input length and > the number of 

epochs. 

3.3. Proposed Networks Models Structure 

The three proposed CNN Encoder-Decoder network, CNN Encoder-Decoder network 

architecture including Dropout layer, and the Encoder- LSTM -Decoder network were 

evaluated on a public datasets that includes 14235 road images under different conditions 

such as day, night, low light, weather, traffic, curves and straights road (see Fig.3) 

(https://www.dropbox.com/s/rrh8lrdclzlnxzv/full_CNN_train.p?dl=0and,https://www.dropb

ox.com/s/ak850zqqfy6ily0/full_CNN_labels.p?dl=0).  

   

Fig.3. General information of data collection used for training and testing models. 
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The selected database also contains difficult areas such as intersections and 

construction, very curvy roads, and curved and straight roads. In this paper, we used 14235 

(80 x 160 x 3 dimensions) road images to train our proposed networks because of blurring, 

hidden lines, etc. 

There are a number of pre-processing steps that should be performed before using 

these data in the proposed models such as shuffling and normalization. The purpose of 

normalization step is to have same range of feature values and the purpose of shuffling step 

is to reduce variance and ensure that the models remain general and fit less. Subsequently, 

we divided the pre-processed dataset into a training set and a test set, and we formed the 

three proposed network architectures including CNN Encoder-Decoder network, CNN 

Encoder-Decoder network architecture when applied Dropout layers after convolution 

pooling layers, and the Encoder- LSTM -Decoder network architecture using the training 

data (Fig.4).  
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Fig. 4. An illustration of the proposed networks architecture to predict road lane. 

The Encoder Neural Network renders low-resolution feature maps of the input data, 

which is composed with a series of convolution layers followed by a number of max-pooling 

layers and Dropout layers. The Decoder Neural Network provides pixel-wise segmentation 

from the feature maps, which is composed with a series of deconvolution or transpose of 

convolution layers followed by a number of up-sampling and Dropouts layers. The LSTM 

network architecture reduces the false alarm rate through suppression of the influence of 

false alarm patches on the detection results, which is composed with two LSTM layers and 

convolution layer before each layer to maintain matrix dimensions. The Adam Optimizer 



and Mean Squared operations are used to check performance of the proposed networks in 

terms of accuracy and loss. The whole process of the proposed networks for road lane 

prediction is demonstrated in Fig. 4. The summary of the proposed networks is shown 

in Table 1 and Table 2. For more details see https://github.com/yassinkortl/Deep-Embedded-

Hybrid-CNN-LSTM-Network-for-Lane-Detection-on-NVIDIA-Jetson-Xavier-NX.  

 

Table 1. The full summary of CNN Encoder-Decoder and CNN Encoder-Decoder with Dropout 

layer networks. 

Networks Layers Kernel 

Size 

Stride Filter  

depth 

Activation Input Size Output 

Size 

 

 

 

 

Encoder 

Network 

Conv2D 3x3 1 8 ReLU 80x160x3 78x158x8 

Conv2D 3x3 1 16 ReLU 78x158x8 76x156x16 

MaxPool2D 2x2 2 -- -- 76x156x16 38x78x16 

Conv2D⊕ Dropout 3x3 1 16 ReLU 38x78x16 36x76x16 

Conv2D⊕ Dropout 3x3 1 32 ReLU 36x76x16 34x74x32 

Conv2D⊕ Dropout 3x3 1 32 ReLU 34x74x32 32x72x32 

MaxPool2D 2x2 2 -- -- 32x72x32 16x36x32 

Conv2D⊕ Dropout 3x3 1 64 ReLU 16x36x32 14x34x64 

Conv2D⊕ Dropout 3x3 1 64 ReLU 14x34x64 12x32x64 

MaxPool2D 2x2 2 -- -- 12x32x64 6x16x64 

 

 

 

 

