. Introduction . . History of the problem

One can trace the question of quantum ergodicity back to a paper [ ] of Einstein dated . At the time, quantum mechanics was still in its prehistorical age. Around

, Planck was at the origin of the idea that certain physical quantities might be quantized, that is, they take values in a discrete set. In his paper [ ] about the spectrum of the "black body", Planck introduced the constant h; however was for him a mathematical artefact, without physical foundation. Einstein gave this idea a physical reality when in he introduced the notion of quantum of energy in the exchange of energy between light and matter: the photon [ ].

This idea of discreteness was transposed by Bohr [ ] in to the planetary model of the atom. Trying to explain the discrete emission/absorption spectrum of the hydrogen, he used the Rutherford model, where the electron gravitates around the nucleus submitted to Coulomb attraction, and postulated the quantization of the kinetic momentum: it must be an integer multiple of h. This in turn implies that the energy can only take a discrete set of values, that explains perfectly well the discrete experimental spectrum. However, setting up quantization rules for larger atoms turned out to be an inextricable task [ ].

The aforementioned paper [ ] by Einstein is a theoretical paper, that aims at extending the quantization rules to systems with higher degrees of freedom. Although not his most celebrated paper, it contains deep ideas, and a remark that can be considered to be the starting point of a whole field of research : he first corrects the quantization rules given earlier by Epstein and Sommerfeld, but he notes that his new rules only make sense if (using modern vocabulary) the system is completely integrable, that is to say, if there exist some action/angle canonical coordinates, where the actions are invariants of motion. He calls such systems "Type a)", and at the end of the paper, he notes: "on the other hand, classical statistical mechanics is essentially only concerned with Type b) [i.e. non integrable systems], for in this case the microcanonical average is the same as the time average". The equivalence of time average with the average over phase space is the property called ergodicity. Einstein's point is thus the following:

If a classical dynamical system is ergodic, the quantization rules do not apply, so how can we describe its spectrum?

Facing the failure to find quantization rules even for an atom as small as the helium, Heisenberg set up in entirely new rules of mechanics [ ]. These are based on the idea that the "observable quantities" in physics should be represented by matrices (operators), subject to certain commutation rules. The non commutativity of the algebra of observables is a fundamentally new idea. The basic rule is that the momentum observable p and the position observable q must satisfy qppq i I,

where is the reduced Planck constant, h/2π. Time evolution is governed by the energy observable H (Heisenberg gives a recipe to build the operator H starting from the classical expression of energy). Any other observable A evolves in time according to the linear equation

i dA dt [A, H],
where [.,.] stands for the commutator of two operators. The physical spectrum of the system (emitted or absorbed energies) is given by the differences E n -E m , where (E n ) are the eigenvalues of H. The notions of spectrum and of eigenvalues thus merged.

. . . although the physicists who revived the subject in the s probably had other motivations than Einstein's question.

Indeed, Einstein's rule is that the values taken by the action variables have to be integer multiples of h.

At the same time, a concurrent theory emerged. In , De Broglie had formulated the idea of wave mechanics: in the same way as light, traditionally considered to be a wave, was discovered to have a discrete behaviour embodied by the photons, the particles composing matter could, in the reverse direction, also be considered to be waves.

Schrödinger [ ], [

] proposed in an evolution equation for a wave/particle of mass m evolving in a force field coming from a potential V :

i ∂ψ ∂t (t, x) - 2 2m ∆ + V ψ(t, x) ( . )
where t is time, x ∈ R 3 is the position of the particle, ∆ is the Laplacian, and ψ ψ(t, x) is a function called the "wave function". Equation ( . ) replaces Newton's law of motion in classical mechanics, m x -V (x).

The linear partial differential equation ( . ) can be solved by diagonalizing the differential operator

H - 2 2m ∆ + V.
Assume, say, that we can find an orthonormal basis of the Hilbert space L 2 (R 3 ) consisting of functions φ n satisfying Hφ n E n φ n with E n ∈ R. Then the general solution of ( . ) is ψ(t, x) n c n φ n (x)e -itE n / ( . )

where the coefficients c n ∈ C are given by the initial condition at t 0. The physical spectrum is again given by the differences E n -E m .

Both the Heisenberg and the Schrödinger theories yielded correct results for the hydrogen atom, but also for larger ones. In fact, they can be shown to be mathematically equivalent. However, as Schrödinger wrote [ ], mathematical equivalence is not the same as physical equivalence. The "wave function" ψ is absent from Heisenberg's theory, and its physical meaning was at the heart of a tense debate. Born gave a probabilistic interpretation of the function ψ: |ψ(x, t)| 2 represents the probability, in a measurement, to find a particle at position x, at time t. This was in complete disagreement with Schrödinger's views, but this is the interpretation that has been retained.

After

, Einstein's original question may be reformulated as follows:

If a classical hamiltonian system is ergodic, and if H is the energy operator associated to the system by the rules of quantum mechanics, how can we describe the eigenvalues of the operator H?

One may broaden the question by asking about the properties of the wave functions, that is, the eigenfunctions of H, or more generally the solutions ψ(x, t) of the time-dependent solutions of ( . ):

How are the probability densities |ψ| 2 localized in space?

In the mid-fifties, Wigner introduce Random Matrix Theory to deal with the scattering spectrum of heavy nuclei. In this case, although there is no doubt about the validity of the Schrödinger equation, it seems impossible to effectively work with it, in view of the high number of degrees of freedom of such systems. Wigner's hypothesis was that the spectrum of heavy nuclei resembles, statistically, that of certain ensembles of large random matrices (the Gaussian Orthogonal Ensemble or the Gaussian Unitary Ensemble). This turned out to fit the experimental data extraordinarily well: see illustrations in Bohigas' paper [ ].

. . Conjectures, scope of the book

In the s, numerical simulations started to reveal something unexpected: the spectral statistics of Random Matrix Theory also seem to fit extremely well with the spectra of certain Schrödinger operators with very few degrees of freedom; for instance, the hydrogen atom in a strong magnetic field, as well as some 2-dimensional billiards (in the latter case, the classical system is just a free particle bouncing on the walls of a closed domain, and the Schrödinger operator is the Laplacian with Dirichlet boundary condition). See [ ] for illustrations. The common point of all these examples is that the underlying classical dynamical system is ergodic, or even chaotic -meaning a very strong sensitivity to initial conditions. Thus, it seems that the answer to Einstein's question could be:

Conjecture (B -G -S [ ])
-If the classical dynamics is ergodic and sufficiently chaotic, then the spectrum of the corresponding Schrödinger operator looks like that of a large random matrix, in one of the ensembles introduced by Wigner.

However, this statement must be qualified:

There is to this day no mathematical proof of this fact; the question may be considered fully open, except for the heuristic arguments given by Sieber and Richter [ ], that seem impossible to turn into a mathematical proof.

There are some counter-examples to this assertion, given by Luo and Sarnak [ ]; and they come from very strongly chaotic classical dynamics, so the source of the problem does not lie there.

The counter-examples are Laplacians on arithmetic hyperbolic surfaces (such as the modular surface); these systems are special in many ways, and thus one may conjecture that the assertions above hold for "generic" systems, whatever that means. But even in such a weakened form, the question is fully open.

Proving anything in the direction of the Bohigas-Giannoni-Schmit conjecture seems out of reach today. Maybe surprisingly, it seems more tractable to say something about the wave functions: many results go in the direction of saying that they are delocalized, and this will be the main topic of this book.

. . . High frequency delocalization on billiards and Riemannian manifolds

In Chapters and , we will let (M, •, • ) be a compact smooth Riemannian manifold of dimension d, and ∆ be the Laplace-Beltrami operator on M. It is a self-adjoint operator on the Hilbert space L 2 (M, Vol), where Vol is the Riemannian volume measure. We may diagonalize ∆: it is known that there is a non-decreasing sequence λ 0 0 < λ 1 ≤ λ 2 ≤ → +∞, and an orthonormal basis (φ k ) k∈N of L 2 (M, Vol), such that

∆φ k -λ k φ k . ( . )
If M has a boundary, we should impose a boundary condition, for instance the Dirichlet condition (i.e. we ask that φ k vanishes on ∂M).

We shall look at notions of delocalization defined in the high-frequency limit λ k → +∞. The connection with the Schrödinger equation ( . ) is that ( . ) may be rewritten as -2 ∆φ Eφ, with λ k E -2 . We recognize equation ( . ) with a vanishing potential V. Many statements given in this books could be generalized to more general operators -2 ∆ + V, but we will only treat the case V 0, that already contains all the difficulties and interesting features. If we impose that E stays away from 0, the limit λ k → +∞ is equivalent to → 0; in this régime of small wavelength, it is expected that quantum mechanics should converge to classical mechanics in a certain sense. This was actually a requirement of Schrödinger [ ] when he introduced his equation.

The Schrödinger operator -2 ∆ corresponds to a particle moving on M in absence of any external force. In classical mechanics, this corresponds to the motion along geodesics (the geodesic flow), in other words, the motion with zero acceleration. In the presence of a smooth boundary, the geodesics are reflected on the boundary in the usual way. If the manifold is an open subset of euclidean R d , the particle simply moves in straight lines with constant velocity, and is reflected on the boundary: this dynamical system is called a billiard. The fact that the classical motion may be chaotic comes from the curvature of M (negatively curved manifolds are typical examples of manifolds possessing a chaotic geodesic flow) and/or from the curvature of the boundary (piecewise concave billiards are typically chaotic).

Figure represents

eigenfunctions of the Laplacian, associated with consecutive eigenvalues, in a stadium-shaped domain, with Dirichlet boundary conditions. We see various patterns, in particular, some eigenfunctions are localized in the inner rectangle, whereas others seem to be spread out rather uniformly in the whole domain. We want to understand which patterns persist in the limit λ k → +∞, possibly by relating them to some specific properties exhibited by the classical dynamics (here the billiard flow in a stadium-shaped domain).

One of the most natural questions that comes to mind at the sight of Figure is: how large can the eigenfunctions be, how strongly can they be peaked, and at what points? This may be measured by studying the growth of the L pnorms of the eigenfunctions for p > 2 (especially p ∞); but the results surveyed in Chapter will reveal that we are technically far from being able to relate delocalization with chaos this way. We will quickly turn to the more adapted notion of quantum ergodicity which will be the main subject of this book.

In physics, the probability measure |φ(x)| 2 dVol(x) gives the probability to find the particle at x in a measurement, when the system is in the state described by the wave function φ. For chaotic systems, it is expected that this probability is close to the uniform probability on M if φ is a stationary solution F

. Plot of |φ n (x, y)| 2 for the stadium billiard with odd-odd symmetry, for consecutive states starting from n 319. Darker shades correspond to large values of the eigenfunctions. Courtesy A. Bäcker (eigenfunction) of the Schödinger equation; less ambitiously we could try to exhibit delocalization by showing that this measure cannot be large on "small" sets (sets of small dimension for instance). The Quantum Ergodicity theorem gives a first and almost complete answer in case the geodesic flow is ergodic, with respect to the Liouville measure:

T . . (S [ ], Z [ ], C V [ ])
Let M be a compact Riemannian manifold without boundary, with the metric normalized so that Vol(M) 1. Call ∆ the Laplace-Beltrami operator on M. Assume that the geodesic flow of M is ergodic with respect to the Liouville measure. Let (φ k ) k∈N be an orthonormal basis of L 2 (M, g) made of eigenfunctions of the Laplacian:

∆φ k -λ k φ k , λ k ≤ λ k+1 → +∞.
Then there exists a subset S ⊂ N of density 1 such that the sequence of measures (|φ k (x)| 2 dVol(x)) n∈S converges weakly to the uniform measure dVol(x).

The subset S ⊂ N being of density 1 means that

(S ∩ [0, n]) n ----→ n→+∞ 1,
for this reason it is sometimes said that Theorem . . concerns "almost all" the eigenfunctions.

Actually, the full statement of the theorem says that there exists a subset S ⊂ N of density 1 such that

φ k , Aφ k ----→ n→+∞ n∈S ∫ S * M σ 0 (A)dL 1 ( . )
for every pseudodifferential operator A of order 0 on M. On the right-hand side, σ 0 (A) is the principal symbol of A, and L 1 is the Liouville (Lebesgue) measure on the classical phase space S * M. These notions and a proof of Theorem . . will be developed in Chapter .

The theorem has subsequently been extended to manifolds with boundary [ ], [ ]. It applies, in particular, to the stadium billiard in Figure , since this billiard flow has been proven by Bunimovich to be ergodic. The observation of large samples of eigenfunctions reveals indeed that most eigenfunctions are uniformly distributed over the stadium. However, as is already seen on the small sample of Figure , some of them look very localized inside the rectangle, and some of them also exhibit some a mild enhancement in the neighbourhood of unstable periodic orbits, a phenomenon called "scarring" by physicists (Heller [ ]). One may wonder whether the full sequence converges in ( . ), without having to extract the subsequence S. Figure (or larger samples of eigenfunctions) suggests that this is not the case for the billiard stadium, because we see a sparse sequence of eigenfunctions that are not at all equidistributed, but stay inside the inner rectangle. The existence of a sparse sequence of eigenfunctions that does not equidistribute was proven by Hassell in [ ], by a non-constructive method that works for "almost all" stadium billiards (meaning, for Lebesgue-almost-all lengths of the stadium).

On the other hand, Rudnick and Sarnak's Quantum Unique Ergodicity (QUE) conjecture [ ] predicts the following:

(QUE) Quantum Unique Ergodicity conjecture. -If M is a compact boundaryless manifold with negative sectional curvature, then one has convergence of the full sequence in ( . ). In other words the whole sequence of eigenfunctions becomes equidistributed as λ → +∞.

The conjecture is open, but significant progress has been made in the last twenty years and will be described in Chapter . In particular, the following is known:

T . . (see [ ], [ ] and [ ],

[ ]) (i) Let M be a compact Riemannian manifold with negative sectional curvature. Let (φ n k ) be a sequence of eigenfunctions of frequency going to infinity. Assume that

φ n k , Aφ n k ----→ n k →+∞ ∫ S * M σ 0 (A)dµ
for every pseudodifferential operator A of order 0 on M, for some probability measure µ. Then µ has positive entropy.

(ii) Let M be a compact Riemannian manifold with negative sectional curvature and dimension d 2. Let (φ n k ) be a sequence of eigenfunctions of frequency going to infinity. Assume that

φ n k , Aφ n k ----→ n k →+∞ ∫ S * M σ 0 (A)dµ
for every pseudodifferential operator A of order 0 on M, for some probability measure µ. Then µ has full support, i.e. µ(Ω) > 0 for any non-empty open subset Ω ⊂ S * M.

Both results imply that µ cannot be a singular measure supported on a closed geodesic. Note that the (QUE) conjecture would consist in proving that µ is necessarily the Liouville measure L 1 .

Besides the Random Matrix conjecture and the Quantum Unique Ergodicity conjecture, another central question is the following:

Random wave conjecture (B [ ]).
-If the classical dynamics is chaotic, then the values of φ λ (x), when x belongs to a ball B(x 0 , Rλ -1/2 ) of radius Rλ -1/2 , follow approximately the distribution of a Gaussian process, for R fixed arbitrary and in the limit λ → +∞.

This conjecture is fully open, and its mathematical formulation itself is a subject of debate. Here we propose an interpretation where the eigenfunctions are submitted to a local zoom of magnitude λ 1/2 , in order to rescale the wavelength from λ -1/2 to 1. Besides, after the recent work of Backhausz-Szegedy for the discrete Laplacian on regular graphs [ ], it was suggested in [ , ] that one should choose the point x 0 uniformly at random in the Berry conjecture. One may consider the work of Backhausz-Szegedy to prove the Berry conjecture for large regular graphs chosen at random; but this again can be debated, since in their work there is extra randomness in the geometry itself. The reader can learn more about this in Chapter ; we think this result is a sign among many others that it is instructive to turn to discrete graph models to gain some insight into the conjectures of quantum chaos.

. . . Delocalization on large graphs

Understanding the validity and the universality of the conjectures above is one amongst many reasons for studying toy models. Toy models are supposed to be simpler, either because explicit calculations of the spectrum and eigenfunctions may be derived, or because numerical simulations are easier. Toy models often have some built-in discreteness, for instance they can be Schrödinger operators defined on a finite-dimensional Hilbert space, and the semiclassical limit → 0 means that the dimension of this Hilbert space tends to +∞.

Schrödinger operators defined on graphs are natural toy models. Originally, models of quantum graphs were studied. By this, we mean 1-dimensional CWcomplexes with ∆ ]. However, in this book we focus on discrete graphs and the eigenfunctions of their adjacency operators. We consider finite graphs of bounded valency, in the limit where the number of vertices go to infinity (large scale limit). For such toy models, we deal only with (bounded) operators on finite dimensional spaces, which avoids any difficulty from functional analysis.

Recently and in various contexts, the question of delocalization of eigenfunctions of the adjacency matrix of large graphs, or more generally, of large matrices has been a subject of intense activity. Let us mention several ways of testing delocalization that have been used. Let M N be a large symmetric matrix of size N ×N, and let (φ j ) N j 1 be an orthonormal basis of eigenfunctions.

The eigenfunction φ j defines a probability measure N x 1 |φ j (x)| 2 δ x on the set {1, . . . , N }. The goal is to compare this probability measure with the uniform measure, which puts mass 1/N on each point. The question is considered in the asymptotic régime N → +∞. To that end, we may use various criteria:

∞ norms. -Can we have a pointwise upper bound on |φ j (x)|, in other words, is φ j ∞ small, and how small compared with 1/ √ N?

p norms. -Can we compare φ j p with N 1/p-1/2 ? In [ ], a state φ j is called non-ergodic (and multi-fractal

) if φ j p behaves like N f (p) with f (p) 1 p -1 2 .
Scarring . -Can we have full concentration

( x∈Λ |φ j (x)| 2 ≥ 1 -) or partial concentration ( x∈Λ |φ j (x)| 2 ≥ ) on a set Λ ⊂ {1 . . . , N } of "small" cardinality? Quantum ergodicity. -Given a function a : {1, . . . , N } → C, can we compare x a(x)|φ j (x)| 2 with 1 N x a(x)?
This criterion is borrowed again from quantum chaos, it is inspired from the Shnirelman theorem . . . It was applied to discrete regular graphs in [ ], [ ]. Quantum ergodicity means that the two averages are close for most j. If they are close for all j, one may speak of quantum unique ergodicity, in analogy with the QUE conjecture.

We will be considering the case where the matrix M N in question is the adjacency matrix of a graph with N vertices. We will consider a sequence of graphs (G N ) (V N , E N ) with |V N | N, denote its adjacency matrix by A N , and we shall be interested in its eigenvectors (φ (N) 1 , . . . , φ (N) N ). Chapter will be dedicated to proving the following theorem, reminiscent of Theorem . . . There we focus on regular graphs of fixed degrees (i.e. for which each point has the same number (q + 1) of neighbours), but will also extend the result to non-regular graphs in Chapter .

T . . (A

-L M [ ]). -Let (G N ) (V N , E N
) be a sequence of (q + 1)-regular graphs with |V N | N. Denote by A N the adjacency matrix of G N . Assume that (G N ) has few short cycles and forms an expander family. Let (φ

(N) 1 , . . . , φ (N) N ) be an orthonormal basis of eigenfunctions of A N in 2 (V N ).
We borrow the term "scarring" from the term coined by Heller [ ] in the theory of quantum chaos.

Let a N : V N → C be a sequence of functions such that

sup N sup x∈V N a N (x) ≤ 1. Define a N 1 N x∈V N a N (x). Then for any ε > 0, 1 N j ∈ [1, N] ; φ (N) j , a N φ (N) j 2 (V N ) -a N > ε ----→ N→+∞ 0. ( . ) Note that φ (N) j , a N φ (N) j 2 (V N ) x∈V N a N (x)|φ (N) j (x)| 2 .
The interpretation of Theorem . . is that we are trying to measure the distance between the two probability measures on V N ,

x∈V N φ (N) j (x) 2 δ x and 1 N x∈V N δ x (uniform measure)
in a rather weak sense, namely, by testing only one function a N against both. What ( . ) tells us is that for large N and for most indices j, this distance is small.

The following gives a delocalization result valid for all eigenfunctions, under slightly different assumptions (see Theorem . . for a precise statement):

T . . (B -L [ ]). -Let (G N ) (V N , E N
) be a sequence of (q + 1)-regular graphs with |V N | N. Denote by A N the adjacency matrix of G N . Assume G N has few cycles of length ≤ c log N.

Let > 0. Then, for any 2 -normalized eigenfunction φ on G N , for any B ⊂ V N , we have x∈B φ(x) 2 ≥ ⇒ |B| ≥ N δ
with δ > 0, explicit in terms of c and .

A proof of those two theorems is sketched in Chapter . An extension to non-regular graphs is discussed in Chapter , with a quite different proof. In Chapter , we describe a paper by Brooks-Le Masson-Lindenstrauss that uses ideas coming from graphs to study Arithmetic Quantum Ergodicity on the sphere .

. . . Delocalization on random graphs

Theorem . . is about deterministic sequences of graphs satisfying certain geometric assumptions (expansion and few short cycles, see assumptions (EXP) and (BST) in § . ). In the past years, there has been tremendous interest in spectral statistics and delocalization of eigenfunctions of random sequences of graphs and Schrödinger operators. Many papers consider random regular graphs, with degree going slowly to infinity

[ ], [ ], [ ], [ ] or fixed [ ], [ ], sometimes adding a random i.i.d potential [ ].
As was demonstrated in a recent series of papers by Yau, Erdös, Schlein, Knowles, Bourgade, Bauerschmidt, Yin, Huang, adding some randomness may allow to understand completely the delocalization of eigenfunctions, at the expense of replacing results valid for all graphs by results holding for almost all graphs. These authors proved almost sure optimal ∞ -bounds and quantum unique ergodicity for various models of random matrices and random graphs

[ ], [ ], [ ], [ ], [ ], [ ], [ ].
Here again we focus on regular graphs. A (labelled) random regular graph on N vertices is produced as follows: given the vertex set {1, . . . , N }, consider all the ways to draw edges between those vertices, that produce a (q + 1)regular graph (without self-loops and multiple edges); note that (q + 1)N has to be an even integer. Then pick a graph at random for the uniform probability measure on all possible configurations.

The recent papers [ ], [ ], [ ] show quantum unique ergodicity for the adjacency matrix of random regular graphs, in the following sense: given an observable a N : {1, . . . , N } -→ R, for most (q + 1)-regular graphs on the vertices {1, . . . , N } we have that

N x 1 a N (x)|φ (N) j (x)| 2 is
close to a N for all indices j, with an excellent control of the remainder term:

T . . (B -H -Y [ ]). -Let ω be such that √ q ≥ (ω + 1)2 2ω+45 . (i) With probability ≥ 1 -o(N -ω+8
) on the choice of the graph,

φ j ∞ ≤ (log N) 121 √ N
for all eigenfunctions associated to eigenvalues such that |λ j ± 2 √ q | > (log N) -3/2 .

(ii) (Quantum Unique Ergodicity for random regular graphs). -Given an observable a N : {1, . . . , N } → R, we have, with probability ≥ 1o(N -ω+8 ) on the choice of the graph, for N large enough, ( . )

N x 1 a N (x) φ (N) j (x) 2 -a N ≤ (log N) 250 N x a N (x) 2 1/2
, for all eigenfunctions associated to eigenvalues λ j ∈ (-2 √ q + , 2 √ q -) (bulk eigenvalues). In particular, if a N 1 Λ N where Λ N ⊂ {1, . . . , N }, we find

x∈Λ N |φ (N) j (x)| 2 - |Λ N | N ≤ (log N) 250 N |Λ N | .
Note by the way that the condition ω > 8, necessary for the remainder o(N -ω+8 ) to be small, implies that q > 2 128 -although the result is expected to hold as soon as the valency q + 1 is greater than 3.

The conclusion ( . ) holds for all the bulk eigenvalues -hence the name (QUE) -but for almost all graphs. This is to be compared to Theorem . . , that gave information for all graphs but only almost all eigenvalues. If we are given a deterministic sequence of regular graphs (for instance, say, the Lubotzky-Phillips-Sarnak Ramanujan graphs [ ]), we do not know if Theorem . . applies to it, as it is an almost sure conclusion.

Note that we emphasized Theorem . . from [ ] because our main concern is the delocalization of eigenfunctions. The main focus of [ ], [ ] is however on the universality of the local spectral statistics for random regular graphs. If the valency q grows mildly with N, [ ] proves that the spacing between eigenvalues obeys the same statistics as Wigner matrices; this is believed to be true also for fixed q

(see numerical experiments in [ ], [ ], [ ], [ ]).
The recent paper [ ] by Backhausz and Szegedy almost completely settles the Berry conjecture transposed to the case of random regular graphs. Their result says that for almost all random regular graphs G N on N vertices, and all eigenvectors φ (N) j s, the value distribution of √ N φ j (x) as x runs over {1, . . . , N } is close to some Gaussian N(0, σ 2 j ) with 0 ≤ σ j ≤ 1. Proving that σ j 1, or even just that σ j 0, is still a challenge; it would amount to proving that eigenfunctions cannot put a fixed positive mass on any set of vertices of size o(N). Such a statement is unfortunately not provided by Theorems . . nor . . . This result by Backhausz and Szegedy is the object of our last Chapter .

. High frequency delocalization

In this chapter, we let (M, ., . ) be a compact smooth Riemannian manifold of dimension d, and ∆ be the Laplace-Beltrami operator on M. It is a selfadjoint operator on the Hilbert space L 2 (M, Vol), where Vol is the Riemannian volume measure. We may diagonalize ∆: there is a non-decreasing sequence λ 0 0 < λ 1 ≤ λ 2 ≤ → +∞, and an orthonormal basis

(φ k ) k∈N of L 2 (M, Vol), such that ∆φ k -λ k φ k . ( . )
For simplicity, we assume here that M has no boundary. We are interested in notions of delocalization defined in the high-frequency limit λ k → +∞.

To make the link with Section . , we note that equation ( . ) may be written as a stationary Schrödinger equation

-2 ∆φ Eφ, with E -2 λ k .
The Schrödinger operator -2 ∆ corresponds to a particle moving on M in absence of any external force. In classical mechanics, this corresponds to the motion along geodesics, in other words, the motion with zero acceleration.

We denote by T * M the cotangent bundle of M; this is the phase space of classical mechanics. An element (x, ξ) ∈ T * M has a component x ∈ M (the "position" of the particle) and ξ ∈ T *

x M (the "momentum").

For (x, ξ) ∈ T * M, and t ∈ R, we denote by G t (x, ξ) ∈ T * M the position and momentum of the particle, after it has moved during time t along the geodesic starting at x with initial momentum ξ.

The family (G t ) t∈R : T * M → T * M is a flow of diffeomorphisms, meaning that G t+s G t • G s and G 0 is the identity. This dynamical system is called the geodesic flow. The motion along geodesics has constant speed, and thus, the unit cotangent bundle

S * M (x, ξ) ∈ T * M ; ξ x 1 is preserved by G t .

. . L p -norms as measures of delocalization?

One of the most natural questions that comes to mind at the sight of Figure is: how large can the eigenfunctions be, how strongly can they be peaked, and at what points? This may be studied by evaluating the L ∞ -norms of eigenfunctions, or more generally their L p -norms.

In this section we denote by φ λ any solution of -∆φ λ λφ λ , normalized so that φ λ L 2 1. A general bound on the L ∞ -norm is the following:

T . . (known as H 's bound). -One has φ λ ∞ O(λ (d-1)/4 ).
where d is the dimension of M.

In a celebrated paper, C. Sogge gave a bound for all L p norms, 2 ≤ p ≤ +∞:

T . . (S [ ]). -One has φ λ L p O(λ 1/2µ(p) ) where µ(p) d( 1 2 -1 p ) -1 2 for 2(d+1) (d-1) ≤ p ≤ +∞; µ(p) 1 2 (d -1)( 1 2 -1 p ) for 2 ≤ p ≤ 2(d+1) (d-1) .
These bounds hold for any compact manifold M. Note the role of the critical value

p c 2(d + 1) (d -1) •
The upper bounds are achieved on the sphere S d for all values of p.

For p ≥ p c , the upper bound is reached with zonal spherical harmonics (these are strongly peaked at two antipodal points), whereas for p ≤ p c it is reached with highest weight spherical harmonics (these spherical harmonics are peaked in the vicinity of an equator).

For p > p c , several results due to Sogge and Zelditch give a partial converse, showing that manifolds where the L p -bound is saturated must have a "pole", that is, a point where many geodesics loops go through:

If x ∈ M, let L x ⊂ S *
x M be the set of directions that loop back to x, that is,

L x v ∈ S * x M ; ∃t > 0, G t (x, v) ∈ S * x M .
We denote by σ x the Lebesgue measure on the sphere S * x M.

T . . (S -Z [ ], [ ], [ ])
(a) Assume there exists a subsequence λ n k → +∞ and C > 0 such that

φ λ n k ∞ ≥ Cλ µ(∞)/2 .
Then there exists x such that σ

x (L x ) > 0. (b) If M is real analytic, the existence of such a subsequence (φ λ n k ) is equivalent to the existence of x such that L x S *
x M, and such that the first return map

η x : S * x M -→ S * x M
possesses an absolutely continuous invariant probability measure. Moreover, in that case, there exists t 0 > 0 such that G t 0 (x, v) ∈ S *

x M for all v ∈ S * x M, that is, there is a common return time.

(c) If M is real analytic and dim M 2, the existence of such a subsequence φ λ n k is equivalent to the existence of x ∈ M and t 0 > 0 such that G t 0 (x, v) (x, v) for all v ∈ S *

x M. In addition, M is homeomorphic to a sphere.

What about our original question? If the geodesic flow is chaotic, can we say that the eigenfunctions will be much less peaked? To be more specific about the meaning of "chaotic", we shall mostly be interested in manifolds with negative sectional curvature. It is then known that the geodesic flow has the Anosov property, which is a very strong and very well understood form of chaos (see for instance Chapter Section and Chapter in [ ]): the geodesic flow is ergodic, but it also has strong mixing properties, is measurably isomorphic to a Bernoulli system, exhibits exponential sensitivity to initial conditions, . . . On a negatively curved manifold, there are only countably many closed geodesics, and what's more, through a point x there pass at most countably many geodesic loops. Thus, Theorem . . implies that φ λ L ∞ o(λ µ(∞)/2 ) (i.e. the big 'O' of Theorem . . becomes a little 'o').

One can in fact go further:

T . . (a) (B [ ],
).

-If d 2 and M has no conjugate points, or if d ≥ 2 and M has non-positive sectional curvature, for p +∞, p,d) .

φ λ L p O λ µ(p)/2 log λ . ( . ) (a') (B [ ]). -Estimate ( . ) actually holds if M has no conjugate points, for all d ≥ 2. (b) (H -T [ ]). -Estimate ( . ) holds for all p > p c . (c) (B -S [ ], [ ], [ ]). -If M has non-positive sectional curvature, for 2 < p ≤ p c , there exists σ(p, d) > 0 such that φ λ L p O λ µ(p)/2 (log λ) σ(
Although this logarithmic improvement constitutes a great progress, it is far from reaching our goal of saying that chaotic properties of the geodesic flow imply delocalization of eigenfunctions. After all it is only assumed in Theorem . . that the curvature is non-positive, so the results already hold for flat tori (where the geodesic flow is completely integrable), and have not much to do with the chaotic behaviour of the geodesic flow.

