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 21 

Abstract 22 

A new analytical solution is developed for interference hydraulic pumping tests in fractured 23 

porous media using the dual-porosity concept. Heterogeneous fractured reservoirs are consid-24 

ered with hydrodynamic parameters assumed to follow power-law functions in radial dis-25 

tance. The developed analytical solution is verified by comparison against a finite volume 26 

numerical solution. The comparison shows that the numerical solution converges toward the 27 

analytical one when the size of the time step decreases. The applicability of the fractal dual-28 

porosity model is then assessed by investigating the identifiability of the parameters from a 29 

synthetic interference pumping test with a set of noisy data using Bayesian parameter infer-30 

ence. The results show that if the storage coefficient in the matrix is fixed, the rest of the pa-31 

rameters can be appropriately inferred, otherwise, the identification of the parameters is faced 32 

with convergence problems because of equifinality issues. 33 

Keywords: Fractured porous media, interference pumping test, dual-porosity, fractal media, 34 

Bayesian inversion. 35 
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1 INTRODUCTION 37 

Simulation of interference pumping tests in porous media allows testing different prospective 38 

exploitation scenarios at low costs. These tests consist in pumping a well at a controlled flow 39 

rate and measuring the water level response (drawdown) in one or more surrounding observa-40 

tion wells. Pumping tests in fractured porous media have been discussed by several authors 41 

(see [1-8], among others). Fractured media are often addressed using the dual-porosity model 42 

suggested by Barenblatt et al. [9]. The main idea of this model is to consider two overlapping 43 

continua: (i) the fractures which carry the major part of water to the pumping well and (ii) the 44 

low permeability rock matrix which feeds fluid to the fractures. At each point of the domain, 45 

water flow between the fractures and matrix are coupled via a linear exchange term propor-46 

tional to the difference in hydraulic head between the two continua. As stated by De Smedt 47 

[8], the simulation of interference pumping tests is often based on numerical models which 48 

cannot insure full control of numerical accuracy [10]. Therefore, analytical solutions are high-49 

ly sought-after because (i) they provide valuable insights into fundamental physics, as they 50 

are free of numerical errors and (ii), although limited to simplified situations; they allow vali-51 

dation of more complex numerical codes.  52 

In the context of interference pumping tests in fractured porous media, an analytical solution 53 

has been developed for homogenous aquifers by De Smedt [8]. Furthermore, Delay et al. [7] 54 

developed a numerical solution using the dual-medium approach to describe radial convergent 55 

flow in heterogeneous fractal media where power laws in space are used for the hydrodynam-56 

ic parameters. As a consequence, parameter values decrease with the distance between the 57 

pumped well and the observed ones. This type of scaling laws inherits from theoretical works 58 

on fractals [11] and has been used by several authors for single porous media ([12-15], among 59 

others). Hence, the main objective of this paper is to develop, for the first time, an analytical 60 

solution for the mathematical model describing interference pumping tests in heterogeneous 61 
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fractal dual media. Applicability of the model is then assessed by investigating identifiability 62 

of the different parameters from a synthetic pumping test with a set of noisy data using Statis-63 

tical Calibration (SC) [16]. The latter means refining the prior distribution of uncertain pa-64 

rameters based on matching simulation outputs with data [17]. In this work, the SC is per-65 

formed with the DREAM(ZS) software [16] based on the Markov Chain Monte Carlo process 66 

(MCMC). DREAM(ZS) computes multiple sub-chains in parallel to thoroughly explore the 67 

parameter space. Taking the last 25% of individuals of the MCMC (when the chains have 68 

converged) yields multiple sets of parameters that adequately fit the model onto observations. 69 

These sets can then be used to estimate the updated parameter distributions and therefore the 70 

best estimates of the parameters and the associate confidence intervals. 71 

2 MATHEMATICAL MODEL 72 

We assume a horizontal, isotropic, confined and infinite aquifer with a uniform thickness. The 73 

pumping well only draws water from the fractures, has a constant rate and fully penetrates the 74 

aquifer. Using the dual-porosity concept, the flow in fractured porous media can be described 75 

by the following equations [18, 19]: 76 
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where indexes m  and f  refer to the matrix and fracture continua, respectively, 
1S L    is the 79 

specific storage,  h L  is the hydraulic head, 
1

fK LT     is the hydraulic conductivity of the 80 

fractures, 
1 1L T      is the exchange rate coefficient between the fractures and the matrix. 81 