Encoder 

Network 

UpSampling2D 2x2 2 64 -- 6x16x64 12x32x64 

Conv2DTranspose⊕ Dropout 3x3 1 64 ReLU 12x32x64 14x34x64 

Conv2DTranspose⊕ Dropout 3x3 1 64 ReLU 5x15x128 16x36*64 

UpSampling2D 2x2 2 64 -- 16x36x64 32x72x64 

Conv2DTranspose⊕ Dropout 3x3 1 32 ReLU 32x72x64 34x74x32 

Conv2DTranspose⊕ Dropout 3x3 1 32 ReLU 34x74x32 36x76x32 

Conv2DTranspose⊕ Dropout 3x3 1 16 ReLU 36x76x32 36x76x16 

UpSampling2D 2x2 2 16 -- 36x76x16 76x156x16 

Conv2DTranspose 3x3 1 16 ReLU 76x156x16 78x158x16 

Conv2DTranspose 3x3 1 1 ReLU 78x158x16 80x160x1 

The CNN Encoder-Decoder network composed with 20 layers including 14 

convolutional layers (7 layers for Encoder Network and 7 Layers for decoder) and 6 pooling 

layers. The convolution layer is used to extract features with a size of 3x3 kernels and 

activated with ReLU function. For each convolution block, there are 2-3 2D CNNs and a 

pooling layer. The max-pooling layer is used to reduce the dimensions with a size of 2x2 

kernels. The CNN Encoder-Decoder with Dropout layer network composed with 30 layers 

including 14 convolutional layers (7 layers for Encoder Network and 7 Layers for decoder), 

6 pooling layers, and 10 Dropout layers characterized with a 20% dropout rate. However, 

the CNN Encoder- LSTM -Decoder network composed with 24 layers including 16 

convolutional layers (7 layers for Encoder Network, 7 Layers for decoder and 2 for LSTM 

network), 6 pooling layers and two LSTM layers. After applied the proposed networks, the 

output shape of lane is found to be (80x160x1 dimensions) with a single RGB channel. 

4. Experimental setup 
We propose to independently evaluate the performance. Firstly, we evaluate the proposed 

networks such as CNN Encoder-Decoder network, CNN Encoder-Decoder network with 



Dropout layer network and CNN-LSTM network to select the best one for predicting road 

lane. Secondly, we evaluate the proposed system for lane detection using the selected 

network. Finally, we include a pro-processing phase that will enable to realize a Lane 

Departure Warning System (LDWS). 

Table 2. The full summary of Encoder- LSTM -Decoder network. 

Networks Type Kernel 

Size 

Stride Filter  

depth 

Activation Input Size Output Size 

 

 

 

Encoder 

Network 

Conv2D 3x3 1 8 ReLU 80x160x3 78x158x8 

Conv2D 3x3 1 16 ReLU 78x158x8 76x156x16 

MaxPool2D 2x2 2 – -- 76x156x16 38x78x16 

Conv2D 3x3 1 16 ReLU 38x78x16 36x76x16 

Conv2D 3x3 1 32 ReLU 36x76x16 34x74x32 

Conv2D 3x3 1 32 ReLU 34x74x32 32x72x32 

MaxPool2D 2x2 2 – -- 32x72x32 16x36x32 

Conv2D 3x3 1 64 ReLU 16x36x32 14x34x64 

MaxPool2D 2x2 2 – -- 14x34x64 7x17x64 

 

LSTM 

network 

Conv2D 3x3 1 64 ReLU 7x17x64 5x15x64 

LSTM 1×1 1 64 Tanh 5x15x64 5x15x64 

Conv2D 3x3 1 128 ReLU 5x15x64 3x13x128 

LSTM 1×1 1 128 Tanh 3x13x128 3x13x128 

 

 

 

 

Encoder 

Network 

Conv2DTranspose 3x3 1 128 ReLU 3x13x128 5x15x128 

Conv2DTranspose 3x3 1 64 ReLU 5x15x128 7x17x64 

UpSampling2D 2x2 2 - -- 7x17x64 14x34x64 

Conv2DTranspose 3x3 1 64 ReLU 14x34x64 16x36x64 

UpSampling2D 2x2 2 - -- 16x36x64 32x72x64 

Conv2DTranspose 3x3 1 32 ReLU 32x72x64 34x74x32 

Conv2DTranspose 3x3 1 32 ReLU 34x74x32 36x76x16 

Conv2DTranspose 3x3 1 16 ReLU 36x76x16 38x78x16 

UpSampling2D 2x2 2 - -- 38x78x16 76x156x16 

 Conv2DTranspose 3x3 1 16 ReLU 78x158x16 78x158x16 

 Conv2DTranspose 3x3 1 1 ReLU 78x158x16 80x160x1 

4.1. Performance Evaluation Metrics 

For the evaluation, the following metrics are applied to compute the performance of the 

proposed networks. In this paper, we need two cases of class prediction i.e., true prediction 

or false prediction. Each network's performance is evaluated using the following scores: 

Loss, average Accuracy, Precision, Recall, Intersection over Union (IoU) and F1-score. 