That is why we turn to the quantum ergodicity theorem, that uses ergodicity to establish that |φ λ (x)| 2 ≈ 1 in a weak sense. Based on that, it is tempting to form the intuitation that φ λ ∞ is actually much smaller than the previously obtained bounds, but this is a completely open question.

. . The Shnirelman theorem

An indicator of delocalization is to try to compare the probability measures |φ k (x)| 2 d Vol(x) to the uniform measure dVol(x). In what follows, we shall prove the Quantum Ergodicity theorem (or Shnirelman theorem), stated in the introduction as Theorem . . . In fact, in order to use the dynamics of the geodesic flow, we have to work directly with the following stronger version, formulated in terms of general pseudodifferential operators.

T . . (S , Z , C V [ ], [ ], [ ])
Let (M, . , . ) be a compact Riemannian manifold, with the metric normalized so that Vol(M) 1. Let ∆ be the Laplace-Beltrami operator on M. Let (φ k ) k∈N be an orthonormal basis of L 2 (M, Vol) made of eigenfunctions of the Laplacian, ordered by increasing eigenvalues:

∆φ k -λ k φ k , λ k ≤ λ k+1 -→ +∞.
Assume that the geodesic flow of M is ergodic with respect to the Liouville measure. Let A be a pseudodifferential operator of order 0 on M, having principal symbol a. Then

lim λ-→+∞ 1 N(λ) k,λ k ≤λ φ k , Aφ k L 2 (M) - ∫ S * M a(x, ξ)dL 1 (x, ξ) 2 0, ( . )
where the normalizing factor is N(λ)

|{k ; λ k ≤ λ}|, and dL 1 (x, ξ) is the Liouville measure on the unit sphere bundle

S * M {(x, ξ) ∈ T * M ; ξ, ξ * x 1}, in other words dL 1 (x, ξ) dVol(x)dσ x (ξ)
where dσ x is the normalized surface measure on the sphere S * x M.

. . . Remark. -We note that the limit

1 N(λ) k,λ k ≤λ φ k , Aφ k L 2 (M) - ∫ S * M a(x, ξ)dL 1 (x, ξ) ----→ λ-→+∞ 0 ( . )
(without any absolute values in the sum) always holds, without using the ergodicity assumption (see ( . )).

So the non-trivial point in ( . ) is the presence of the absolute values inside the sum. The Cesaro convergence of the non-negative sequence

φ k , Aφ k L 2 (M) - ∫ S * M a(x, ξ)dL 1 (x, ξ) 2 implies that there exists a subset S ⊂ N of density 1 such that φ k , Aφ k ----→ n-→+∞ n∈S ∫ S * M a dL 1 . ( . )
By a diagonal argument that we do not reproduce here, one may even prove that the set S maybe be chosen to be independent of A (see [ ]). Thus the theorem is equivalent to ( . ). It implies Theorem . . given in the introduction, by taking a a(x) that does not depend on ξ, and for A the operator of multiplication by a on L 2 (M, Vol).

The theorem applies to negatively curved compact manifolds, where it is known that the geodesic flow is ergodic. It also applies to manifolds with boundary [ ], [

]. The result is illustrated in Figure for the stadium billiard; or rather, it would be if we took large samples of eigenfunctions, where we would see in effect that most of the eigenfunctions look equidistributed. See also the discussion at the beginning of § . . The theorem was also extended to general Schrödinger operators (or even pseudodifferential operators) in the limit → 0 (see [ ]); more recently, to systems of differential operators acting on sections of vector bundles -such as Dirac operators, Dolbeault Laplacians, . .

. [ ], [ ], [ ].
The case of metrics with jump-like discontinuities has been elucidated [ ], as well as the case of pseudo-riemannian Laplacians on -dimensional contact manifolds, for instance, the Laplacian on the Heisenberg group or its quotients [ ].

Results of "small-scale quantum ergodicity", that is to say, the possibility to use in ( . ) a test function a whose support shrinks as

λ k → +∞, were obtained in [ ], [ ], [ ], [ ].
Before proving the theorem, we need to define pseudodifferential operators and the ergodicity of the geodesic flow.

. . Overview of pseudodifferential operators

Pseudodifferential operators form a class that includes differential operators, but that is also stable under "taking inverses", or more generally taking powers, such as A → A s . They are also stable under the quantum dynamics A → e it √ ∆ Ae -it √ ∆ . To describe their definition and properties, we first review some basic facts on differential operators.

. . . Some remarks on differential operators

Let Ω ⊂ R d be an open subset. Denote

D j 1 i ∂ ∂x j
, and for a multiindex

α (α 1 , . . . , α d ) ∈ N d , denote D α D α 1 1 • • • D α d d .
By definition, a differential operator on Ω is an operator of the form

P 0≤k≤n |α| k α (α 1 ,...,α d )∈N d a α (x)D α ( . )
for some n called the order of the operator, and some coefficients a α (x) that, in our context, will always be smooth functions on Ω.

For (x, ξ) ∈ Ω × R d , introduce the function p(x, ξ) 0≤k≤n |α| k α (α 1 ,...,α d )∈N d a α (x)ξ α , ( . )
which is a polynomial function in ξ called the full symbol of P. The principal symbol (of order n) of P is defined by keeping only the higher order terms:

σ n (P)(x, ξ) |α| n α (α 1 ,...,α d )∈N d a α (x)ξ α . ( . )
If σ n (P) vanishes, then P is actually a differential operator of order n -1.

Let us consider the behaviour of P under changes of coordinates.

Let Ω ⊂ R d be another open set, and suppose there is a diffeomorphism F from Ω to Ω. Then an elementary (but fundamental) calculation shows that there is a differential operator Q on Ω such that

(P f ) • F Q( f • F)
for every smooth function f on Ω. Moreover, their principal symbols are related by

σ n (Q)(x , ξ ) σ n (P)(x, ξ) ( . ) if (x , ξ ) ∈ Ω × R d and (x, ξ) ∈ Ω × R d are related by x F(x ), ξ t dF(x) -1 • ξ , ( . )
where dF(x) (∂F j (x)/∂x i ) i, j∈{1,...,d } 2 is the differential of F, and t dF(x) -1 is the inverse of its transpose. Note that the full symbol does not undergo such a nice transformation, as terms or various orders get mixed up.

Let us now describe the behaviour of differential operators under composition and commutators (the proofs are elementary).

P

. . . -If P is a differential operator of order n and Q is a differential operator of order m, then P • Q is a differential operator of order n + m, and

[P, Q] P • Q -Q • P is a differential operator of order n + m -1. Furthermore, one has σ n+m (P • Q) σ n (P) σ m (Q) , ( . ) σ n+m-1 [P, Q] 1 i σ n (P), σ m (Q) , ( . ) where {σ n (P), σ m (Q)} is the Poisson bracket σ n (P), σ m (Q) d j 1 ∂σ n (P) ∂ξ j • σ m (Q) ∂x j - ∂σ n (P) ∂x j • σ m (Q) ∂ξ j • ( . ) P .
. . -Let µ be a measure with a smooth density on Ω, and let P * be the "adjoint" of P with respect to µ, defined so that

∫ Ω Pu v dµ ∫ Ω u P * v dµ
for all smooth, compactly supported u, v. Then P * is a differential operator of order n and σ n (P * ) σ n (P).

On a manifold M, an operator

P : C ∞ (M) -→ C ∞ (M)
is a differential operator if it can be expressed in the form ( . ) in local coordinates. As we now explain, the change of variable formula ( . ) tells us that the principal symbol of P may be defined as a function on the cotangent bundle T * M. Recall that the latter is defined as

T * M (x, ξ) ; x ∈ M, ξ ∈ (T x M) * ,
where (T x M) * is the dual space to the tangent space T x M.

If U is an open subset of M, if F 1 : Ω 1 ⊂ R d → U and F 2 : Ω 2 ⊂ R d → U are two local charts on U, and if f ∈ C ∞ (M) is supported in U, we can write P f P 1 ( f • F 1 ) • F -1 1 P 2 ( f • F 2 ) • F -1 2 ( . )
where P i is a differential operator on Ω i for i 1, 2.

The coordinate charts F i : Ω i ⊂ R d → U ⊂ M can be lifted to give local coordinates on T * U ⊂ T * M by putting

F i : Ω i × (R d ) * -→ T * U, (x i , ξ i ) -→ F i (x i ), t dF i (x i ) -1 ξ i , ( . )
where dF i (x i ) : R d → T F i (x i ) M is the tangent map at x i . Its transpose t dF i (x i ) identifies the dual spaces T * F i (x i ) M → (R d ) * , and thus the inverse is a map

t dF i (x i ) -1 : (R d ) * -→ T * F i (x i ) M.
For (x, ξ) ∈ T * U, define the principal symbol of P by letting:

σ n (P)(x, ξ) σ n (P i )(x i , ξ i ), ( . )
where

(x i , ξ i ) F -1 i (x, ξ).
If we have two different choices of coordinates

F i : Ω i ⊂ R d → U (i 1, 2)
, then the change of variable formula ( . ) applied with F F -1 1 • F 2 implies that this definition does not depend on the choice of coordinates. In other words, ( . ) gives the same result for i 1 and i 2.

Propositions . . and . . remain true on a manifold. In particular, the Poisson bracket { .,.} of two functions on T * M may be defined by formula ( . ) in local coordinates, and is independent of the choice of those coordinates. The formula σ n+m-1 ([P, Q]) 1 i {σ n (P), σ m (Q)} still holds for differential operators on manifolds.

. . . Example (the Laplace-Beltrami operator, or Laplacian)

By definition, a Riemannian structure is a scalar product .,. x on T x M depending smoothly on x. By duality, we also have a scalar product .,. * x on T * x M. We shall denote by . x .,. *

x the associated norm on T * x M. The Laplacian is the unique operator ∆ such that

∫ M ∆u(x) v(x) dVol(x) - ∫ M du(x), dv(x) * x dVol(x) ( . )
for all smooth and compactly supported functions u, v : M → R. Here du(x) and dv(x) are the differentials of u, v at x, they are linear forms on T x M, in other words elements of T *

x M. The Laplacian is a differential operator of order 2. We may compute its expression in local coordinates: checking the details is a good exercise.

Let F : Ω ⊂ R d → U ⊂ M be a coordinate chart. For x ∈ Ω, let g(x) (g i j (x)) 1≤i, j≤d
be the matrix of .,. F(x) in the canonical basis of R d . Then the scalar product .,. * F(x) is expressed by the matrix g(x) -1 (g i j (x)) 1≤i, j≤d in the dual basis.

Letting D(x) det G(x), the Riemannian volume measure has the expression

dVol(x) D(x) 1/2 dx 1 • • • dx d .
By integration by parts in ( . ), the Laplacian is given by

∆ D -1/2 d j,k 1 ∂ j (D 1/2 g jk )∂ k .
The term of higher order is d j,k 1 g jk ∂ j ∂ k , so the principal symbol of ∆ is d j,k 1 g jk (x)ξ j ξ k . In other words, for (x, ξ) ∈ T * M, one has

σ 2 (∆)(x, ξ) ξ, ξ * x ξ 2 x . ( . )

. . . Pseudodifferential operators

To go from differential to pseudodifferential operators, we remark that if P is a differential operator on Ω ⊂ R d , with full symbol p(x, ξ) defined in ( . ), then by the Fourier inversion formula one has, for every f ∈ C ∞ c (Ω),

P f (x) 1 (2π) d ∫ Ω p(x, ξ)e iξ•(x-y) f (y)dy dξ ( . ) 1 (2π) d ∫ Ω p(x, ξ)e iξ•x f (ξ)dξ.
The Fourier transform of f is defined by

f (ξ) ∫ R d f (y)e -iξ•y dy,
where f has been extended to take the value 0 outside Ω.

This suggests to use formula ( . ) for more general functions p, that grow "like a polynomial" as ξ → ∞. We thus define the symbol class S m (Ω × (R d ) * ) as the space of smooth functions a : Ω × (R d ) * → C with the property that, for all multi-indices α, β, for every compact K ⊂ Ω, there exists C K,α,β > 0 such that for all (x, ξ)

∈ K × (R d ) * ∂ α x ∂ β ξ a(x, ξ) ≤ C K,α,β 1 + |ξ| m-|β| . ( . )
This obviously contains the set of smooth functions that are polynomial of degree m in ξ. One may check that this class of functions is invariant under change of coordinates of the form ( . ). It will be convenient to work with the subclass S m c (Ω × (R d ) * ) ⊂ S m (Ω × (R d ) * ) of functions that are supported in a set of the form K × (R d ) * , where K ⊂ Ω is compact. Given such a K, we will denote by S m K (Ω × (R d ) * ) the subspace of functions supported in K × (R d ) * .

It will also be convenient to identify the dual space (R d ) * with R d thanks to the canonical euclidean structure.

For a ∈ S m (Ω × R d ), we define the operator A Op(a) by

A f (x) Op(a) f (x) 1 (2π) d ∫ Ω a(x, ξ)e iξ•x f (ξ)dξ ( . ) for f ∈ C ∞ c (Ω)
, and we call it the pseudodifferential operator of (full) symbol a.

. . . Remark. -The operation a → Op(a) is called a quantization procedure, as it maps the "classical observable" a (a function on phase space) to the "quantum observable" Op(a) (an operator on the Hilbert space L 2 (R d ).

The Schwartz kernel of A Op(a) is the distribution defined for x, y ∈ Ω by

K A (x, y) 1 (2π) d ∫ R d a(x, ξ)e iξ•(x-y) dξ. ( . )
If Ω R d , we see that ξ → a(x, ξ)e iξ•x is the Fourier transform of the application y → K A (x, y), so a may be retrieved from K A by the Fourier inversion formula: It is also easy to check that:

a(x, ξ) ∫ K A (x, y)e iξ
P . . . -If a ∈ S m K (Ω × R d ), then Op(a) sends C ∞ c (Ω) to C ∞ K (Ω) (the subspace of C ∞ c (Ω) formed of functions whose support is contained in K).
The following proposition is standard (see [ ], Chapter II. ):

P . . . -If a ∈ S m K (Ω × R d ), then for any s ∈ R, Op(a) extends to a continuous operator H s c (Ω) → H s-m K (Ω) (where H s c (Ω)
is the subspace of the Sobolev space H s (Ω) formed of compactly supported distributions, and H s-m K (Ω) is the subspace formed of those whose support is contained in K).

Similarly to the case of differential operators, we see from this proposition that m corresponds to the number of derivatives lost when applying Op(a). Note that in our definition m can be any real number, and in particular it can be negative. When m is negative, Op(a) actually increases the regularity.

By virtue of Remark . . , the singular support of Op(a) f is contained in that of f , for any f ∈ H s c (Ω). That means applying Op(a) does not create new singularities.

It is sometimes said that pseudodifferential operators are pseudolocal.

Notation. -We will denote by PDO m c (Ω) (or just PDO m c ) the space

PDO m c (Ω) A Op(a) ; a ∈ S m c (Ω × R d ) .
We let

PDO -∞ c m∈R PDO m c . ( . ) If A belongs to PDO -∞ c , then its Schwartz kernel K A (x, y) is a smooth function, and A sends H s c (Ω) to C ∞ c (Ω) for any s. Conversely, if K A (x, y
) is smooth, and with the additional condition that K A is compactly supported in (x, y), then A is an element of PDO -∞ c .

. . . Pseudodifferential operators with a principal symbol

Notation. -Let S m hom,K (Ω × R d \ {0}) be the space of smooth functions on

Ω × (R d \ {0}), supported in K × (R d \ {0}), homogeneous of degree m in the variable ξ ∈ (R d \{0}) (meaning that a(x, tξ) t m a(x, ξ) for t > 0 and tξ 0). Let S m hom,c K Ω S m hom,K .
Let a ∈ S m K (Ω×R d ), and let A ∈ PDO m c (Ω) be the pseudodifferential operator of full symbol a; according to previous terminology, that means A Op(a). We say that A has a principal symbol if there exists a function a m ∈ S m hom,K , such that a(x, ξ) a m (x, ξ)θ(ξ) + r(x, ξ), ( . ) where θ is a smooth function that is constant equal to 1 near infinity, vanishes near ξ 0, and r is in S m-1 c . Of course, for differential operators, one recovers the previous notion of principal symbol (i.e. highest order homogeneous part).

Note that if A possesses a principal symbol, the latter is uniquely determined by the high-frequency asymptotics

lim t→+∞ t -m e -itξ•x A e itξ• u (x) a m (x, ξ) u(x) ( . ) valid for all (x, ξ) ∈ Ω × (R d \ {0}), for all u ∈ C ∞ c (Ω).
We call a m the principal symbol (of order m) of A and denote it by σ m (A). Although we did not require m to be an integer, we asked the degree of r to be smaller than that of a by one unit; an assumption that can be loosened for some purposes, but that is quite natural in view of our definition ( . ) of the class S m .

We then have the following formulas, that extend those obtained for differential operators (these facts are by no means straighforward, but are nowadays standard [ ], Chapter II. ). For every integer N, we have the asymptotic expansion

a b(x, ξ) - |α|≤N 1 α! ∂ α ξ a(-i∂ x ) α b(x, ξ) ∈ S m+n-N-1 c . ( . )
If A and B possess principal symbols σ m (A) and σ n (B) of orders m and n, then A • B possesses a principal symbol of order m + n, and the commutator [A, B] possesses a principal symbol of order m + n -1,

σ m+n (A • B) σ m (A)σ n (B), ( . ) σ m+n-1 ([A, B]) 1 i σ m (A), σ n (B) . ( . )
Formula ( . ) just follows from formal manipulations. For the other statements, the main tools of proof are integration by parts and the Fourier inversion formula. It is an instructive exercise, for instance, to try to check that a b (defined by integral ( . )) belongs to S m+n c .

P

. . . -Let A Op(a) with a ∈ S m c . Let χ ∈ C ∞ c (Ω) be constant equal to 1 on the support of a. Denote by M χ the operator of multiplication by χ. Let µ be a measure with a smooth density on Ω, and let (AM χ ) * be the "adjoint" of AM χ with respect to µ, defined so that for all smooth compactly supported u, v, one has

∫ Ω Aχuv dµ ∫ Ω u(AM χ ) * v dµ.
Then (AM χ ) * belongs to PDO m c . If A possesses a principal symbol σ m (A), then so does (AM χ ) * , and σ m ((AM χ ) * ) σ m (A).

The composition with M χ appears here for comfort, to make sure that the adjoint stays compactly supported.

. . . Pseudodifferential operators on manifolds

Having defined pseudodifferential operators on an open subset of R d , we are now ready to deal with manifolds. Let M be a manifold of class C ∞ ; for simplicity we will assume that M is compact.

D . . . -Let A : C ∞ (M) → C ∞ (M)
be a linear operator. We will say that A is a pseudodifferential operator of order m and we will denote PDO m (M) the space of such operators if: for every open subset U ⊂ M endowed with a coordinate chart

F : Ω ⊂ R d -→ U, the operator T -1 F χAχT F : C ∞ (Ω) → C ∞ (Ω) belongs to PDO m c (Ω), for every χ ∈ C ∞ c (U); the Schwartz kernel K A (x, y) is C ∞ away from the diagonal {x y }.
Note that the first condition, in conjunction with Remark . . , implies the second one for points x, y that lie in a common domain of coordinate chart. For other pairs of points, we have to add this as an additional condition. In particular PDO -∞ (M) (defined as m PDO m (M)) is the space of operators having a smooth Schwartz kernel. Now, let (U j ) j 1,...,n be a finite open cover of M, with F j : Ω j ⊂ R d → U j some coordinate charts on each U j . We state without proof that it is actually

Here T F is the operator identifying C ∞ (U) with C ∞ (Ω) via f → f • F -1 .
sufficient to check the first condition on each U j : in other words, that the class of pseudodifferential operators on an open subset of R d is stable under change if coordinates. Let (χ j ) j 1,...,n be a partition of unity subordinate to (U j ) j 1,...,n , and for each j let χ j be a smooth function, compactly supported in U j , and such that χ j 1 on the support of χ j .

We have

A n j 1 χ j Aχ j + n j 1 (1 -χ j )Aχ j . ( . )
The operator (1 -χ j )Aχ j has a Schwartz kernel supported away from the diagonal, and by Definition . . it is of class C ∞ . In particular it sends all the Sobolev spaces H s (M) to C ∞ (M). The operator A j T -1 F j χ j Aχ j T F j is a pseudodifferential operator of order m on Ω j .

We will say that A possesses a principal symbol of order m if each A j possesses one. In that case, for (x, ξ) ∈ T * M \ {0} we will let

σ m (A)(x, ξ) x∈U j j 1,...,n σ m (A j )(x j , ξ j ) ( . )
where (x j , ξ j ) F -1 j (x, ξ) when x ∈ U j and ξ ∈ T * x U j . We will accept without proof that, similarly to the case of differential operators, this is well defined, independently of the choice of coordinates and of the partition of unity.

Note that σ m (A) is in S m hom (T * M \{0}), the space of smooth m-homogeneous functions on T * M \ {0}, where {0} stands for the zero section in T * M. The formulas of Proposition . . concerning the behaviour of principal symbols under composition and commutators remain true on manifolds. The Poisson bracket of functions on T * M is given by ( . ) in local coordinates.

. . . Remark. -Given any a ∈ S m hom (T * M \ {0}), there exists A ∈ PDO m (M) such that σ m (A) a. In fact, keeping our previous notation, we let

a j (x, ξ) a(x, ξ)θ(ξ)χ j (x)
for all j (where θ takes the value 1 near infinity and vanishes near 0). We can take A j T F j A j T -1 F j where

A j Op(a j • F j ) ∈ PDO m (Ω j ). ( . )
It will be convenient to denote by A a(x, D x ) the operator defined by this particular construction (it depends on the choices of local coordinates and partition of unity, but only through terms of order m -1).

. . . Powers of (1 -∆)

Let M be a compact Riemannian manifold. The Laplacian is a non-positive operator. The resolvent (I -∆) -1 is a compact operator on L 2 (M), and it can be shown to be a pseudodifferential operator. Let us briefly recall this standard construction (see [ ], Chapter III. ).

P

. . . -For every integer N, one can find A N ∈ PDO -2-N such that

(I -∆) -1 -(A 0 + A 1 + • • • + A N ) ∈ PDO -2-(N+1) ( . )
These can be built by induction: for A 0 , we take an element of PDO -2 with principal symbol a 0 (x, ξ) 1/ ξ, ξ *

x , defined according to Remark . . . Then (I -∆)A 0 has principal symbol 1, so (I -∆)A 0 -I ∈ PDO -1 . In fact, formula ( . ) shows that (I -∆)A 0 -I has a principal symbol of order -1. Let us denote it by b 1 (x, ξ). We now let a 1 (x, ξ) (1/ ξ, ξ *

x )b 1 (x, ξ). We then define A 1 to be an element of PDO -3 with principal symbol a 1 (x, ξ) (always defined according to Remark . . ).

At step N, the construction yields A N such that (I -∆) N+1) and possesses a principal symbol of order -(N + 1), that we call b N+1 (x, ξ). To go to the next step we let

(A 0 + A 1 + • • • + A N )-I belongs to PDO -(
a N+1 (x, ξ) 1 ξ, ξ * x b N+1 (x, ξ).
We then define A N+1 to be an element of PDO -N-3 with principal symbol a N+1 (x, ξ), and proceed by induction.

. . . Remark. -Using a Borel summation procedure, we may define a

pseudodifferential operator A ∈ PDO -2 such that A - N j 0 A j ∈ PDO -2-(N+1)
for any N, and thus (I -∆)A -I ∈ PDO -∞ . Thus A -(I -∆) -1 has a smooth Schwartz kernel and hence it is in PDO -∞ .

Note that the same argument applies to show that (z -∆) -1 is a pseudodifferential operator, for any z ∈ C such that Re z > 0.

Now, for any real number s, the operator (I -∆) s may be defined thanks to the functional calculus for self-adjoint operators, and Seeley's theorem holds [ , Chapter ]: ).

T . . (S
-Let M be a compact Riemannian manifold. Then, for any s ∈ R, the operator (I -∆) s is a pseudodifferential operator of order 2s, with principal symbol ξ 2s x .

. . . Weyl's law

The Laplacian is a self-adjoint operator with compact resolvent on the Hilbert space L 2 (M, Vol), so we may diagonalize ∆: there is a non-decreasing sequence λ 0 0 < λ 1 ≤ λ 2 ≤ → +∞, and an orthonormal basis

(φ k ) k∈N of L 2 (M, Vol), such that ∆φ k -λ k φ k . ( . ) T .
. . -Let M be a compact Riemannian manifold. Let (λ j ) j∈N be the sequence of eigenvalues of -∆, arranged in increasing order (λ j ≤ λ j+1 ) and repeated with multiplicity. Then several methods to prove the same on Riemannian manifolds; one of them consists in using the Minakshisundaram-Pleijel asymptotics (valid for d(x, y) ≤ , where is small enough [ ]) for the heat kernel e t∆/2 as t → 0,

j ; λ j ≤ λ ∼ λ→+∞ λ d/2 (2π) d Vol(B d ) Vol(M),
k t (x, y) e -d(x,y) 2 /2t (2πt) d/2 a 0 (x, y) + ta 1 (x, y) + • • • + t N a N (x, y) + O(t N+1
) .

( . )

The functions a j may be made explicit, and in particular a 0 (x, x) 1. This allows to write j e -tλ j /2 Tr(e t∆/2 )

∫ M k t (x, x) dVol(x) ∼ t→0 Vol(M) (2πt) d/2 •
The Weyl law then follows from a tauberian argument [ ].

One can extend this by inserting a pseudodifferential operator A of order 0 on M, having principal symbol a. One can show that if A ≥ 0, one has

j e -tλ j /2 φ j , Aφ j L 2 (M) Tr(e t∆/2 A) ∼ t→0 Vol(M) (2πt) d/2 ∫ S * M a(x, ξ) dL 1 (x, ξ).
Always by the tauberian argument, it follows that j,λ j ≤λ

φ j , Aφ j L 2 (M) ∼ λ→+∞ λ d/2 (2π) d Vol(B d ) ∫ S * M a(x, ξ) dL 1 (x, ξ). ( . )
Having introduced pseudodifferential operators, we now need to give the definition of the geodesic flow and of the ergodicity property, before proceeding to the proof of the Quantum Ergodicity theorem.

. . The geodesic flow and the ergodicity assumption

In these notes, we will define the geodesic flow as the hamiltonian flow associated with the Hamiltonian

p(x, ξ) ξ, ξ * x . ( . )
In more detail, the geodesic flow is the 1-parameter family of diffeomor- with initial conditions (x 0 , ξ 0 ).

phisms G t : T * M \ {0} → T * M \ {0}, indexed by t ∈ R, satisfying the "flow" property (G t+s G t • G s ),
. . . Remark. -One may show that this is equivalent to the variational definition of geodesics as curves that locally minimize the length, or equivalently curves with vanishing acceleration. More precisely, the curve t → x(t) is a geodesic of M (local minimizer of length), parametrized with constant speed 1, and its velocity x(t) ∈ T x(t) M is the vector that is identified, thanks to the Riemannian structure, with ξ(t)/ ξ(t)

x(t) ∈ T * x(t) M.
In what follows we will only need the Hamiltonian definition of the geodesic flow and not its variational definition. We refer the reader to [ , Chapter ] for more details on the (standard) equivalence between both. , dξ dt 0 ( . ) so G t (x 0 , ξ 0 ) (x 0 + tξ 0 / ξ 0 , ξ 0 ) is the motion in straight line, with constant velocity vector ξ 0 / ξ 0 .

It follows directly from the equations ( . ) that the energy levels {p c } are preserved by G t . Since p is homogeneous, we will always work on {p 1}, that coincides with the unit cotangent bundle S * M. The flow G t preserves the (infinite) Liouville measure dL dx dξ defined on the whole tangent bundle, as well as the (finite) measure L 1 on S * M appearing in Theorem . . . In fact, since dLcan also we written as D(x) 1/2 dx •D(x) -1/2 dξ dVol(x) |dξ| x (where |dξ| x is the Lebesgue measure on the euclidean space (T * x M, .,. *

x ) normalized to be 1 on the unit cube), we see that L 1 is nothing but the disintegration of L on the submanifold {p 1}.

D

. . . -We say that the geodesic flow (G t ) is ergodic with respect to the measure L 1 if, for every measurable

B ⊂ S * M, G t B B for all t ⇒ L 1 (B) 0 or L 1 (B c ) 0.
In other words, an invariant subset must have measure 0 or 1. By the Von Neumann L 2 -ergodic theorem, ergodicity is equivalent to the fact that for any L 2 -function a : S * M → R, the time average

(x 0 , ξ 0 ) -→ 1 T ∫ T 0 a • G t (x 0 , ξ 0 )dt converges in L 2 (S * M, L 1 ), as T → +∞, to the phase-space average ∫ S * M a dL 1 . By the Birkhoff L 1 -ergodic theorem, it is equivalent to the fact that for any L 1 -function a : S * M → R, for L 1 -almost-every (x 0 , ξ 0 ) ∈ S * M, the time average 1 T ∫ T 0 a • G t (x 0 , ξ 0 )dt converges to the phase-space average ∫ S * M a dL 1 as T → +∞.
We now have all tools and definitions to prove Theorem . . .

. . Proof of the Quantum Ergodicity theorem

Let A be as in the statement of the theorem, a pseudodifferential operator of order 0 on M, having a principal symbol a. The operator

√ 1 -∆ itself is of order 1 and has principal symbol p. So the commutator [ √ 1 -∆, A] is a pseudodifferential operator of order 0, with principal symbol 1 i {p, a }. . . . Remark. -Since {p, a } d dt t 0 a • G t and i[ √ 1 -∆, A] d dt t 0 e it √ 1-∆ Ae -it √ 1-∆ ,
one may derive the following consequence, called the Egorov theorem. We won't use it in the proof of the Shnirelman theorem, but we record it here for future use:

T . . (E [ ]). -Let A be a pseudodifferential operator of order 0 on M, having a principal symbol a. Then, for any t ∈ R, e it √ 1-∆ Ae -it √ 1-∆ is a pseudodifferential operator of order 0, having principal symbol a • G t .
Note that we use the half-wave-group e it √ 1-∆ and not the Schrödinger propagator e it∆ because the latter has infinite speed of propagation, whereas the former propagates singularities at speed 1. Another way of seeing the problem is to note that [∆, A] is of order 1 if A is of order 0, so the boundedness of the operator is not preserved. One can work with ∆ if one uses e ith∆ , i.e. the semiclassical version of microlocal analysis, where the limit ξ → ∞ is replaced by h → 0, and one uses h-dependent symbol classes. However we decided to work with the (slightly more traditional) notion of homogeneous symbols.

We can now start with the proof of Theorem . . . We divide it into four steps.

First step. -If K is a bounded operator on L 2 (M), we define its "Quantum Variance" (of level λ) by Var λ (K) 1 N(λ) k,λ k ≤λ φ k , Kφ k L 2 (M) 2 . ( . )
Theorem . . is equivalent to proving that this quantity goes to 0 as λ → +∞; for K of the form

K A -cI, ( . )
where A is a pseudodifferential of order 0 having principal symbol a, and c ∫ S * M a(x, ξ)dL 1 (x, ξ); or, equivalently (replacing a by a -cI), for K A under the assumption that ∫ S * M a(x, ξ)dL 1 (x, ξ) 0. Notice that if A 1 and A 2 are two pseudodifferential operators of order 0 with the same principal symbol, then

A 1 -A 2 is of order -1, so (A 1 -A 2 ) √ 1 -∆ is of order 0. This implies that φ k , (A 1 -A 2 ) √ 1 -∆φ k stays bounded. Since φ k , (A 1 -A 2 ) √ 1 -∆φ k √ 1 + λ k φ k , (A 1 -A 2 )φ k , this implies φ k , (A 1 -A 2 )φ k O(λ -1/2 k ). ( . )
In particular, lim λ→0 Var λ (A 1 ) -Var λ (A 2 ) 0. This means that it is enough to prove the theorem for A a(x, D x ), defined in Remark . . .