Following Warren and Root [18], equation (2) assumes pseudo-steady flow in the matrix con-82 
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tinuum (term mK  is removed). Assuming radial symmetry, equations (1) and (2) can be for-83 

mulated as: 84 
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where  r L  is the radial coordinate with the center of the pumping well as origin.  87 

The drawdown in an observation well intercepting the fractures can be expressed as follows 88 
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where 0f fH h h   and 0m mH h h   are respectively the drawdown in the fracture and in the 91 

rock matrix. Initially, a uniform hydraulic head  0h  is assumed in both the fracture and ma-92 

trix continua. Therefore, the drawdowns satisfy the following initial conditions: 93 

    ,0 ,0 0f mH r H r   (7) 94 

Far away from the pumping well, the drawdowns are assumed to be zero 95 

    lim , lim , 0f m
r r

H r t H r t
 

   (8) 96 

The limit where the radius approaches zero corresponds to the well withdrawal rate  97 
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where B  is the thickness of the aquifer and 0Q  is the pumping flow rate. 99 

In the sequel, we limit our investigation for the semi-analytical solution of equations (5-9) to 100 

the case of a confined reservoir of a fractal structure with a single well in an unbounded me-101 
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dium as described in [7, 12]. Note that more complex fractal approaches have been developed 102 

in the case of many wells with variable rates [20] and by considering transient flow from 103 

block to fissure and skin between the fissure and the block [21]. 104 

In this work, following Delay et al. [7], we consider dual porosity media in which the hydro-105 

dynamic parameters are power-law functions in space (decreasing functions of the radial dis-106 

tance r  between the pumping well and the observed one). Moreover, for sake of simplicity, 107 

we assume the same functions for the exchange rate coefficient   and for the storage coeffi-108 

cients fS  and mS . Hence, the values of the hydraulic parameters vary with respect to radial 109 

distance according to the following power-law functions: 110 
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 (10) 111 

where the power-law exponents a  and b  are assumed to be positive.  112 

3 ANALYTICAL SOLUTION 113 

3.1 Analytical solution in the Laplace domain 114 

In this section, we follow the strategy developed by De Smedt [8] to derive the analytical so-115 

lution of the system formed by equations (5)-(10). The solution is derived using the Laplace 116 

transform technique with respect to time variable t . The Laplace transform of a time-117 

dependent function y  is 118 
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       (11) 119 

Applying the Laplace transform to (5)-(6) and using (10) leads to  120 
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Equation (13) can be rearranged 123 
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Substituting (14) into (12) yields  125 
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 (15) 126 

Equation (15) is a second order ordinary differential equation; its general solution is of the 127 

form (cf. Polyanin and Zaitsev [22], page 159, equation (127)) 128 
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where 2n a b   , 
a

n
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,  J z  and  Y z  are the Bessel functions 130 

of the first and second kinds, respectively. The parameters 1C  and 2C  are constant that can be 131 

calculated using boundary conditions.  132 

In the Laplace domain, the boundary conditions become 133 

  lim , 0f
r

H r p


  (17) 134 

and 135 

 
 

0

1 0

0

,
lim 2 Β

fa

f
r

H r p Q
K r

r p
 



 
  

 

 (18) 136 

The solution of (15), taking into account the boundary conditions (17) and (18) is 137 
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where K  is the modified Bessel function of the second kind of order  . More details about 139 

the derivation of the solution (19) are given in the Appendix.  140 

 141 

3.2 Analytical solution in the time domain 142 

The solution in the time domain  ,fH r t  is sought using the convolution theorem of the La-143 

place transform [23] 144 
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Hence, equation (19) is written as 146 
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 (21) 147 

where 1 2p p p   but different indexes are used to indicate that the inverse transformation is 148 

performed in two steps. 149 

The different indexes used in (21) indicate that the inverse Laplace transform is developed in 150 

two steps. In a first step, the inverse Laplace transform with respect to the variable 1p  is ex-151 

pressed as follows 152 
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 (22) 153 

where 1t  is the time variable obtained by the inverse Laplace transform with respect to the 154 

variable 1p  and  ,W z   is the Whittaker function (Abramowitz and Stegun [24] p. 505). 155 
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In the second step, the inverse Laplace transform with respect to 2p  is obtained using the in-156 

verse transform of the 𝐽-function [25] based on the formula  1 1
;  ,

p

pL e p t J t
p
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which yields 158 
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The Bessel integral 𝐽-function is defined as follows [8, 26] 160 
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In view of (20) and (23), the analytical expression of  ,fH r t  is 162 
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  (25) 164 