These were determined in terms of True Positives (TP) means that the declaration is positive 

and is predicted to be positive, True Negatives (TN) means that the declaration is negative 

and is predicted to be negative, False Positives (FP) means that the declaration is negative 

but is predicted positive, and False Negatives (FN) means that the declaration is positive but 

is predicted negative. The IoU metric is used to measure the overlap between the predicted 

and the ground-truth bounding boxes of the road lane. Accordingly, we have established 

such measures to evaluate the performance of the proposed models using the following 

metrics:  

Accuracy = (DE + DF) (DE + �F + DF + �E) ∗ 100⁄                      (10) 



Recall = TPR = DE (DE + �F)⁄ ∗ 100                                            (11)   

Precision = TP/ (DE + �E) ∗ 100                                                      (12) 

F1 − score = (2 ∗ TP)/(2 ∗ TP + FP + FN) ∗ 100                             (13) 

                                            �UV = DE/(DE + �E + �F) ∗ 100                                                      (14) 

4.2. Training and Validation of the Proposed Networks 

a. Training phase 

For a better prediction evaluation, the performance of three proposed networks is compared. 

Firstly, road lane images were first processed through pre-processing step, which include 

data resizing, shuffling, and normalization. Secondly, we divided the pre-processed dataset 

into a training set (90%) and a test set (10%). Thirdly, we perform our proposed networks 

architecture to predict road lane using the training data. Network I integrates the CNN 

Encoder-Decoder network (Table 1). Network II integrates CNN Encoder-Decoder network 

architecture when applied Dropout layers after convolution pooling layers (Table 1). 

Network II integrates CNN Encoder- LSTM -Decoder network architecture, where LSTM 

network is employed to improve the detection rate through suppression of the influence of 

false alarm patches on the detection results (Table 2).  

The proposed networks performance was measured through the following metrics: 

cross-entropy (loss), accuracy, precision, Recall, F1-score and IOU metrics. In the loss 

function, the balancing parameter W is set to 1 and the Adam algorithm is used to optimize 

this function. The proposed networks are trained for 30 epochs with learning rate set to 

0.0001. A summary of the loss, overall accuracy, precision, Recall, F1-score, and IOU 

metrics for each network architecture is presented in Table 3 and illustrated graphically in 

Fig. 5. 

Table 3. Performance of the proposed networks with accuracy, loss, precision, Recall, F1-score and 

IOU metrics in the training phase.  

Network  Loss Accuracy  Precision  Recall F1-score IOU Parameters (m) 

CNN Encoder-Decoder  0.0025 96,30 96,98 97,03 97,01 93,96 0.181 

CNN Encoder-Decoder + Dropout 0.0045 96,16 96,22 96,12 96,17 92,41 0.181 

CNN Encoder- LSTM -Decoder 0.0015 96,38 97,49 97,59 97,54 94,98 16.96 



 

Fig. 5. Visualization of the performance of the proposed networks results in the Training phase. 

In epoch 30, for the CNN Encoder-Decoder network architecture, the performance 

metrics of training is 96.30% of accuracy, 96, 98% of precision, 97.03% of Recall, 97.01% 

of F1-score, and 93.96 of IOU. Similarly, the obtained performance of training is 96.16% of 

accuracy, 96.22% of precision, 96.12% of Recall, 96.17% of F1-score, and 92.41 of IOU for 

the CNN Encoder-Decoder network combined with Dropout layers. Furthermore, the 

obtained performance of training is 96.38% of accuracy, 97.49% of precision, 97.59% of 

Recall, 97.54% of F1-score, and 94.98 of IOU for the CNN Encoder- LSTM -Decoder 

network architecture. As well, the lower values of loss (0.0015) were found in the third 

network compared to 0.0045 and 0.0025 in the second and the first networks, respectively. It 

was observed that the CNN Encoder- LSTM -Decoder network architecture achieves better 

performance for training phase than the CNN Encoder-Decoder network architecture and 

CNN Encoder-Decoder network architecture combined with Dropout layers. 

b. Testing phase 

To examine the effectiveness of each proposed network, a set of 1276 images is used for 

validation.  Table 4 presents the performance results of the proposed networks with 

accuracy, loss, precision, Recall, F1-score and IOU metrics in the training phase and testing 

phase for road lane detection on the validation set. In addition, Fig.6 shows an illustrated 

graphically of the performance metric in the testing phase. 