Second step. -We now note that Var

λ ([ f (∆), K])
0 for any real-valued function f and for any operator K. This is because, for any eigenfunction φ k of the Laplacian,

φ k , [ f (∆), K]φ k φ k , ( f (∆)K -K f (∆))φ k ( . ) f (∆)φ k , Kφ k -φ k , K f (∆)φ k f (-λ k ) φ k , Kφ k -f (-λ k ) φ k , Kφ k 0.
In what follows we take f (∆) √ 1 -∆. We specialize to the case where K A a(x, D x ) is a pseudodifferential operator as above, and we use the

fact that [ √ 1 -∆, A] is a pseudodifferential operator of order 0, with principal symbol 1 i {p, a }, so that 0 lim λ→+∞ Var λ [ √ 1 -∆, A] lim λ-→+∞ Var λ {p, a }(x, D x ) . ( . )
Hence, in the limit λ → +∞, the quantum variance vanishes on any pseudodifferential operator whose symbol is of the form {p, a }. Recall that {p, a } d dt t 0 sa•G t . Such functions, that are derivatives in the flow direction, are called coboundaries in ergodic theory.

Third step. -We need a general a priori upper bound for the quantum variance. By the Cauchy-Schwarz inequality,

φ k , Kφ k 2 ≤ Kφ k 2 φ k , K * Kφ k . ( . )
Specializing to K a(x, D x ), and using the fact that a(x, D x ) * a(x, D x ) has principal symbol |a| 2 , we have lim sup

λ-→+∞ Var λ a(x, D x ) ≤ lim sup 1 N(λ) j,λ j ≤λ φ j , |a| 2 (x, D x )φ j L 2 (M) ( . )
and by ( . ) the right-hand side converges to

∫ S * M |a| 2 (x, ξ)dL 1 (x, ξ) as λ → +∞. Thus lim sup λ→+∞ Var λ a(x, D x ) ≤ ∫ S * M |a| 2 (x, ξ)dL 1 (x, ξ).
Fourth step. -We haven't used the ergodicity assumption yet, but will use it now. Ergodicity of the Liouville measure means that, if a is square-integrable and if d dt t 0 sa • G t 0, then a is a constant. By duality, this is equivalent to saying that, if a is orthogonal to constant functions (i.e.

∫

a dL 1 0), then a is a limit in L 2 (S * M, L 1 ) of coboundaries.

. . . Remark. -In fact, one can construct a sequence of approximating coboundaries explicitly. One checks easily that a -1

T ∫ T 0 a • G s ds is a cobound- ary for any T: it is equal to {p, b T } with b T -1 T ∫ T 0 ∫ s 0 a • G u du. By the Von Neumann L 2 ergodic theorem, lim T→+∞ 1 T ∫ T 0 a • G s ds L 2 (L 1 ) 0 if ∫ S * M a dL 1 0.
This means that a is the limit of the coboundary {p, b T } as T → +∞. Finally, lim sup

λ-→+∞ Var λ a(x, D x ) ( . ) ≤ 2 lim sup Var λ (a -{p, b T })(x, D x ) + 2 lim sup Var λ {p, b T }(x, D x ) ≤ 2 a -{p, b T } 2 L 2 (L 1 ) + 0 by the third and second steps. Letting T → +∞, we get lim sup λ-→+∞ Var λ a(x, D x ) 0
for all a such that ∫ a dL 1 0, and this ends the proof of the theorem.

. Entropy and support of semiclassical measures . . Quantum Unique Ergodicity conjecture

Figure illustrates the quantum ergodicity theorem: or rather, it would if we considered arbitrarily large samples, where we would see that a majority of eigenfunctions become equidistributed in the limit of large frequencies. One may wonder whether the full sequence converges in ( . ), without having to extract a density subsequence. Figure (as well as larger samples of eigenfunctions) suggests that this is clearly not the case for the billiard stadium, where a sparse subsequence seems to concentrate inside the inner rectangle. This is much more difficult to prove than one may imagine. It might be useful to insist on the fact that, although the shape of the stadium billiard is pretty simple, there is no explicit formula giving the eigenvalues or the eigenfunctions.

A breakthrough was made by Hassell [ ] in , when he proved this for "almost all" stadium billiards (meaning, for Lebesgue-almost-all lengths of the stadium). This is a non constructive proof, and one cannot say if the result applies to a stadium of a given length.

On the other hand, Rudnick and Sarnak's Quantum Unique Ergodicity (QUE) conjecture predicts that if M is a compact boundaryless manifold with negative sectional curvature, then one has convergence of the full sequence in ( . ), in other words the whole sequence of eigenfunctions becomes equidistributed as λ → +∞ [ ]. The conjecture has been proved by Lindenstrauss in the setting of Arithmetic Quantum Unique Ergodicity, where M is an "arithmetic" hyperbolic surface, and where the φ λ are assumed to be eigenfunctions, not only of the Laplacian, but also of the Hecke

operators [ ], [ ], [ ].
Arithmetic Quantum Unique Ergodicity is a subject on its own and will not be discussed in detail in this text; we refer to [ ], [ ], [ ], [ ], [ ] for an overview.

Outside this arithmetic context, the (QUE) conjecture is open, but substantial advances have been made in the last years and will be discussed in this chapter. We use the same notation as in the previous chapter. In addition, the manifold M will alway be assumed to have negative sectional curvature.

. . Statement of results

. . . Semiclassical measures

Let a ∈ S 0 hom (T * M) and let A be a pseudodifferential operator of order 0 and principal symbol a. For instance we can take A a(x, D x ) constructed in Remark . . , but the discussion below will not depend on this choice.

Let us come back to the diagonal matrix elements φ n , Aφ n appearing in ( . ). Since A is a bounded operator, one may always extract subsequences so that φ n k , Aφ n k converges. Because of ( . ), the limit depends only on the principal symbol a. By a standard diagonal argument, we can assume that the subsequence φ n k is such that φ n k , Aφ n k has a limit for a dense countable set of symbols a. In addition this set of symbols contains constant functions (A I corresponds to a 1), and is stable under addition.

Let us denote by µ, a this limit:

φ n k , Aφ n k -→ µ, σ 0 (A) . ( . )
The map a → µ, a is clearly linear. Note that S 0 hom (T * M) may be identified with C ∞ (S * M), so µ is a linear form defined on a dense subset of

C ∞ (S * M). If a C is a constant function then µ, C C. If a is positive, then we can write a b 2 where b ∈ S 0 hom (T * M). Then a(x, D x ) has the same principal symbol as b(x, D x ) * b(x, D x ), so φ n k , Aφ n k has the same limit as φ n k , b(x, D x ) * b(x, D x )φ n k b(x, D x )φ n k 2 L 2 (M) , which shows that the limit of φ n k , Aφ n k is non-negative.
What we have shown is that µ, 1

1, and that µ, a ≥ 0 if a > 0. This is sufficient to say that µ extends to a continuous, positive linear form on C ∞ (S * M), taking the value 1 on the constant function 1. In other words, µ is a probability measure on S * M. A measure obtained this way is named, according to sources, microlocal defect measure, semiclassical measure, or microlocal lift associated with the sequence φ n k . We will use the word semiclassical measure. The Quantum Unique Ergodicity conjecture is equivalent to proving that µ is the Liouville measure L 1 , for any subsequence (φ n k ). Without aiming that far, we can try to characterize specific properties of the measure µ. A priori, we only know that µ has to be invariant under the geodesic flow: that is, G t µ µ for all t ∈ R. This may be seen as a manifestation of the classical-quantum correspondence: in the high frequency régime, the property

φ n k , [ √ 1 -∆, A]φ n k 0 is turned in the limit into the classical invariance µ, {p, a } 0.
.

. . Entropy results

The following theorem gives a strong restriction on the semiclassical measures µ, in terms of their Kolmogorov-Sinai entropy (to be defined in § . ).

T . . (A [ ])

. -Assume M is a compact Riemannian manifold with negative sectional curvature. Assume φ n k , Aφ n k converges to ∫ S * M σ 0 (A)dµ, for all A ∈ PDO 0 with principal symbol σ 0 (A). Then µ has positive entropy.

Let us give two corollaries to Theorem . . that can be understood without knowing the definition of entropy.

C

. . . -Let Γ ⊂ S * M be the union of all periodic trajectories of the geodesic flow. Let µ be as in Theorem . . . Then µ(Γ) < 1.

Note that if M has negative curvature, there are countably many periodic geodesics.

In the physics literature, an eigenfunction that is visually enhanced near an unstable periodic classical trajectory is said to have a scar (Heller [ ]). Physicists see scars in pictures such as Figure , but no proper mathematical definition is given. In the mathematics literature, a sequence of eigenfunctions is said to be strongly scarred if the corresponding semiclassical measure µ is supported on some periodic trajectory. Our theorem thus shows that strong scarring is not possible on a negatively curved manifold. However, it does not rule out a partial scar, in other words we cannot exclude that µ(Γ) > 0.

Entropy bears a link with Hausdorff dimension, in particular the theorem implies:

C

. . . -The support of µ has Hausdorff dimension > 1.

Note that the fact that the dimension is ≥ 1 follows directly from the invariance of µ under the geodesic flow.

With S. Nonnenmacher, we later obtained a more quantitative version if the curvature is constant.

T . . (A -N [ ])

Assume M is a compact Riemannian manifold of dimension d, with constant sectional curvature -1. Let µ be as in Theorem . . . Then µ has entropy greater than (d -1)/2. By Theorem . . below, the (QUE) conjecture in constant negative curvature is equivalent to proving that µ has entropy d -1, so we fall short of a factor 1/2. Note that our result is sharp in the following sense: our result apply to other models of quantum chaos (the quantum cat map and the quantum baker's map) where it is known that the lower bound (d -1)/2 is attained, i.e. for these models there are sequences of eigenfunctions having exactly half the entropy of the Liouville measure (and thus do not satisfy (QUE)) [ ], [ ].

C

. . . -If M is a compact Riemannian manifold of dimension d, with constant negative sectional curvature, then the support of µ has Hausdorff dimension ≥ d.

Note that the dimension of the full phase space T * M is 2d, and that of the energy layer

S * M is 2d -1. C . . . -Assume M is a compact Riemannian manifold of dimension d, with constant sectional curvature -1. Let Γ ⊂ S * M be the union of all periodic trajectories of the geodesic flow. Then µ(Γ) ≤ 1/2.
Indeed, let us decompose µ as µ αµ 1 + (1 -α)µ 2 , where µ 1 and µ 2 are G t -invariant probability measures, and µ 1 is carried by Γ, so that h KS (µ 1 ) 0 by Theorem . . ( ). By Theorem . . , formula ( . ), we have

h KS (µ) α h KS (µ 1 ) + (1 -α)h KS (µ 2 ) (1 -α)h KS (µ 2 ).
Theorem . . says that this has to be ≥ (d -1)/2; but the entropy of µ 2 is smaller than the maximal entropy (d -1), so necessarily α ≤ 1/2. For the toy model of the quantum cat map, Corollary . . had been proven by Faure and Nonnenmacher in [ ] without using the notion of entropy.

In variable curvature, the natural generalization of Theorem . . should read

h KS (µ) ≥ 1 2 ∫ S * M d-1 j 1 χ + j dµ,
where χ + j are the Lyapunov exponents. However our method in [ ] gives a slightly less good bound; the predicted lower bound in variable curvature has been obtained for dimension d 2, by G. Rivière [ ].

. . . Support of semiclassical measures

Very recently, Dyatlov and Jin (in the constant curvature case), and Dyatlov-Jin-Nonnenmacher (in variable curvature) proved the following: Their proof follows partly that of Theorem . . , but introduces as new ingredient the fractal uncertainty principle of Bourgain and Dyatlov [ ]. We won't describe the latter here, but will comment a little more in § . . Note that the information given by Theorems . . and . . is somehow independent. Indeed, there are measures with positive entropy and not full support (measures supported by geodesics avoiding an open set Ω may have a large entropy). And there are measures having full support but zero entropy: for instance, a measure putting positive weight on each periodic geodesic (periodic geodesics are dense in

S * M if M is negatively curved [ , Part ]).
Both results leave open the question whether µ can be a non-ergodic measure, for instance a convex combination of the Liouville measure and a measure carried on a closed geodesic. Such limit measures appeared in the aforementioned toy models of quantum chaos [ ].

Let (X, F, µ, G) be a measurable dynamical system, that is to say : (X, F, µ) is a probability space, and G : X → X is a measurable transformation preserving µ. In this section, we want to define a quantity h KS (G, µ), called the Kolmogorov-Sinai entropy (or metric entropy, or simply "entropy") of the transformation G with respect to the measure µ.

. . . Remark. -This will later be applied to X S * M (the unit cotangent bundle of the compact manifold M), F the Borel σ-field, and G G 1 (the geodesic flow at time 1), and µ a probability measure that is invariant under the geodesic flow: typically, we have in mind a measure obtained by taking the limit ( . ).

Since the map G G 1 in our discussion will be fixed and we shall only be interested in the dependence in µ, we shall most often simply write h KS (µ).

. . . Construction of entropy

The construction follows closely Shannon's definition of entropy in information theory. We start by "discretizing" X by partitioning it into a finite number of measurable pieces:

X P 1 P 2 . . . P N . ( . ) Denote by A the finite alphabet {1, . . . , N }. If α 0 , . . . , α n-1 is a sequence of length n in A, we define the n-cylinder set [α 0 , . . . , α n-1 ] { y ∈ X ; y ∈ P α 0 , G y ∈ P α 1 , . . . , G n-1 y ∈ P α n-1 } P α 0 ∩ G -1 P α 1 ∩ . . . ∩ G -(n-1) P α n-1 .
The measure µ[α 0 , . . . , α n-1 ] decreases as n → +∞. The entropy measures the average exponential decay rate. More precisely, let H(t) -t ln t, and define the entropy at time n -1 (measured relatively to the partition P) by

h n (µ, P) α 0 ,...,α n-1 H µ[α 0 , . . . , α n-1 ] . ( . )
Using the concavity of the function H as well as the fact that µ is G-invariant, one checks without much difficulty that the sequence h n (µ, P) is subadditive:

h n+m (µ, P) ≤ h n (µ, P) + h m (µ, P). ( . )
By Fekete's subadditive lemma, the following limit exists:

h KS (µ, P) : lim n n -1 h n (µ, P) inf n n -1 h n (µ, P). ( . )
We call it the Kolmogorov-Sinai entropy of µ relatively to the partition P.

The entropy h KS (µ) is the supremum of h KS (µ, P) over all finite partitions. Quite often, this supremum is achieved for a convenient choice of P, but we won't need this fact here.

. . . Remark. -Let X P 1 P 2 . . . P N be a measurable partition of X, and let A {1, . . . , N }. To each x ∈ X, we can associate the unique sequence (α j (x)) +∞ j 0 ∈ A N such that x ∈ +∞ j 0 G -j P α j . Under this map, our notion of cylinder set corresponds to the usual notion of cylinder set of A N . In addition, the image of µ on A N is invariant under the shift σ : A N → A N , (α j ) j∈N → (α j+1 ) j∈N . We will tend to identify µ with the image measure on A N . Through this "coding", the entropy h KS (µ, P) corresponds to the Shannon entropy in information theory.

In what follows, the set of n-cylinder sets will be denoted by Σ n . It is in natural bijection with A n . . . . Some properties of entropy. -Let us state some properties of entropy. Some of them are easy, others much less. In any case we refer to [ ] for proofs.

T

. . . -One has:

( ) h KS (G, µ) ≥ 0 ( ) For any n ∈ Z, h KS (G n , µ) |n|h KS (G, µ).
( ) Suppose µ is carried by a periodic trajectory of G, that is to say:

µ 1 L L-1 k 0 δ G k y ,
where y ∈ X is such that G L y y. Then h KS (G, µ) 0.

( ) The map µ → h KS (µ) is affine. In other words one has, for any invariant probability measures µ 1 , µ 2 , for α ∈ [0, 1],

h KS αµ 1 + (1 -α)µ 2 αh KS (µ 1 ) + (1 -α)h KS (µ 2 ). ( . )
In the case of a continuous time flow (G t ) t∈R , the analogues of ( ') and ( ') read: T . . . -One has:

( ) In the case of a flow, we have h KS (G t , µ) |t|h KS (G 1 , µ) for any t ∈ R.

( ) Suppose µ is carried by a periodic trajectory of (G t ) t∈R , that is to say: let y ∈ X such that G L y y for some

L > 0. If µ 1 L ∫ L k 0 δ G t y dt, then h KS (G 1 , µ) 0.
The next theorem relates entropy and exponential instability, measured by the notion of Lyapunov exponents.

If X is a compact manifold and G is a C 1 transformation, and x is a periodic point of G (that is to say, G L x

x for some L > 0), then the differential of G L maps the tangent space T x X to itself. It has complex eigenvalues λ 1 (x), . . . , λ r (x) (with r dim X), and the Lyapunov exponents of G at the point x are, by definition, the real numbers x) if v j ∈ T x X is in the characteristic space associated with λ j (x).

χ j (x) 1 L log|λ j (x)|, so that dG k x • v j ∼ e kχ j (
One of the fundamental theorems in smooth ergodic theory is the Oseledec theorem [ ]. Roughly speaking, it says that this definition of Lyapunov exponents may be extended to µ-almost every x, if µ is any G-invariant probability measure. The reader who wants a reasonably short but detailed presentation is referred to the notes on J. Bochi's webpage.

The following inequality gives an upper bound on the entropy of a smooth transformation on a manifold:

T . . (M -R -P [ ], [ ]) If X is a compact manifold and G is of class C 1 , h KS (G, µ) ≤ ∫ r j 1 χ + j (x) dµ(x) ( . )
where the numbers χ + j (x) are the positive Lyapunov exponents of G at the point x.

In particular, if the Lyapunov exponents vanish µ a.-e., then h KS (G, µ) 0. On the other hand, examples of invariant measures with zero entropy but non-vanishing Lyapunov exponents are easily found: this happens if µ is a measure carried by a periodic trajectory such that the differential dG L has eigenvalues of modulus 1.

The case of equality is described by the Ledrappier-Young theorem, of which we will only use the special case of the geodesic flow on a negatively curved manifold (cf. Remark . . ):

T . . (L -Y [ ], [ ]).
-In the case of the geodesic flow on a compact negatively curved manifold , there is equality in ( . ) if and only if µ is the Liouville measure L 1 .

In the case of a manifold of constant sectional curvature -1 and dimension d (so that S * M has dimension 2d -1), there are (d -1) positive Lyapunov exponents, which are all equal to 1 everywhere. Thus, ( . ) can be written as

h KS (µ) ≤ d -1, ( . )
with equality if and only if µ is the Liouville measure L 1 .

. . . Shannon-McMillan-Breiman theorem

If µ[α 0 , . . . , α n-1 ] ≤ Ce -βn uniformly for all n and all α 0 , . . . , α n-1 , we see from the definition of entropy that h n (µ, P) ≥ nβlog C, which implies h KS (µ, P) ≥ β. The Shannon-McMillan-Breiman theorem gives a kind of weak converse, in case the measure µ is ergodic.

T . . . -[Shannon-McMillan-Breiman [ , ,
]] Assume that (X, F, µ, G) is an ergodic dynamical system. Let X P 1 P 2 . . . P N be a measurable partition of X, and let A {1, . . . , N }. To each x ∈ X, we associate the unique sequence (α j (x)) +∞ j 0 ∈ A N such that x ∈ +∞ j 0 G -j P α j . Then, for µ-almost every x, we have

lim n→+∞ 1 n log µ α 0 (x), . . . , α n-1 (x) -h KS (µ, P). ( . )
The reader can also see [ ] for a textbook presentation. This is equivalent to saying that, for all > 0, there is a set B ⊂ X of µ-measure ≥ 1 -, and N 0 such that for all n ≥ N 0 , B is contained in a union

of n-cylinder sets [α 0 , . . . , α n-1 ] satisfying e -n(h+ ) ≤ µ[α 0 , . . . , α n-1 ] ≤ e -n(h-) ( . )
with h h KS (µ, P). In addition, the number N(n) of these n-cylinder sets is necessarily bounded above and below by

(1 -)e n(h-) ≤ N(n) ≤ e n(h+ ) .

. . . Ergodic decomposition

We will need the following abstract result from ergodic theory (see [ ], [ ]):

T . . (E ). -Let (X, F, µ, G) be a measurable dynamical system. Then there is a decomposition µ ∫ X µ y dµ(y) ( . ) (in the sense that ∫ f dµ ∫ X ( ∫ f dµ y )dµ(y) for every bounded measurable f ) such that, for µ-almost every y: ( ) µ y is a G-invariant probability measure, and y → ∫ X f dµ y is measurable; ( ) ∫ X f dµ y lim T→±∞ 1 T T-1 k 0 f • G k (y);
( ) the dynamical system (X, F, µ y , G) is ergodic.

In addition we have

h KS (µ) ∫ X h KS (µ y )dµ(y). ( . )
The Shannon-McMillan theorem still holds for non-ergodic measures, but we have to modify the conclusion of Theorem . . by writing -h KS (µ x , P) on the right-hand side of ( . ).

In what follows we will use the Shannon-McMillan theorem in the following form:

If h KS (µ y , P) ≤ α for µ-almost every y, then, for all > 0, there is a set B ⊂ X of µ-measure ≥ 1 -, and N 0 such that for all n ≥ N 0 , B is contained in a union of at most e n(α+ ) n-cylinder sets.

. . Proof of the entropy result

. . . Preamble

Let µ be a semiclassical measure. This means φ n , Aφ n converges to ∫ σ 0 (A)dµ, for all A, along a subsequence (φ n k ). To simplify the notation, we write φ k and not φ n k in what follows.

We want to estimate the entropy of µ (with respect to the geodesic flow), so we consider a finite partition S * M P 1 P 2 . . . P N . For us, it will be sufficient and simpler to consider a partition of M itself, M P 1 P 2 . . . P N , that we lift to a partition of S * M. In other words, we consider a partition of S * M that depends only on the base point. We will assume that each P j is contained in a ball of small radius compared to the injectivity radius of M. We assume that P j is a "nice" set (say, Ω j ⊂ P j ⊂ Ω j where Ω j is an open set with a piecewise smooth boundary).

The starting point is to try to define a quantum (or rather, semiclassical) version of entropy.

Let 1 P i be the indicator function of P i . For pseudodifferential calculus to hold, we need smooth functions. Thanks to a convolution, we approach 1 P i by a smooth function χ i taking values in [0, 1], whose support is contained in a small neighbourhood of P i , and that is close to 1 P i except maybe at the boundary of P i . We normalize these functions so that j χ j (x) 1 for all j. We view χ j as a function on S * M depending only on the base point.

Let us denote by χ j the operator of multiplication by χ j . Let

U t e -it √ 1-∆ and χ j (t) U -t χ j U t .
By Theorem . . , this is a pseudodifferential operator of order 0, of principal symbol χ j • G t .

If C [α 0 , . . . , α n-1 ] is a classical n-cylinder set, we define the corresponding quantum cylinder set C as the operator

C U -(n-1) χ α n-1 U 1 χ α n-2 U 1 • • • χ α 1 U 1 χ α 0 ( . ) χ α n-1 (n -1) χ α n-2 (n -2) • • • χ α 1 (1) χ α 0 .
We chose a partition of the base manifold M precisely for this. With a more general partition we would need to consider χ j (x, D x ) defined in Remark . . , but otherwise the proof would go long similar lines.

Then C is a pseudodifferential operator of order 0, with principal symbol

σ 0 ( C) (χ α n-1 • G n-1 ) • • • (χ α 1 • G 1 ) • χ α 0 . ( . )
We define µ k (C) φ k , Cφ k , the "quantum measure" of the cylinder set C induced by the eigenstate φ k . By definition of µ, it converges as

λ k → +∞ to ∫ S * M (χ α n-1 • G n-1 ) • • • (χ α 1 • G 1 ) • χ α 0 dµ. ( . )
Since χ j approximates 1 P j , the latter expression is an approximation of ∫

S * M (1 P α n-1 • G n-1 ) • • • (1 P α 1 • G 1 • 1 P α 0 dµ ( . )
which is nothing else than µ(C).

If C [α 0 , . . . , α n-1 ] is an n-cylinder set, and α ∈ A, define two

(n + 1)- cylinder sets [C, α] [α 0 , . . . , α n-1 , α] and [α, C] [α, α 0 , . . . , α n-1 ]. L . . . -Define µ k (C) φ k , Cφ k , for any cylinder set C. Then ( ) µ k (C) α∈A µ k [C, α] . ( ) µ k (C) α∈A µ k [α, C] .
These properties are also shared by the semiclassical measure µ.

Property ( ) for µ corresponds to the (finite) additivity property of a probability measure. Property ( ) for µ k can be proven easily, using the fact that χ j 1. Property ( ) for µ k is proved using the eigenfunction property, more precisely the fact that U t φ k e -it √ 1+λ k φ k . The property analogous to ( ) for the semiclassical measure µ expresses the fact that it is G t -invariant.

Note that we tend to see µ and µ k as measures on A N , identifying [α 0 , . . . , α n-1 ] with the corresponding cylinder set in A N . After this identification, ( ) is the Kolmogorov compatibility condition and ensures that µ and µ k are finitely additive. Thus we can "integrate" along µ and µ k any finite linear combination of indicator functions of cylinder sets 1 C (C ∈ Σ n ).

Here we should assume that µ(∂P j ) 0 for all j to avoid boundary effects. We can always choose the partition P j to satisfy this.

Both measures satisfy µ(1) µ k (1) 1. Property ( ) says that both measures are invariant under the left-shift

σ : A N -→ A N , (α n ) n≥0 -→ (α n+1 ) n≥0 . ( . )
. . . Remark. -The measure µ is positive, and thus is actually a true measure on the whole σ-field generated by cylinder sets in A N . However, µ k is a complex finitely additive measure, and unfortunately it cannot always be manipulated as a true measure. As will be seen, this is the main source of the difficulty of the proof.

In the paper [ ], a different measure µ k is defined, by taking | φ k , Cφ k | 2 instead of just φ k , Cφ k . However the exact invariance of µ k under the shift σ is lost, and replaced by an approximate invariance, valid only until the "Ehrenfest time scale" log λ k -which is known to be the time scale at which the Egorov theorem . . ceases to be valid, in other words, classical dynamics ceases to approximate quantum dynamics. In the proof given in these notes, the exact invariance under σ (which is a direct consequence of the eigenfunction equation) is going to be crucial to establish a certain submultiplicative property. In contrast to the paper [ ], we won't need a meticulous discussion of the definition of the Ehrenfest time. We will only need (but this is hidden in the passage from ( . ) to ( . )) that the operators C, when applied to φ k , almost commute if C ∈ Σ n and n ≤ 0 log λ k (for some small 0 > 0).

We could also try to make µ k positive, replacing the operator C by a positive quantization of the symbol

(χ α n-1 • G n-1 ) • • • (χ α 1 • G 1 ) • χ α 0 .
Again, we would lose the exact shift-invariance. In addition, for n of the order of the Ehrenfest time, this function would cease to belong to any good symbol space, and the positive quantization itself would be impossible to manipulate.

This trade-off between positivity and invariance was also encountered in the paper [ ]. In my view, it says that quantum dynamics cannot be reduced to a classical dynamical system.

The following estimate (stated here without proof) is at the heart of the proof, and in this section we explain how it is used to prove Theorem . . .

T

. . . -Assume that the injectivity radius of M is greater than 2. Then there exist α, β > 0 such that:

For any K > 0, there exists λ 0 > 0 such that, for any λ ≥ λ 0 , for n Klog λ,

for any n-cylinder set C ∈ Σ n , C 1 [ λ/2,2λ] (-∆) L 2 (M)→L 2 (M) ≤ λ α e -βn , ( . )
where 1 [ λ/2,2λ] (-∆) is the spectral projector for the Laplacian, on the inter-

val [ λ/2, 2λ].
For the proof of Theorem . . it is not important to know the precise values of α, β (whereas this is crucial for the effective version of Theorem . . ). We note that C L 2 (M)→L 2 (M) is obviously ≤ 1 but may be equal to 1. So, the point of the theorem is that if we restrict C to frequencies of order λ, the norm is much smaller than 1, for n large : if n Klog λ, the norm of the operator is less than λ α-βK , which becomes < 1 as soon as K > α/β. The estimate is all the better when K is large, but there is a price to pay for taking K large, see Lemma . . . We also note that the restriction on the injectivity radius is inessential: in general, in the definition of cylinder sets we should just replace G 1 and U 1 by G η and U η where η is much smaller than the injectivity radius.

Since

1 [ λ/2 k ,2λ k ] (-∆)φ k φ k , Theorem . . implies that µ k (C) ≤ λ α k e -βn ( . ) if C is a cylinder set of length n
Klog λ k . Thus we are tempted to think that µ k has entropy ≥ β and to take the limit λ k → +∞ to conclude that µ has entropy ≥ β. We could build such an argument if µ k was a positive measure (indeed, due to the infimum in ( . ), the entropy is upper semicontinuous).

Unfortunately, µ k is a complex measure, so all our considerations about entropy do not apply directly to it.

. . . Attempt of proof

Let F ⊂ S * M be any set that is contained in the union of at most e n(β-4δ) cylinder sets of length n (for all n ≥ n 1 , for some integer n 1 ). We want to show that we have µ(F) ≤ 1c(δ), for some explicit function of δ with c(δ) > 0. By the Shannon-McMillan-Breiman theorem -in the form stated at the end of § . . -this implies that µ has some ergodic components of entropy ≥ βδ. More precisely,

µ y ; h KS (µ y ) ≥ β -δ ≥ 1 2 c(δ). ( . )
In what follows, recall that Σ n 1 stands for the set of n 1 -cylinder sets. Let us fix W n 1 ⊂ Σ n 1 a cover of F by cylinder sets of length n 1 (i.e. F is contained in C∈W C), such that W n 1 ≤ e n 1 (β-4δ) .

Given τ ∈ [0, 1), define for any integer

N > n 1 the set Σ N (W n 1 , τ) ⊂ Σ N of cylinder sets [α 0 , . . . , α N-1 ] such that { j ; [α j , . . . , α j+n 1 -1 ] ∈ W n 1 } N -n 1 + 1 ≥ τ. ( . )
This is the set of N-cylinder sets that contain a large proportion of subwords belonging to W n 1 . A basic counting argument that we don't reproduce here, shows that

Σ N (W n 1 , τ) ≤ e N(β-2δ) e (1-τ)N ( . )
where depends only on the number of elements of the partition P. The term e N(β-2δ) comes by counting the sub-cylinders of length n 1 which are in W n 1 , and the term e (1-τ)N comes from counting the sub-cylinders not in W n 1 , which are relatively scarce (their relative number is less than 1 -τ). Note that the partition P is fixed once and for all, so is fixed as well.

. . . Remark. -I thank Paul Nelson for pointing out that the counting argument given in [ ] is not satisfactory, as it yields a value of depending on n 1 , which is not good for the proof.

