N

HAL

open science

On the Interaction of Feature Toggles

Xhevahire Térnava, Luc Lesoil, Georges Aaron Randrianaina, Djamel Eddine
Khelladi, Mathieu Acher

» To cite this version:

Xhevahire Térnava, Luc Lesoil, Georges Aaron Randrianaina, Djamel Eddine Khelladi, Mathieu Acher.
On the Interaction of Feature Toggles. VaMoS 2022 - 16th International Working Conference on Vari-
ability Modelling of Software-Intensive Systems, Feb 2022, Florence, Italy. 10.1145/3510466.3510485 .

hal-03527250v1

HAL Id: hal-03527250
https://hal.science/hal-03527250v1

Submitted on 15 Jan 2022 (v1), last revised 17 Jan 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03527250v1
https://hal.archives-ouvertes.fr

On the Interaction of Feature Toggles

Xhevahire Térnava, Luc Lesoil,

Georges Aaron Randrianaina
Univ. Rennes 1, Inria, IRISA
Rennes, France
{firstname[-name2].lastname}@irisa.fr

ABSTRACT

Feature toggling is a technique for enabling branching-in-code. It is
increasingly used during continuous deployment to incrementally
test and integrate new features before their release. In principle,
feature toggles tend to be light, that is, they are defined as sim-
ple Boolean flags and used in conditional statements to condition
the activation of some software features. However, there is a lack
of knowledge on whether and how they may interact with each
other, in that case their enabling and testing become complex. We
argue that finding the interactions of feature toggles is valuable
for developers to know which of them should be enabled at the
same time, which are impacted by a removed toggle, and to avoid
their mis-configurations. In this work, we mine feature toggles and
their interactions in five open-source projects. We then analyse
how they are realized and whether they tend to be multiplied over
time. Our results show that 7% of feature toggles interact with each
other, 33% of them interact with another code expression, and their
interactions tend to increase over time (22%, on average). Further,
their interactions are expressed by simple logical operators (i.e.,
and and or) and nested if statements. We propose to model them
into a Feature Toggle Model, and believe that our results are helpful
towards robust management approaches of feature toggles.

CCS CONCEPTS

« Software and its engineering — Maintaining software.

KEYWORDS

feature flags, continuous deployment, interaction of feature toggles

ACM Reference Format:

Xhevahire Térnava, Luc Lesoil, Georges Aaron Randrianaina, Djamel Eddine
Khelladi, and Mathieu Acher. 2022. On the Interaction of Feature Toggles.
In Proceedings of the 16th International Working Conference on Variability
Modelling of Software-Intensive Systems (VAMOS ’22), February 23-25, 2022,
Florence, Italy. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/
3510466.3510485

1 INTRODUCTION

Large companies, such as Google [22, 23], Microsoft [20], Hewlett-
Packard [5, 8], and Facebook [6], among others [15], have recently

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

VAMOS °22, February 23-25, 2022, Florence, Italy

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9604-2/22/02...$15.00
https://doi.org/10.1145/3510466.3510485

Djamel Eddine Khelladi
CNRS, IRISA, Univ. Rennes 1
Rennes, France
djamel-eddine khelladi@irisa.fr

Mathieu Acher
Univ. Rennes 1, IUF, Inria, IRISA
Rennes, France
mathieu.acher@irisa.fr

adopted trunk-based development by employing feature toggles.
Feature toggles ! are recognized as a powerful technique for modi-
fying the system behaviour without changing code [7]. Technically,
a feature toggle is a binary condition that controls whether a feature
appears in the system or not [14]. In other words, feature toggles
make possible trunk-based development by branching directly in
code. Thus, avoiding the burden of merging features branches [18].
They are particularly used for continuous deployment, such as for
dark launches, canary releases, or A/B testing [6, 18, 20].

Several works study or share the knowledge regarding different
aspects of feature toggles, namely their good, bad, ugly practices [5],
removal [10, 24], common used practices by practitioners [13, 22],
wide usage in public projects [15], or differences and commonalities
with configuration options [16]. However, to the best of our knowl-
edge, the literature lacks the evidence on the interaction complexity
of feature toggles within a codebase.

