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INTRODUCTION

Simulation of interference pumping tests in porous media allows testing different prospective exploitation scenarios at low costs. These tests consist in pumping a well at a controlled flow rate and measuring the water level response (drawdown) in one or more surrounding observation wells. Pumping tests in fractured porous media have been discussed by several authors (see [START_REF] Hsieh | A brief survey of hydraulic tests in fractured rocks[END_REF][START_REF] Kruseman | Analysis and evaluation of pumping test data[END_REF][START_REF] Batu | Aquifer Hydraulics: a comprehensive guide to hydrogeologic data analysis[END_REF][START_REF] Cheng | Multilayered aquifer systems fundamentals and applications[END_REF][START_REF] Walton | Aquifer test modelling[END_REF][START_REF] Nielsen | Fractured aquifers formation evaluation by Well Testing[END_REF][START_REF] Delay | Inversion of interference hydraulic pumping tests in both homogeneous and fractal dual media[END_REF][START_REF] De Smedt | Analytical solution Analytical Solution for Constant-Rate Pumping Test in Fissured Porous Media with Double-Porosity Behaviour[END_REF], among others). Fractured media are often addressed using the dual-porosity model suggested by Barenblatt et al. [START_REF] Barenblatt | Basis concepts in the theory of seepage of homogeneous liquids in fissured rocks[END_REF]. The main idea of this model is to consider two overlapping continua: (i) the fractures which carry the major part of water to the pumping well and (ii) the low permeability rock matrix which feeds fluid to the fractures. At each point of the domain, water flow between the fractures and matrix are coupled via a linear exchange term proportional to the difference in hydraulic head between the two continua. As stated by De Smedt [START_REF] De Smedt | Analytical solution Analytical Solution for Constant-Rate Pumping Test in Fissured Porous Media with Double-Porosity Behaviour[END_REF], the simulation of interference pumping tests is often based on numerical models which cannot insure full control of numerical accuracy [START_REF] Zhan | An analytical solution of two-dimensional reactive solute transport in an aquifer aquitard system[END_REF]. Therefore, analytical solutions are highly sought-after because (i) they provide valuable insights into fundamental physics, as they are free of numerical errors and (ii), although limited to simplified situations; they allow validation of more complex numerical codes.

In the context of interference pumping tests in fractured porous media, an analytical solution has been developed for homogenous aquifers by De Smedt [START_REF] De Smedt | Analytical solution Analytical Solution for Constant-Rate Pumping Test in Fissured Porous Media with Double-Porosity Behaviour[END_REF]. Furthermore, Delay et al. [START_REF] Delay | Inversion of interference hydraulic pumping tests in both homogeneous and fractal dual media[END_REF] developed a numerical solution using the dual-medium approach to describe radial convergent flow in heterogeneous fractal media where power laws in space are used for the hydrodynamic parameters. As a consequence, parameter values decrease with the distance between the pumped well and the observed ones. This type of scaling laws inherits from theoretical works on fractals [START_REF] O'shaughnessy | Diffusion in fractals[END_REF] and has been used by several authors for single porous media ( [START_REF] Acuna | Application of fractal geometry to the study of networks of fractures and their pressure transient[END_REF][START_REF] Chang | Pressure-transient analysis of fractal reservoirs[END_REF][START_REF] Delay | Analytical 2D model to invert hydraulic pumping tests in fractured rocks with fractal behavior[END_REF][START_REF] Le Borgne | Equivalent mean flow models for fractured aquifers: insights for a pumping test scaling interpretation[END_REF], among others). Hence, the main objective of this paper is to develop, for the first time, an analytical solution for the mathematical model describing interference pumping tests in heterogeneous fractal dual media. Applicability of the model is then assessed by investigating identifiability of the different parameters from a synthetic pumping test with a set of noisy data using Statistical Calibration (SC) [START_REF] Laloy | High-dimensional posterior exploration of hydrologic models using multiple-try DREAM(ZS) and high-performance computing[END_REF]. The latter means refining the prior distribution of uncertain parameters based on matching simulation outputs with data [START_REF] Campbell | Statistical calibration of computer simulations[END_REF]. In this work, the SC is performed with the DREAM(ZS) software [START_REF] Laloy | High-dimensional posterior exploration of hydrologic models using multiple-try DREAM(ZS) and high-performance computing[END_REF] based on the Markov Chain Monte Carlo process (MCMC). DREAM(ZS) computes multiple sub-chains in parallel to thoroughly explore the parameter space. Taking the last 25% of individuals of the MCMC (when the chains have converged) yields multiple sets of parameters that adequately fit the model onto observations. These sets can then be used to estimate the updated parameter distributions and therefore the best estimates of the parameters and the associate confidence intervals.