Choose τ τ(δ) close enough to 1 so that β -2δ + (1 -τ) < βδ, which implies

Σ N (W n 1 , τ) < e N(β-δ) . ( . )
Then, if K ≥ K(δ, α) : (1 + α)/δ and N K log λ, we have for any θ ∈ [0, 1) and any λ ≥ λ(θ, τ)

Σ N (W n 1 , τ) ≤ (1 -θ)λ -α e βN . ( . )
Combining ( . ) with ( . ), and using the triangle inequality, we obtain

µ k (Σ N (W n 1 , τ)) C∈Σ N (W n 1 ,τ)) µ k (C) ( . ) ≤ Σ N (W n 1 , τ)λ α e -βN ≤ (1 -θ)λ -α e βN λ α e -βN ≤ (1 -θ).
We would then like to conclude that |µ k (W n 1 )| is small. If µ k were a positive measure, we would argue as follows:

µ k (W n 1 ) µ k 1 N -n 1 + 1 N-n 1 j 0 1 W n 1 • σ j ( . ) ≤ µ k Σ N (W n 1 , τ) + τµ k Σ N (W n 1 , τ) c (1 -τ)µ k Σ N (W n 1 , τ) + τ ≤ (1 -τ)(1 -θ) + τ.
In the first line we use the fact that µ k is a σ-invariant finitely additive measure. It is definitely correct.

In the second, that the function

1 N-n 1 +1 N-n 1 j 0 1 W n 1 • σ j is ≤ τ on the com- plement of Σ N (W n 1 , τ).
In the third, we used

µ k (Σ N (W n 1 , τ) c ) 1 -µ k (Σ N (W n 1 , τ)).
The passage to the third line, assuming the second, is correct.

In the last line finally, we use ( . ).

We then let λ k → +∞ to conclude that µ(W n 1 ) ≤ (1 -τ(δ))(1 -θ) + τ(δ). As θ < 1 was arbitrary, we wish to conclude that one has µ(W n 1 ) ≤ τ(δ) and thus µ(F) ≤ τ(δ).

Unfortunately, this argument is not correct : the two equalities do not pose any problem, however in the two inequalities of ( . ), we have done as if µ k was a positive measure, although it is only a complex finitely additive measure.

We know that µ k approaches a positive measure as λ k → +∞, so one can expect that ( . ) is correct modulo remainder terms. As we will see, the lines following ( . ) are almost correct for N ≤ 0 log λ (for some 0 that cannot be made arbitrarily large!). This comes from the fact that for N ≤ 0 log λ, the operators C (with C ∈ Σ N ) are pseudodifferential operators with reasonable, positive symbols -thanks to the Egorov theorem . . . Hence the operators commute and are positive, modulo errors that vanish in the high-frequency limits. This explains that we are almost in a classical probabilistic context.

On the other hand, ( . ) holds for N ≥ K(δ, α) log λ, and of course it would be too optimistic to hope that 0 and K(δ, α) match.

. . . Actual proof

We have to modify this incomplete proof and, most importantly, fill in the gap between the two time scales 0 log λ and K(δ, α) log λ. This is done thanks to the subadditivity of entropy ( . ), or a variant of it.

If C is an n-cylinder set, we have already defined the "quantum cylinder set" C in ( . ). In addition, if W is a subset of Σ n , then we let

W C∈W C. We then have µ k (∪ C∈W C) φ k , W φ k C∈W µ k (C
) and it will be convenient to write this simply as µ k (W).

D . . . -If W ⊂ Σ n and θ ∈ [0, 1], we say that W is a ((1 -θ), n)- cover (for the eigenfunction φ k ) if W c φ k L 2 (M) ≤ θ. ( . ) We let N φ k (n, θ) min{ W ; W is a ((1 -θ), n) cover for φ k }. . . . Remark. -If W is a ((1 -θ), n)-cover, we have |µ k (W c )| ≤ θ and since µ k (W) + µ k (W c ) 1, this implies |µ k (W)| ≥ 1 -θ.
This justifies the terminology.

As a consequence of ( . ), we can prove the following: L . . . -For any θ ∈ (0, 1) and any δ > 0, there exists K(δ, α) and λ(θ), such that for

λ k ≥ λ(θ) and n ≥ K(δ, α) log λ k N φ k (n, θ) ≥ e (β-δ)n . ( . )
Proof. -Otherwise, we would have a ((1 -θ), n)-cover W with less than e (β-δ)n elements. But then, by ( . ) and the triangle inequality,

µ k (W) ≤ e (β-δ)n λ α k e -βn .
Since K(δ, α) was defined so that α -δK(δ, α) -1, then the latter quantity is ≤ 1 -θ as soon as

λ -1 k ≤ 1 -θ : λ(θ) -1 . But this contradicts the fact that W is a ((1 -θ), n)-cover.
We note that each operator C has norm ≤ 1 (as a product of operators of norm 1) but that there is no reason that operators of the form W or W c have norm ≤ 1, although the intuition from classical mechanics tells us this should be the case. We use the fact that this classical intuition is true for times n ≤ 0 log λ for some 0 > 0. Precisely, there exist χ > 0 and 0 > 0 (that are dictated to us by the Lyapunov exponents of classical mechanics) such that

W1 [ λ/2,2λ] (∆) ≤ 1 + λ -(1/2-χ 0 ) ,
for n ≤ 0 log λ. We state this fact without giving a detailed proof; it is based on the property that for n ≤ 0 log λ, the operators W or W c are pseudodifferential operators (associated to a reasonable class of symbols), thus they commute and are positive, modulo errors that vanish in the highfrequency limit. The Egorov theorem . . is hidden here.

A crucial point is that N φ k (n, θ) possesses a kind of submultiplicative property, as long as n ≤ 0 log λ k . L . . . -If n ≤ 0 log λ k , then for any m ∈ N, and any θ ∈ (0, 1) such that mθ < 1, we have

N φ k mn, mθ 1 + λ -(1/2-χ 0 ) k m ≤ N φ k (n, θ) m . ( . )
We see that there is a price to pay for taking m too large : we go from θ on the right-hand side to mθ on the left-hand side. That is why we will pay attention to work with m fixed : it will be taken equal to K(δ, α)/ 0 . Thus,

(1 + λ -(1/2-χ 0 ) k ) m
tends to 1 as λ k → +∞. So asymptotically the lemma says that

N φ k (mn, mθ) ≤ N φ k (n, θ) m .
Proof. -Let W ⊂ Σ n be an ((1 -θ), n)-cover. We call W m ⊂ Σ mn the cylinder sets of length mn formed by concatenation of m cylinder sets belonging to W. Clearly, (W m ) ( W) m , and the lemma will be proved if we show that W m is an

(1 -mθ(1 + λ -(1/2-χ 0 ) k ) m , mn)-cover. By assumption, W c φ k ≤ θ and we have to show that (W m ) c φ k ≤ mθ(1 + λ -(1/2-χ 0 ) k ) m . ( . )
We write the complement (W m ) c as the disjoint union

(W m ) c m-1 l 0 (Σ n ) m-1-l • W c • W l . ( . )
In the last line, (Σ n ) m-1-l • W c • W l means concatenation of m -1l arbitrary words in Σ n , one word in W c and l words in W. This gives the decomposition

(W m ) c m-1 l 0 U -(m-1-l)n U -n ( W) l U n W c U (m-1-l)n . ( . ) Thus, (W m ) c φ k ≤ m 1 + λ -(1/2-χ 0 ) m • W c U (m-1-l)n φ k m 1 + λ -(1/2-χ 0 ) ) m • W c φ k ≤ m 1 + λ -(1/2-χ 0 ) m θ.
Note that the eigenfunction property was crucial in the second line to write that U (m-1-l)n φ k is proportional to φ k . In the last line we have used that W is an ((1 -θ), n)-cover. This ends the proof.

We apply Lemma . . with m K(δ, α)/ 0 and n 0 log λ k :

N φ k n, 0 K(δ, α) θ K(δ,α) 0 ≥ N φ k K(δ, α) log λ k , θ
By Lemma . . ,

N φ k K(δ, α) log λ k , θ ≥ e (β-δ)K(δ,α) log λ k so that N φ k n, 0 K(δ, α) θ ≥ e (β-δ)n . ( . )
We see that the submultiplicative lemma has been useful to pass from Lemma . . for n ≥ K(δ, α) log λ k to the same result for n 0 log λ k . We can now modify the proof of § . . . In ( . ) we have chosen τ so that

Σ N (W n 1 , τ) < e (β-δ)N
for N large. We apply this to N 0 log λ k and, comparing with ( . ), we conclude that Σ N (W n 1 , τ) cannot be a (1 -0 K(δ,α) θ, N)-cover. In other words,

Σ N (W n 1 , τ) c φ k ≥ 0 K(δ, α) θ. ( . )
We use the following fact, without giving details of the proof : if 0 > 0 is small enough, and if the smoothing of 1 P j into χ j was done cleverly , then One should do the smoothing so that the mass of |φ k | 2 on the set where 1 P j χ j is very small. the operators C (C ∈ Σ N , N ≤ 0 log λ k ) behave like a family of orthogonal projectors, when applied to φ k . More precisely, one can show that, for any family of cylinders

W ⊂ Σ N , C∈W φ k , Cφ k C∈W | φ k , Cφ k | + o(1) C∈W Cφ k 2 + o(1) C∈W Cφ k 2 + o(1).
As a consequence,

µ k (W) |µ k (W)| + o(1) |µ k |(W) + o(1) |µ k |(W) + |µ k |(W c ) 1 + o(1)
where we let

|µ k |(W) C∈W | φ k , Cφ k |.
In particular, we can write

Σ N (W n 1 , τ) c φ k 2 + Σ N (W n 1 , τ)φ k 2 1 + o(1) ( . )
and thus

Σ N (W n 1 , τ)φ k ≤ 1 - 2 0 K(δ, α) 2 θ 2 1/2 + o(1). ( . ) Since µ k (Σ N (W n 1 , τ)) is defined as φ k , Σ N (W n 1 , τ)φ k , the latter implies that µ k (Σ N (W n 1 , τ)) ≤ 1 - 2 0 K(δ, α) 2 θ 2 1/2 + o(1).
We can now retry the argument of ( . ), since it is correct that µ k behaves like a probability measure on cylinder sets of length N ≤ 0 log λ k if 0 is small enough (modulo errors that disappear in the limit λ k → +∞). The argument becomes

µ k (W n 1 ) µ k 1 N -n 1 + 1 N-n 1 j 0 1 W n 1 • σ j µ k 1 N -n 1 + 1 N-n 1 j 0 1 W n 1 • σ j (1 Σ N (W n 1 ,τ) + 1 Σ N (W n 1 ,τ) c ) ≤ µ k 1 N -n 1 + 1 N-n 1 j 0 1 W n 1 • σ j 1 Σ N (W n 1 ,τ) + µ k 1 N -n 1 + 1 N-n 1 j 0 1 W n 1 • σ j 1 Σ N (W n 1 ,τ) c ≤ |µ k | Σ N (W n 1 , τ) + τ|µ k | Σ N (W n 1 , τ) c + o(1) (1 -τ)|µ k | Σ N (W n 1 , τ) + τ + o(1) ≤ (1 -τ) 1 - 2 0 K(δ, α) 2 θ 2 1/2 + τ.
Remember that τ τ(δ) from the beginning, so we obtain

µ k (W n 1 ) ≤ 1 -τ(δ) 1 - 2 0 K(δ, α) 2 θ 2 1/2 + τ(δ) ( . )
for λ k ≥ λ(θ) and by passing to the limit,

µ(W n 1 ) ≤ 1 -τ(δ) 1 - 2 0 K(δ, α) 2 θ 2 1/2 + τ(δ). ( . )
Since θ ∈ (0, 1) was arbitrary, we have

µ(W n 1 ) ≤ 1 -τ(δ) 1 - 2 0 K(δ, α) 2 1/2 + τ(δ). ( . )
Finally, since F ⊂ ∪ C∈W n 1 C, we also have

µ(F) ≤ 1 -τ(δ) 1 - 2 0 K(δ, α) 2 1/2 + τ(δ) ( . )
and this ends our proof.

. . A few words on Dyatlov and Jin's result

The proof of Theorem . . contains a part that is similar to ours. In our case, the proof consisted in proving that if F ⊂ S * M is a set that can be covered by few cylinder sets, then we have µ(F) < 1. In [ ], one wants to show that if F ⊂ S * M is a closed set with F S * M, then µ(F) < 1. Note that it suffices to treat the case where F is the complement of a small open ball. Theorem . . is based on an estimate reminiscent of the dispersive estimate (Theorem . . ), however now the partition of S * M is simply S * M F ∪ F c . Keeping our previous notation, we now define classical cylinder sets as in ( . ), where the P α i are replaced by the "new" P α i ∈ {F, F c }. The corresponding quantum cylinder sets are still defined as in ( . ).

T .

. . -There exists α > 0 and K > 0 such that: There exists λ 0 > 0 such that, for any λ ≥ λ 0 , for n K log λ, for any n-cylinder

set C, C 1 [ λ/2,2λ] (-∆) L 2 (M)→L 2 (M) ≤ λ -α ( . )
where 1 [ λ/2,2λ] (-∆) is the spectral projector for the Laplacian, on the inter-

val [ λ/2, 2λ].
With this estimate in hand, the proof of Dyatlov and Jin goes along similar lines as ours. Note, however, that Theorem . . is quite different from the dispersion estimate. In Theorem . . , all the elements P α i of the partition had small diameter, so that the elements of a non-empty cylinder set

P α 0 ∩ G -1 P α 1 ∩ . . . ∩ G -(n-1) P α n-1
had to stay in a vicinity of a single geodesic. In Theorem . . , if F c is a small ball, F is a large set. Each "new" cylinder set P α 0 ∩ G -1 P α 1 ∩ . . . ∩ G -(n-1) P α n-1 intersects a number of "old" cylinder sets P α 0 ∩ G -1 P α 1 ∩ . . . ∩ G -(n-1) P α n-1 that grows exponentially with n. Thus, if we try to deduce ( . ) from ( . ) by decomposing the "new" cylinder sets into the "old" ones, we get exponentially many terms, and applying the triangular inequality is much too brutal. The tour de force is to be able to analyse the phases of all those terms, and to show that there are cancellations leading to ( . ). This is the contents of the fractal uncertainty principle discovered by Bourgain and Dyatlov [ ].

. Quantum ergodicity on regular graphs

To understand better the main conjectures pertaining to quantum chaos (see § . ), several toy models have been proposed. Toy models are supposed to be simpler than the original models, either because some calculations can be done by hand, or because the numerical study is easier. All the toy models for quantum chaos have a discrete aspect: instead of studying the limit → 0, one studies operators acting on sequences of Hilbert spaces of finite dimensions N, in the limit N → +∞. This is the case for the models of the quantum cat map and the quantum baker's map already alluded to, as well as some models built by quantizing certain ergodic interval maps [ ], [ ], [ ].

Quite often -as in the previous chapters -the semiclassical limits corresponds to looking at smaller and smaller wavelengths, in an environment of fixed sized. However, semiclassical approximations can also appear when looking at fixed wavelengths, in environment(s) whose size grow to infinity. As a matter of fact, studying the laplacian eigenvalue λ in a Riemannian manifold is equivalent to studying the laplacian eigenvalue 1 in the Riemannian manifold magnified by the factor λ. More generally, it is natural to look from a semiclassical point of view at eigenfunctions of fixed wavelengths, in objects of increasing size. Although the two aspects of the question are not equivalent, one may wonder whether common approaches are possible.

In this chapter, we will focus on one model: the large discrete regular graphs. Various notions of eigenfunction delocalization have been discussed in § . . . Note that on an object of growing size, we can expect (although this is not automatic) that 2 -normalized eigenfunctions have decaying ∞ -norms; this can only be considered to be a good sign of delocalization if the decay is close to optimal (i.e. a decay like the inverse of the square-root of the volume). Such optimal decay is extremely hard to prove, except maybe if the eigenfunctions have some a priori symmetries, for instance if the graph has a large group of symmetries (Cayley graphs, for instance), and the eigenfunctions have the same symmetries. In this chapter, we focus on the notion of quantum ergodicity for large regular graphs. We also discuss a result by Brooks and Lindenstrauss, stating the impossibility of scarring on small subsets.

. . Regular graphs: quantum ergodicity . . . The model

Let G (V, E) be a graph, with vertex set V and edge set E.

We say that two vertices are neighbours if they are related by an edge, and we say that G is (q + 1)-regular if all vertices have the same number of neighbours, q + 1. To avoid ambiguities, we will assume that there are no parallel edges, and no edges from a vertex to itself (called loops or sometimes slings).

If x, y ∈ V, we write x ∼ y, or y ∈ N(x) if x and y are neighbours.

The Laplacian ∆ acts on C V , the space of complex-valued functions on V.

If f : V → C, ∆ f (x) y∼x f (y) -f (x) y∼x f (y) -(q + 1) f (x) ( . )
so ∆ A-(q + 1)I, where A is the adjacency operator

Af (x) y∼x f (y).
We prefer to work with A. The spectrum of Ais in [-(q +1), q +1], so obviously there is no question of studying the high eigenvalue limit. Instead, what is considered relevant in the mathematical physics literature is to consider a sequence of finite graphs G N (V N , E N ) (N ∈ N), in the limit where |V N | → +∞.

For notational simplicity, we will assume that |V N | N.

Note that N(q +1) must be even, as it is twice the number of edges. We will use the index N when we need to emphasize the dependence on N, for instance A N is the adjacency operator on G N .

We make some geometric assumptions on our sequence G N . For x ∈ V N , we denote by ρ N (x) (or simply ρ(x)) the injectivity radius of G N at x, that is to say, the largest integer r such that the ball B N (x, r) in G N is a tree (i.e. contains no cycle).

Our basic assumption will be the following:

(BST) For any integer R, lim

N→+∞ 1 N x ∈ V N ; ρ(x) ≤ R 0.
This means that, around most points in G N , the ball of radius R contains no cycle. In the probabilistic terminology, this is expressed by saying that the sequence G N converges to the (q + 1)-regular tree in the Benjamini-Schramm topology. This vocabulary will be used again, and explained in more detail, in Chapter .

Since the (q + 1)-regular tree is the local model of our graphs, it will play a central role and we denote it by T q . We will need to fix an (arbitrary) vertex of T q , denoted o, that will serve as an "origin".

(BST) already has a simple and important consequence: the convergence of empirical spectral measures. Let us call λ

(N) 1 , . . . , λ (N)
N the eigenvalues of the adjacency operator A N .

P . . (K -M K , [ ], [ ])

. -Let I be a ( fixed) interval. Then

1 N i, λ (N) i ∈ I ----→ N→+∞ ∫ I m(dλ) ( . )
where m(dλ)

(q + 1) 4q -λ 2 2π((q + 1) 2 -λ 2 )
1 [-2 √ q,2 √ q ] (λ) dλ.

( . )

Proof.

-We prove the existence of a limiting measure, without calculating the explicit expression. It is enough to show that, for any continuous function f : R → R, the quantity 1

N N i 1 f (λ (N)
i ) has a limit. By Stone-Weierstrass, it is also enough to treat the case where f is a polynomial, or, by linearity, when

f is a monomial f (λ) λ k (k ∈ N). Note that N i 1 λ (N) i k is the trace of A k N , which is also x∈V N A k N (x, x) x∈V N paths of length k from x to x in G N . ( . )
By (BST), since k is fixed, for N large enough we have that for most x,

{paths of length k from x to x in G N } {paths of length k from o to o in T q }. Thus, lim N→+∞ 1 N x∈V N paths of length k from x to x in G N paths of length k from o to o in T q δ o , A k T q δ o 2 (T q ) ,
where A T q is the adjacency operator on T q and δ o is the Dirac mass at the origin o. The latter is also

∫ λ k m(dλ)
where m is the spectral measure associated to δ o in the spectral decomposition of A T q . This shows that the empirical spectral measure converges to m (we skip the explicit calculation of m).

An important remark is that the spectral measure on the infinite tree is carried on the interval [-2 √ q, 2 √ q ], so in particular the spectral radius of A T q on 2 (T q ) is strictly smaller than that of A N . This is due to the fact that the tree is a non-amenable graph [ ].

. . . The theorem

The main theorem of this chapter is Theorem . . below, supposed to be an analogue of Quantum Ergodicity in the context of discrete regular graphs.

In addition to assumption (BST), we assume our sequence of graphs are expanders. Here, we define this notion as the existence of a uniform spectral gap in the spectrum of A N . This means uniform rate of mixing of the simple random walks on (G N ), and replaces the ergodicity assumption in Theorem . . (in fact it would be enough to assume a uniform speed of convergence in the ergodic theorem for the simple random walks on (G N )).

(EXP)

(G N ) is a sequence of expanders.

In other words, (q + 1) is a simple eigenvalue of A, and there is β > 0 such that the spectrum of A N is contained in [-(q + 1) + β, q + 1 -β] ∪ {q + 1} for all N.

T . . . -Assume (BST) and (EXP). Let (φ (N) j ) N j 1 be an orthonormal basis of eigenfunctions of A N for 2 (V N ), with corresponding eigenvalues (λ

(N) j ) N j 1 . Fix an integer R ∈ N and let K N be a V N × V N matrix satisfying K N (x, y) 0 if d(x, y) > R and sup N sup x,y∈V N K N (x, y) ≤ 1. Define K λ 1 N x, y∈V N K(x, y) Φ λ d(x, y) . Then lim N→∞ 1 N N j 1 φ (N) j , K N φ (N) j -K N λ (N) j 2 0 , ( . )
where Φ λ (.) is the spherical function

Φ λ (r) q -r/2 2 q + 1 P r λ 2 √ q + q -1 q + 1 Q r λ 2 √ q ( . )
and P r and Q r are the Chebyshev polynomials defined by P r (cos θ) cos(rθ) and Q r (cos θ) sin(r + 1)θ/sin θ.

This theorem implies that for N large enough, most brackets φ

(N) j , K N φ (N) j
approach K N λ j , in fact, it is equivalent to saying that for any ε > 0,

lim N→∞ 1 N # j ∈ [1, N] ; φ (N) j , K N φ (N) j -K N λ (N) j > ε 0 . ( . )
This means that for most eigenfunctions, and for points x, y at distance less than R, we have φ

(N) j (x)φ (N) j (y) ≈ 1 N Φ λ (N) j (d(x, y)), in the sense that x, y φ (N) j (x)φ (N) j (y)K N (x, y) ≈ 1 N x,y Φ λ (N) j d(x, y) K N (x, y).
The special case R 0 corresponds to the case where K N a N is a function on V N and φ

(N) j , K N φ (N) j x∈V N a N (x) φ (N) j (x) 2 . Also, Φ λ (0) 1, so a N λ 1 N
x∈V N a N (x) is simply the uniform average of a N . So the theorem for R 0 is precisely Theorem . . of Chapter . The generalized version of quantum ergodicity stated as Theorem . . is similar to the general form of the Shnirelman theorem . . , where we used pseudodifferential operators instead of mere multiplication operators. Here the "pseudodifferential" character of K N is simply the fact that it is supported near the diagonal.

Taking for instance a N 1 Λ N , the indicator function of a set Λ N ⊂ V N of size αN, for a fixed 0 < α < 1, this implies that for most φ j , we have 1 Λ N φ j 2 ≈ α.

We like to interpret this theorem as an "equidistribution" or "delocalization" result for eigenfunctions, but one should be very cautious with the meaning of this. Note that we are measuring the distance between the uniform measure on V N and the probability measure N

x 1 |φ (N) j (x)| 2 δ x in a very weak sense, by comparing the average of only one function a N , so our result is very far from saying that |φ (N)

j (x)| 2 is uniformly close to 1 N .
Because the speed of convergence we can reach in ( . ) is no better than 1 log N , we can only improve ( . ) by allowing a logarithmic number of observables or a logarithmic error ε, and thus we stay far from comparing |φ (N) j (x)| 2 and 1 N at microscopic scale.

. . . A non-localization result by Brooks and Lindenstrauss

Let G (V, E) be a finite regular graph. As before we will denote N |V |.

In addition, we will write G as a quotient G Γ\T q where T q is the (q + 1)regular tree, and Γ is a subgroup of its automorphism group. For comfort we assume that Γ acts without fixed points on the vertices of T q . The tree T q is the universal covering tree of G.

On T q , we define for all n ≥ 0 the averaging operator S n : C T q -→ C T q , by letting for f ∈ C T q , S n f (x) q -n/2 y,d(y,x) n f (y).

( . )

This operator commutes with isometries, and thus goes down to the quotient to define an operator S n on C V . On the quotient we assume that there exists M, C > 0 and α > 0 such that

sup x∈V S n δ x ∞ ≤ Cq -αn , for all n ≤ M. ( . )
This means that the number of paths of length n ≤ M between any two points is ≤ q (1/2-α)n . For instance, if we take M equal to the injectivity radius of G, we can take α says that for a random regular graph, we can take (with high probability) M ( 1 4 -) log |V | and α 1 2 . More generally, we might want to assume that S n L P (G)-→L Q (G) ≤ Cq -αn for all n ≤ M, for some values of P < 2 < Q such that 1

P + 1 Q 1. Note that ( . ) corresponds to Q ∞, P 1. T . . (B -L [ ]). -Assume S n L P (G)-→L Q (G) ≤ Cq -αn
for all n ≤ M, for some fixed values of

P < 2 < Q such that 1 P + 1 Q 1.
Let > 0. Then, for any 2 -normalized eigenfunction φ on G, for any B ⊂ V, we have

x∈B φ(x)
2 ≥ ⇒ |B| ≥ C(q, C, α, P) P/(2-P) q δM with δ α P/(4 + 5 )(2 -P). In the case of Laplace eigenfunctions on a hyperbolic manifold, an analogous entropy bound is given by Theorem . in [ ]. Roughly, what is proven there that if we discretize the phase space into balls of radius

√

, the entropy of the Wigner measures for this discretization is at least (d -1)| log |, where 2d is the dimension of phase space (there is a loss of dimension giving d -1 instead of d in the estimate, because the direction of the geodesic flow is neutral in the argument). The same estimate, for a discrete toy model called the Walsh baker's map, was obtained in Theorem . of [ ]. There, the entropy at scale √ is called Wehrl entropy. In those two papers [ , ], the subadditivity of the entropy is then used to go from microscopic scale

√

to balls of size 1, and after taking the limit -→ 0, from the Wehrl entropy to the Kolmogorov-Sinai entropy.

Note that estimates on Wehrl entropies are absent from the proof of Theorem . . taken from [ ], given in these notes. This is an important difference between the papers [ ] and [ ]. The proof from [ ] is more robust, because it does not rely on meticulous discussion of the definition of the Ehrenfest time (it is valid for manifolds of variable negative curvature, whereas the proof of [ ] fails to give a positive bound if the curvature varies too much).

For graphs, the passage from entropy at microscopic scale (individual vertices) to macroscopic scale (which would mean bunches of vertices of size comparable to |V |) has not been investigated thoroughly, but seems difficult to implement.

Theorem . . is based on a "dispersion estimate" that is of the same flavour as Theorem . . , but is used in a different manner. Brooks and Lindenstrauss consider the operator P n A 2 √ q , where P n is the Chebyshev polynomial defined by P n (cos θ) cos nθ. It is analogous to the "even" wave propagator cos(t |∆| ) used in the case of Riemannian manifolds, and the assumption of the theorem can be translated into the dispersion estimate

P n A 2 √ q L P (G)-→L Q (G) ≤ Cq -αn ( . ) for all n ≤ M.
This is then used in the following construction. Here we use the version of Ganguly-Srivastava [ , Lemma . ], which is simpler and gives better effective results than the original argument of Brooks-Lindenstrauss.

L

. . . -Under the assumptions of Theorem . . , for every positive integers m, r such that r is even, mr < M, and for every λ 0 ∈ R, there exists a polynomial f such that:

f (λ 0 ) ≥ m 4 -1; f (x) ≥ -1 on R; f A 2 √ q L P (G)-→L Q (G) ≤ 2 C 1 -q -αr q -αr .
We refer to [ , Lemma . ] for the construction of f , which is stated in the case P 1, M 1 2 girth(G), α 1 2 , but remains identical in the general case. We can now proceed with the proof of the main theorem.

Let φ be an eigenfunction of A, of eigenvalue λ 0 , and let B ⊂ V such that φ1 B 2 . Let f be the polynomial from Lemma . . applied to λ 0 , m 4/ + 4, r M/m -1 or r M/m -2 (whichever is even).

Taking K f A 2 √ q , we then have

φ1 B , K(φ1 B ) 2 ≤ K L P (G)-→L Q (G) • φ1 B 2 P ≤ C(α)q -αM /(4+5 ) φ1 B 2 2 • |B| 2/P-1 ≤ C(α)q -αM /(4+5 ) |B| 2/P-1 .
On the other hand, decompose φ1 B as φ1 B aφ + bψ, where ψ is a unit vector orthogonal to φ and a, b are scalars. Observe that

a φ, φ1 B and b 2 φ1 B 2 2 -a 2 (1 -).
Since φ, Kψ 0, we have

φ1 B , K(φ1 B ) 2 a 2 φ, Kφ + b 2 ψ, Kψ ≥ a 2 m/4 -1 -b 2 by the first two items of Lemma . . ≥ a 2 / -b 2 ≥ -(1 -) 2 .
Thus,

|B| ≥ P/(2-P) C(α) -P/(2-P) q αM P (4+5 )(2-P)
which ends the proof of the theorem.

. . . Remark. -A recent result [ ] by

Alon-Ganguly-Srivastava constructs sequences of (q + 1)-regular graphs on N vertices (with q -1 a prime number) satisfying the assumptions of Theorem . . , and such that there is a set Λ N ⊂ V N of cardinality N α (0 < α < 1/6), and at least α log N eigenvalues in (-2 √ q, 2 √ q ) with corresponding eigenvectors supported entirely on Λ N .

This shows that the assumptions of Theorem . . are not sufficient to rule out the possibility of "scarring" of a sparse family of eigenfunctions.

. . . Random regular graphs

Theorems . . and . . are deterministic, that is, they deal with deterministic sequences of graphs. In particular, they apply to the so called "Ramanujan graphs" constructed by Lubotzky-Phillips-Sarnak [ ], or to Cayley graphs of SL(2, Z/pZ) studied by Helfgott and Bourgain-Gamburd [ ], [ ]. But it is also very popular -and natural -to look at random regular graphs, and to try to prove results that are true with high probability on the choice of the graph. One can hope to prove results stronger than Theorems . . and . . "for most graphs".

The most common way to construct random regular graphs (RRG) is as follows. For fixed N, consider all the possible ways to build a (q + 1)-regular graph on the vertex set V N {1, . . . , N }. Count the number of possibilities and put the counting measure on this set of (labelled) regular graphs. This gives a meaning to "picking at random a (q + 1)-regular graph on N vertices". Like in Bollobás' book we will call this the G(N, dreg) or G d-reg model (with the notation d q + 1). We are then interested in events that are true with probability going to 1 as N → +∞.

The following "configuration model" is equivalent, and more tractable for counting. Consider N points, each with d q + 1 attached "half-edges".

Taking all the possible perfect matchings between those N(q + 1) half-edges, we obtain (N(q + 1) -1)!! configurations, and each of them yields a (q + 1)regular graph, possibly with parallel edges and self-loops. If we want to avoid these, we can evaluate the probability for a graph thus obtained to have no parallel edges nor self-loops, and find that it stays stricly between 0 and 1 [ , Theorem . ]. So we can safely condition on that set, and the restricted measure is the same as the uniform measure considered in the previous paragraph.

If we prefer the vertices to be unlabelled, that is, count the previous graphs modulo automomorphism, it amounts asymptotically to the same, since the previous graphs were shown by Bollobás to have a trivial automorphism group with high probability (Chapter in [ ]).