Feature toggles are perceived as a simple and light technique,
and testing all their added paths in code seems not to be an is-
sue [18]. But, are they actually simple to deal with in real projects,
especially over the time? For developers, the difficulty is to know
which toggles should be enabled in production at the same time [18]
and to automate their maintenance [24], especially their removal
when they are ready for final release. A wrong enabling or a bad
practice of feature toggles can cause the bankruptcy of the orga-
nization (e.g., [26]). Then, as feature toggles usually have a short
lifespan [7, 16], they can quickly lead to some technical debt [24].
Our hypothesis is that interactions among feature toggles can hin-
der even more their enabling and make troublesome their removal.

To better understand whether feature toggles interact within a
codebase, how they are implemented, how they are documented,
and whether they have a tendency to multiply over time, we mined
feature toggles in five popular open-source projects (cf- Section 3).
The obtained results are reported in Section 4, which reveal that 7%
of feature toggles interact with each other and 33% of them interact
with another code expression, that is, that is not a feature toggle.
Knowing their interactions is beneficial especially to developers in
order (1) to prevent any system mis-configuration, (2) to assist de-
velopers in charge of maintaining feature toggles, and (3) to enrich
the documentation of feature toggles with their interactions. We
believe that our results show the need to extend the feature toggles
management frameworks (e.g., [19]), and maybe also the variability
management approaches (e.g., [2, 11]), with the documentation of
feature toggles and their interactions.

In summary, our contributions are: (i) to the best of our knowl-
edge, a first empirical evaluation of interaction of feature toggles,
(i) the proposition of a Feature Toggle Model (FTM) to model their

I They are also often referred to as feature flags, bits, gates, or flippers.

https://doi.org/10.1145/3510466.3510485
https://doi.org/10.1145/3510466.3510485
https://doi.org/10.1145/3510466.3510485

s w

interactions, and (iii) the availability of our automated mining ap-
proach with the obtained data for five popular software systems.

var (//The rest of 21 feature toggles are omitted
TerraformJSON = new("TerraformJSON", Bool(false))
TerraformManagedFiles = new("TerraformManagedFiles",
) // The rest of code is omitted

Bool(true))

Listing 1: Defined: kops/pkg/featureflag/featureflag.go

1| func (t *TerraformTarget) Finish(taskMap map[string]fi.Task) error

//The rest of code is omitted
if featureflag.TerraformJSON.Enabled() {
if featureflag.TerraformManagedFiles.Enabled() {
return errors.New("TerraformJSON cannot be
used with TerraformManagedFiles")
}
err = t.finishJSON()
} else {
err = t.finishHCL2()
}
return nil

}

Listing 2: Usage: ../upup/pkg/fi/cloudup/terraform/target.go

2 BACKGROUND AND MOTIVATION

Feature toggles allow the developers to decide when and for whom
to enable or disable some features (i.e., functionalities) in a given
software. Most often, a feature toggle is a constant, that can be
true or false. Its value is evaluated in an if-else statement,
which is used to surround a block of code. Up to four different
kinds of feature toggles are distinguished (i.e., release, experiment,
ops, and permission) [7], which may have different binding times
(i.e, compile, start-up, periodic, or activity) [10]. Hence, there is a
fuzzy boundary between them and the concept of configuration
options [16]. Their apparent difference is that an added feature
toggle is expected to be removed after few hours, weeks, and rarely
more, that is, as soon as the guarded feature becomes stable [7, 10].
Whereas, a configuration option is more permanent in the system.

As an illustration example, in Listings 1 and 2 are shown two
feature toggles that are used in the Kops system. Kops is also among
the used subjects later in this study (cf. Section 3.2). First, as in
Listing 1, two feature toggles are defined, usually all of them within
a single file for the whole system [13, 23]. Then, as in Listing 2, they
are used in a toggle point (i.e., if-else statement) to condition the
activation of system features. For instance, whenever the feature
toggles TerraformJSON and TerraformManagedFiles are enabled
then the surrounded block of code in lines 5-6 in Listing 2 will
be part of the Kops system, otherwise the code in line 10 will be
included. But, as shown in Listing 1, TerraformJSON has by default
a false value whereas TerraformManagedFiles has a true value.
If both of them are enabled then the system will throw an error.
This kind of error could be prevented beforehand, for example, by
documenting the feature toggles interactions 2. The interaction
from the block of code viewpoint is that they should not be enabled
at the same time, otherwise the system will be mis-configured.
But, from the feature toggles viewpoint, in order to evaluate the
feature toggle in line 4, the feature toggle in line 3 is required
first to be evaluated, that is, TerraformManagedFiles implies
TerraformJSON.