A similar expression can be obtained for  ,mH r t  using the convolution theorem of the La-165 

place transform for equation (14) and using equation (19). 166 

In the case of homogeneous media  0a b  , we have  
1
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  and (25) reduces to 167 

the De Smedt [8] solution: 168 
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4 COMPARISON TO NUMERICAL SOLUTIONS 173 

We numerically solve two interference pumping tests dealing with homogeneous and fractal 174 

dual media. For each test, the numerical solution is compared against the corresponding ana-175 

lytical solution using (25). The numerical solution of the system (5)-(10) is developed using 176 

the standard Finite Volume (FV) method. The domain of size 10,000L m is discretized us-177 

ing a uniform spatial discretization of size 5r  m. A similar solution is obtained using a 178 

finer spatial discretization of size 1r  m which shows the weak sensitivity of the numerical 179 

solution to the spatial discretization. The duration of the simulation is 
62 10 s. Three time 180 

step sizes are investigated with 
510t  s, 45 10t   s and 410t  s. The pumping flow rate 181 

is 0 5Q  m3/h. The initial head in the aquifer is 0 100h  m and the aquifer thickness is 182 

100B  m. The specific storage of the fractures and rock matrix are respectively 
0

6 =5 10fS 183 

m-1 and 
0

4 =10mS   m-1. The hydraulic conductivity of the fractures is 
0

-4=10fK  m/s and the 184 

rate of exchange between the matrix and the fractures is 
-11

0 =5 10  m-1s-1. 185 

Figure 1 depicts the drawdown in both the fracture and matrix at 10m and 100m. The draw-186 

down in the fissure starts at early times because storage of the fissures is immediately effec-187 

tive at the start of the pumping test, while storage of the matrix needs much more time to be-188 

come noticeable. A flattening of the drawdown curve in the fissure can be observed at inter-189 

mediate pumping time which is typical for double-porosity behavior because of the transition 190 

from fracture to matrix water storage release. 191 

The numerical FV solution is compared to the analytical solution (25) in the case of homoge-192 

neous  0a b   and fractal  0.6 and 0.4a b   dual media. The comparison is performed 193 

at two observation wells located respectively at distances 1 10r  m and 2 100r  m from the 194 

pumping well. Significant discrepancies can be observed between analytical and numerical 195 
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solutions when the latter is evaluated using a large time step size (Figure 2). The drawdown in 196 

the case of fractal dual media is larger than in homogeneous dual media because of the reduc-197 

tion of the hydrodynamic parameters with the distance r  from the pumping well. In fact, in 198 

the case of fractal dual media, the permeability of the fractures is proportional to 
0.6r

 where-199 

as the exchange rate and the specific storage of both the fractures and the matrix are propor-200 

tional to 
0.4r

. Thereby, the discrepancy between analytical and numerical solutions (Figure 201 

2) is more pronounced with dual fractal media than with homogeneous dual media. For both 202 

homogeneous and fractal dual media, the numerical solution converges toward the analytical 203 

solution (25) when the size of the time step decreases (Figure 2). Note that the reduction of 204 

the permeability of the fractures with respect to the distance r  is also responsible, via the 205 

Whittaker function in equation (25), of the delay for the stabilisation of the solution in the 206 

fractal case (Figure 2 b) compared to the homogeneous case (Figure 2a). 207 

5 BAYESIAN INVERSION OF A PUMPING TEST IN FRACTAL DUAL MEDIA 208 

In practical applications, most of the hydraulic parameters cannot be measured directly and 209 

should be estimated using an inversion procedure. In the case of fractal dual media, the inver-210 

sion can be challenging because of model equifinality, implying that different parameter com-211 

binations can fit the model responses to data. To assess the applicability of the fractal dual 212 

porosity model, the identifiability of the parameters of the analytical solution (25) is assessed 213 

using a synthetic interference pumping test with a set of noisy data. Parameter identification is 214 