P

. . . -Let us denote by σ(A N ) the spectrum of the adjacency matrix of G N . Then there exists β > 0 such that

P G(N,(q+1)-reg) σ(A N ) ⊂ -(q + 1) + β, q + 1 -β ∪ {q + 1} ----→ N→+∞ 1. ( . )
Although this is is considered to be standard, the counting argument is quite tedious, and thus difficult to find in the literature. The details may be found in [ ]. To get an idea by herself, the reader may try to prove that the probability that q+1 is a simple eigenvalue (that is, that the graph is connected) goes to 1 as N → +∞. The proof of the proposition is an elaboration of that: a uniform spectral gap β means that the graph is "well connected", in other words that its Cheeger constant stays away from 0.

Alon and Boppana showed the deterministic bound

λ (N) 2 ≥ 2 √ q - c log N
, for all regular graphs with N vertices. This gives an upper bound on the spectral gap β. The following result (much stronger than Proposition . . ) shows that for random regular graphs, this bound is almost optimal with high probability:

T . . (F [ ]). -Let λ N N ≤ • • • ≤ λ N 2 ≤ λ N 1
q + 1 be the ordered eigenvalues of the adjacency matrix of a (q + 1)-regular graph. Then for any > 0,

lim N→+∞ P G(N,(q+1)-reg) max λ N 2 , |λ N N | ≤ 2 √ q + 1. ( . )
A much shorter proof than Friedman's original was given recently by Bordenave [ ]; see also [ ] for related results. Both Proposition . . and the refined version Theorem . . show that our assumption (EXP) is generic. This is also the case of Assumption (BST): if we let Y m be the random variable counting the number of circuits of length m in a random regular graph, Corollary . in [ ] (and its proof) ensures that, for each r, the moments E G(N,d-reg) (Y r m ) stay bounded as N → +∞. This is enough to ensure that the graphs have few short cycles with high probability.

The result proven by Bauerschmidt-Huang and Yau (Theorem . . in the introductory chapter) takes place in this context, and uses both the local geometry of the graphs and the invariance of the G(N, dreg)-model under switchings of edges.

In these notes, we focus on the deterministic results. The rest of the chapter is devoted to the proof of Theorem . . (implying Theorem . . ). We reproduce the original proof of [ ] (a variety of alternative arguments have been found more recently in [ ], [ ]). This requires to first introduce Fourier analysis on the (q + 1)-regular tree, and use it to define a version of pseudo differential operators on regular graphs. The argument of § . . then tries to follow the four steps of § . . One important question to solve is : we start with a "quantum' problem (meaning eigenfunctions of an operator) but want to relate it to a certain classical dynamical system. What should we expect the classical dynamics to be ? This operation has been called "classicalization" by U. Smilansky in a private conversation; this is supposed to mean the opposite of "quantization". If the quantum hamiltonian is the laplacian, the associated classical dynamical system should be the geodesic motion. But on a graph, what this means is not clear. The shift defined in ( . ) is a natural candidate for someone trained in ergodic theory. But in the next chapter, where we deal with more general graphs, another candidate appears, namely the non-backtracking random walk, on the phase space consisting of directed edges ( § . ). In both cases, it is the mixing property of the dynamical system that is responsible for the delocalization of eigenfunctions.

. . Harmonic analysis on the (q + 1)-regular tree

The spectral decomposition of the Laplacian on the (q +1)-regular tree is given in the book by Figà-Talamanca and Picardello, leading to a notion of Fourier transform on regular trees [ ]. Paley-Wiener type theorems, relating the decay of functions to the regularity of their Fourier transform, have been obtained by Cowling and Setti [ ]. Here, we just gather the facts we need for the proof of Theorem . . .

. . . The spherical transform

In this section, we denote by A the adjacency operator on the (q + 1)-regular tree T q . We fix arbitrarily a vertex o in T q , that will be used as an "origin". For all x ∈ T q , we will denote by |x| its distance to the origin o.

L . . (S

). -For any λ ∈ C, there exists a unique function φ λ : T q → C such that Aφ λ λφ λ .

φ λ is radial: there is a function Φ λ : N → C such that for all x ∈ T q φ λ (x) Φ λ |x| .

In other words, φ λ (x) depends only on the distance from x to 0. φ λ (0) 1.

In fact, the function Φ λ is uniquely determined by the recurrence relation

qΦ λ (n + 1) + Φ λ (n -1) λΦ λ (n) ( . )
for all n ≥ 1, and the initial conditions Φ λ (0) 1, Φ λ (1) λ q+1 . We will be mostly interested in λ ∈ [-(q + 1), q + 1]. It is customary and convenient to make the following change of spectral parametre λ s where λ q 1/2+is + q 1/2-is 2 √ q cos(s ln q). ( . )

We see that λ ∈ R is equivalent to s ∈ R ∪ iR, and s ∈ R ⇔ |λ| ≤ 2 √ q (this is called the tempered spectrum);

s ∈ iR ⇔ |λ| ≥ 2 √ q (this is called the untempered spectrum).

In particular, λ q + 1 corresponds to is 1 2 and it lies in the untempered spectrum.

We have the expression

Φ λ (n) q -n/2 2 q + 1 cos(ns ln q) + q -1 q + 1 • sin((n + 1)s ln q) sin(s ln q) q -n/2 P n λ 2 √ q + q -1 q + 1 Q n λ 2 √ q
where P n and Q n are the Chebyshev polynomials, defined by the formulas P n (cos θ) cos(nθ) and Q n (cos θ)

sin(n+1)θ sin θ .
For s ∈ R, we have

φ λ (x) O |x|q -|x|/2 ,
which implies that φ λ 1 |x| n 2 2 grows linearly with n. On the opposite, for s ∈ iR, the growth is exponential, we have φ λ 1 |x| n 2 2 ≥ q 2n|s | . Using the Weyl criterion, one may see that the 2 -spectrum of A is exactly

[-2 √ q, 2 √ q ].

Radial operators

Let k : N → R. We consider the operator T k , acting on functions on T q , defined by

T k f (x) y∈T q k d(x, y) f (y) ( . )
(we assume that k and f are reasonable enough so that this sum is well defined: for instance k has finite support).

Such an operator is called a radial operator. Suppose that f is any λ-eigenfunction of A, that is, Af λ f . Then

T k f (o) y k | y| f (y) +∞ n 0 k(n) y,| y| n f (y) .
By uniqueness of the spherical function, we must have

y,| y| n f (y) f (o)(q + 1)q n-1 Φ λ (n) ( . ) for all n. Thus T k f (o) f (o) k(0) + (q + 1) n≥1 q n-1 k(n)Φ λ (n) .
Since this argument does not depend on the choice of an origin, we actually have

T k f (x) h k (λ) f (x) for all x, ( . ) where h k (λ) k(0) + (q + 1) n≥1 q n-1 k(n)Φ λ (n) φ λ , k
is called the spherical transform of k. Since this holds for any eigenfunction of A, we have thus proven that T k coincides with h k (A) (defined by functional calculus of self-adjoint operators).

Inversion of the spherical transform

Here we give the formula that allows to recover k from h k . It is slightly more convenient to use the parametrization λ(θ) 2 √ q cos θ (with θ s ln q ∈ [0, π]). There is a unique measure m on [0, π] such that, for all x ∈ T q , we have

∫ π 0 φ λ(θ) (x) m(dθ) δ 0 (x), ( . ) in other words ∫ π 0 x∈T q φ λ(θ) (x) f (x) m(dθ) f (0) ( . )
for any compactly supported function f . One may compute explicitly the Fourier series expansion of m, and see that it corresponds exactly to the measure appearing in ( . ) via the change of variable λ 2 √ q cos θ. In detail,

m(dθ) 1 π 1 + +∞ n 1 1 -q q n cos nθ dθ 1 π • q(q + 1)[1 -cos 2θ] (q + 1) 2 -4q cos 2 θ dθ. ( . )
More generally, for any y ∈ T q we can take y as the origin, and let φ y λ (x) Φ λ d(x, y) be the spherical function centered at y. Writing formula ( . ) taking x as the origin, we have

f (x) ∫ y f (y)φ y λ (x) m(dλ).
Apply this to a radial function f (x) k(d(x, 0)), we obtain the inversion formula for the radial transform,

k(n) ∫ h k (λ)u λ (n)m(dλ). ( . ) Letting P λ f (x) y f (y)φ y λ (x) y Φ λ (d(x, y)) f (y),
we have the resolution of identity

I ∫ P λ m(dλ) ( . )
which gives the explicit spectral decomposition for the Laplacian.

. . . Fourier transform on the (q + 1)-regular tree

Ideal boundary. -What follows is a special case of the ideal boundary at infinity of a negatively curved metric space.

We say that a sequence (γ 0 , γ 1 , γ 2 , . . .) is a path in T q if γ j and γ j+1 are connected by an edge.

We say that the path is non-backtracking (or geodesic) if γ j γ j+2 for all j.

We let ∂T q , the ideal boundary of T q , be the set of infinite geodesic paths starting from γ 0 o (recall that o is an arbitrary point in T q serving as the origin).

Note that the tree T q itself may be identified with the set of finite geodesic paths starting from o, since there is a unique geodesic path between any point x and o. This allows to endow T q ∪ ∂T q with the following topology: the discrete topology on T q ; a basis of neighbourhoods of ω (ω j ) j≥0 ∈ ∂T q is given by the sets B o (ω, n) (where n ranges over N), defined as the set of finite or infinite geodesics γ (γ 0 o, γ 1 , γ 2 , . . .) such that ω j γ j for all j ≤ n.

The set T q ∪ ∂T q is compact for this topology. Every infinite geodesic path γ in T q has an endpoint ω ∈ ∂T q ; which, by definition, means that γ eventually coincides with ω.

Fourier transform. -Let ω ∈ ∂T q . We define the function

h ω : T q -→ Z
as the "normalized distance to ω" (or Busemann function). It is the unique function normalized so that h ω (o) 0, and such that h ω (y) h ω (x)d(x, y) if the geodesic from x to ω contains y.

We now define, for ω ∈ ∂T q and s ∈ R/(2π/ln q), the function

e ω,s : T q -→ C, e ω,s (x) q ( 1 2 -is)h ω (x) .
It is straightforward to check that these are eigenfunctions of the Laplacian, more specifically Ae ω,s λ(s)e ω,s with our former notation λ(s) q 1/2+is + q 1/2-is . This family of functions plays the role of plane waves in usual Fourier theory.

If f : T q → C has finite support, we define its "Fourier transform" as a function

f : ∂T q × R/(2π/ln q) -→ C, f (ω, s)
x∈T q e ω,s (x) f (x).

Then one has the "Fourier inversion formula"

f (x) ∫ ω∈∂T q ∫ π/ln q s 0 f (ω, s) e ω,s (x) ν o (dω) m(ds) ( . )
where m is the measure defined in ( . ) (with the change of variable θ s ln q) and ν o is the harmonic measure on ∂T q , seen from the origin o.

In other words, ν o is the unique probability measure such that, for any given n ≥ 1 and for all ω ∈ ∂T q ,

ν o B o (ω, n) 1 (q + 1)q n-1 •
Note that the integral ( . ) takes place only over a half-period [0, π/ln q] because of a symmetry property of f (ω, s) when s -s. We note also that, although these definitions depend on the choice of an origin o, the final formula ( . ) does not, owing to the following relation between harmonic measures with different origins:

dν o dν o (ω) q h ω (o )-h ω (o) . ( . )
There is a "Plancherel formula", according to which

f 2 2 (T q ) ∫ ω∈∂T q ∫ π/ln q s 0 f (ω, s) 2 ν o (dω) m(ds). ( . )
. . Proof of Theorem . . The proof given in the paper with Le Masson [ ] tries to follow the proof in the manifold case, given in § . . In particular, we try to define "pseudodifferential operators" on graphs, using a formula resembling ( . ). For that, we need a Fourier transform and this is the main reason for working on regular graphs. Another approach that also works for some non-regular graphs will be given in Chapter .

. . . Pseudodifferential operators on T q

Looking at ( . ), we see that in the Euclidean case the momentum variable ξ was identified with the Fourier variable to obtain the definition of Op(a). So, in the tree case, we decide to use the pair of variables (ω, s) as a kind of "momentum". Accordingly, we define the phase space as T q ×∂T q ×[0, π/ln q]. This space has a nice geometric interpretation: for (x, ω) ∈ T q × ∂T q , there is a unique semi-infinite geodesic starting at x and ending at ω, so T q × ∂T q may be seen as the set of semi-infinite geodesics. The parameter s ∈ [0, π/ln q] will be of lesser importance in our discussion; it plays the role of the "energy" of the geodesic.

If a(x, ω, s) is a function on our phase space, we define the operator Op(a) by the formula

Op(a) f (x) ∫ ω∈∂T q ∫ π/ln q s 0 a(x, ω, s) f (ω, s) e ω,s (x)ν o (dω)m(ds) ( . )
which exactly mimicks the quantization procedure ( . ). Using the relation ( . ) between the harmonic measures, we can write the matrix of Op(a) in the canonical basis as

K a (x, y) δ x , Op(a)δ y ( . ) ∫ ω∈∂T q ∫ π/ln q s 0 a(x, ω, s)q ( 1 2 +is)(h ω (y)-h ω (x)) ν x (dω)m(ds)
which replaces ( . ). Note that the latter expression does not depend on the choice of origin. The adjacency operator can be written as

A Op(a) with a(x, ω, s) λ(s).

Note (by Fourier inversion ( . )) that a(x, ω, s) is the Fourier transform of y → K a (x, y), taking x as the origin:

a(x, ω, s) y∈T q K a (x, y) q ( 1 2 -is)(h ω (y)-h ω (x)) . ( . )
The whole construction copies a similar idea used on the hyperbolic disc by Zelditch [ ] in his proof of the quantum ergodicity theorem on hyperbolic surfaces. Like in the second step of § . , a key ingredient is a commutator computation, supposed to relate quantum mechanics and classical mechanics. Here, we don't have any classical motion given a priori. However we can expect the classical mechanics to be the shift, a commonly studied dynamical system in ergodic theory:

σ : T q × ∂T q -→ T q × ∂T q , (x, ω) -→ (x 1 , ω) ( . )
if the half-geodesic (x, ω) is written as a non-backtracking path (x 0 x, x 1 , x 2 , . . .). Note that this map is q-to-1.

If a is a function on T q × ∂T q × [0, π/ln q] we define U a a • σ and Sa(x, ω, s) 1 q y σ(y,ω) (x,ω) a(y, ω, s).

( . )

This operator is usually called transfer operator. For any given s, Sis the adjoint of U in L 2 , for the measure L s defined by ∫ a dL s x∈T q ∫ ω∈∂T q a(x, ω, s) ν x (dω) ( . ) which will play the role of the Liouville measure (note that the parameter s is preserved by the dynamics of σ). We have SU I, reflecting the fact that the measure(s) L s is preserved by σ. However US I.

Here the commutator formula reads:

P . . . -One has A, Op(a) Op(Ta) ( . )
where (Ta)(x, ω, s) q 1/2 q + 1 q is (U aa) + q -is (Saa) (x, ω, s) ( . )

q 1/2 q + 1 i sin(s ln q)(U a -Sa) + cos(s ln q)(U a + Sa -2a) (x, ω, s)
This is going to replace the formula [ √ 1 -∆, Op(a)] 1 i {p, a } (plus lower order terms) valid on manifolds.

. . . Remark. -We use the term of pseudodifferential operator here by analogy with the euclidean construction; we also sometimes call "symbols" the functions a(x, ω, s) used to define the operators. However, the theory is far less complete and it is not clear that this name is deserved. Le Masson [ ] proved a formula for the product of two operators that is analogous to ( . ), but he does not have an asymptotic expansion valid to any order like in ( . ). The first term of the expansion is known provided a and b vary "slowly" with respect to x, but this is not a condition we want to impose in the quantum ergodicity theorem.

. . . Pseudodifferential operators on a finite regular graph

Suppose we have a finite regular graph G (V, E) that can be written as a quotient of T q by a subgroup Γ of the automorphism group: G Γ\T q .

For comfort we assume that Γ acts without fixed points on the vertices of T q .

In accordance with previous notation, we denote by N the number of vertices of G.

We denote by D ⊂ V(T q ) a fundamental domain of the action of Γ on the vertices of T q . It contains N vertices of T q .

For γ ∈ Γ, we denote by T γ the operator of γ-translation

T γ f (x) f (γ -1 • x) ( . )
if f is a function on T q and x ∈ T q . It is straighforward to check that Op(a) commutes with T γ if and only if K a (γ • x, γ • y) K a (x, y) for all x, y ∈ T q , if and only if a(γ • (x, ω), s) a(x, ω, s) for all (x, ω, s). Here we used the action of the automorphism γ on the set of half-geodesics when we wrote γ • (x, ω).

If a satisfies this for all γ ∈ Γ, we say that a is Γ-invariant, and Op(a) commutes with the action of Γ.

In the latter case, we would like to let Op(a) act on Γ-invariant functions on T q (in other words, functions on G) by letting Op(a) f (x)

y∈T q K a (x, y) f (y) y∈ D γ∈Γ K a (x, γ • y) f (y) ( . )
if f is a Γ-invariant function. One encounters here the problem of convergence of the series γ∈Γ K a (x, γ • y). One may show that γ ; d(x, γ • y) ≤ n ∼ Cq n , so one needs K a (x, y) to decay fast enough as d(x, y) → +∞ to beat this.

. . . Remark. -Cowling and Setti [ ] gave a series of Paley-Wiener type theorems that allow to fully characterize the functions a such that K a (x, y) vanishes if d(x, y) > R, or such that

K a (x, y) ≤ C n q -d(x, y)/2 (1 + d(x, y)) n
for all n. ( . )

As expected, rapid decay of K a corresponds to a regularity condition of a. However, this sufficient and necessary condition also involves a very rigid symmetry property of a under s → -s, which is unfortunately not stable under a → U a. Le Masson [ ] constructed an algebra of symbols a, stable under a → U a, and that still satisfies ( . ). He showed that these operators are bounded on 2 (T q ); however, the rate of decay of K a (x, y) still does not guarantee that it defines an operator on the quotient Γ\T q .

In what follows, we manage to deal with the operators K a on the quotient without having to solve the issue raised in the remark. We only assume (for the moment) that a is a bounded function, and we simply truncate the sum ( . ), as follows. . . Let χ be a smooth, non-negative function on R, supported in [-1, 1], taking the value 1 near 0. Let r > 0. If a is a Γ-invariant symbol and if f is a Γ-invariant function on T q , we define Op r Γ (a) f (x)

y∈T q K a (x, y)χ d(x, y) r f (y) y∈ D γ∈Γ K a (x, γ • y)χ d(x, γ • y) r f (y)
and the sum involves only finitely many terms. For every r, Op r Γ (a) is a linear operator on the finite dimensional space 2 (G). For the reasons evoked in Remark . . , it is not clear that Op r Γ (a) 2 (G)→ 2 (G) is bounded uniformly in r, but it will turn out that the relevant norm for the study of quantum ergodicity is the (normalized) Hilbert-Schmidt norm (see the third step of the proof below).

In fact, with the notation of our main theorem,

1 N N j 1 φ (N) j , Op r Γ (a)φ (N) j 2 ≤ 1 N Op r Γ (a) 2 HS 1 N x, y∈ D γ∈Γ K a (x, γ • y)χ d(x, γ • y) r 2 1 N x,ρ(x)>r y∈ D γ∈Γ K a (x, γ • y)χ d(x, γ • y) r 2 + 1 N x,ρ(x)≤r y∈ D γ∈Γ K a (x, γ • y)χ d(x, γ • y) r 2
where always N is the number of vertices of G, and ρ(x) is the injectivity radius of x. By definition, ρ(x) > r implies that there is at most one γ such that d(x, γ • y) ≤ r, and in that case

y∈ D γ∈Γ K a (x, γ • y)χ d(x, γ • y) r 2 y∈ D γ∈Γ K a (x, γ • y)χ d(x, γ • y) r 2 ≤ y∈ D γ∈Γ K a (x, γ • y) 2 y∈T q K a (x, y) 2 ,
the last identity holds because D is a fundamental domain for the action of Γ.

On the other hand, for those x for which ρ(x) ≤ r, we note that the sum γ∈Γ χ d(x,γ•y) r contains at most τ(r) (q + 1)q r-1 terms (i.e. the cardinality of a ball of radius r in the tree). By Cauchy-Schwarz,

y∈ D γ∈Γ K a (x, γ • y)χ d(x, γ • y) r 2 ≤ τ(r) y∈ D γ∈Γ K a (x, γ • y) 2 τ(r) y∈T q K a (x, y) 2 .
We note that, by the Plancherel formula ( . ) (taking x as the origin), we have for all x y∈T q K a (x, y)

2 ∫ ω∈∂T q ∫ π/ln q s 0 a(x, ω, s) 2 ν x (dω)m(ds). ( . )
Summarizing this in a lemma, L . . . -One has

1 N N j 1 φ (N) j , Op r Γ (a)φ (N) j 2 ≤ 1 N Op r Γ (a) 2 HS ≤ ∫ π/ln q s 0 ∫ a(x, ω, s) 2 dL (N) s (x, ω)m(ds) + τ(r) N x ∈ D ; ρ(x) ≤ r • a 2 ∞
where the measure L (N) s is defined by

∫ a dL (N) s 1 N x∈ D ∫ ω∈∂T q a(x, ω, s) ν x (dω) 1 N ∫ 1 D a dL s
and L s was defined in ( . ).

Commutator formula in the quotient

Note that, because of our truncation, the formula [A, Op r Γ (a)] Op r Γ (Ta) is no longer exact in the quotient. However, the error is small in normalized Hilbert-Schmidt norm:

P . . . -On G Γ\T q , A, Op r Γ (a) Op r Γ (Ta) + R r ( . )
where

1 N R r 2 HS ≤ O 1 r 2 • a 2 L 2 (L (N) s ⊗dm(s)) + τ(r + 2) N • x ∈ D ; ρ(x) ≤ r + 2 • a 2 ∞ .
We skip the proof; the term O(1/r 2 ) comes from the first derivative of the map x → χ(x/r), so it is important here to choose the cut-off χ of class C 2 .

. . . Four steps of the proof

We divide the proof into four steps to highlight the analogy with § . .

Let K be an operator on 2 (G) 2 (Γ\T q ). Now, G G N and Γ Γ N vary in a sequence satisfying (BST) and (EXP), so K itself must depend on N. As in the statement of Theorem . . , we assume K N is a V N × V N matrix satisfying

K N (x, y) 0 if d G N (x, y) > R and sup N sup x, y∈V N K N (x, y ≤ 1.
We can find

K N : T q × T q → C such that K N ( x , y ) 0 if d T q ( x , y ) > R, the map K N is Γ N -invariant and K N (x, y) γ∈Γ N K N ( x , γ • y ) for all x, y ∈ Γ N \T q , ( . )
where x , y ∈ T q are lifts of x, y. Such a K N is not unique, but to fix ideas, we can take

K N ( x , y ) K N (x, y)1 {d( x , ỹ )≤R} {γ ∈ Γ N ; d( x , γ • y ) ≤ R} • Note that if ρ(x) > R, we have {γ ∈ Γ N ; d( x , γ• y ) ≤ R} 1, and K N ( x , γ• y )
is defined uniquely by ( . ).

First step. -We define the quantum variance

Var(K N ) 1 N N j 1 φ (N) j , K N φ (N) j 2 1 N N j 1 φ (N) j , K N φ (N) j 2 . ( . )
To prove Theorem . . , we must prove that this vanishes as N → +∞, provided |K N (x, y)| ≤ 1 and K N λ 0 for all λ.

Second step. -We now specialize to "pseudodifferential operators". By Fourier inversion, there is some Γ N -invariant symbol a N such that K N Op(a N ) on T q . If r is larger than R, we have K N Op r Γ N (a N ). By work of Cowling-Setti [ , § ], the fact that K N ( x , y ) 0 if d T q ( x , y ) > R implies regularity of a N , that will be important in the forthcoming fourth step. Namely, if two half-infinite geodesics (x, ω)

(x, x 1 , x 2 , . . . ) and (x, ω ) (x , x 1 , x 2 , . . . ) are such that x x , x 1 x 1 , . . . , x R x R , we have a N (x, ω, s) a N (x , ω , s)
for all s. In other words, a N only depends on the first R steps of the geodesic path. As in [ ] we will call such functions R-cylindrical. As already alluded to in Remark . . , Cowling and Setti's necessary and sufficient conditions also imply regularity and symmetry with respect to the s variable, but these additional conditions won't be needed (and are not stable under a N → U a N ).

We shall now deal with

Var(K N ) Var(a N ) 1 N N j 1 φ (N) j , Op r Γ (a N )φ (N) j 2 . ( . )
Proposition . . , combined with the fact that φ

(N) j , [∆, Op r Γ (a)]φ (N) j
0 for any a, we can show that the quantum variance is asymptotically small on the image of the operator T:

P . . . -For any Γ N -invariant symbol b, Var(Tb) ≤ O 1 r 2 • b 2 L 2 (L (N) s ⊗dm(s)) + τ(r + 2) N • x ∈ D ; ρ(x) ≤ r + 2 • b 2 ∞ .
Note that for b a N the right-hand side of the inequality actually vanishes (since Op r Γ N (a N ) K N does not depend on r for r > R), but we will need the proposition for more general b, for instance b U a N or b Sa N . The truncation parameter r is going to be fixed, but arbitrarily large, as N → +∞.

Thus the proposition tells us that lim sup Var(Tb) vanishes as N → +∞.

Third step. -Under Assumption (BST), one has the general upper bound lim sup

N→+∞ 1 N N j 1 φ (N) j , Op r Γ (a N )φ (N) j 2 ≤ lim sup N→+∞ a N 2 L 2 (L (N) s ⊗m)
.

This follows directly from Lemma . . , because (BST) implies the vanishing of lim sup 1 

If a N is a Γ N -invariant R-cylindrical function on T q × ∂T q × [0, π/ln q], such that ∫ a N (x, ω, s) dL (N) s (x, ω) 0 for all s,
then we can find a Γ N -invariant function b N on T q × ∂T q × [0, π/ln q, such that

a N -TU b N 2 L 2 (L (N) s ⊗dm(s)) ≤ a N 2 L 2 (L (N) s ⊗dm(s)) ; b N 2 L 2 (L (N) s ⊗dm(s)) ≤ C( , R, β) a N 2 L 2 (L (N) s ⊗dm(s)) ; b N 2 L ∞ ≤ C( , R, β) a N 2 L ∞ .
To prove the proposition, we note the identity

q is TU (U -I)(q 2is U -I).
So, to find b N , in other words, to find an approximate inverse of TU, it is sufficient to find an approximate inverse of U -I and of q 2is U -I. An approximate inverse of U -I is given by the formula

- 1 n n-1 k 0 (n -k)U k , ( . ) constructed so that -(U -I) 1 n n-1 k 0 (n -k)U k a a -1 n n-1 k 0 U k a and -(U -I) 1 n n-1 k 0 (n -k)U k a -a 2 L 2 ( . ) 1 n n-1 k 0 U k a 2 L 2 O 1 n C(β, R) a 2 L 2
where the last statement can be proven thanks to (EXP). To fit with the first statement of the proposition, we should take O(1/n) C(β, R) . Note that the operator norm of the approximate inverse ( . ) can be crudely bounded by n, which yields the second and third point of the proposition.

Similarly, an approximate inverse of q 2is U -I is given by the formula

- 1 n n-1 k 0 (n -k)(q 2is U) k . Finally, if ∫ a N (x, ω, s)dL (N)
s (x, ω) 0 for all s, we can write using the second and third steps lim sup

N→+∞ Var(a N ) ≤ 2 lim sup N→+∞ Var(a N -TU b N ) + 2 lim sup N→+∞ Var(TU b N ) ≤ 2 lim sup N→+∞ a N -TU b N 2 L 2 (L (N) s ⊗dm(s)) + 2O 1 r 2 lim sup N→+∞ b N 2 L 2 (L (N) s ⊗dm(s)) ≤ 2 + 2O 1 r 2 C( , β, R).
Note the analogy with ( . ), with TU b N playing the role of a coboundary. By first choosing > 0 arbitrarily small, then r arbitrarily large, and then letting N → +∞, we see that

lim N→+∞ Var(a N ) 0. ( . )
To prove the theorem for a general K N -i.e. that does not fulfill ∫ a N (x, ω, s) dL

(N) s (x, ω) 0 for all s -it suffices to replace K N by K N K N -h N (A), where h N λ(s) ∫ a N (x, ω, s) dL (N) s (x, ω). ( . )
So we have proven Theorem . . with

K N λ(s) ∫ a N (x, ω, s) dL (N) s (x, ω) ( . )
if K N is written as K N Op(a N ) (which we can always do thanks to ( . )). Note that by uniqueness of spherical functions, we must have, for any x, y,

∫ ∂T q q (1/2-is)(h ω (y)-h ω (x)) ν x (dω) Φ λ(s) d(x, y) . ( . )
Plugging ( . ) into ( . ), we find K N λ 1 N x∈ D,y∈T q K N (x, y)Φ λ (d(x, y)). This is the same as the announced expression

K N λ 1 N x, y∈V N K N (x, y)Φ λ d(x, y) ,
modulo an error of o(1) coming from the x having injectivity radius ≤ R.

.

Quantum ergodicity on the sphere

This chapter examines the eigenfunctions of the Laplacian on the sphere, endowed with its canonical round metric, from the point of view of quantum ergodicity. The geodesic flow on the sphere is a completely integrable case, thus far from being ergodic. So, we should not be surprised to see some of the results we found for ergodic systems fail; however, we will see that some eigenfunctions on the sphere are equidistributed on phase space. For simplicity of notation we will work on the 2-dimensional sphere S 2 , embedded in R 3 in the standard way:

S 2 {(x 1 , x 2 , x 3 ), x 2 1 + x 2 2 + x 2 3 1}.
On S 2 , the Laplacian ∆ S 2 commutes with the differential operator

J 12 1 i x 1 ∂ ∂x 2 -x 2 ∂ ∂x 1 , ( . )
which is the generator of the 1-parameter group of rotations around the third axis. The eigenvalues of ∆ S 2 are -( + 1) (where runs over N); the associated eigenspaces H have dimension 2 + 1. It is a classical fact that H coincides with the space of spherical harmonics of degree , that is, the space of homogeneous polynomials P of degree such that ∆ R 3 P 0: the restrictions of such polynomials to S 2 give the eigenfunctions of ∆ S 2 . In H , the eigenvalues of J 12 are the integers in the interval [-, ].

The joint eigenfunctions of ∆ and J 12 are usually denoted by (Y m ) ≥0,|m|≤ .

The principal symbol of J 12 is the angular momentum around the third axis,

j 12 (x, ξ) x 1 ξ 2 -x 2 ξ 1 , ( . )
in other words the projection on the last coordinate of the vector

x 1 x 2 x 3 ∧ ξ 1 ξ 2 ξ 3 .
The fact that the commutator [∆, J 12 ] vanishes is the "quantum" counterpart of the fact that the Poisson bracket { ξ 2 , j 12 } vanishes, which means that j 12 is constant along geodesics.