21t is also reported in a recent issue: https://github.com/kubernetes/kops/pull/12341.

The structure of feature toggles seems less simple than expected,
which motivates our work in this study. First, knowing how a fea-
ture toggle is scattered in the codebase is important to manage it,
for example, TerraformManagedFiles is also used in two other
toggle points in Kops. Secondly, some feature toggles can be unused
or deprecated, which can lead to technical debt [20, 24]. Thirdly, as
shown in Listings 1 and 2, feature toggles may interact and know-
ing their interactions can be beneficial to developers. For example,
TerraformJSON toggle is deprecated 3, but during its removal one
needs to know that it interacts with TerraformManagedFiles. Cur-
rently their interaction is not documented 4. Moreover, the feature-
toggling in Kops is supported by the featureflag package, but it
has no functionalities to show the feature toggles interactions.

Knowing the places and interactions of feature toggles, including
the unused ones, can be helpful for developers during their testing,
system configuration, and their removal when they are ready for
final release.

3 STUDY DESIGN

In this section, we provide the study design and our approach.

3.1 Research questions

The goal of this study is to explore the presence of feature toggles
interactions in a system from the developer’s viewpoint.

RQ; : Do feature toggles interact with each other in order
to enable some system functionalities (i.e., features)?
We want to explore whether the enabling of a feature toggle
requires other feature toggles, or more than one of them is
used to enable some system functionalities. To this end, we
mine the feature toggle points in five systems and analyse
them regarding the feature toggles interactions.

Do feature toggles and their interactions have a ten-
dency to be multiplied over time? Presuming that feature
toggles interact in a codebase, we then analyse whether the
interactions of feature toggles tend to multiply over the years
and if their change is proportional to the number of feature
toggles. To this end, we extract the number of feature toggles
and their interactions in the first release for each of the last
five years of five subject systems.

RQ> :

3.2 Subject systems

To answer the research questions, we analysed the feature toggles
in five Go public projects shared in GitHub, namely in Boulder, Juju,
Kops, Kubernetes, and Loomchain. In the Stack Overflow 2021 survey
results >, Go is one of the top-10 most loved and wanted program-
ming languages among developers. Boulder is an implementation
of an ACME-based Certificate Authority, Juju is a framework that
improves the experience of running Kubernetes operators, Kops is
used to set up Kubernetes clusters swiftly, then is the Kubernetes
itself, a system for managing containerized applications across mul-
tiple hosts, and Loomchain is an interoperable blockchain engine.

3See https://github.com/kubernetes/kops/pull/12341

“See https://github.com/kubernetes/kops/blob/9916733b3187338acbdccbf80396c7e3fde8637/

docs/advanced/experimental.md
Shttps://insights.stackoverflow.com/survey/2021#technology

https://github.com/kubernetes/kops/pull/12341
https://pkg.go.dev/k8s.io/kops/pkg/featureflag
https://github.com/kubernetes/kops/pull/12341
https://github.com/kubernetes/kops/blob/9916733b3187338acbdccbf80396c7e3ffde8637/docs/advanced/experimental.md
https://github.com/kubernetes/kops/blob/9916733b3187338acbdccbf80396c7e3ffde8637/docs/advanced/experimental.md
https://insights.stackoverflow.com/survey/2021#technology

Table 1: The five subject systems with their resulting # of feature toggles (FTs), # of logical relations, and the scattering of FTs in
files. Where, Indep. - FTs with no interactions, Inter. - FTs into interactions, and No - toggle points with no logical relations