performed in a Bayesian framework where the prior knowledge about the parameters and the 215 

observed data are merged to define the joint posterior probability distribution function (pdf) of 216 

the parameters. In this work, the pdf is performed using the DREAM(ZS) software [16] based 217 

on the Markov Chain Monte Carlo (MCMC) sampler. DREAM(ZS) generates random se-218 

quences of parameter sets that asymptotically converge toward the target joint posterior dis-219 
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tribution [27]. Thus, if the number of runs is sufficiently high, the generated samples allows 220 

exploring the entire parameter space of the posterior distribution of the parameters and pro-221 

vides the pairwise parameter correlations and the uncertainty of model predictions. 222 

The Bayes theorem states that the probability density function of the model parameters condi-223 

tioned onto data can be expressed as: 224 

      | |mes mesp p pξ y y ξ ξ
,
 (27) 225 

where  | mesp ξ y  is the likelihood function measuring how well the model fits the observa-226 

tions mesy , and  p ξ  is the prior information about the parameter before the observations are 227 

made. In this work, a Gaussian distribution defines the likelihood function because the obser-228 

vations are simulated and corrupted with Gaussian errors. Hence, the parameter posterior dis-229 

tribution is expressed as: 230 
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 (28) 231 

where  hSS ξ , are the sums of the squared differences between the observed and modeled 232 

drawdowns. For instance,         
2

1

Nh k k

h mes modk
SS h h


 ξ ξ , which includes the observed 

 k

mesh  233 

and predicted 
 k

modh  drawdowns at time kt  for the number of observations hN .  234 

A synthetic pumping test is generated by running the analytical solution using the reference 235 

parameter values given in Table 1 for 
0f

K , 
0f

S , 0 , a  and b . As in Fahs et al. [28], the stor-236 

age coefficient in the matrix 
0mS  is fixed in this study to be 

410
 m-1.  237 

Delay et al [7] showed that results of calibration improved when several drawdown curves at 238 

several locations are inverted at once. In the sequel, the analytical solution is run for a long 239 

period of 
72 10 s to calculate the drawdown at four observation wells located respectively at 240 

1 1r  m, 2 10r  m, 3 100r  m and 4 500r  m from the pumping well. Four datasets of 2000 241 



13 

values each (corresponding to the drawdown at the observation wells measured each 
410 s) 242 

are used as target responses for model inversion.  243 

Gaussian noise with a standard deviation of 0.01m and a mean of zero was added to the target 244 

responses. We assume that all hydraulic parameters have uniform prior distributions over the 245 

ranges given in Table 1. As recommended in Vrugt et al. [29], we consider that the posterior 246 

distribution is stationary if the Gelman and Ruban [30] criterion is less than 1.2 and that the 247 

chains are not autocorrelated. 248 

The MCMC method was terminated after 15000 model runs. The convergence was reached at 249 

around 10000 model runs. Figure 3 shows the results of the identification based on the last 250 

25% of individuals of the MCMC sampler (when the chains have converged). The "on-251 

diagonal" plots in these figures display the inferred parameter distributions, whereas the "off-252 

diagonal" plots represent the pairwise correlations in the MCMC sample. If the drawings are 253 

independent, non-sloping scatterplots should be observed. However, if a good value of a giv-254 

en parameter is conditioned by the value of another parameter, then their pairwise scatterplot 255 

should show a narrow sloping stripe. The results of Figure 3 show that the five parameters 256 

0f
K , 

0f
S , 0 , a  and b  are appropriately estimated; they have almost symmetric bell-shaped 257 

posterior distributions and have strongly narrowed their prior intervals. The scatter plots in 258 

this figure show a moderate correlation between the parameters a  and b  (a correlation factor 259 

of 0.61), a high correlation between the parameters 
0f

S  and b  (a correlation factor of 0.79) 260 

and a very high correlation between the parameters 
0f

K  and a  (a correlation factor of 0.98). 261 

The mean and 95% confidence intervals of the samples that adequately fit the model onto 262 

observations are reported in Table 2. From this table, we can see that the parameters 
0f

K , a  263 

and b  are well identified with respectively a mean value of 0.9910-5 ms-1, 0.299 and 0.2. 264 

These values are almost identical to the reference values of Table 1. The uncertainty on these 265 
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parameters is small since the 95% confidence intervals are respectively [0.9-1.1]10-5 ms-1, 266 