Let us study the semiclassical measures associated with the family (Y m ) ≥0,|m|≤ : assume that (for a subsequence) we have

Y m , AY m -→ ∫ σ 0 (A) dµ ( . )
for every A ∈ PDO 0 . Let us show that µ is never the Liouville measure. To see this, we note that ( . ) for every A also implies

Y m , J 12 (-∆) -1/2 AY m -→ ∫ σ 0 (A) j 12 ξ dµ.
But, since the Y m are joint eigenfunctions,

Y m , J 12 ∆ -1/2 AY m m ( + 1) Y m , AY m .
After extracting a subsequence, we may always assume that m/ ( + 1) has a limit α ∈ [-1, 1]. We thus have

∫ σ 0 (A) j 12 ξ dµ α ∫ σ 0 (A) dµ ( . )
for every A, which implies that the measure µ is supported on the set where j 12 / ξ α (which is an invariant torus of codimension 1 in the unit cotangent bundle S * S 2 ), so µ cannot be a smooth measure on S * S 2 . Note that for |α| 1 these tori degenerate to an equator. In particular, Y concentrates to an equator as → ∞. This argument, more generally, shows that if there is a pseudodifferential operator J commuting with ∆, their joint eigenfunctions cannot have the Liouville measure as semiclassical measures, since these must be supported on level sets of σ 0 (J).

Random eigenbases

Given that the eigenvalue -( +1) has multiplicity 2 +1, the set of eigenbases of ∆ S 2 is in bijection with

U(1) × U(3) × U(5) × • • • +∞ 0 U(2 + 1).
This product of unitary groups may be endowed with the product of normalized Haar measures: this gives a meaning to "picking at random a basis of eigenfunctions of ∆ S 2 ".

T . . (Z , V K [ ], [ ])

. -Quantum Unique Ergodicity is satisfied for almost every choice of eigenbasis of ∆ S 2 .

Picking a basis at random is one way to lift the degeneracy of the spectrum. On the other hand, Brooks-Lindenstrauss-Le Masson [ ] considered joint eigenfunctions of ∆ S 2 and of an operator of the form

T f (x) 1 √ q R j 1 f (g j x) + f (g -1 j x) , ( . )
where g 1 , . . . , g R are fixed elements of SO(3) and q 2R-1. Note that ∆ S 2 commutes with the action of SO(3) and hence with any operator of the form ( . ). The space H is stable under T and thus we can consider a basis φ

( ) 1 , . . . , φ ( ) 2 +1 of H that diagonalizes T.
We note that for very special choices of rotations -rotations that correspond elements of norm n ∈ N in an order in a quaternion division algebra, the SO(3), then for all a ∈ C 0 (S 2 ) we have

1 2 + 1 2 +1 j 1 φ ( ) j , φ ( ) j - ∫ S 2 a dσ 2 ----→ -→+∞ 0
where σ is the uniform probability measure on S 2 .

When the entries of the matrices g j are algebraic, a more quantitative result can be obtained:

T . . (see [ ])

. -Assume that g 1 , . . . g R generate a free group in SO(3) and that the entries of the matrices are algebraic. Consider a basis φ ( ) 1 , . . . , φ ( ) of H that diagonalizes T. Then there exists C > 0 such that, for all a ∈ L ∞ (S 2 ),

1 2 + 1 2 +1 j 1 φ ( ) j , φ ( ) j - ∫ S 2 a dσ 2 ≤ C a ∞ log ,
where σ is the uniform probability measure on S 2 .

Here, it is only assumed that a ∈ L ∞ (instead of C 0 ), in addition there is a quantitative estimate on the speed of convergence.

The method of proof is based on the strong analogy between the operators T and discrete Laplacians on (q+1)-regular graphs. Actually, the paper [ ] gives a new strategy of proof that can be used both to re-prove Theorem . . and to prove Theorems . . , . . . We just sketch the argument, trying to show the analogy between the operator T and the Laplacian on graphs.

Note that in Theorem . . we are interested in the eigenfunctions of the operator A T • P , where P is the spectral projector on H , the space of spherical harmonics of degree . The operator T has a singular Schwarz kernel

K T (x, y) 1 √ q R j 1
δ y g j x + δ y g -1 j x , but P is a smoothing operator. Looking at the explicit formula for P (or from general considerations on spectral projectors for pseudodifferential operators), one sees that P (x, y) is negligible if d S 2 (x, ±y) -1 . Thus, the application of P has an effect similar to a "discretization" of the sphere by identifying points that are at distance < -1 . The operator T then provides an adjacency relation between points of the sphere: in effect the proof of Theorem . . is similar to a proof on a 2R-regular graphs with N ∼ 2 vertices. The fact that g 1 , . . . g R generate a free group plays the role of assumptions (BST): we can find ρ ρ( ) → +∞ such that the balls B(x, ρ), for the graph distance, are trees (in other words the balls of radius ρ in the Hecke tree are -1+separated in S 2 ), except for a set of points x of small measure. The bad points

x are the fixed points of words of length ρ g 3), together with their neighbourhoods of size -1+ . They occupy a set of measure (2R) ρ -2+2 , which goes to 0 if ρ does not grow too fast. The spectral gap assumption (EXP) comes for free if one fixes a test function a ∈ H m 0 and uses the trivial fact that T has a spectral gap on the finite-dimensional space H m 0 .

α 1 • • • • • g α ρ ∈ SO(
For the stronger version in Theorem . . , one uses the additional input that T has a spectral gap on the whole space L 2 (S 2 ) (due to Bourgain-Gamburd [ ]) and that one can take ρ( ) c log .

. Quantum ergodicity on non-regular graphs . . Introduction

In Chapter we developed a notion of quantum ergodicity for eigenfunctions of the Laplacian on large regular graphs. The motivation for working with regular graphs was mostly to be able to use certain tools from harmonic analysis. However, a large part of the literature in mathematical physics or graph theory is dedicated to models of non-regular graphs (often obtained by a random construction), or of Laplacians perturbed by a random potential: the randomness is supposed to represent "disorder" or "impurities".

It is therefore desirable to be able to extend Theorems . . and . . to settings of non-regular graphs or discrete Schrödinger operators other than the Laplacian. Understanding the necessary or sufficient conditions for a family of graphs to satisfy quantum ergodicity could certainly be instructive as a goal per se.

In this chapter we let G N (V N , E N ) be a graph with |V N | N vertices and degree bounded by D. We consider a Schrödinger operator of the form

H G N A G N + W N ,
where A G N is the adjacency operator, and W N : V N → R is a real-valued function called a "potential" (in reference to physical motivations). For simplicity, we assume that there exists A such that W N (x) belongs to [-A, A] for all x, for all N. The reader only interested in the adjacency operator may of course consider that W N 0.

It is sometimes convenient to regard (G N , W N ) as a "coloured graph", the map W N : V N → [-A, A] is viewed as a colour. By choosing a root x ∈ V N uniformly at random, the deterministic coloured graph (G N , W N ) is turned into a random rooted coloured graph (G N , x, W N ). The local weak convergence of (G N , W N ) means that the random rooted coloured graph (G N , x, W N ) converges in distribution (see § . . for a more detailed definition). We denote by [T, o, W] the limiting random variable, and P its law. Thus, Tis a random graph with a random root o ∈ Tand a "random potential" W : T→

[-A, A].
The definition of local weak convergence implies, in particular, that the value distribution of W N converges to the law of the random variable W(o). A crucial feature of local weak convergence (and probably one of the main reasons for introducing this notion) is that it implies the convergence of the empirical spectral measures : if (λ (N) j ) are the eigenvalues of H G N and if f is any compactly supported continuous function on R, we have

1 |V N | j f (λ (N) j ) ----→ N-→+∞ ∫ δ o , f (A T + W)δ o 2 (T) dP([T, o, W]).
In this sense, the spectrum of H G N approaches the spectrum of the random Schrödinger operator A T + W in distribution.

Our general result, Theorem . . below, may be roughly summarized as follows: if the sequence of graph forms an expander family, and if the "limiting" Schrödinger operator A+ Whas purely absolutely-continuous spectrum on 2 (T) (P-almost surely), then quantum ergodicity holds for any sequence converging to it. For technical reasons, we also need to assume that our graphs have few short cycles.

For irregular graphs, being an expander family is formulated as the existence of a spectral gap for the generator of the simple random walk: define

P N : C V N -→ C V N , (P N ψ)(x) 1 d N (x) y∼x ψ(y),
where d N (x) is the degree of x ∈ V N . Then P N is self-adjoint in 2 (V N , d N ) (the reference measure now assigns weight d N (x) to a vertex x).

Being expanders means that:

(EXP)

the eigenvalue 1 of P N is simple (so G N is connected), there exists β > 0 such that the spectrum of

P N in 2 (V N , d N ) is contained in [-1 + β, 1 -β] ∪ {1}, for all N.
Or convergence in the sense of Benjamini-Schramm, see [ ].

Next, we assume that T is P-almost surely a tree. This is equivalent to assumption (BST) of Chapter , namely that G N has "few short cycles". In case of (q + 1)-regular graphs, assumption (BST) implied that the limit measure P was concentrated on a single tree T q ; more generally, it implies that P is concentrated on the set of coloured rooted trees.

We discovered that in order to generalize the Quantum Ergodicity result to general Schrödinger operators on non-regular trees, we need an assumption on the presence of absolutely continuous (AC) spectrum for the limiting Schrödinger operator on T, in a spectral interval I. More technically, we assume the imaginary part of the limit Green function has inverse moments, when the spectral parameter stays near I. This is referred to as the (Green) condition, but since this is technical to state, the detailed description of this assumption is postponed to § . . and § . . . In the special case of the adjacency matrix on regular graphs, this assumption is satisfied for any open interval I such that Ī ⊂ (-2 √ q, 2 √ q ); see Remark . . . Note that on the infinite regular tree, the possibility to calculate the Green function explicitly somehow hides the generality of certain arguments.

For instance, the ubiquitous spherical function Φ λ defined in ( . ) can also be expressed in terms of the Green function, which can be defined in much greater generality :

Φ λ (d(x, y)) Im G λ+i0 (x, y) Im G λ+i0 (x, x)
where G γ (A -γ) -1 and G λ+i0 (x, y) is its limit as γ approached the real number λ from the upper half-plane.

We may now state the result.

T . . (A -S [ ]

). -Let (G N , W N ) be a sequence of finite coloured graphs as above, and assume that conditions (BST), (Green) and (EXP) are satisfied. Let (φ

(N) j ) N j 1 be an orthonormal basis of eigenfunctions of H G N for 2 (V N ) with eigenvalues (λ (N) j ) N j 1 . Fix R ∈ N and let K N : V N × V N → C satisfy K N (x, y) 0 if d(x, y) > R and sup N sup x,y∈V N K N (x, y) ≤ 1. Then lim η 0 ↓0 lim N→∞ 1 N λ (N) j ∈I φ (N) j , K N φ (N) j -K N λ (N) j +iη 0 0 , ( . ) where K γ x, y∈V N K(x, y)Φ N γ (x, y).
We need to explain the definition of the weight function Φ N γ ( x , y ). It is expressed in terms of the Green function on the universal covering tree G N of G N , so it is not a completely explicit object, unlike in the regular case (see § . . for the formula). It is a priori well-defined for γ outside the real line, which is the reason for the presence of the additional limit lim η 0 ↓0 (on a regular graph, we could directly take η 0 0, because we know that the Green function on T q has a finite limit as η 0 ↓ 0).

Note that for regular graphs, Φ N γ (x, x)

1 N (corresponding to R 0 in the theorem) is the uniform measure; as we have seen, the result implies that for any given a N :

V N → C, x∈V N a N (x) φ (N) j (x)
2 is close to the uniform average 1 N x∈V N a N (x) for most j. For non-regular graphs, or in the presence of a potential W N , it no longer holds true that Φ N γ (x, x)

1 N . In fact, Φ N γ (x, x) is not an explicit object, which makes the theorem stated above not fully satisfactory (see § . for an explicit calculation in another special case). To see that the theorem can truly be interpreted as a delocalization result, we can show that for a N 1 Λ N , the indicator function of a

set Λ N ⊂ V N of size ≥ αN, 0 < α ≤ 1, x∈Λ N Φ N γ (x, x)
will always be bounded below by some c α > 0, with c α depending only on α. This implies the following corollary, which is analogous to (but less precise than) Theorem . . , saying that the mass of |φ (N)

j (x)| 2 on a macroscopic set is bounded below. C . . (A -S , [ ]). -Let (G N , W N
) be a sequence of finite coloured graphs as above, and assume that conditions (BST), (Green) and (EXP) are satisfied. Let (φ

(N) j ) N j 1 be an orthonormal basis of eigenfunctions of H G N for 2 (V N ) with eigenvalues (λ (N) j ) N j 1 .
For some technical and unclear reason, we also need to assume that φ (N) j are real-valued. If R 0, this assumption is not necessary.

For any

0 < α ≤ 1, there exists c α > 0 such that, if Λ N ⊂ V N is a sequence of subsets such that |Λ N | ≥ αN, 1 N j ∈ [1, N] ; λ (N) j ∈ I, x∈Λ N φ (N) j (x) 2 < c α ----→ N→+∞ 0. ( . )
In other words, for most indices j, we have

x∈Λ N |φ (N) j (x)| 2 ≥ c α .

. . . Discussion of assumptions

An assumption about the spectral gap (equivalently, the strong connectedness of the graphs), such as (EXP), seems a reasonable replacement for the ergodicity assumption in the Shnirelman theorem. Obviously, quantum ergodicity does not hold for disconnected graphs. On the other hand, assuming that the spectral gap is fixed is certainly too strong, a careful study of the proof reveals that one may allow the spectral gap to decay very slowly. Concrete examples reveal additional subtleties that would deserve further investigation: for instance, Laplacians on discrete tori have a spectral gap decaying quite quickly (polynomially with N). For these, eigenfunctions are explicit (plane waves of frequency λ, and linear combinations thereof) and one can prove that quantum ergodicity holds if the test operator K N is a multiplication operator. However, it does not hold in the form stated above if K N is a derivation operator. This is due to the fact that derivation operators commute with the Laplacian in this case.

As we shall see, (Green) implies, in a very strong manner, that the spectrum of the infinite Schrödinger operator H A + W on 2 (T) is purely AC in the interval I. This is quite reasonable, as AC spectrum is usually interpreted as meaning "delocalization" in the literature on Anderson localization. Our result is indeed a delocalization result: it says that, if a sequence of finite systems converges to an infinite one having purely AC spectrum, then the eigenfunctions of the finite systems are delocalized. Assumption (BST), according to which our graphs have few short cycles, seems to be of a merely technical nature, and we would like to work without it. However it is crucial in many estimates. Intuitively, when we study quantum dynamics on a graph, the presence of short cycles allows the propagating wave to come back where it started and interfere with itself. These interferences can be constructive or destructive; they involve a number of contributions growing exponentially in time, and understanding how they add up is usually intractable. Forbidding short cycles is a way to avoid that problem.

Exhibiting AC spectrum for discrete Schrödinger operators is a notoriously difficult problem. Most known examples take place on trees. Section . is devoted to describing examples other than regular graphs. We also describe sequences of finite graphs converging to those and satisfying both assumptions (EXP) and (BST), thus providing examples of applications of our abstract theorem. We mention that both assumptions (EXP) and (BST) are "generic" for many random graph models, in particular, if G N is a random N-lift of some fixed G 0 ( § . . ).

. . A proof based on the non-backtracking random walk: still the regular case

The full proof of Theorem . . is too technical to be given in its entirety here.

In this section, we prove it in the case of the adjacency matrix on regular graphs (thus providing a new proof of Theorems . . and . . ). This section is adapted from the paper [ ]. In Section . , we will describe the adaptation of this new proof to general Schrödinger operators on arbitrary graphs, after [ ] and [ ].

In Theorem . . , we are interested in the eigenfunctions of the adjacency matrix A N -a self-adjoint operator on 2 (V N ) and, up to normalization, the generator of the simple random walk on G N . The new proof we present here is based on the non-backtracking random walk instead. In § . . we give the definition of this non-backtracking random walk and explain an explicit relation between its eigenfunctions and those of A N . It is thus, in principle, equivalent to study one or the other. On a tree, or a graph looking locally like a tree, the trajectories of the non-backtracking random walk are much simpler than those of the simple random walk from a combinatorial point of view, which explains the interest of working with the latter. The idea of considering a non-backtracking quantum variance for quantum ergodicity first appeared in [ ]. Note that the idea of replacing simple random walks by non-backtracking ones is also useful to solve many other problems

[ ], [ ], [ ], [ ], [ ]. multiplicity b -1 if -(q + 1) is not an eigenvalue of A, or b if -(q + 1
) is an eigenvalue of A (equivalently, if the graph is bi-partite).

In particular, the eigenvalue q of B has multiplicity 1. From formula ( . ), one sees that the tempered spectrum of A corresponds to eigenvalues of B of modulus √ q, corresponding to s ∈ iR. The untempered spectrum of A

contained in (q + 1)[-1, 1 -β] gives rise to real eigenvalues of B, contained in the interval q[-1, 1 -β ] with ( . ) 1 -β 2 (q + 1) 1 -β -(1 -β) 2 -4q/(q + 1) 2

•

The relation between eigenvalues can be obtained as a consequence of the Bass formula, that relates for all z the characteristic polynomials of A and B:

det(I |B| -zB) (1 -z 2 ) |E|-|V | det I |V | (1 + qz 2 ) -zA .

The statement can be made more precise by explicitly relating the eigenvectors of the two operators [ ], [

]. The eigenvectors of B are related to those of A as follows:

(o, i) An eigenfunction φ of A for the eigenvalue λ ±(q + 1) gives rise to the two eigenfunctions of B, f 1 (e) φ t(e) -1 φ(o(e)) and f 2 (e) φ t(e) -2 φ(o(e)), ( . ) where 1 , 2 are the two roots of q 2 -λ + 1 0.

If λ q 1/2+is + q 1/2-is then 1 , 2 q -1/2±is . The two eigenvalues of B are -1 1 , -1 2 q 1/2∓is ; with j Bf j f j .

In the particular case of the eigenvalues λ ±2 √ q of A, we get Jordan blocks of size 2 for B.

For λ ±(q + 1) the formulas remain true (with 1 ±q, 2 ±1), but one has f 2 0.

Note that these functions of B (together with the trivial eigenfunctions, i.e. constant functions, as well as alternate functions in the case of bi-partite graphs) generate the subspace F ⊂ 2 (B), generated by functions that depend only on the origin and functions that depend only on the terminus. This space is (2|V | -1)-dimensional in the non-bi-partite case, and (2|V | -2)-dimensional in the bi-partite case.

(ii) The eigenvalues ±1 of B correspond, respectively, to odd and even solutions of o(e) x f (e) 0 (for every vertex x).

The eigenfunctions of the family (ii) are automatically orthogonal to the subspace F. In (i), eigenfunctions of B stemming from different eigenvalues λ of A are orthogonal; the two eigenfunctions f 1 , f 2 stemming from the same λ are not orthogonal. However, in an orthonormal basis ( f 1 , f

2 ) of Span( f 1 , f 2 ), the matrix of B is triangular, with q 1 , q 2 on the diagonal. The calculation of the matrix of B * B in such an orthonormal basis reveals that it has only two eigenvalues q 2 and 1. The eigenvectors of B * B for the value q 2 are exactly the functions f such that Bf 2 (B) q f 2 (B) , and they are easy to identify: they are the functions such that f (e) only depends on t(e).

. . . Mock quantization procedure

To relate "classical" and "quantum" dynamics (whatever that means here) we need to find a way to connect classical observables (i.e. functions on phase space) and quantum observables (i.e. operators). On R d this was done thanks to the quantization procedure ( . ), and on the regular tree T q we proposed the formula ( . ). Here, we do this in a particularly naive way.

Associated to G Γ\T q , we define for every integer m ≥ 1 the space H m (Γ) of functions K : B(T q ) × B(T q ) → C such that: 

K(b, b ) 0 → B m-1 (b, b ) 0 (in
B(T q ), for all γ ∈ Γ, K(γ • b, γ • b ) K(b, b ).
In the case m 1, the first condition means that K is a diagonal operator in the basis (δ b ). Given that on the tree T q , the initial and final data b, b determine

a unique non-backtracking path (b 1 , b 2 , . . . , b m ) such that b 1 b, b m b ,
we can see K as a function on B m (T q ), the set of non-backtracking paths

(b 1 , b 2 , . . . , b m ) of length m.
The second condition means that K descends to the quotient B m (G) Γ\B m (T q ), which is the set of non-backtracking paths of length m in G. We will often denote B m for B m (G).

Odd means f ( e )f (e) and even means f ( e ) f (e), for every bond e.

The function K can be used to define operators K T q on 2 (B(T q )) and K on 2 (B), namely the operators defined in the canonical basis by ( . )

δ b , K T q δ b 2 (B(T q )) K( b , b ) for all b , b ∈ B(T q ), δ b , Kδ b 2 (B) γ∈Γ K( b , γ • b ) for all b, b ∈ B Γ\B(T q ),
where b , b stand for representatives of b, b in B(T q ). Note that if the injectivity radius of o(b) is greated than m, there is actually at most one non-vanishing term in the sum ( . ). This is a place where assumption (BST) plays an important role.

. . . Elements of proof

We try to subdivide the proof into four steps to highlight analogies with § . Now G G N is a member of the family of graphs for which we want to prove Theorem . . . Accordingly, V V N , E E N , Γ Γ N , etc.

We consider an orthonormal family (φ j ) of 2 (V) consisting of tempered eigenfunctions of A, for the eigenvalues λ j ∈ (-2 √ q, 2 √ q ). To simplify the discussion we simply ignore the untempered spectrum, by virtue of Proposition . . this is a harmless simplification if (BST) is satisfied.

Following the discussion of § . . , define f j (e) φ j t(e)j φ j o(e) ( . ) where j is a root of q 2 -λ j + 1 0. If λ j q 1/2+is j + q 1/2-is j , then j q -1/2±is j .

To fix the notation, say j q -1/2-is j with Im j ≤ 0. Then f j is an eigenfunction of B for the eigenvalue µ j q 1/2+is j 1 j . Also define

f * j (e) ι f j (e) φ j o(e) -j φ j t(e) ( . )
where, recall, ι is the edge-reversing operator. Now f * j is an eigenfunction of the adjoint B * for the eigenvalue µ j . Note that, as soon as µ j µ j , i.e. λ j {±2 √ q }, then f * j and f j are automatically orthogonal.

First step. -For K ∈ H m (Γ) (m ≥ 1 fixed) we introduce the "non-backtracking quantum variance "

Var nb (K)

1 |V | j f * j , K f j .
Here . , . is the scalar product in 2 (B) (with the counting measure).

Note the fact that Var nb (1) 0 (for 1 the identity operator), which is unusual compared with § . or § . . . We prove:

T . . (adapted from [ ] and [ ])

. -Assume G N Γ N \T q is a sequence of regular graphs satisfying both (EXP) and (BST). Let m ≥ 1 be fixed, and for each

N consider K N ∈ H m (Γ N ) such that sup b,b |K N (b, b )| ≤ 1. Then lim N→+∞ Var nb (K N ) 0.
The proof that Theorem . . implies Theorem . . will be skipped. It uses the explicit relation ( . ) between the non-backtracking eigenfunctions f j and the original φ j , and Assumption (EXP) allows to "invert" this relation with constants uniform in N.

Note that, in the third step to come, it will also be necessary to consider operators K λ N depending in a continuous fashion on the real parameter λ, and we will denote

Var nb (K λ N ) 1 N N j 1 f * j , K λ j N f j .
Second step. -We use the eigenfunction property to note that the quantum variance is invariant under a certain "quantum dynamics". Here, using B j f j f j and B * j f * j f * j , we can write that

f * j , K f j f * j , ( ¯ j B) n K(B j ) f j ( . )
for any pair of integers n, . In a sense, the operator B j plays the role of a mock wave group, as B propagates at speed 1 and the factor j ensures preservation of the norm. It is reminiscent of the propagator e it √ -∆ that we appeared in the Egorov Theorem . . . The word "variance" is perhaps unfortunate here as we have removed the square from the terms in the sum, for convenience reasons.

We will use ( . ) in the following averaged form: for all T,

f * j , K f j f * j , 1 T T-1 0 ( ¯ j B) T-1-K(B j ) f j . ( . )
Third step. -Similarly to the third step in § . , we need to find an upper bound on Var nb ( K) in terms of the 2 -norm of the function K. The required technical statement is precisely the following:

P . . . -Assume (BST). Fix n, m ∈ N * . Let K (N) 1 , . . . , K (N)
n ∈ H m (Γ N ) be a bounded family, and let c 1 , . . . , c n : R → C be a family of continuous functions.

Then

lim sup N→+∞ Var 2 nb n i 1 c i (λ)K i ( . ) ≤ C lim sup N→+∞ 1 N ∫ b,b ,o(b)∈ D N n i 1 c i (λ)K i (b, b ) 2 m(dλ)
where m(dλ) is the measure appearing in the Kesten-McKay law ( . ), C is a universal constant (in particular, not depending on the integer m), and D N is a fundamental domain for the action of Γ N on T q .

To prove the result, we introduce the notation

K λ (b, b ) n i 1 c i (λ)K i (b, b ).
For simplicity we drop the hats from the operator notation, and we write

Var 2 nb (K λ ) 1 N 2 N j 1 f * j , K λ j f j 2 ≤ C N N j 1 K λ j f j 2 2 C N N j 1 f j , K λ j * K λ j f j
by applying two Cauchy-Schwarz inequalities and using the fact that f * j 2 is bounded by a constant C. Introduce the operator U such that Uφ j f j , given by formula ( . ). In other words, for a general ψ,

Uψ(b) ψ t(b) -( (A)ψ) o(b) ,
where (A) is defined by functional calculus, being the function defined by (λ(s)) q -1/2-is . We can thus write

Var 2 nb (K λ ) ≤ C N N j 1 f j , K λ j * K λ j f j ( . ) C N N j 1 φ j , U * K λ j * K λ j Uφ j 2 (V N ) C N x∈V(G N ) (U * K * KU)(x, x)
where we wrote U * K * KU for the operator φ j → U * K λ j * K λ j U φ j , which again could also be expressed in terms of the operators c i (A), defined by functional calculus. We used the fact that φ j is an orthonormal basis to say that

N j 1 φ j , U * K λ j * K λ j Uφ j x∈V(G N ) (U * K * KU)(x, x).
Up to an approximation (using the Stone-Weierstrass theorem), we may replace the operators (A) and c i (A) by polynomials in A, say of degree p. The calculation of U * K * KU(x, x) then only takes place in a neighbourhood of fixed size (≤ 4p + 2m + 8) of x in G N . For most x, such neighbourhood is a piece of regular tree, so we can rewrite ( . ) as an expression on T q , modulo an error that only involves cycles of length ≤ 4p + 2m + 8 and disappears at the limit.

In other words, lim sup

N→+∞ 1 N x∈V(G N ) (U * K * KU)(x, x) lim sup N→+∞ 1 N x∈ D N ( U * K * K U)( x, x)
where U is defined similarly to U but on 2 (T q ). Finally we rewrite the last expression using the spectral decomposition ( . ) of the Laplacian on T q :

1

N x∈ D N ( U * K * K U)( x, x) ( . ) 1 N ∫ x∈ D N U * K λ * K λ U( x, ỹ)Φ λ d( x, ỹ) m(dλ) 1 N ∫ b 1 ,b 2 ∈B(T q ) o(b 1 )∈ D N (K λ * K λ )(b 1 , b 2 )( UΦ λ U * )(b 2 , b 1 )m(dλ).
Now, there are two important remarks:

Unfortunately we could not do this directly with the f j since they are not orthonormal.

Because K ∈ H m (Γ), for (K λ * K λ )(b 1 , b 2 ) to be non-zero, there must exist b such that B m-1 (b 1 , b) 0 and B m-1 (b 2 , b) 0. Thus, writing the oriented edges b 1 (x 1 , y 1 ) and b 2 (x 2 , y 2 ), unless b 1 b 2 , these four points are ordered as follows on a certain geodesic path: (x 1 , y 1 , y 2 , x 2 ). In other words y 1 , y 2 lie inside the geodesic segment (x 1 , x 2 ), and are respectively at distance 1 of x 1 , x 2 . We then have d(y 1 , x 2 ) d(x 1 , y 2 ) n -1 and d(y 1 , y 2 ) n -2 if we call n the distance from x 1 to x 2 .

An explicit calculation shows that

UΦ λ U * (b 2 , b 1 ) qΦ λ d(x 1 , x 2 ) -(λ)Φ λ d(y 1 , x 2 ) -(λ)Φ λ d(x 1 , y 2 ) + Φ λ d(y 1 , y 2 ) qΦ λ (n) -λΦ λ (n -1) + Φ λ (n -2) 0,
the last equality coming from the recurrence relation ( . ). This miracle shows that the only contributions to ( . ) come from the diagonal terms, and it is easily seen that ( UΦ λ U * )(b 1 , b 1 ) is a bounded quantity. Putting everything together,

lim sup Var 2 nb (K λ ) ≤ lim sup C N ∫ b 1 ,o(b 1 )∈ D N (K λ * K λ )(b 1 , b 1 )m(dλ) C N ∫ b 1 ,b,o(b 1 )∈ D N K λ (b 1 , b) 2 m(dλ),
which finishes the third step.

Fourth step. -Putting ( . ) into the result of Proposition . . , we obtain for any T lim sup

N→+∞ Var 2 nb (K) ≤ lim sup N→+∞ C N ∫ [-2 √ q,2 √ q ] ( . ) b,b ∈B(T q ) o(b)∈ D N 1 T T-1 0 ¯ (λ)B T-1-K B (λ) 2 (b, b )m(dλ).
Now, remember that we see K as a Γ N -invariant function on B m (T q ), in other words, as a function on B m . Developing the square of the sum in ( . ), we find that it can be rewritten as

∫ [-2 √ q,2 √ q ] 2 T 2 0≤ ≤ ≤T-1 K, (q 2is(λ) S) -K 2 (B m ) m(dλ) ( . )
where as always, q 1/2+is(λ) + q 1/2-is (λ) λ, and the norm in 2 (B m ) is with respect to the normalized uniform measure. The operator Sis the same as the transfer operator appearing in ( . ), restricted to 2 (B m ), in other words to m-cylindrical functions:

SK(x 0 , x 1 , ., x m )

1 q y K(y, x 0 , ., x m-1 )
where the sum ranges over the y such that y, x 0 , ., x m-1 is non-backtracking.

We know explicitly the spectrum of S: in the case m 1, the operator S on 2 (B 1 ) coincides with q -1 B * q -1 ιBι, and thus its spectrum and eigenfunctions were entirely described in § . . . The spectrum of Son 2 (B 1 ) is the union of a real spectrum and a spectrum contained in the disc of radius q -1/2 . The operator S is not diagonalizable in an orthonormal basis, however there is an orthonormal basis where S is represented by triangular blocks of size at most , with eigenvalues j and (q j ) -1 . In addition to that, there is an orthonormal family of eigenvectors associated to ±1/q. The j are either real, in this case they are contained in {1} ∪ [-1 + β , 1 -β ], or have modulus q -1/2 . Note also that S * m sends 2 (B m ) to 2 (B 1 ) ⊂ 2 (B m ) and has norm 1 (the injection 2 (B 1 ) ⊂ 2 (B m ) is defined by considering the space of functions depending only on the first bond). Denote 2 o (B m ) the orthogonal of constant functions in 2 (B m ). For m > 1 and k ≥ m,

S k 2 o (B m )→ 2 o (B m ) ≤ S m 2 o (B m )→ 2 o (B 1 ) • S (k-m) 2 o (B 1 )→ 2 o (B 1 ) ( . ) ≤ S (k-m) 2 o (B 1 )→ 2 o (B 1 ) ≤ C((k -m) + 1)(1 -β ) k-m .
The factor (1 -β ) k-m comes from the bound on the non-trivial eigenvalues of S, and the linearly growing term (km) + 1 comes from the fact that S is not diagonalizable in an orthonormal basis, but is represented by triangular blocks of size at most , as described above.