. #Feature Toggles # Toggle Points #Files
System Commit #LOC Total | Unused | Indep. | Inter. | Total | No | And | Or | Implies | Total | With FT | Range
Boulder f7cefef 515,186 17 5 6 6 23 13 16 0 1 2,332 16 0-2
Fuju 89faeee | 1,117,797 13 1 9 3 37 16 11 | 14 1 6,602 49 0-12
Kops 5f1d95c¢ | 2,608,174 23 1 11 11 69 58 10 4 13 | 11,078 29 0-11
Kubernetes 16227cf | 4,581,828 108 31 24 53 278 | 170 | 130 8 24 | 17,503 297 0-23
Loomchain 350994c¢ 102,471 55 21 21 13 109 91 16 8 10 472 39 0-7

We have chosen them mostly because all of them use feature
toggles [13, 15]. They are also popular projects with 4k, 1.9k, 13.4k,
18.2k and 136 stars, respectively, in their repositories(’. In addition,
all projects have a different number of feature toggles, between 13
and 108. In Table 1 are given their last analysed commit ID, number
of feature toggles, lines of code (LoC), and number of files.

3.3 Our approach

We build an automated approach to analyse feature toggles and their
interactions in five subject systems. It consists of three main steps:
(1) a specific version of a given system is cloned, (2) it is statically
analysed, by relying on the Go parser of tree-sitter [17] 7, and then
(3) the toggle points in its codebase are mined and analysed.

In the step (3), we first extract the defined feature toggles in the
system. Usually, they are defined in a single dedicated file for the en-
tire system. For instance, as shown in Listing 1, all 23 feature toggles
in Kops are defined in the . /pkg/featureflag/featureflag.go
file. Next, all toggle points are extracted. That is, we track all
if-else statements and extract those that contain a feature tog-
gle name in its condition. For example, out of Listing 2 we extract
lines 3 and 4, that is, featureflag.TerraformJSON.Enabled()

and featureflag.TerraformManagedFiles.Enabled(), which con-

tain the two defined feature toggles given in Listing 1. Afterward,
we analyse whether the feature toggles interact within a toggle
point or among them. We differentiate and look for the three found
types of interactions: and, or, and implies. In the case of List-
ing 2, we record the implied relation between TerraformJSON and
TerraformManagedFiles. The extracted data during these steps
are particularly used to answer the RQ;. For the RQ5, we count the
number of feature toggles for all available versions of the project.
Concretely, we track the changes in the feature toggles file by listing
all of them, by using git. Next, we repeat steps (1), (2), and (3) for 5
different releases of each system (one per year, from 2017 to 2021).
All other technical details, data, and procedures are also available
at https://github.com/llesoil/poc_ftm.

4 RESULTS

We now report the results with regard to our research questions.

4.1 Feature toggles interactions (RQ1)

To answer the first research question, we analysed the defined
feature toggles within a system, their structure in toggle points,

Based on our last check on 01/11/2021.
7See https://tree-sitter.github.io/

and how they are scattered in files. We conducted this same analyses
for a recent release in all five subject systems (cf. Commit in Table 1).

The obtained results are summarized in Table 1. Based on them,
on average for all systems, 33% of feature toggles are always used
alone in a toggle point (i.e., to guard a block of code). Then, 27% of
the defined feature toggles are never used in a toggle point, that
is, they are unused. Whereas, 40% of them are in an interaction
between themselves or with another expression in code. The small-
est number of feature toggles that are involved in an interaction
are in Juju (23%) and the largest number are in Kubernetes (49%).
A deeper analysis revealed that most of these interactions are be-
tween a feature toggle and another code expression, for example,
if(featuretoggle, && revokedby != @){...3} in Boulder. Ex-
cluding these cases, then only 12% of feature toggles interact at
least once with each other in Boulder, 15% in Juju, 22% in Kops, 2%
in Kubernetes, and 7% in Loomchain. On average, only 7% of feature
toggles interact with each other. In all these cases, the maximum
number of feature toggles involved in an interaction is 2.

Apart from it, the majority of toggle points contain a single
feature toggle (67%). In the rest of the toggles points, the most
often used logical relation is the and relation (69%). Less are used
the or and implies relations (13% and 18%, respectively). Further,
from the last three columns in Table 1, it can also be noted that all
feature toggles are scattered up to a certain number of files, namely,
between 0.26% and 8.26% of files. On average for all systems, all
feature toggles are contained in only 1.13% of a system’s files. Yet,
a single file contains from 0 up to 23 feature toggles in maximum.