[0.28-0.32] and [0.17-0.23]. The parameters 
0f

S  and 0  are less well identified. Indeed, alt-267 

hough their mean values (respectively 5.0310-5 m-1 and 3.0610-11 m-1s-1) are very close to 268 

the reference values, their posterior uncertainty remains quite large since their confidence 269 

intervals are respectively [3.2-7.6]10-5 m-1 and [2.1-4.5]10-11 m-1s-1. 270 

Finally note that the identification procedure does not converge if the storage coefficient in 271 

the matrix 
0mS  is involved in the inversion procedure (not fixed). In that case, the identifica-272 

tion of the six parameters 
0f

K , 
0f

S , 
0mS , 0 , a  and b  was not possible. Indeed, in this case, 273 

the MCMC algorithm was faced to convergence problem because of equifinality issues. 274 

 275 

6 CONCLUSION 276 

A new analytical solution for interference hydraulic pumping tests in fractal fractured porous 277 

media is developed using the dual-porosity concept and power laws in space for all hydrody-278 

namic parameters. The developed analytical solution is compared to a numerical one obtained 279 

with the FV method using different time step sizes. Discrepancies are observed between ana-280 

lytical and numerical solutions when the latter is used with large time steps. These discrepan-281 

cies are more pronounced with dual fractal media than with homogeneous dual media. When 282 

the size of the time step decreases, the numerical solution converges toward the analytical one 283 

for both homogeneous and fractal dual media. 284 

The applicability of the fractal dual-porosity model was then assessed by investigating identi-285 

fiability of the hydraulic parameters from a synthetic interference pumping test with a set of 286 

noisy data using the MCMC sampler. The results show that if the storage coefficient in the 287 
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matrix is fixed, the rest of the parameters can be appropriately identified, whereas conver-288 

gence problems can be encountered if all the hydraulic parameters are to be estimated. 289 
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 296 

Appendix: Derivation of the Analytical Solution in the Laplace Domain 297 

 298 

Using the boundary condition at infinity (17) and the following asymptotic expansions for 299 

large arguments  z   of J  and Y  [22],       2 / , cos , sinJ z z P z Q z        300 
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1 2 0C iC  . Therefore, this latter can be written as 303 
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where  1
H  is the Hankel function of the first kind defined by 

       1
H z J z iY z     for 305 

any complex number z .  306 

The boundary condition at the well (18) is then used to find 1C . Note that for 0   the 307 

Hankel function 
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2
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 as z  approaches zero [22], where Γ  is the Gamma 308 

function. Using this expansion we can write 309 
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as r  appraches zero. Using the property of the Gamma function    Γ 1 Γ     for 0  , 312 

the first term of right hand side of equation (A.2) vanishes since n a  . Substituting (A.2) 313 

into (18) we get 
 

   
0 0

1
1 1 1 /2 /2Γ 1 Β f f

Q p
C

i n K S A p


     

 
 
 

.  314 

Finally, inserting the value of 1C  into (A.1) and using the relationship 315 

   
1 1

12 2
1

2

i i

K z ie H ze
 

 
 

  
 

 for 
1

– arg
2

z   , where K  is the modified Bessel func-316 

tion of the second kind of order  , we get the solution in the Laplace domain as defined by 317 

(19). 318 
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 421 

Table 1 422 

 423 

 424 

Parameters Lower bounds Upper bounds Reference values 

0f
K  [ms-1] 510-7 510-4 110-5 

0f
S  [m-1] 10-6 10-3 510-5 

0  [m-1s-1] 10-12 10-9 310-11 

a  [-] 0.1 0.5 0.3 

b  [-] 0.1 0.5 0.2 
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 428 

Table 2 429 

 430 

Parameters Mean 95% Conf. Int. 

0f
K  [ms-1] 0.9910-5 [0.9-1.1]10-5 

0f
S  [m-1] 5.0310-5 [3.2-7.6]10-5 

0  [m-1s-1] 3.0610-11 [2.1-4.5]10-11 

a  [-] 0.299 [0.28-0.32] 

b  [-] 0.2 [0.17-0.23] 

 431 

 432 

 433 

 434 

 435 

 436 

 437 

 438 

 439 

 440 

  441 



24 

Figure 1 442 
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Figure 2 447 
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