For k < m we can simply write S k

2 o (B m )-→ 2 o (B m ) ≤ 1. If K ∈ 2
o (B m ), ( . ) can be estimated as follows:

2 T 2 0≤ ≤ ≤T-1 K, (q 2is(λ) S) -K 2 o (B m ) ≤ 2 T 2 0≤ ≤ < +m K 2 2 (B m ) + C T 2 0≤ , +m≤ ≤T-1 ( --m)(1 -β ) --m K 2 2 (B m ) ≤ C(m, β ) T K 2 2 (B m ) .
On the other hand, for K a constant function, we have SK K and 2

T 2 0≤ ≤ ≤T-1 K, (q 2is(λ) S) -K 2 (B m ) 2 T 2 0≤ ≤ ≤T-1 q 2i( -)s(λ) K 2 2 (B m ) .
By summing the geometric series, one sees that this can be bounded above by min 1, C T | sin(s(λ) ln q)| . Note that sin(s(λ) ln q) 0 corresponds precisely to the edges of the spectrum, λ ±2 √ q, where the density of the Plancherel measure m vanishes. Finally, ( . ) is estimated by excluding the edges of the spectrum:

∫ [-2 √ q,2 √ q ] 2 T 2 0≤ ≤ ≤T-1 K, (q 2is(λ) S) -K 2 (B m ) m(dλ) ∫ [-2 √ q+δ,2 √ q-δ] • • • + ∫ |λ|∈[2 √ q-δ,2 √ q ] • • • ≤ Cδ 2 K 2 2 (B m ) + C Tδ K 2 2 (B m ) .
What we get after this last step is that, for all K,

lim sup N→+∞ Var 2 nb (K) ≤ C(m, β ) T + C Tδ + Cδ 2 lim sup N→+∞ K 2 2 (B m ) ( . )
for arbitrary T and δ. Since, by assumption, K 2 2 (B m ) is bounded, this implies that lim sup N→+∞ Var 2 nb (K) 0, proving Theorem . . . In principle, there is a fifth step that we skip here, which consists in proving that Theorem . . implies Theorem . . by inverting formula ( . ).

. . Adaptation to non-regular graphs

We now turn to the general case of Schrödinger operators on arbitrary graphs of bounded degrees; we sketch an adaptation of the arguments of § . to this more general setting. This section is adapted from the papers [ ] and [ ] with Mostafa Sabri.

. . . Local weak convergence

A coloured rooted graph (G, o, W) is a graph G (V, E) with a marked vertex o ∈ V called the root, and a map W : V → R which we see as a "colouring"; it can also be regarded as a potential on 2 (V). This is a special case of what is called a network in [ ]. All graphs are assumed to be locally finite, i.e. each vertex has a finite degree.

If G is connected, we denote the r-ball

B G (x, r) y ∈ V : d G (x, y) ≤ r ,
where d G is the length of the shortest path between x and y in G.

As in [ ], we define a distance between coloured connected graphs by ( . ) Let G * be the set of equivalence classes of connected coloured rooted graphs. Then d loc turns G * into a separable complete metric space. We may thus consider the set of probability measures on G * , denoted by P(G * ).

d loc (G, o, W), (G , o , W ) 1 1 + α , where α : sup r > 0 : ∃ graph isomorphism φ : B G (o, r ) → B G (o , r ) with φ(o) o and |W (φ(v)) -W(v)| < 1/r ∀v ∈ B G (o, r ) .
Any finite connected coloured graph (G, W), G (V, E), defines a probability measure U (G,W) ∈ P(G * ) by choosing the root x uniformly at random in V:

( . ) U (G,W) 1 |V | x∈V δ [G,x,V] .
If (G n , W n ) is a sequence of finite coloured graphs, we say that P ∈ P(G * ) is the ) which separates points, such that for all h ∈ A , ( . ) lim

local weak limit of (G n , W n ) if U (G n ,W n ) converges
n→∞ 1 |V n | x∈V n h [G n , x, W n ] ∫ G D,A * h [G, o, W] dP [G, o, W] .
The notion of Benjamini-Schramm has the following essential consequence :

P . . . -Assume (G n , W n ) ⊂ C D,A fin converges to P in the local weak sense. Let H G N A G N + W N .
If (λ (N) j ) are the eigenvalues of H G N and if f is any compactly supported continuous function on R, we have

1 |V N | j f (λ (N) j ) ----→ N-→+∞ ∫ δ o , f (A T + W)δ o 2 (T) dP([T, o, W]).
More generally,

P . . . -Assume (G n , W n ) ⊂ C D,A fin converges to P in the local weak sense. Let H G N A G N + W N .
If f is any compactly supported continuous function on R, and D ≥ 0, we have Then (G n ) satisfies (BST) iff P is concentrated on T D,A * .

1 |V N | x, y∈V N ,d(x,y)≤D δ x , f (H G N )δ y ----→ N-→+∞ ∫ z∈T,d(o,z)≤D δ o , f (A T + W)δ z 2 (T) dP([T, o, W]).
Of course the distribution of W n plays no role here, so we could have omitted the potential in this proposition.

In Theorem . . , we assume that (G N , W N ) converges, in the local weak sense, to a limiting random variable [T, o, W], and denote by P the limiting law. Thus, Tis a random graph with a random root o ∈ Tand a "random potential" W : T → [-A, A]. In particular, the definition implies that the value-distribution of W N converges to the law of the random variable W(o).

We assume that Tis P-almost surely a tree. This is equivalent to assumption (BST) of Chapter , namely that G N has "few short cycles".

. . . Assumption (Green)

We need to give details on assumption (Green). In this assumption we assume that the imaginary part of the limit Green function has inverse moments.

To state this precisely, we introduce some notation. Given a coloured tree [T, o, W], define on 2 (T) the Schrödinger operator H A+ W.

Note that it is random if [T, o, W] is. We denote its Green function by

G γ (v, w) δ v , (H -γ) -1 δ w 2 (T) .
For v, w ∈ T such that v ∼ w, denote by T (v|w) the tree obtained from T by removing the branch emerging from v that passes through w. Let H (v|w) be the restricted operator

H (v|w) (u, u ) H(u, u ) if u, u ∈ T (v|w) , 0 otherwise. 
( . )

The corresponding Green function is denoted G (v|w) (.,. ; γ), say for γ R. We then put

ζ γ w (v) -G (v|w) (v, v; γ) ( . )
and assume: This is a harmless assumption, as it is always satisfied for a subsequence.

There is a non-empty open set I such that for all s > 0, sup λ∈I η 0 ∈(0,1)

E o : o ∼o Im ζ λ+iη 0 o (o ) -s < ∞ . (Green)
Here, E is integration with respect to P, so we integrate over the coloured rooted trees [T, o, W]. It can be shown that condition (Green) implies that for P-a.e. [T, o, W], the limiting Schrödinger operator H has pure AC spectrum in I.

. . . Remark. -In the case of regular graphs treated in the previous section, [T, o] is deterministic, equal to the regular tree [T q , o] with an arbitrary root, and W 0. For γ R, it can be shown that ζ γ w (v) is independent of (v, w), equal to one of the roots of qζ 2 -γζ + 1 0, more precisely, the root with negative imaginary part if Im γ > 0 (see ( . )). For γ approaching a real value λ, we see that the two roots become real if |λ| ≥ 2 √ q, and purely imaginary if |λ| < 2 √ q. In fact, ζ will then approach (λ) (previously defined in § § . . -. . ). Condition (Green) will hold where Im ζ γ stays away from zero, that is, for any open interval I such that Ī ⊂ (-2 √ q, 2 √ q ).

. . . Remark. -We actually need (Green) only for all 0 < s ≤ s 0 , for some finite s 0 which in principle could be made explicit (s 0 30 should be largely sufficient).

Finally, we need to give details on the function Φ N γ (x, y) appearing in Theorem . . . Let G N ( V N , E N ) be the universal cover of G N (so G N T q in case the graphs are (q + 1)-regular). Let

H N A N + W N on 2 ( V N ),
where A N is the adjacency matrix of G N , and W N is the lift of W N . We denote the corresponding Green function by

G γ N (x, y) δ x , ( H N -γ) -1 δ y 2 ( V N ) . ( . ) Then Φ N γ (x, y) Im G γ N ( x , y ) x∈V N Im G γ N ( x , x )
, where x , y ∈ V N are lifts of x, y ∈ V N satisfying d G N ( x , y ) d G N (x, y).

In the very special case of an adjacency matrix over regular graphs, this reduces to

Φ N γ (x, y) 1 N Im G γ ( x , y ) Im G γ ( x , x ) , ( . )
and this quotient of Green functions is just another expression for the spherical function ( . ).

. . . The proof

We try to adapt the proof we gave in § . for the adjacency matrix on a regular graph. Like in ( . ) we try to convert the eigenfunctions (φ (N) j ) N j 1 into eigenfunctions of some non-backtracking operator. We use notation similar to § . . :

G G N (V N , E N ) Γ N \ G N where G N is the universal covering tree of G N , B m B m (G N ) is the set of non-backtracking paths of length m in G N , in particular B B 1 B 1 (G N )
is the set of bonds (oriented edges) of G N . We tend to omit the N-dependence when writing V, E, B, B m , etc.

For ϕ ∈ C V , define τ -ϕ, τ + ϕ ∈ C B 1 by (τ -ϕ)(x 0 , x 1 ) ϕ(x 0 ) and (τ + ϕ)(x 0 , x 1 ) ϕ(x 1 ).

Let us try to find a transformation similar to ( . ),

φ j f j τ + φ j -ζ j τ -φ j
(where ζ j is now a function on B instead of being a constant) such that Bf j is proportional to f j . While this appears to be impossible if we require Bf j / f j to be a constant function, we find that if ζ j satisfies the system of |B| algebraic equations

λ j W N (v) + u∼v,u w ζ(v, u) + 1 ζ(w, v)
for all (w, v) ∈ B , ( . ) then Bf j ζ -1 j f j . Thus we want to examinate the existence of solutions for these algebraic equations, as well as their behaviour as N → +∞.

We recognize in ( . ) the resolvent identity for the Schrödinger operator

H N A N + W N
on the universal cover G N of G N . More precisely, for γ ∈ C \ R, take the Green

function ζ γ (y, x) -δ x , ( H ( x | y ) N -γ) -1 δ x
where the operator H

( x | y ) N
is the restriction of H N to a half-tree, defined as in ( . ). It satisfies the recursion relation

γ W N (v) + u∈N v \{w } ζ γ (v, u) + 1 ζ γ (w, v) , ( . )
as follows from the Schur complement formula or the resolvent identity [ , Proposition . ]. This formula originates in the simple fact that, when we remove a point from a tree, we disconnect it into several subtrees; it is ubiquitous in the spectral analysis of Schrödinger operators on trees.

Note that ( . ) is exactly what is needed in ( . ). As we do not know if ζ γ (y, x) has a finite limit as γ approaches the real axis, we let γ j λ j + iη 0 for some fixed (arbitrarily small) η 0 > 0. We henceforth denote

ζ γ y (x) : ζ γ (y, x) and let      f j (x 0 , x 1 ) φ j (x 1 ) -ζ γ j x 0 (x 1 )φ j (x 0 ) , f * j (x 0 , x 1 ) φ j (x 0 ) -ζ γ j
x 1 (x 0 )φ j (x 1 ) .

( . )

Except for the small parameter η 0 > 0, these functions are exact analogues to the functions f j , f * j defined in ( . ) and ( . ). They satisfy ζ γ j Bf j f jiη 0 τ + φ j and ιζ γ j B * f * j f * jiη 0 τ -φ j , where ιζ γ (x 0 , x 1 ) ζ γ

x 1 (x 0 ). As we let η 0 ↓ 0 at the end of the proof, the terms proportional to η 0 may be considered as negligible, and we omit them in this sketch of proof (in the regular case, we can take η 0 0 from the start, since ζ γ is known to have a finite limit when γ approaches the real axis, see Remark . . ).

Unlike the case of regular graphs, the functions ζ γ j now depend on N (although this is absent from our notation) and we need to control their behaviour as N → +∞. From such K, we can build an operator K on C B(G N ) like in ( . ). We tend to drop the hat from the notation, and to identify the objects K and K.

We let

Var nb (K)

1 N λ j ∈I f * j , K f j .
What we prove is: This implies that

f * j , K f j f * j , (B ιζ γ j ) k K(ζ γ j B) f j
for any integers k, , which replaces ( . ). Copying ( . ), we write Var nb (K)

1 N λ j ∈I f * j , 1 T T-1 k 0 (B ιζ γ j ) T-1-k K(ζ γ j B) k f j .
Third and Fourth step. -This part is similar to the third and fourth step of § . . , with much heavier notation. Skipping details, we are able to obtain an upper bound similar to ( . ):

lim sup N-→+∞ Var nb (K) 2 ≤ lim sup N-→+∞ C N ∫ Re γ∈I Im γ η 0 ( . ) b,b ∈B( GN ) o(b)∈ D N α γ (b, b ) 1 T T-1 k 0 B ιζ γ T-1-k K(ζ γ j B) k l(b, b ) 2 dγ
with the notable appeareance of a weight α γ (b, b ) > 0 depending on γ (and explicit as a function of ζ γ ). Here D N is a fundamental domain for the action of Γ N on the universal covering tree G N . Developing the square on the right-hand side of ( . ), we find that lim sup

N-→+∞ Var nb (K) 2 ( . ) ∫ Re γ∈I Im γ η 0 1 T 2 k ≤k≤T-1 (S γ e iθ γ ) k-k C γ K, C γ K 2 (B k ,ν γ ) + k<k ≤T-1 C γ K, (S γ e iθ γ ) k -k C γ K 2 (B k ,ν γ ) dγ ,
where S γ is the transfer operator C B k → C B k , defined by

(S γ K)(x 0 ; x k ) |ζ γ x 1 (x 0 )| 2 |Im ζ γ x 1 (x 0 )| x -1 ∼x 0 x -1 x 1 Im ζ γ x 0 (x -1 ) • K(x -1 ; x k-1 )
and the function e iθ γ is a function of modulus 1, defined by e iθ γ (x 0 , . . . ,

x k ) ζ γ x 0 (x 1 ) -1 ζ γ x 0 (x 1 ) . Finally C γ (x 0 , . . . , x k ) -1/(2 g γ N (x 0 , x k )) is the inverse on G N of the Green function ( . ).
The operator S γ is sub-stochastic; in fact, it is exactly stochastic if we take η 0 0, as it follows from the relation

u∈N v \{w } Im ζ γ v (u) |Im ζ γ w (v)| |ζ γ w (v)| 2 -η 0 ( . )
which is a direct consequence of the recursion relation ( . ) satisfied by the Green function. In ( . ), the measure ν γ is the invariant probability measure for the Markov chain on B k defined by S γ .

It is known by Wielandt's theorem that adding phases to a matrix with positive entries strictly diminishes its spectral radius, unless θ γ is cohomologous to a constant; so it should be expected that S γ e iθ γ decorrelates faster than S γ . We do not apply directly Wielandt's theorem, because we are interested in operator norms, instead of spectral radii. Roughly speaking, using assumption (Green) to control the extreme values of ζ γ , and (EXP) to control spectral gaps, what we prove is that:

S γ has norm 1 (as it is stochastic) and has a spectral gap on the orthogonal of constants;

typically, the presence of the phase e iθ γ will strictly diminish the norm of the fourth power (S γ e iθ γ ) 4 , so each inner product in ( . ) decays exponentially in kk ; for non-typical situations, we do not control individual terms, but show instead that the phase e iθ γ induces cancellations between those terms, so that the mean sum of inner products decays with T, except when the potential W E 0 is deterministic and γ approaches E 0 (in that case, we discard that isolated value from our analysis).

Hence in any case, we finally establish a bound of the following form: for some α ∈ (0, 1), lim sup

N-→+∞ Var nb (K) 2 C(β) T α lim sup N-→+∞ K 2 ∞ ( . )
which replaces ( . ) Since K ∞ is bounded, and T was arbitrary, we have proven Theorem . . , namely that Var nb (K N ) → 0 as N → ∞, for any bounded sequence K N in H m (Γ N ), m fixed.

What remains to be done is to connect this with the main result ( . ) by inverting the formulas ( . ) that relate the original eigenfunctions to the non-backtracking ones. We skip this part of the proof.

. . Trees of finite cone type and their stochastic perturbations

So far we derived a very general "black box" result asserting that if a sequence of Schrödinger operators on finite graphs converges to a Schrödinger operator on a tree with pure AC spectrum, then quantum ergodicity holds. We need to find examples other than the one already covered by Theorem . . .

. . . Anderson model on the regular tree

Let T q be the (q + 1)-regular tree. Consider on T q a random Schrödinger operator H A+ W,

where ( W(v)) v∈T q are i.i.d random variables, representing in physics a "disorder" or "impurities", and > 0 is a parameter allowing to tune the strength of the disorder. Under very weak assumptions on the law of W(v) (existence of a second moment is enough), it was shown by Klein [ ] that, given 0 < E 0 < 2 √ q, and for all small enough, the spectrum of H in [-E 0 , E 0 ] is a.s. purely AC. This can be strengthened to obtain condition (Green) if we put stronger assumptions on the law of W(v):

(POT)

The ( W(v)) v∈T q are i.i.d. with common distribution ν which has a compact support supp ν ⊆ [-A, A], and is Hölder continuous, i.e. there exist C > 0 and b ∈ (0, 1] such that for any bounded interval J ⊂ R,

ν(J) ≤ C| J | b .
Under this assumption, an argument from [ ] shows that the bound (Green)

holds on [-E 0 , E 0 ], if E is the expectation with respect to the random potential on T q and > 0 is small enough. Thus, Theorem . . applies on the interval I [-E 0 , E 0 ], for any sequence (G N , W N ) of finite coloured graphs such that:

(G N ) is a deterministic sequence of graphs satisfying assumptions (BST) and (EXP), (G N , W N ) converges to [T q , o, W], in the sense of Benjamini-Schramm, the law of ( W(v)) v∈T q satisfies (POT), and is small.

For example if we choose W N (W N (x)) x∈V N a N (x). Then, given 0 < E 0 < 2 √ q, and for all small enough, for almost all realizations of (W N ),

1 N λ (N) j ∈[-E 0 ,E 0 ] φ (N) j , a N φ (N) j 2 (V N ) -a N ----→ N→+∞ 0
where the (φ (N) j ) are an orthonormal basis of eigenfunctions of A N + W N , and the λ (N) j are the eigenvalues.

. . . Trees of finite cone type

We used Theorem . . in the previous subsection to prove an aspect of spatial delocalization for the Anderson model on T q . We now show that Theorem . . can also be used to study delocalization on some irregular trees T. We focus here on the simpler case of the adjacency matrix on T. One can show that every finite directed graph (G, x 0 ) has a cover (T, x 0 ) which is a tree of finite cone type, and conversely, every tree of finite cone type (T, o) covers a finite directed graph (G, x 0 ). Universal covers of finite undirected graphs (sometimes called uniform trees or quasi-homogeneous trees) are also of finite cone type; see [ ].

We may state the following particular case of Theorem . . : C . . . -Let (G N ) be a sequence of graphs of degree bounded by D, converging to a tree Tof finite cone type in the local weak sense. Assume the adjacency matrix on Tsatisfies (Green) on some open set I, and assume the (G N ) satisfy (EXP). Then for any orthonormal basis (φ (N) j ) of eigenfunctions of A G N , quantum ergodicity holds in I, that is, ( . ) holds true.

More precisely, we mean that (G N ) has a Benjamini-Schramm limit P which is concentrated on {[T, v]} v∈T (where Tis fixed and each (T, v) is of finite cone type), and (Green) is considered with respect to this measure P.

To show that the previous result is non-void, we dedicate § § . . -. . to show that there exist trees T of finite cone type (other than T q ) satisfying (Green) in large regions of the spectrum, and sequences (G N ) which satisfy (EXP) and converge to Tin the local weak sense.

. . . Assumption (Green) for trees of finite cone type

There are already some results in the literature which consider the problem of spectral delocalization on irregular trees. In [ ], conditions are given to exclude point spectrum in uniform trees. The paper [ ] studies a different class of trees of finite cone type, and achieves a good control on the Green function of A T , which suggests that assumption (Green) holds true through most of σ(A T ). However, it seems that the trees of [ ] are never unimodular . If the reader is not familiar with this notion, we just mention that the assumptions of Corollary . . imply that the limiting tree Tmust be unimodular. So our aim in what follows is to prove that assumption (Green) holds true on large regions of the spectrum of trees of finite cone type, putting less restrictive assumptions than in the paper [ ]. Concrete examples which fit the framework of Corollary . . will then be provided.

Consider a finite set of labels A {1, . . . , m } and a matrix M (M j,k ) j,k∈A , where M j,k ∈ N. A tree T(M, j) is constructed by asserting that the root has the label j, and that each vertex with label k has M k,l children of label l. Such trees have m cone types, and any tree of finite cone type arises in this fashion.

We shall make the following assumption:

We say that a (fixed, deterministic) tree Tis unimodular if there exists a unimodular measure P which is concentrated on {[T, v]} v∈T . Here, P is unimodular if it satisfies the "mass-transport principle", see [ ] for details.

(C )

We have M 1,1 0 (and M 1,k > 0 for at least one k). Moreover, for any k, l ∈ {2, . . . , m }, there is n n(k, l) such that (M n ) k,l ≥ 1.

We could also consider the variant where M 1,1 is arbitrary while the condition holds on the full set k, l ∈ {1, . . . , m }. This is called (M ) in [ ].

Assumption (C ) says that all cone types arise at some point as offspring of a given cone, except for the cone with label 1 which plays a special role and may not reappear. In practice, this condition happens for the cone at the root, and is necessary if we want to allow for examples as basic as the regular tree T q . The latter has two cone types : the cone at the origin has (q + 1) children while any other cone has q children. Another such example is the (p + 1, q + 1)-biregular tree T p,q . More examples will be given later.

A tree of finite cone type T(M, 1) with associated m × m matrix M (M j,k )

gives rise to the following system of polynomial equations Such trees are unimodular if the root is chosen according to the probability measure

m k 1 M j,k h k h j -γh j + 1 0 , j 1, . . . , m ( . ) where (h 1 , . . . , h m ) ∈ C m and γ ∈ C is fixed; cf. [ ]. If Im γ > 0,
P c b + c δ [T ,•] + b b + c δ [T ,•] . ( . )
They can also be represented by cone matrices. For example, if all entries of A N are nonzero, then (T , •) corresponds to the cone matrix

M           0 a 0 b 0 0 a 0 b 0 0 a 0 b 0 0 0 c 0 d 0 0 c 0 d          
, where e e -1 for e a, b, c, d.

Here,

ζ γ 1 -G γ (•, •) while the ζ γ j for j 2, . . . , 5 correspond to ζ γ • (•), ζ γ • (•), ζ γ • (•) and ζ γ • (•)
, respectively. In principle, these can be computed by hand on explicit examples. Taking a root at random according to the probability measure ( . ), the expectation appearing in (Green) reads

E y∼o |Im ζ γ o (y)| -s c b + c a |Im ζ γ • (•)| -s + b |Im ζ γ • (•)| -s + b b + c c |Im ζ γ • (•)| -s + d |Im ζ γ • (•)| -s . One checks that M satisfies (C ) (with n(k, l) 2) if min(a, b, c, d) ≥ 2.
So applying Proposition . . , we see that (Green) holds on T endowed with P, on the set σ(A T ) \ I c,C . Note that one may also use a larger number of colours. For example, with three colours, a 3 × 3 matrix A N [a i j ] with analogous rule gives rise to a unimodular tree as long as a 31 a 23 a 12 a 32 a 13 a 21 . Note that if we construct an n-coloured tree following a "neighbour matrix" A N of size n × n, then for any choice of the root the associated "cone matrix" M appearing in (C ) is of size at most (n 2 + 1) × (n 2 + 1).

. . . About assumptions (EXP) and (BST)

It is known that any unimodular measure concentrated on (coloured) rooted trees is sofic [ ], [ ]. By definition, this means that if we have a random unimodular tree T, there is a sequence (G N ) which converges to T. Can we ensure, in addition, that (G N ) are expanders? We describe below a few such situations.

Let G 0 be a given connected graph with minimal degree d ≥ 3. If G N is a random N-covering of G 0 , it is known that asymptotically almost surely (a.a.s.), (G N ) satisfies (EXP). This is a standard combinatorial argument (see [ , § . ] for a counting argument of a same flavor in the case of random regular graphs).

Substantially stronger arguments [ ], [

] give explicit bounds on the spectral gap of G N in terms of the spectral radius ρ P of the universal cover G 0 .

Here ρ P is more precisely the spectral radius of the Laplacian It is also easy to see that a random N-lift has few short cycles a.a.s., cf. [ ], and thus converges to the tree G 0 . More precisely, (G N ) converges to the uniform measure P

(P f )(x) 1 d(x) y∼x f (y), which is self-adjoint on 2 ( G 0 , d) (i.
1 |G 0 | x∈G 0 δ [ G 0 ,x] .
Summarizing, we have shown that if T is any uniform tree satisfying (C ), then by § . . it satisfies (Green) on the large set σ(A T ) \ I c,C , and by § . . , there exists a sequence (G N ) satisfying both (EXP) and (BST) which converges to T. Corollary . . thus applies to this nontrivial context. As a bonus, we have seen that G N can be chosen as N-lifts of a finite graph, and that a random N-lift will do the job with high probability.

. . . Condition (Green) on random trees

As we mentioned in § . . in case of the Anderson model on T q , if the random variables ( W(v)) v∈T q satisfy condition (POT), then assumption (Green) holds true for H A+ Won any closed subset of (-2 √ q, 2 √ q ), provided is small.

Note that for 0 (Green) holds precisely on (-2 √ q, 2 √ q ). This suggests the following general question:

Q . -Is Assumption (Green) stable under small perturbations? That is, if a coloured random rooted tree (T, o, W) satisfies (Green) and we add a small random perturbation to W, will (Green) still hold?

Note that the spectrum of the Anderson model H on Z is pure point for any 0, so the answer is negative in this case. It seems reasonable to assume the average degree of the root is strictly larger than 2 in order to get a positive answer.

One can also consider assumption (Green) for different models:

Q

. -Does assumption (Green) hold for small enough in the following models?

(a) The Anderson model on T q where the random potential only takes the values 0 and 1 with probability 1and , respectively.

(b) A Galton-Watson tree where the number of children is either q 1 or q 2 with probability 1and , respectively, and the unimodular variant of this model.

In both models, we make a strong perturbation (varying W from 0 to 1 or changing the tree configuration), but with small probability. In contrast, we studied in § . . the effect of adding a uniformly small perturbation.

The argument given by Klein [ ] can be adapted to the first model to derive positive moment bounds on the Green function. It seems this argument can also be adapted to the second model, again for positive moments; see also [ ]. However, we do not know if (Green) holds for these models, that is, if we also have negative moments. Note that for the first model, the ( W(v)) do not satisfy (POT), since they follow the Bernoulli distribution ν

(1 -)δ 0 + δ 1 .

In [ ], we introduced an additional assumption on T and, using arguments borrowed from Keller, Lenz and Warzel [ ],

were able to answer the question of stability of (Green) in that case:

(C ) For each k ∈ A, there is k ∈ A with M k,k ≥ 1 such that for any l ∈ A: M k,l ≥ 1 implies M k ,l ≥ 1.
We proved the following: Assume T satisfies conditions (C ) and (C ). Consider the random Schrödinger operator H A+ W, with the law of W satisfying (POT). Then for any compact I ⊂ σ(A) \ I c,C , Assumption (Green) hold on I if > 0 is small enough.

As an example, consider the tree T defined by the neighbour matrix 

. . The measure a γ : one example

To complement Theorem . . , it would be nice to have some geometric information on the quantity

K γ x,y∈V N K(x, y) Φ N γ (x, y) .
How do the weights Φ N γ (x, y) depend on γ, x, y? For instance, if R 0 and K(x, x) a(x), we have

a γ x∈V N a(x) Φ N γ (x, x),
where Φ N γ (x, x) is a probability measure on V N . For regular graphs, Φ N γ (x, x) is the uniform measure on V N , so it does not depend on γ nor on x. For irregular graphs, does this probability measure favour vertices with high degree, on on the opposite, low degree? Does the answer depend on γ?

Although a general answer seems far from hand, we can make explicit calculations for the biregular tree T p,q . Note that T p,q corresponds to the neighbour matrix

A N 0 p + 1 q + 1 0 .
Let (G N ) be a sequence of (p + 1, q + 1) biregular graphs converging to T p,q . Note that T p,q is the universal cover of G N for each N.

For simplicity, we only consider R ≤ 1, that is, K(x, y) is supported on the diagonal or on nearest neighbours. For λ in the spectrum, calculating the Green function explicitly, we obtained in [ ] the expression

K λ+i0 p + q + 2 2N 1 q + 1 •∈G N K(•, •) + 1 p + 1 •∈G N K(•, •) ( . ) + λ (p + 1)(q + 1) x∈G N , y∼x K(x, y) .
For R 0, the last term is absent, and we note that K λ+i0 does not depend on λ. From the explicit expression above, we see that the probability measure Φ N λ+i0 (x, x) does not depend on λ, and gives weight p+q+2 2N(p+1) to each vertex of valency q + 1, and weight p+q+2 2N(q+1) to each vertex of valency p + 1. The total measure of vertices of valency p + 1 goes to 1 2 as N → +∞, and so does the total mass of vertices of valency q + 1.

For R 1, we see from ( . ) how K λ+i0 depends on λ.

. Backhausz' and Szegedy's theorem

. . Gaussianity of eigenfunctions

In this chapter, we discuss a recent result of Backhausz and Szegedy saying that an eigenfunction of the Laplacian on a random regular graph G, restricted to a randomly chosen ball in G, looks like a gaussian process. The precise statement needs some additional definitions given later, and a careful use of quantifiers, so let us first state it a little roughly before giving a detailed form in Theorem . . . Another expository text can be found in [ ].

Let G be a given finite d-regular graph with N vertices, and φ be an 2normalized eigenfunction of the Laplacian on G. As in the previous chapter, T q stands for an (infinite) d-regular tree, with the notation from previous chapters being shifted to d q + 1 (q + 1 being the standard notation in harmonic analysis, and d in graph theory). We often need to fix a distinguish point o in T q , called the origin. Fix a diameter R > 0 and consider the restriction √ N φ B G (x,R) to a randomly chosen ball of radius R (obtained by picking the center x uniformly at random in G). The factor √ N is just here to ensure that the function has normalized 2 -norm for the uniform probability measure (rather than the counting measure). By randomly lifting the ball B G (x, R) to B T q (o, R)

(the ball of same radius in the infinite d-regular tree T q ), we obtain a random function on B T q (o, R), whose distribution is denoted by dist * R ( √ N φ, G).

Backhausz and Szegedy's result says the following: in the G(N, d) model, for G belonging to a set of probability 1-o N→+∞ (1) as N → +∞, for any fixed R and for all φ, dist * R ( √ N φ, G) approaches a gaussian distribution as N → ∞.