As an answer to the RQ1, a small percentage of feature toggles
tend to interact with each other (7%). Most often they interact
with the rest of the codebase (33%). Further, only up to 2 feature
toggles are involved in an interaction. Then, a considerable number
of feature toggles are unused (27%). which may lead to technical
debt. Specifically, feature toggles are considered as just another
source of technical debt, as they are easy to be added in the short
term, but as longer as they remain in the code the more they will
cost the organization [4]. Hence, the unused feature toggles need
to be deleted from the codebase. Yet, all used feature toggles are
concentrated in a few files (1.13%). These results reveal the structure
of feature toggles which tend to be relatively simple to be managed.

4.2 Multiplication of interactions (RQ2)

To answer RQ7, we first extracted the number of feature toggles
since their first introduction in each of the five subject systems.
Their varying number is shown in Figure 1. Each dot represents
a change in the file with the defined feature toggles. It can be

https://github.com/letsencrypt/boulder/commit/f7c6fefc3d607296b7438a16829fcc88285aca43
https://github.com/juju/juju/commit/89faeee9508000ac39e25066e2a104adf080fcfc
https://github.com/kubernetes/kops/commit/5f1d95c98cca311892819fb73a071d853e70a80c
https://github.com/kubernetes/kubernetes/commit/16227cf09dcb6d1a71733d9fa20335007b0ca3d2
https://github.com/loomnetwork/loomchain/commit/350994c2dbc2c32253d15fa2789ac9ac4236aef0
https://github.com/llesoil/poc_ftm
https://tree-sitter.github.io/

Kubernetes

134000 e

« Loomchain

Feature Toggles (log scale)

2007 18 010 2020 2021)

Figure 1: Evolution of feature toggles (y-axis, log scale) over

time (x-axis) - Each point represents a change of toggles

noted that the number of feature toggles in Kops, Kubernetes, and
Loomchain tends to multiply over time. For the two other projects,
Boulder and Juju, it varies but tends to remain the same in general.

Further, we extracted the number of feature toggles interactions
for 5 releases (the first one of the last 5 years) of each subject. The
obtained results are given in Figure 2. By comparing the last year
with the average of previous years, results show that in Boulder
and Juju the number of interactions tends to decrease by 18% and
6%, respectively. Whereas, they tend to be increased in Kops (65%),
Kubernetes (29%), and Loomchain (39%). Based on the calculated
Pearson correlation [3], the number of feature toggles interactions
and the overall number of feature toggles is mostly correlated in
Kops (0.90), Kubernetes (0.39), and Loomchain (0.88). In other sys-
tems, namely Boulder (-0.02) and Fuju (0.04), they are less correlated.
It should be noted that a given interaction fades away with the re-
moval of its feature toggles. For example, when the TerraformJSON
feature toggle is removed 8, so is the dependency in Listing 2.

As an answer to RQy, the feature toggles interactions tend to
multiply over time (by 22%). Further, in 3 from 5 systems there is a
close correlation between their number and the overall number of
feature toggles in a codebase.

4.3 An extracted Feature Toggle Model

As a considerable number of feature toggles may interact in a
codebase (40%) and their number tend to multiply over time (22%),
we propose a representation of them, so the developers become
aware of which and how feature toggles interact.

From our observations, all five systems use a framework or pack-
age to define, set, and evaluate the set value of feature toggles. But,
in all cases, the interactions between feature toggles are realized
using the two simple logical operators (i.e., or and and) or nested
if statements. Hence, to extract the interactions among feature tog-
gles one has to analyse the structure of the code. In our knowledge,
this task is not supported by the used feature toggles frameworks.

Therefore, by using our presented approach in Section 3.3, we
mined the interactions of feature toggles in five subjects and pro-
pose to represent them in a Feature Toggle Model (FTM). In Figure 3
is shown an excerpt of the FTM of Kops, with 9 from its 23 feature
toggles. It is a weighted graph where vertices represent the feature
toggles, edges their interactions, edge weight the occurrence of an
interaction, the node weight the independent occurrence of a fea-
ture toggle, and the node Expr marks any other expression in code.

8The commit with which this feature toggle in Kops is removed: e31dd98.