MATHEMATICAL MODEL

We assume a horizontal, isotropic, confined and infinite aquifer with a uniform thickness. The pumping well only draws water from the fractures, has a constant rate and fully penetrates the aquifer. Using the dual-porosity concept, the flow in fractured porous media can be described by the following equations [START_REF] Warren | The behavior of naturally fractured reservoirs[END_REF][START_REF] Moench | Double-porosity models for a fissured groundwater reservoir with fracture skin[END_REF]:

    . f f f f m f h S K h h h t         (1)   m m f m h S h h t     (2) 
where indexes m and f refer to the matrix and fracture continua, respectively,

1 SL    is the specific storage,   hL is the hydraulic head, 1 f K LT   
is the hydraulic conductivity of the fractures, 11 LT     is the exchange rate coefficient between the fractures and the matrix. Following Warren and Root [START_REF] Warren | The behavior of naturally fractured reservoirs[END_REF], equation (2) assumes pseudo-steady flow in the matrix con-tinuum (term m K is removed). Assuming radial symmetry, equations ( 1) and ( 2) can be for- mulated as:
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where   rL is the radial coordinate with the center of the pumping well as origin.

The drawdown in an observation well intercepting the fractures can be expressed as follows 
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Far away from the pumping well, the drawdowns are assumed to be zero

    lim , lim , 0 fm rr H r t H r t    (8) 
The limit where the radius approaches zero corresponds to the well withdrawal rate

    0 0 , lim 2 , 0 f f r H r t rBK r Q t r           (9)
where B is the thickness of the aquifer and 0 Q is the pumping flow rate.

In the sequel, we limit our investigation for the semi-analytical solution of equations [START_REF] Walton | Aquifer test modelling[END_REF][START_REF] Nielsen | Fractured aquifers formation evaluation by Well Testing[END_REF][START_REF] Delay | Inversion of interference hydraulic pumping tests in both homogeneous and fractal dual media[END_REF][START_REF] De Smedt | Analytical solution Analytical Solution for Constant-Rate Pumping Test in Fissured Porous Media with Double-Porosity Behaviour[END_REF][START_REF] Barenblatt | Basis concepts in the theory of seepage of homogeneous liquids in fissured rocks[END_REF] to the case of a confined reservoir of a fractal structure with a single well in an unbounded me-dium as described in [START_REF] Delay | Inversion of interference hydraulic pumping tests in both homogeneous and fractal dual media[END_REF][START_REF] Acuna | Application of fractal geometry to the study of networks of fractures and their pressure transient[END_REF]. Note that more complex fractal approaches have been developed in the case of many wells with variable rates [START_REF] Chang | A Note On Pressure-Transient Analysis Of Fractal Reservoirs[END_REF] and by considering transient flow from block to fissure and skin between the fissure and the block [START_REF] Hamm | Dual-porosity fractal models for transient flow analysis in fissured rocks[END_REF].

In this work, following Delay et al. [START_REF] Delay | Inversion of interference hydraulic pumping tests in both homogeneous and fractal dual media[END_REF], we consider dual porosity media in which the hydrodynamic parameters are power-law functions in space (decreasing functions of the radial distance r between the pumping well and the observed one). Moreover, for sake of simplicity, we assume the same functions for the exchange rate coefficient  and for the storage coeffi- cients f S and m S . Hence, the values of the hydraulic parameters vary with respect to radial distance according to the following power-law functions:
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)
where the power-law exponents a and b are assumed to be positive.

ANALYTICAL SOLUTION

Analytical solution in the Laplace domain

In this section, we follow the strategy developed by De Smedt [START_REF] De Smedt | Analytical solution Analytical Solution for Constant-Rate Pumping Test in Fissured Porous Media with Double-Porosity Behaviour[END_REF] to derive the analytical solution of the system formed by equations ( 5)- [START_REF] Zhan | An analytical solution of two-dimensional reactive solute transport in an aquifer aquitard system[END_REF]. The solution is derived using the Laplace transform technique with respect to time variable t . The Laplace transform of a time-

dependent function y is       0 ;d pt y p L y t t p y t e t         (11) 
Applying the Laplace transform to ( 5)-( 6) and using (10) leads to

        0 0 1 0 , , , , f f b a b f f m f K H r p pS r H r p r r H r p H r p r r r                (12)       0 0 , , , m m f m pS H r p H r p H r p     (13) 
Equation ( 13) can be rearranged
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Substituting ( 14) into ( 12) yields
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Equation ( 15) is a second order ordinary differential equation; its general solution is of the form (cf. Polyanin and Zaitsev [START_REF] Polyanin | Handbook of Exact Solutions for Ordinary Differential Equations[END_REF], page 159, equation ( 127))
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of the first and second kinds, respectively. The parameters 1 C and 2 C are constant that can be calculated using boundary conditions.

In the Laplace domain, the boundary conditions become

  lim , 0 f r H r p   (17) 
and
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The solution of ( 15), taking into account the boundary conditions ( 17) and ( 18) is
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where K  is the modified Bessel function of the second kind of order  . More details about the derivation of the solution [START_REF] Moench | Double-porosity models for a fissured groundwater reservoir with fracture skin[END_REF] are given in the Appendix.