It can be observed that CNN Encoder- LSTM -Decoder network also achieves better 

performance for test phase compared to both other proposed networks. Specifically, the later 

reaches a 96.36% of accuracy, 97, 30% of precision, 97.54% of Recall, 97.42% of F1-score, 
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and 94.70 of IOU. These results demonstrate the effectiveness of CNN Encoder- LSTM -

Decoder network in solving the problem of road lane detection in different environments. 

The results of the evolution of the accuracy rate and the loss function over time in the 

training phase and the test phase of the proposed networks are presented in Fig 7, Fig 8, and 

Fig. 9. The performance was done with 30 epochs (an epoch is a complete iteration on the 

training or testing). We can see from the graphs how the network improves its accuracy on 

the training and testing phases, while decreasing the cost (loss). One of the main goals of 

machine learning is that the models created are capable of generalizing their knowledge. In 

other words, the model must be able to make predictions with acceptable accuracy on data 

that it has never processed before. It is therefore a good question to consider if a model well 

fitted to the training data will generalize well to the evaluation data, since the evaluation data 

are unknown to the model. A good fit is identified by a training and validation loss that 

decreases to a stability point with little difference between the two final loss values. The 

model loss will almost always be smaller on the training phase than on the validation phase 

(see Table 4). 

It implies that we should expect some gap between the training and validation loss 

learning curves. This gap is called the "generalization gap". A curve plot of learning curves 

shows a good fit if the training loss plot decreases to a stability point and the validation loss 

curve decreases to a stability point with little difference from the training loss. We can 

clearly see that the first and the second networks suffer from overfitting (Fig. 7 and Fig. 8). 

A good fit is the goal of the learning network. Fig. 9 shows demonstrates a case of a good fit 

learning curves achieved by using CNN Encoder- LSTM -Decoder network. The results 

obtained during the training phase and the test phase clearly prove the effectiveness of the 

proposed CNN Encoder- LSTM -Decoder network compared to the other two proposed 

networks for lane prediction. 

In terms of complexity, the proposed CNN Encoder- LSTM -Decoder network 

requires more parameters than the other models because more number of layers has been 

applied (See Table 3).  While the structure of CNN Encoder-Decoder network is similar to 

CNN Encoder-Decoder network with combined with Dropout layers. In addition, CNN 

Encoder- LSTM -Decoder network requires slightly longer training and inference time than 

other networks, however, generates better segmentation results. Overall, the structure of 

CNN Encoder- LSTM -Decoder has a clear effect on improving the performance of deep 

models. 

Table 4. Performance results of the proposed networks in Training and Testing for road lane 

detection. 

Network Loss Accuracy Precision Recall F1-score IOU 

CNN Encoder-Decoder Training 0.0025 96.30 96.89 97.03 97.01 93.96 

Testing 0.0031 96.27 97.37 96.17 96.76 93.94 

CNN Encoder-Decoder 

+ Dropout 

Training 0.0045 96,16 96,22 96,12 96,17 92,41 

Testing 0.0041 96,17 96,56 96,06 96,31 92,64 

CNN Encoder- LSTM Training 0.0015 96,38 97,49 97,59 97,54 94,98 



-Decoder Testing 0,0017 96,36 97,30 97,54 97,42 94,70 

 

 

Fig. 6. Visualization of the performance of the proposed networks results in the Testing phase. 
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(a) 

 
(b) 

Fig. 7. Evaluation metrics of lane road prediction using CNN Encoder-Decoder network (a) 

Accuracy (b) Loss. 



   
(a) 

 
(b) 

 

Fig. 8. Evaluation metrics of lane road prediction using CNN Encoder-Decoder network architecture 

combined with Dropout layers (a) Accuracy (b) Loss. 



   
(a) 

 
(b) 

Fig. 9. Evaluation metrics of lane road prediction using CNN Encoder- LSTM -Decoder network 

architecture (a) Accuracy (b) Loss. 