Boulder
Juju

-
-
= Kops

o = Kubernetes
mmm | oomchain

0

30

20

) I I I

. ll l_- I=HEN ll I =

R1 R2 Ra RS

"3
Releases

#Interact

Figure 2: Evolution of interactions for the five systems

[APIServerNodes 5‘ {AlphaAllowGCE 2] [UseAddonsOperators _3]

SpotinstController @

ITerraformManagedFiles —3|

\
1
TerraformJSON 1

Figure 3: An excerpt from the Feature Toggles Model of Kops

[CacheNodeidentityInfo 1]

Further, the blue edge marks an and interaction, the red edge the or
interaction, and the dashed oriented edge the implies interaction.
By using this graph representation, for example, one can easily
spot the implied interaction between TerraformManagedFiles
and TerraformJSON in Kops, which is presented in Listing 2. Fur-
thermore, TerraformManagedFiles has another and interaction
with a code expression, and is spread in 3 more places in code.
Having an FTM can be useful in particular to test the guarded
features or to remove feature toggles. For instance, if a system
feature is guarded by more than one feature toggle then the FTM
can be helpful to figure out which ones may need to be enabled
at the same time. Then, for instance, the responsible developer for
TerraformManagedFiles toggle in Kops can be different from the
one that is responsible for TerraformJSON. In this case, the FTM
suggests that, because of the identified toggles interaction, both de-
velopers need to be notified during the removal of TerraformJSON.

By using our approach, we automatically extracted the FTM for
each of the five subject systems. All of them are made available®. In
addition, considering the short-lived nature of feature toggles, our
approach can be used to extract their FTM whenever it is required.

4.4 Threats to validity

Internal threats. With our approach, we mined only those feature
toggles that were evaluated in if statements. There are chances
that they are evaluated also in case statements. Another threat
is the mining of implied interactions in nested functional calls.
During a manual analysis, we have encountered none of them. But,
we noticed that sometimes a feature toggle is assigned to a variable

9Browse the pdfs in https://github.com/llesoil/poc_ftm/tree/main/results/FTM

https://github.com/llesoil/poc_ftm/tree/main/results/FTM

which is after used within an if statement. We could have missed
these cases with our mining approach, which does not apply data-
flow or control-flow analysis. Still, we noticed only a few of them.
Their absence has less impact on our results. Moreover, we focus
on the mainstream usage of toggles, that is, in if statements.

External threats. Although our current approach is used to anal-
yse only the Go projects, it can be easily extended to analyse the
projects in other languages by using other tree-sitter parsers '°. Fur-
ther experiments are needed to make our results more conclusive
and increase their generalizability.

5 RELATED WORK

Feature toggling is often discussed in grey literature by practition-
ers [5, 7, 9, 14, 27]. It is heavily used in industrial settings, for
trunk-based development, and a considerable number of feature
toggles management frameworks exist (e.g., [19]). But, only recently
it has received attention in academic research. Regardless, most of
the works target only some aspects of feature toggles, such as their
adaptation by finding their best practices [5, 13, 13, 18, 22, 23], their
classification and implementation [7, 14], their removal [10, 24],
and also their differences with configuration options [16, 21]. To
our knowledge, none of the current works discuss the interactions
of feature toggles. Hence, compared to them, we show how feature
toggles interact and believe that their modeling can be useful for
their management. Besides, there are approaches that analyse the
complexity of preprocessor directives in C-based systems [12]. In
contrast to them, we analyse the complexity of feature toggles.

On the other hand, there are abundant works on variability
modeling (e.g., into feature models) [2, 11], its extraction [25], and
management [1]. But, adapting the existing variability-aware ap-
proaches [28] to analyze feature toggle points (an alternative form
of presence conditions) can be valuable. Herein, we proposed a new
extraction and modeling approach of feature toggles.