We now give the definitions necessary to a full statement. If Y is a separable metric space, the space Y T q of functions T q → Y is equipped with the product topology. We denote by I(Y) the space of all probability measures on Y T q that are invariant under all automorphisms of the tree. We adopt a probabilistic point of view and language: an element µ ∈ I(Y) is seen as a random function (or random process) (X(v)) v∈T q of law µ. For µ ∈ I(R), we say that µ is an eigenvector process (of eigenvalue λ) if the corresponding random process satisfies v∼o X(v) λX(o), µ-almost surely;

E µ (|X(o)| 2 ) 1.
Several remarks can be made. By invariance, the two properties above actually hold at any point, not only at the origin. Thus, µalmost surely, the function (X(v)) v∈T q is an eigenfunction of the adjacency matrix A (this is a purely local feature, we do not ask for any specific decay at infinity).

If E µ (X(o)) 0, we must have λ d and the function (X(v)) v∈T q is almost surely a constant. We henceforth exclude this trivial case, and from now on we have

E µ X(o) 0.
We can also note that the covariance (x, w) → E µ (X v X w ) has to be a λeigenfunction both with respect to v and w, and by invariance it depends only on the distance d T q (x, w). By Lemma . . , if there exists a λ-eigenvector process with λ 0, its covariance matrix has to coincide with Φ λ (d(v, w)). In particular, since gaussian processes are uniquely determined by their covariance, there is at most one gaussian λ-eigenvector process. It was shown in [ ] that for any λ ∈ [-2 √ d -1, 2 √ d -1], there exists a λ-eigenvector process. We denote it by (X λ (v)) v∈T q , and its law by µ λ ∈ I(R).

The space I(R), equipped with the weak topology, is metrizable. We fix a distance D defining the weak topology. Saying that µ n converges to µ means that, for all radius R, the µ n -probability of seeing a given configuration on B T q (o, R) converges to the µ-probability of this configuration.

Random lift of a function on G

Let G be a d-regular graph. Its universal covering graph G can be realized by picking a base point x in G and defining the vertices of G as the finite non-backtracking paths starting from x (these vertices are related by edges in the obvious manner). Let (T q , o) be a fixed (labelled) copy of the rooted d-regular tree (with d q + 1). The tree G is isomorphic to T q ; an identification is obtained by identifying x with o, and the non-backtracking paths starting from x in G with the non-backtracking paths starting from o. This identification is by no means unique. On the opposite: by choosing the base point x uniformly at random in G, and the identifications of paths uniformly among all possibilities, we get a notion of random identification of G with T q . Now, if f : G → R is a function on the vertices of G, we can lift it to G and thus (by randomly identifying G with T q ) we obtain a random lift of f to T q . The random function thus obtained is in I(R), we call its law dist * ( f , G). By construction, dist * ( f , G) is invariant under the automorphism group of T q ; that is, dist * ( f , G) ∈ I(R). G) has 1 on the diagonal of its covariance matrix, this does not necessarily imply that this is the case for the limiting gaussian. This is because the function x → x 2 is not bounded, so second moments may diminish after taking weak limits. As a consequence, we can only say that dist * ( √ n φ, G) is close to the law of σX λ , for some σ ∈ [0, 1].

The fact that |λ| ≤ 2 √ d -1 may be derived from Theorem . . , saying that all the non-trivial eigenvalues of a randomly chosen regular graph are in

[-2 √ d -1 -, 2 √ d -1 + ].
Arguably, the theorem may be considered to prove the Berry conjecture, stated at the end of § . . , in the case where the manifold M is replaced by a large regular graph picked at random. The precise formulation of the conjecture itself is debated, but comparing with the formulation of § . . , we Note that thinking of G as being Γ\T q means we have chosen an identification of G with T q , which is not what we want here. In particular, we should not think of the lift f as being Γ-periodic for a fixed Γ. It is Γ-periodic for Γ randomly chosen in a conjugacy class. Since Γ has larger and larger fundamental domain, and we are only looking at f on balls of a fixed size, the periodicity completely disappears from the picture.

do not have to scale the eigenfunctions, since the "wavelength" is fixed and it is the size of the graphs that is increasing. Of course, the randomness of the graphs adds some disorder, but it is still remarkable that for most graphs, all the eigenfunctions have a nearly Gaussian distribution. Interestingly, the authors were not aware of the Berry conjecture and had other motivations in mind.

It is currently an open question to determine if σ 1. Note that the case σ 0 would correspond to a degenerate gaussian. Having .). Thus, having σ 0 is the sign of a very strong scarring property (similarly, σ < 1 is a sign of partial scarring), and this is believed not to happen in the bulk of the spectrum. But Theorem . . does not suffice to rule this out, nor does Theorem . . , since in both case we test only one observable a which is independent of the eigenfunction φ (in particular we cannot take a 1 V φ,δ ). 

. . Elements of the proof

. . . Typicality

We have to define what is means for an element of I(Y) to be typical: D . . . -Let Y be a metric space. An element µ of I(Y) is said to be typical if there exists a sequence of integers n i → +∞, and positive real numbers i → 0, such that: if G i is a random d-regular graph on n i vertices, then with probability ≥ 1i there are maps f i : G i → Y such that

D dist * ( f i , G i ), µ ≤ i .
This means that most regular graphs carry a map f i whose distribution approaches µ. Note that, even when µ is assumed to be an eigenvector process like in Theorem . . , we are not requiring that the maps f i that approach µ in Definition . . be eigenfunctions. Nevertheless, one can show that the f i are necessarily close to being eigenfunctions. So λ must be close to the spectrum of G i , and by Theorem . . , we must have |λ| ≤ 2 √ d -1. This explains the first statement. The fact that µ has to be gaussian originates in two facts:

Step : typical processes have large entropy growth.

Step : among λ-eigenvector processes, the only one satisfying this large entropy condition is the gaussian λ-eigenvector process.

Step is an elaboration on the fact that gaussians maximize the entropy, among processes with given mean and variance. Details are long and subtle, and won't be given here. We give a hint about Step in § . . . But first, we must explain why Theorem . . implies Theorem . . . Assume Theorem . . holds, but Theorem . . does not. This means that:

(*) There exists 0 > 0, n i → +∞ and a set B i of probability ≥ 0 in G(n i , dreg) such that, for all G ∈ B i , there exists an eigenfunction φ on G such that

D dist * √ n φ, G , {σ • Φ λ } σ∈[0,1],|λ|≤2 √ d-1 ≥ 0 .
Let us define

S(G) dist * ( f , G) ; f : G → R and x∈G | f (x)| 2 ≤ 1 .
It is a compact subset of I(R). Let us denote by D H the Hausdorff distance between compact subsets of I(R). Note that, for two graphs G, G , D H (S(G), S(G )) ≤ δ means that the following holds: for any f : G → R, there exists f : G → R such that D(dist * ( f , G), dist * ( f , G )) ≤ δ (as well as the symmetric statement). Note that G and G are of the same size: it is not known if regular graphs G, G of different sizes n, m typically have D H (S(G), S(G )) small. As soon as (n i ) < 0 , any two sets of probabilities 0 and 1 -(n i ) must intersect. Hence, coming back to assertion (*), we can find some G i ∈ B i such that D H (S(G i ), S(G )) ≤ (n i ), for all G in a set of probability ≥ 1 -(n i ) in G(n i , dreg). By definition, G i bears an eigenfunction φ i such that

D dist * √ n φ i , G i , {σ • Φ λ } σ∈[0,1],|λ|≤2 √ d-1 ≥ 0 .
After extraction, we can assume that dist * ( √ n φ i , G i ) has a limit µ; µ is an eigenvector process, and is not gaussian. On the other hand, for all G in a set of probability ≥ 1 -(n i ) in G(n i , dreg), we can find f i : G → R such that D(dist * ( f i , G ), µ) ≤ (n i ); this is exactly saying that µ is typical, and so we get a contradiction with Theorem . . .

. . . Entropy growth of typical processes

Let us denote by C the subgraph of B(o, 1) ⊂ T q (it is a star with d branches), and e the subgraph of T q consisting of o and one of its neighbours, related by an edge. We shall denote: B k (C) the neighbourhood of C of radius k, and B k (e) the neighbourhood of e of radius k.

Typical processes have a property that their "entropy growth" is large. Let us start with typical processes taking values in a finite set F.

P . . (see [ ])

. -Let F be a finite set, and let µ ∈ I(F) be a typical process. Then for every k ≥ 0,

H µ B k (C) ≥ d 2 H µ B k (e) . ( . )
The restriction of µ to the finite set B k (C) is a probability measure on the finite set F B k (C) . The quantity H µ (B k (C)) is then defined the standard way (that is, the usualp i ln p i formula), and similarly for H µ (B k (e)).

The claim is that

|M f | PM(nd)e -1 2 n d(H(µ e )+o(1)) . ( . )

To see this, let M g M g , where g runs over the colourings g : S → F 2 with the same value-distribution as f . The standard property of entropy is that the number of such colourings is e n d(H(µ e )+o( 1)) . On the other hand, the M g all have the same cardinality, so

|M | e n d(H(µ e )+o( 1)) |M f |.

On the other hand, to generate an element of M , you may first generate a perfect matching of S (thus getting nd/2 > full-edges), and then colour the endpoints of these full-edges so that the distribution of coloured edges is the same as that of f . There are e Finally, to prove the Lemma, we start with n points, and to each point, d halfedges are attached (we get stars with d branches). We colour the base-points and branches of these n stars, so that the distribution of these coloured stars is close to µ C . The number of such colourings is e nH µ (C) (1 + o(1)). We then do all the "compatible" perfect matchings between these nd half-edges. The total number of coloured configurations that we get is ( . ) which is the announced lemma.

For a smooth probability measure µ, i.e. a measure on R n having a density h ≥ 0 with respect to Lebesgue measure, one has to use the differential entropy:

D(µ) - ∫ R n f (x) log f (x)dx.
If X is a random vector, one would like to approximate X by a discrete random variable taking values in aZ n and to be able to compare the discrete and the differential entropy. Before that, one needs to smoothen X by replacing it by X + σN, where σ > 0 and N is a standard gaussian independent of X.

If X has a finite second moment, Lemma . in [ ] says how to approximate X + σN by a discrete variable X σ,a , taking values in aZ n , in such a way that H(X σ,a ) D(X + σN) + n log a + o(1) ( . )

where o(1) → 0 as a → 0 while σ is kept fixed. It is then shown (but we push a lot of subtle considerations under the carpet) that Proposition . . implies the following statement for general typical processes: Finally, let µ be an eigenvector process; its restriction to B k (C) cannot be smooth, as it is carried by the subspace W λ (B k (C)) formed of λ-eigenvectors. This space is of dimension |∂B k (C)|, as an eigenfunction of the Laplacian is entirely determined by its values at the endpoints of B k (C).

The subspace W λ (B k (C)) carries a scalar product, inherited from that of 2 (B k (C)), and an associated well-defined Lebesgue measure. We will say that µ is smooth if it has a density on W λ (B k (C)), and in that case we will denote by D sp ), North-Holland, Amsterdam, , pp.

- [ ] E (J . V.) -The canonical transformations of pseudodifferential operators, Uspehi Mat. Nauk, t. ( ), no. ( ), pp.

-.

[ ] E (M ) & L (E ) -Diagonalizable flows on locally homogeneous spaces and number theory, in International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, , pp. -.

[ ] E (M ) & W (T ) -Ergodic theory with a view towards number theory, Graduate Texts in Mathematics, vol.

, Springer-Verlag London, Ltd., London, .

[ ] E (A ) -Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt, Annalen der Physik, t. (

).

[ ] , Zum Quantensatz von Sommerfeld und Epstein, Verhandl. deut. physik. Ges. (

).

[ ] E (G ) -On the limit of large girth graph sequences, Combinatorica, t. ( ), no. , pp.

-.

[ ] E (Y ) -Gaussian waves on the regular tree, preprint ( ).

[ -.

[ ] R (G ) -Entropy of semiclassical measures in dimension , Duke. Math. J., t.

( ), no. , pp.

-.

[ ] R (Z ) & S (P ) -The behaviour of eigenstates of arithmetic hyperbolic manifolds, Comm. Math. Phys., t.

( ), no. , pp.

-.

[ ] R (D ) -An inequality for the entropy of differentiable maps, Bol. Soc. Brasil. Mat., t. ( ), no. , pp. -.

[ ] S (P ) -Spectra of hyperbolic surfaces, Bull. Amer. Math. Soc. (N.S.), t. ( ), no. , pp.

-.

[ ] S (E ) -Quantisierung als Eigenwertproblem (erste Mitteilung), Annalen der Physik ( ), t. ( ), pp.

-.

[ ] , Quantisierung als Eigenwertproblem (zweite Mitteilung), Annalen der Physik ( ), t. ( ), pp.

-.

[ ] , Über das Verhältnis der Heisenberg-Born-Jordanschen Quantenmechanik zu der meinen, Annalen der Physik ( ), t. ( ), pp.

-.

[ ] S (C. E.) -A mathematical theory of communication, Bell System Tech. J., t. ( ), pp.

-, -.

[ ] S (M ) & R (K ) -Correlations between periodic orbits and their rôle in spectral statistics, Physica Scripta, t. T ( ).

[ ] S (B ) -Functional integration and quantum physics, Pure and Applied Mathematics, vol. , Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, .

[ ] Š (A. I.) -Ergodic properties of eigenfunctions, Uspehi Mat. Nauk, t. ( ), no. ( ), pp.

-.

[ ] S (C D.) -Concerning the L p norm of spectral clusters for second-order elliptic operators on compact manifolds, J. Funct. Anal., t. ( ), no. , pp.

-.

[ ] S (C D.) & Z (S ) -Riemannian manifolds with maximal eigenfunction growth, Duke Math. J., t.

( ), no. , pp.

-.

  the edges and suitable matching conditions on the vertices. See [ ], [ ], [ ], [ ], [ ], [ ], [ ], [

  P . . . -If A Op(a) with a ∈ S m c and B Op(b) with b ∈ S n c , then A • B ∈ PDO m+n c . In fact we have A • B Op(a b), where a b ∈ S m+n c x a(x, ξ + ζ) b(ζ, ξ)dζ ( . ) where b(ζ, ξ) is the Fourier transform of b w.r.t. the first variable.

where

  Vol(B d ) is the volume of the unit ball in euclidean R d . This was first proven by Weyl in when M is a domain in R d , starting with the explicit case of a square (with Dirichlet or Neumann boundary conditions), then approximating any open M ⊂ R d by unions of squares. There are

.

  . . Example. -If M is R d with its usual euclidean structure, p(x, ξ) ξ does not depend on x, so ( . ) reduces to dx dt ξ ξ

  T . . (see [ ]). -Assume M is a compact Riemannian manifold of dimension 2, with constant sectional curvature -1. Let µ be as in Theorem . . . Then µ has full support, that is, µ(Ω) > 0 for any non-empty open set Ω ⊂ S * M. This has very recently been extended to variable negative curvature (still d 2) by Dyatlov, Jin and Nonnenmacher [ ].

1 2 .

 2 For the next result to be of interest, we need to have M M(|V |) → +∞ as |V | → ∞. A result by McKay-Wormald-Wysocka [ ]

.

  . . Remark. -If M ∼ log |V |, as is typically the case for random regular graphs, we can say that |B| |V | δ for some δ > 0. The result implies that the entropy -x∈V |φ(x)| 2 log |φ(x)| 2 is of order log |V |, so the result is reminiscent of Theorem . . . Note that the explicit constants appearing in the theorem are the optimized ones given by Ganguly and Srivastava in [ ].

Nx

  ∈ D ; ρ(x) ≤ r . Fourth step. -Finally, we shall use the expansion assumption (EXP) to show that any symbol a N having zero average with respect to L (N) s can be approached by a function of the form Tb (or stronger, TU b). P . . . -Assume (EXP), with spectral gap β. Fix R ∈ N * . For any > 0, there exists C( , R, β) > 0 (independent on N) such that:

  other words, b and b are related by a non-backtracking path of length m). For all b, b ∈

  Two coloured rooted graphs (G, o, W) and (G , o , W ) are equivalent if there is a graph isomorphism φ : G → G such that φ(o) o and W • φ W. We denote the equivalence class of (G, o, W) by [G, o, W].

  weakly- * to P in P(G * ). This notion of convergence was introduced in [ ] and generalized in [ ]. In this case, we also say that (G n , W n ) converges in the sense of Benjamini-Schramm.The subset GD,A * ⊂ G * of equivalence classes [G, o, W] such that G is of degree bounded by D, and W takes values in [-A, A], is compact. It follows that P(G D,A * ) is compact in the weak- * topology. Hence, if C D,Afin denotes the set of finite coloured graphs (G, W), G (V, E), of degree bounded by D and colouring W : V → [-A, A], then any sequence (G n , W n ) ⊂ C D,A fin has a subsequence which converges in the sense of Benjamini-Schramm. After extracting subsequences, we may and will always assume that (G n , W n ) has a limit.Let C(G D,A * ) be the set of continuous functions h : G D,A * → R.Note that a sequence (G n , W n ) ⊂ C D,A fin has a local weak limit P iff there is an algebra A ⊂ C(G D,A *

  Note that Proposition . . is just the case D 0 of Proposition . . . If f is a polynomial, the propositions follow rather directly from the definition of local weak convergence, and one extends this to continuous functions by density.Assumption (BST) may also be rephrased in terms of local weak limits. Define T D,A * ⊂ G D,A * as the set of coloured rooted trees (i.e. graphs without cycles). P . . . -Assume (G n , W n ) ⊂ C D,A fin converges to P in the local weak sense.

  More precisely we need to control the large and small values of ζ γ j . Under assumption (BST), one can show that the values of ζ γ converge in distribution to ζ γ (defined in ( . )). The moment assumption (Green) is precisely what will allow us to control the extreme values of ζ γ . First step. -We define the "non-backtracking" quantum variance in terms of the functions f j , f * j . For every N, we write G N Γ N \ G N . We denote by B( G N ) the set of oriented edges (bonds) of G N . We define for every integer m ≥ 1 the space H m (Γ N ) of functions K : B( G N ) × B( G N ) → C such that K(b, b ) 0 → B m-1 (b, b ) 0 (in other words, b and b are related by a non-backtracking path of length m -1). For all b, b ∈ B( G N ), for all γ ∈ Γ N , K(γ • b, γ • b ) K(b, b ). Like in § . , we can see K as a function on B m ( G N ), the set of non-backtracking paths (b 1 , b 2 , . . . , b m ) of length m. The second condition means that K is also defined on the quotient B m (G N ) Γ N \B m ( G N ), which is the set of nonbacktracking paths of length m in G.

  T . . (adapted from [ ]). -Let (G N , W N ) be a sequence of finite coloured graphs as above, and assume that conditions (BST), (Green) and (EXP) are satisfied. Let m ≥ 1 be fixed, and for each N consider K N ∈ H m (Γ N ) such that sup b,b |K N (b, b )| ≤ 1. Then lim N→+∞ Var nb (K N ) 0 Second step. -Like in in § . . , we use the eigenfunction equation to show that the quantum variance is invariant under certain transformations. Namely, neglecting errors proportional to η 0 , we have ζ γ j Bf j f j and ιζ γ j B * f * j f * j .

  + ) if v + has label j for j ≥ 2. In [ ] we used classical results on algebraic systems of equations to describe the possible behaviours of the Green functions on the real axis (this result is originally proven by Aomoto [ ] but with few explanations): There is a discrete set D ⊂ R such that, for all j 1, . . . , m, the solutionsh j (λ + iη) ζ λ+iη j of ( . ) have a finite limit ζ λ+i0 j as η ↓ 0 for all λ ∈ R \ D. The map λ → ζ λ+i0 j is continuous on R \ D,and there is a discrete set D such that it is real-analytic on R \ (D ∪ D ). ( ) If moreover T(M, 1) satisfies (C ), then: (i) For any j ≥ 1, the map λ → |Im ζ λ+i0 j |, defined on σ(A T ) \ D, has finitely many zeroes.

(

  ii) σ(A T ) is a finite union of closed intervals and points, r 1 I r ∪ F. Moreover, the limit ζ λ+i0 j exists on the interior Ir and satisfies |Im ζ λ+i0 j | > 0 for all j ≥ 1. As a consequence of part ( ), for any 0 < c < C < +∞, the set of λ ∈ σ(A T ) such that c < |Im ζ λ+i0 j | < C for all j is of the form σ(A T ) \ I c,C where I c,C is a finite union of open intervals, that shrinks to a finite set when c → 0 and C → +∞. As we will see in the examples (after defining the probability measure P), condition (Green) holds on σ(A T ) \ I c,C .As mentioned in the beginning of this section, the assumptions of Corollary . imply that the tree T must be unimodular. So let us conclude this section by giving examples of trees of this type.A uniform tree (i.e. the universal cover G of a finite graph G) is unimodular[ , Example . ]. In fact, these appear to give all unimodular trees of finite cone type [ ]. One takes the uniform measure P1 |G| x∈G δ [ G,x], where ( G, x) is the universal cover based at x ∈ G. One may check by hand if (C ) (or its variant (M )) hold on ( G, x).Another way of generating unimodular trees without explicit reference to covers is as follows. Consider a matrix A N a b c d with entries in N (the letter N stands for "neighbours"). We construct a tree with two colours of vertices •, •, according to the rule:• has a neighbours of type • and b neighbours of type •;• has c neighbours of type • and d neighbours of type •.

  e. one has to use the degree function d as a weight). A simple argument [ ] yields ρ P ≤ (2 √ D -1)/d, where D and d are the maximal and minimal degrees, respectively, which is optimal in the regular case where d D. This combined with [ ], [ ] gives an explicit bound on the spectral gap, holding a.a.s.

  non-zero. Then (T , •) corresponds to the 5 × 5 matrix given at the end of § . . , which satisfies (C ) and (C ) if min(a, b, c, d) ≥ 2.

  One of the main results of [ ] is: T . . . -For every > 0, there exists N such that, if G is a random regular graph with n ≥ N vertices, then with probability ≥ 1 -, for every eigenvector φ on G,D dist * √ n φ, G , {σ • Φ λ } σ∈[0,1],|λ|≤2 √ d-1 ≤ . ( . )We denoted by σ • Φ λ the law of σX λ . The result says that dist * ( √ n φ, G) is close to a gaussian law. However, although dist * ( √ n φ,

  | 2 ≤ δ, and thus x∈V φ,δ |φ(x)| 2 > 1 -δ, although |V φ,δ | o(n) by (

  Theorem . . is obtained as a consequence of the following, which is the main result of [ ]:T . . . -If µ ∈ I(R) is a typical, non-trivial λ-eigenvector process, then |λ| ≤ 2 √ d -1, and µ µ λ (i.e. µ is Gaussian).

  There exists a sequence (n) tending to 0 as n → +∞, such that we haveD H S(G), S(G ) ≤ (n)for all graphs G, G in a set of probability ≥ 1 -(n) in G(n, dreg).
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  n d(H(µ e )+o(1)) such colourings. So |M | PM(nd)e 1 2 n d(H(µ e )+o(1)) , and we get ( . ) by comparing the two expressions of |M |.

e

  nH µ (C) 1 + o(1) PM(nd) (d!) n e -12 n d(H(µ e )+o(1))

  Let µ ∈ I(R) be a typical process. Then for every k ≥ 0,D(µ B k (C),σ ) ≥ d 2 D(µ B k (e),σ ) + D N(0, σ 2 ) , ( . )where µ σ on both sides is µ convolved with a gaussian of covariance σ 2 I of the adequate dimension (that is, |B k (C)| on the left, |B k (e)| on the right). On the right, D(N(0, σ 2 )) is the differential entropy of a 1-dimensional gaussian of variance σ 2 .

  (µ B k (C) ) the differential entropy on the subspace. It is easy to see thatD(µ B k (C),σ ) D sp (µ B k (C),σ ) + codim W λ B k (C) • D N(0, σ 2 ) D sp (µ B k (C),σ ) + |B k (C)| -|∂B k (C)| • D N(0, σ 2 )All these statements also holds when replacing C by e, of course.By letting σ → 0 and by using the identities|B k (C)| 1 + d 2 |B k (e)|, |∂B k (C)| d 2 |∂B k (e)|,the dependence on σ disappears miraculously (or maybe not. . . ) and we obtain the final statement: P . . . -Let µ ∈ I(R) be a smooth typical eigenvector process. Then for every k ≥ 0,D sp (µ B k (C) ) ≥ d 2 D sp (µ B k (e) ) .(. ) . . . Variational characterization of the gaussian λ-eigenvector processA general property of entropy. -In the following proposition, µ is not assumed to be typical. Also, it is important to note that the differential entropy of the [ Anderson localization on the Bethe lattice: Nonergodicity of extended states, Chaos in atomic and molecular physics, in Chaos et physique quantique (Les Houches,

. . . Remark. -By integration by parts, one may check that K A is a function of class C ∞ outside the diagonal {x y }.

  

	( . )	•(y-x) dy.
	We caution that if Ω	R d , several symbols a may give the same operator
	Op(a) on C ∞ c (Ω).	

  If g 1 , . . . g R generate a free group in

	( ) 1 , . . . , φ	( ) 2 +1 of H that diagonal-
	izes T.	

operators T are called Hecke operators. In that case, it has been conjectured by Böcherer, Sarnak, and Schulze-Pillot [ ] that the joint eigenfunctions of ∆ S 2 and T satisfy the Quantum Unique Ergodicity property. This conjecture is still open. In [ ], the weaker Quantum Ergodicity problem is addressed: T . . (see [ ]). -Consider a basis φ

  x∈V N i.i.d. random variables of law ν, which are independent for different N, it is shown in [ ] that the second condition is satisfied for almost every realization of (W N ). Moreover, if K N is deterministic, or probabilistically independent of W N , the average K N γ in Theorem . . can be almost-surely replaced by its average over all realizations.

	T	. . (see [ ]). -Let (G N ) be a deterministic sequence of graphs sat-
	isfying assumptions (BST) and (EXP). Choose W N	(W N (x)) x∈V N i.i.d. random
	variables of law ν satisfying (POT), and which are independent for different N.
	Let a N : V N → C be a deterministic sequence of functions such that
				sup	sup	a N (x) ≤ 1
				N	x∈V N
	and define a N	1 N
	In particular, if K N	a N is a deterministic function, a N γ can be replaced
	by a N , the uniform average, in Theorem . . . The statement we get in this
	case is the following:

  The Anderson model on irregular trees is deferred to § . . .

Trees of finite cone type [ ], [ ] are rooted trees (T, o) satisfying the following condition. Given v ∈ T, define the cone

C (v) w ∈ T; v ∈ [o, w] ,

where [o, w] is the unique path from o to w. So C (v) is the forward subtree emanating from v (and C (o) Tis seen as a cone from o). We say that (T, o) is of finite cone type if the number of non-isomorphic cones is finite. Such trees are sometimes also called periodic trees [ ].
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. . . Eigenfunctions of the non-backtracking operator

In this section, G (V, E) is a fixed connected finite regular graph that can be written as G Γ\T q where, as in previous chapters, T q is the (q + 1)-regular tree and Γ is a subgroup of the automorphism group of T q , that acts without fixed points on the vertices of T q . In this section, we denote by Athe adjacency operator of G.

We denote by B(T q ) the set of oriented edges (or bonds) of T q . If e is an element of B(T q ), we shall denote by o(e) ∈ T q its origin, t(e) ∈ T q its terminus, and e ∈ B(T q ) the reversed bond. Let B be the positive matrix indexed by B(T q ) × B(T q ), defined by B(e, e )

1 if o(e ) t(e) and e e , 0 otherwise.

A non-backtracking path of length m ≥ 1 is a sequence (b 1 , b 2 , . . . , b m ) of B(T q ) m such that B(b j , b j+1 ) 0. We denote by B m (T q ) the set of nonbacktracking paths of length m. Note that B 1 (T q ) B(T q ).

Remark that q -1 B is bistochastic. It is not self-adjoint -which will be a source of difficulty in the proof -but if we define the edge-reversal operator ι : 2 B(T q ) -→ 2 B(T q ) , ι f (e) f ( e ),

we have an explicit conjugation between B and its adjoint: B * ιBι.

Denote by B(G) (or simply B) the set Γ\B(T q ), which identifies with the set of bonds on the quotient G Γ\T q . Note that B has cardinality |V |(q + 1).

We can let B act on the space of Γ-invariant functions on B(T q ); in other words on C B . The spectral radius of B on 2 (B) is q. It turns out that there is an explicit relation between the spectrum of B and the spectrum of the original adjacency operator A on 2 (V):

(o) q lies in the spectrum of the matrix B, corresponding to the constant eigenfunction. The matrix B has -q in its spectrum iff A has -(q + 1) in its spectrum, iff the graph G is bi-partite. (i) Each eigenvalue λ ±(q + 1) of A, written as λ q 1/2+is + q 1/2-is with s ∈ R ∪ iR, gives rise to the following two eigenvalues of B: 1) is a quantity that goes to 0 as n → +∞ followed by → 0.

Before proving the lemma, let us see how it implies the proposition. Now, let A(n, ) be the number of d-regular graphs on n vertices that possess an

On the other hand, saying that µ is typical means that there exists n i → +∞ such that

There remains to prove the lemma Proof of Lemma . . . -We work with the configuration model of random regular graphs. We have n points, and to each point, d half-legs are attached.

A random regular graph is obtained by taking a perfect matching of these nd half-edges. Calling PM(nd) the number of perfect matchings of nd elements, we have

Suppose now that we have a set S of nd half-edges. Each half-edge has a base-point and a free end. Suppose we have a colouring f : S → F 2 , such that the value-distribution of f is -close to µ e . The first component of f (e) is interpreted as the colour of the base-point of e, whereas the second component is the colour of the free end.

Let us call M f the set of " f -compatible" perfect matchings of S, that is to say, the set of perfect matchings such that if e is matched with e , then f 1 (e) f 2 (e ).

eigenvector process is computed by working with a certain convenient basis of W λ (B k (C)) and W λ (B k (e)), which is not orthonormal: hence, the differential entropy D appearing here differs by a constant (depending on k) from the restricted entropy D sp used earlier. We will see that the values of these constants do not matter.

P

. . . -Let µ be a smooth eigenvector process. Then for all k ≥ 1,

( . )

In the series of inequalities ( . ), there is equality for all k if and only the process X with law µ has the following Markov property: given any edge (a, b) in T q , conditionnally on X(a) and X(b), the values of X on the two half-trees on each side of (a, b) are independent.

Note that inequality ( . ) results from the two others. These come from the standard property of entropy: given three random vectors X, Y, Z, we have D(X, Y, Z) ≤ D(X, Z)+ D(Y, Z)-D(Z), with equality if and only if X and Y are independent conditionally on Z. To prove the first inequality, one writes B k (C) as the union of d copies of B k (e), whose intersection is B k-1 (C). For the second one, one writes B k (e) as the union of two copies of B k-1 (C), whose intersection is B k-1 (e).

Entropic characterization of the gaussian eigenvector process. -The Gaussian process X λ has the Markov property, so that there is equality in ( . ) for all k. In addition, a long, explicit calculation shows that

This is also

) is decreasing by ( . ). If µ is a smooth typical eigenvector process, we have

In other words,

A whole section of [ ] is devoted to deducing that µ C is gaussian: this is an elaboration on the fact that gaussians maximize the differential entropy, for a fixed mean and variance.

By the monotonicity property ( . ), we must have

for all k, so µ has the Markov property. Thus, the gaussianity of µ restricted to C extends to the whole tree T q .

At this stage, we have proved that if X is a smooth typical eigenvector process then X is gaussian. To end the proof of the theorem, we note that if X is not smooth, we can apply the previous result to X + X λ for any > 0. Thus X + X λ is gaussian; we now let → 0 and use the fact that gaussians are stable under weak limits to conclude.
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