4.3. ADAS Application: Deep Lane Departure Warning System (LDWS) 



Road lane detection is a common task for all human drivers. It consists of ensuring their 

vehicle stays inside its lane, in order to guarantee the smooth flow of traffic and minimize 

the risk of collision with other cars in neighboring lanes. Similarly, this task is essential for 

the development of autonomous vehicles. It was found that it is possible to detect lane 

markings on roads using vision and deep learning techniques[1,3,48,4,6,7,25–27,47]. The 

purpose of this paper is to design, implement and evaluate lane departure warning system for 

autonomous driving, using the selected CNN Encoder- LSTM -Decoder network. The 

selected network combined with pre-processing and pro-processing steps will be used to 

identify and draw the inside of a road lane, as well as to calculate the curvature of the road 

lane and also to evaluate the vehicle's position in regards to the center of the road lane. To 

detect and draw a polygon that takes the shape of the lane in which the car is currently 

located, the following steps are built into a pipeline (see Fig.1).  

Road lane images were first processed through pre-processing step, which include data 

resizing and normalization. After that, we applied our proposed CNN Encoder- LSTM -

Decoder network to predict lanes and road markings with a single RGB channel. Finally, we 

applied post-processing step that include Canny detector for edge detection to get a better 

lane lines [51,53], then, we applied perspective transform to obtain bird's eye view of the 

lane and we used sliding windows to find hot lane lines pixels [53][66]. Moreover, we 

perform a polynomial fit curve function to identify the left and right and to find out the 

quadratic function of lane curve and then compute the radius of curvature and offset from 

the center of the road [32]. Fig. 10 gives an overview of the obtained result for each step. 
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Fig. 10. An overview of the obtained results of the proposed Deep LDWS. 

Fig. 11 presents some examples of detection results of the proposed system based on 

the proposed CNN Encoder- LSTM -Decoder network. The proposed technique was able to 

detect and accurately locate road lane markings despite the presence of noise on the road in 

different lighting conditions.  Datasets images were captured with a resolution of 640 × 500, 

640 × 480, 640 × 360, and 1280 × 800 pixels. The experiments were carried out on an Intel 

Core i7-2630QM CPU, 8GB RAM and Windows 7 64-bit operating system, using the 

software Python language. 

Finally, the LDW driver assistance systems should achieve very low false alarm rates.  

We also supposed that the width between the left and right lanes is 3.7 m in the U.S. to 

estimate the distance across the full scale and that the camera is mounted approximately in 

the center of the front window. We therefore could simply take the position of the left and 

right lanes at the bottom, and compare it with the middle of the image to determine the 

vehicle's position relative to the center. If the vehicle drives too close to the edge of the lane, 

an alert is sent to the driver. Fig. 12 displays numerical estimates of the vehicle's position 

from the center. 



(a)

(b)

(c)
 

Fig.11. Lane detection based on the proposed system in different lighting conditions. (a)  Urban road 

in daylight and rainy, (b) Highway at high traffic levels, (c) Highway at night, yellow and white 

lamp tunnel.  



 

Fig.12. Numerical estimates of the vehicle's position from the center. 

4.4. GPU Implementation of Proposed Deep LDWS on Nvidia Jetson Xavier NX  

Today, many researchers have proposed the use of parallel processors. An attractive solution 

that uses multi-processors for processing graphics is GPUs, which are used for high 

performance computing and can be considered as multiple cores with a software layer that 

enables parallel computing. In contrast to the CPU, the state-of-the-art of the GPU 

demonstrates improving performance in terms of execution time.  The GPU family used in 

this paper is NVIDIA Jetson Xavier NX (Fig.13) due to its high adoption in modern 

computing systems. Given that this paper consists of computationally intensive system, 

graphics processors have been used to take advantage of their performance and efficiency to 

realize some embedded systems.   

 

Fig.13. NVIDIA Jetson Xavier NX. 
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NVIDIA Jetson Xavier NX, stands out for being a device with very low power 

consumption that offers great computational performance. As we can find in NVIDIA's 

website: Jetson Xavier NX configuration is based on a 64-Bit hexacore CPU and an Nvidia 

Volta GPU with 384 CUDA cores, 48 Tensor Cores and 2 NVDLA (Nvidia Deep Learning 

Accelerator), combined with 8GB of LPDDR4x RAM, with Gigabit Ethernet connectivity 

and all running on an Ubuntu system. The CPU is based on 6-core NVIDIA Carmel 

ARM®v8.2 64-bit CPU 6 MB L2 + 4 MB L3. It weighs only 85 grams and consumes 10W 

under normal demand. 