6 CONCLUSION AND FUTURE WORK

Feature toggles are perceived as a light technique for enabling trunk-
based development. This work explores the interaction among them
by analysing five open-source software systems. We provide an
approach to extract the structure of feature toggles and show that
they interact in 40% of the cases, but only 7% between each other.
Still, we believe that they need to be modeled into a Feature Toggle
Model, as their interactions tend to multiply over the time (22%).
As future work, we plan to extend this study (i) by analysing
the interaction of feature toggles in more systems, (ii) to further
improve the modeling of their interaction into a Feature Toggle
Model (FTM), and (iii) possibly to integrate our approach in feature
toggles management frameworks. In particular, we would like to
empirically evaluate the realization of feature toggles by feature
toggles management frameworks, including their interaction, and
to further improve the construction and formalization of the FTM.

ACKNOWLEDGMENTS

This research was funded by the SLIMFAST N°20810047 and the
ANR-17-CE25-0010-01 VaryVary projects.

10For example: https://tree-sitter.github.io/tree-sitter/#available-parsers

REFERENCES

[1] Nicolas Anquetil, Uira Kulesza, Ralf Mitschke, Ana Moreira, Jean-Claude Royer,
Andreas Rummler, and André Sousa. 2010. A model-driven traceability framework
for software product lines. Software & Systems Modeling 9, 4 (2010), 427-451.

[2] Sven Apel, Don Batory, Christian Késtner, and Gunter Saake. 2016. Feature-
oriented software product lines. Springer, Springer.

[3] Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel Cohen. 2009. Pearson
correlation coefficient. In Noise reduction in speech processing. Springer, Spr, 1-4.

[4] Jim Bird. 2014. Feature Toggles are one of the Worst kinds of Technical Debt.
https://dzone.com/articles/feature-toggles- are-one-worst.

[5] Andy Davies. 2018. Feature Toggles The Good, The Bad, and The Ugly with
Andy Davies. https://www.youtube.com/watch?v=r7VI5x2XKXw.

[6] Dror G Feitelson, Eitan Frachtenberg, and Kent L Beck. 2013. Development and
deployment at facebook. IEEE Internet Computing 17, 4 (2013), 8-17.

[7] Martin Fowler. 2021. Feature Toggles (aka Feature Flags). https://martinfowler.
com/articles/feature-toggles.html.

[8] Gary Gruver. 2014. The Amazing DevOps Transformation Of The HP Laser]et
Firmware Team. https://itrevolution.com/the-amazing-devops-transformation-
of-the-hp-laserjet-firmware- team- gary-gruver.

[9] Santosh Hari. 2020. Feature flags: the toggle, the A/B test and the canary - NDC
Oslo 2020. https://www.youtube.com/watch?v=FD5{X02QCmY.

[10] Juan Hoyos, Rabe Abdalkareem, Suhaib Mujahid, Emad Shihab, and Albeiro Es-
pinosa Bedoya. 2021. On the Removal of Feature Toggles. Empirical Software
Engineering 26, 2 (2021), 1-26.

[11] Kyo CKang, Sholom G Cohen, James A Hess, William E Novak, and A Spencer Pe-

terson. 1990. Feature-oriented domain analysis (FODA) feasibility study. Technical

Report. Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst.

Jorg Liebig, Sven Apel, Christian Lengauer, Christian Késtner, and Michael

Schulze. 2010. An analysis of the variability in forty preprocessor-based software

product lines. In Proceedings of the 32nd ACM/IEEE International Conference on

Software Engineering-Volume 1. NY, USA, ACM, 105-114.

Rezvan Mahdavi-Hezaveh, Jacob Dremann, and Laurie Williams. 2021. Software

development with feature toggles: practices used by practitioners. Empirical

Software Engineering 26, 1 (2021), 1-33.

[14] Mark McKenna and Josh Allen. 2016. Feature Toggles: Lunch & Learn. https:

//www.youtube.com/watch?v=gxm1C92XhCQ.

Jens Meinicke, Juan Hoyos, Bogdan Vasilescu, and Christian Késtner. 2020. Cap-

ture the feature flag: Detecting feature flags in open-source. In Proceedings of the

17th International Conf. on Mining Software Repositories. ACM, NY, USA, 169-173.

[16] Jens Meinicke, Chu-Pan Wong, Bogdan Vasilescu, and Christian Késtner. 2020.

Exploring differences and commonalities between feature flags and configuration

options. In Proceedings of the ACM/IEEE 42nd International Conference on Software

Engineering: Software Engineering in Practice. ACM, NY, USA, 233-242.

Tulian Neamtiu, Jeffrey S Foster, and Michael Hicks. 2005. Understanding source

code evolution using abstract syntax tree matching. In Proceedings of the 2005

international workshop on Mining software repositories. ACM, NY, USA, 1-5.

Steve Neely and Steve Stolt. 2013. Continuous delivery? easy! just change every-

thing (well, maybe it is not that easy). In 2013 Agile Conf. IEEE, IEEE, 121-128.

[19] Roy Osherove. 2021. Feature Toggle Framework List. https://pipelinedriven.org/

feature-toggle-frameworks-list/.

Chris Parnin, Eric Helms, Chris Atlee, Harley Boughton, Mark Ghattas, Andy

Glover, James Holman, John Micco, Brendan Murphy, Tony Savor, et al. 2017.

The top 10 adages in continuous deployment. IEEE Software 34, 3 (2017), 86-95.

Eduardo S Prutchi, Heleno de S. Campos Junior, and Leonardo GP Murta. 2021.

How the adoption of feature toggles correlates with branch merges and defects

in open-source projects? Software: Practice and Experience 52, 2 (2021), 506-536.

[22] Md Tajmilur Rahman, Louis-Philippe Querel, Peter C Rigby, and Bram Adams.

2016. Feature toggles: practitioner practices and a case study. In Proceedings of

the 13th International Conference on Mining Software Repositories. ACM, NY, USA,

201-211.

Md Tajmilur Rahman, Peter C Rigby, and Emad Shihab. 2019. The modular and

feature toggle architectures of Google Chrome. Empirical Software Engineering

24, 2 (2019), 826-853.

Murali Krishna Ramanathan, Lazaro Clapp, Rajkishore Barik, and Manu Sridharan.

2020. Piranha: Reducing feature flag debt at uber. In Proceedings of the ACM/IEEE

42nd International Conference on Software Engineering: Software Engineering in

Practice. ACM, NY, USA, 221-230.

[25] Julia Rubin and Marsha Chechik. 2013. A survey of feature location techniques.
In Domain Engineering. Springer, Springer, 29-58.

[26] Doug Seven. 2014. Knightmare: A DevOps Cautionary Tale. https://dougseven.

com/2014/04/17/knightmare-a-devops-cautionary-tale/.

Split. 2020. Feature Flag Maintenance. https://www.youtube.com/watch?v=qb-

VNbMSzy0.

Alexander Von Rhein, Alexander Grebhahn, Sven Apel, Norbert Siegmund, Dirk

Beyer, and Thorsten Berger. 2015. Presence-condition simplification in highly

configurable systems. In 2015 IEEE/ACM ICSE, Vol. 1. IEEE, IEEE, 178-188.

=
)

(13

[15

=
=

(18

[20

[21

[23

[24

[27

[28

https://tree-sitter.github.io/tree-sitter/#available-parsers
https://dzone.com/articles/feature-toggles-are-one-worst
https://www.youtube.com/watch?v=r7VI5x2XKXw
https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html
https://itrevolution.com/the-amazing-devops-transformation-of-the-hp-laserjet-firmware-team-gary-gruver
https://itrevolution.com/the-amazing-devops-transformation-of-the-hp-laserjet-firmware-team-gary-gruver
https://www.youtube.com/watch?v=FD5fX02QCmY
https://www.youtube.com/watch?v=gxm1C92XhCQ
https://www.youtube.com/watch?v=gxm1C92XhCQ
https://pipelinedriven.org/feature-toggle-frameworks-list/
https://pipelinedriven.org/feature-toggle-frameworks-list/
https://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/
https://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/
https://www.youtube.com/watch?v=qb-VNbMSzy0
https://www.youtube.com/watch?v=qb-VNbMSzy0

	Abstract
	1 Introduction
	2 Background and motivation
	3 Study design
	3.1 Research questions
	3.2 Subject systems
	3.3 Our approach

	4 Results
	4.1 Feature toggles interactions (RQ1)
	4.2 Multiplication of interactions (RQ2)
	4.3 An extracted Feature Toggle Model
	4.4 Threats to validity

	5 Related Work
	6 Conclusion and future work
	Acknowledgments
	References