This device is perfect for being able to deploy AI and implement deep learning models. 

It was decided to use this device since NVIDIA Jetson Xavier NX is designed to accelerate 

the most DL models in real-time environments. In this paper, we exploit the benefits offered 

by this platform to activate the possibility of embedding the proposed Deep LDWS. The 

experiments were performed by setting the NVIDIA Jetson Xavier NX platform to 

maximum performance mode (MAXN0), i.e., all CPU and GPU cores were activated at full 

speed. Table 5 shows the performance results of the proposed Deep LDWS implemented on 

NVIDIA Jetson Xavier NX and on a PC with a CPU processor Intel® Core™ i7-2630QM 

2.00 GHz. 

Table 5: Processing time results obtained of the proposed Deep LDWS based on CPU processor 

and Jetson Xavier NX platforms. 

 Input Image 

Size 

Metrics CPU Processor 

platform  

Jetson Xavier NX 

platform 

 

LDWS System based on 

CNN Encoder- LSTM- 

Decoder network 

480*320 Time(ms) 226 129 

FPS 4.42 7.69 

640*360 Time(ms) 247 132 

FPS 4.04 7.55 

640*480 Time(ms) 261 138 

FPS 3.83 7.22 

1280*720 Time(ms) 276 147 

FPS 3.62 6.78 

After embedding the proposed Deep LDWS on an embedded platform, the performance 

on the Nvidia Jetson Xavier NX has improved significantly. As we know, an ML/DL 

algorithm for an autonomic vision system must meet both requirements: precision and real-

time response. For this reason, the proposed Deep LDWS was designed to achieve more 

than 7.55 fps on the NVIDIA Jetson Xavier NX platform with an input image size 640 × 

360, to be adequate for real-time road scene embedded applications.   

5. Discussions 

After extensive results analysis, it is found that a combination of CNN Encoder- Decoder 

network and LSTM network shows significant impact on the road lane detection based on 

automatic feature extraction from road images. Our selected networks was able to predict 

road lane with high accuracy. Table 6 shows a comparison, in terms of accuracy, Recall, F1-

score, and processing time, between existing systems and our proposed system. Table 6 



shows some moderately high accuracy of 96.2 and a high Recall of 95.2based on ENet[67], 

an accuracy of 94.1% and a recall of 80% based on ARFNet [68],  an accuracy of 95.2% 

based on RANSAC algorithm combined with fuzzy controller [3], an accuracy of 94 % 

ResNet101 model [1],  also, an accuracy of 95.97 %, a recall of 87.52% and a F1-score of 

91.55% based on U-net model [69] and an accuracy of 95.4% based on LMD-11 

network[70]. The slightly lower accuracy between 89% and 93.89% are obtained in 

[66][71][72][4][31]. A global accuracy of 97.2% was achieved by the system developed in 

[67], based on SegNet network. The model used is tested on three different datasets such as 

CamVid and Cityscapes of road scenes, and the SUN RGB-D dataset of indoor scenes. The 

model is used for the semantic segmentation of the scene, not for the road prediction. 

Furthermore, a comparison of existing systems in terms of processing time showed that the 

developed system in [67] needed 262ms to detect traffic lanes based on the ENet network on 

NVIDIA TX1 and 289ms based on the SegNet network of NVIDIA Titan X with image 

resolution of 1280*720. The required processing time based on LMD-11 network is 2470ms 

in [70] and  113.9ms in [73] based on SCNN network. Moreover, a processing time of 

21.54ms, 191ms, 54ms was obtained in [66], [74] and [3] , respectively, using vision 

techniques.  

Table 6. Comparison of the proposed system with existing systems in terms of accuracy, recall, 

F1-score and processing time. 

Author Architecture Accuracy (%) Recall 

(%) 

F1-score 

(%) 

Processing 

Time (ms) 

Marzougui et al. [66] AROI+ PPHT+ Kalman filter 93.82 -- – 21.54 

Rastiveis et al. [71] HT+ Fuzzy theory - 87 88 -- 

Ali et al. [74] HT + RANSAC 96.30 -- -- 191 

Yoo  and Kim[53] Graph model 93.89  91.6 -- 

Lee et al. [72] VPGNet Networks -- 93 88.4 50 

Almeida et al. [4] Two ENet Networks 89 -- -- -- 

 

Paszke  et al. (2016) [67] 

ENet 96.2 95.2 -- 262 

SegNet 97.2 -- -- 289 

Zhao et al. [31] SCNN + DQLL 93.36 -- -- -- 

Ghanem  et al. (2021) [3]  RANSAC+ fuzzy controller 95.2 -- -- 54 

Khairdoost et al .(2021) [1] ResNet101 model 94 -- -- -- 

Wen  et al. (2019)[69] 

cGAN-based 90.15 82.33 86.06 -- 

U-net-based 95.97 87.52 91.55 -- 

Chen et al. [70] LMD-11 network 95.4 -- -- 2470 

Cai  et al. [68]  

SCNN 93.4 0.840 --- -- 

ARFNet 94.1 0.800 -- -- 

ResNet-34 91.9 0.786 -- -- 

Xiao et al.[73] SCNN 93.5 94.0  113.9 



Author Architecture Accuracy (%) Recall 

(%) 

F1-score 

(%) 

Processing 

Time (ms) 

Proposed System CNN-LSTM 96.36 97.54 97.42 132 

 

The vision techniques does not require significant execution time compared to those 

based on deep scanning, but with low detection accuracy and limited conditions. Our 

Embedded Deep LDWS system based on the CNN Encoder- LSTM -Decoder network 

demonstrates a high performance including 96.36 of accuracy, 97.54 of Recall and 97.42 of 

F1 score, which is comparatively better than other existing systems. In terms of complexity 

time, our system requires 132ms of processing time for lane detection and the selected CNN 

Encoder- LSTM- Decoder network requires16.96m of parameters for lane prediction. 

Automatic segmentation is, today, essentially dominated by Encoder-Decoder models. 

Indeed, this type of models is adapted to several image processing tasks such as detection, 

recognition and tracking. Among the Encoder-Decoder models that have emerged in recent 

years is the Transformer. The Transformer is a sequence-to-sequence model based on the 

attention mechanism and not on a recurrent neural network as was the case for the previous 

models with LSTM (or GRU). The LSTM and GRU models have some limitations since 

they are relatively slow to train and not very parallelizable. The idea of the Transformer is to 

preserve the interdependence of a sequence's images by not using a recurrent network but 

only using the attention mechanism which is at the center of its architecture. The idea behind 

the attention concept is to measure the extent to which two elements of two sequences are 

linked. The Transformer was clearly a revolution when it was released because it was both a 

very powerful translation model and much faster to train than its predecessors. Thus, the 

Transformer architecture will be studied and implemented in future works. 

6. Conclusion 
In this paper, we propose an Embedded Deep LDWS based on a hybrid CNN Encoder- 

LSTM- Decoder network implementing on Nvidia Jetson Xavier NX. The CNN Encoder 

network is employed due to its capacity to extract the most significant features from a 

dataset and reduce their dimensionality at the same time. However, they can be successfully 

combined with the ability of LSTM networks to detect and store long-term dependencies 

between extracted data to improve the detection rate through removal the influence of false 

alarm patches, which allows to design robust models for automatic lane detection. A 

corresponding decoder network is used to map the low resolution encoder feature maps and 

produces dense feature maps that correspond to road lane.  

We proposed three network architectures to predict the road lane including CNN 

Encoder-Decoder network, CNN Encoder-Decoder network with the application of Dropout 

layers and CNN Encoder- LSTM -Decoder network that are trained and tested on a public 

dataset comprising 14235 road images under different conditions. Based on extensive 

experimental results, we demonstrated that our proposed hybrid network outperforms the 

remaining two architectures and achieves an average accuracy of 96.36, Recall of 97.54%, 

and F1-score of 97.42 %.  



However, despite the principal purpose of using the proposed system in automobiles, we 

have found that it is also very cost-effective to deploy our Deep LDWS on the high-

performance Nvidia Jetson Xavier NX platform, which allows large-scale computations to 

be performed much more speedily and efficiently. This makes it very suitable for real-time 

road scene embedded applications, where it is necessary to process a large number of high-

resolution images. 
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