Analytical solution in the time domain

The solution in the time domain

 

, f H r t is sought using the convolution theorem of the La-

place transform [23]       1 2 2 1 0 , d ; , ; ; t L y t t p L L y t t t p t p               (20)
Hence, equation ( 19) is written as In the second step, the inverse Laplace transform with respect to 2 p is obtained using the in- verse transform of the 𝐽-function [START_REF] Goldstein | On the mathematics of exchange processes in fixed columns I: Mathematical solutions and asymptotic expansions[END_REF] based on the formula
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The Bessel integral 𝐽-function is defined as follows [START_REF] De Smedt | Analytical solution Analytical Solution for Constant-Rate Pumping Test in Fissured Porous Media with Double-Porosity Behaviour[END_REF][START_REF] De Smedt | A generalized solution for solute flow in soils with mobile and immobile water[END_REF]    
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In view of ( 20) and ( 23), the analytical expression of
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A similar expression can be obtained for

 

, m H r t using the convolution theorem of the La- place transform for equation [START_REF] Delay | Analytical 2D model to invert hydraulic pumping tests in fractured rocks with fractal behavior[END_REF] and using equation [START_REF] Moench | Double-porosity models for a fissured groundwater reservoir with fracture skin[END_REF].

In the case of homogeneous media   0 ab  , we have

  1 22 1 ,0 2 z W z z e  
and (25) reduces to the De Smedt [START_REF] De Smedt | Analytical solution Analytical Solution for Constant-Rate Pumping Test in Fissured Porous Media with Double-Porosity Behaviour[END_REF] solution:

    2 0 0 0 0 0 4 0 1 00 0 , , d 4 Β f f Sr t K f f f m t Q H r t e J K S S               (26) 

COMPARISON TO NUMERICAL SOLUTIONS

We numerically solve two interference pumping tests dealing with homogeneous and fractal dual media. For each test, the numerical solution is compared against the corresponding analytical solution using [START_REF] Goldstein | On the mathematics of exchange processes in fixed columns I: Mathematical solutions and asymptotic expansions[END_REF]. The numerical solution of the system ( 5)-( 10 Figure 1 depicts the drawdown in both the fracture and matrix at 10m and 100m. The drawdown in the fissure starts at early times because storage of the fissures is immediately effective at the start of the pumping test, while storage of the matrix needs much more time to become noticeable. A flattening of the drawdown curve in the fissure can be observed at intermediate pumping time which is typical for double-porosity behavior because of the transition from fracture to matrix water storage release.

The numerical FV solution is compared to the analytical solution [START_REF] Goldstein | On the mathematics of exchange processes in fixed columns I: Mathematical solutions and asymptotic expansions[END_REF] in the case of homogeneous   0 ab  and fractal   0.6 and 0.4 ab  dual media. The comparison is performed at two observation wells located respectively at distances 1 10 r  m and 2 100 r  m from the pumping well. Significant discrepancies can be observed between analytical and numerical solutions when the latter is evaluated using a large time step size (Figure 2). The drawdown in the case of fractal dual media is larger than in homogeneous dual media because of the reduction of the hydrodynamic parameters with the distance r from the pumping well. In fact, in the case of fractal dual media, the permeability of the fractures is proportional to 0.6 r  where- as the exchange rate and the specific storage of both the fractures and the matrix are proportional to 0.4 r  . Thereby, the discrepancy between analytical and numerical solutions (Figure 2) is more pronounced with dual fractal media than with homogeneous dual media. For both homogeneous and fractal dual media, the numerical solution converges toward the analytical solution ( 25) when the size of the time step decreases (Figure 2). Note that the reduction of the permeability of the fractures with respect to the distance r is also responsible, via the Whittaker function in equation ( 25), of the delay for the stabilisation of the solution in the fractal case (Figure 2 b) compared to the homogeneous case (Figure 2a).

BAYESIAN INVERSION OF A PUMPING TEST IN FRACTAL DUAL MEDIA

In practical applications, most of the hydraulic parameters cannot be measured directly and should be estimated using an inversion procedure. In the case of fractal dual media, the inversion can be challenging because of model equifinality, implying that different parameter combinations can fit the model responses to data. To assess the applicability of the fractal dual porosity model, the identifiability of the parameters of the analytical solution ( 25) is assessed using a synthetic interference pumping test with a set of noisy data. Parameter identification is performed in a Bayesian framework where the prior knowledge about the parameters and the observed data are merged to define the joint posterior probability distribution function (pdf) of the parameters. In this work, the pdf is performed using the DREAM(ZS) software [START_REF] Laloy | High-dimensional posterior exploration of hydrologic models using multiple-try DREAM(ZS) and high-performance computing[END_REF] based on the Markov Chain Monte Carlo (MCMC) sampler. DREAM(ZS) generates random sequences of parameter sets that asymptotically converge toward the target joint posterior dis-tribution [START_REF] Gelman | Bayesian data analysis[END_REF]. Thus, if the number of runs is sufficiently high, the generated samples allows exploring the entire parameter space of the posterior distribution of the parameters and provides the pairwise parameter correlations and the uncertainty of model predictions.

The Bayes theorem states that the probability density function of the model parameters conditioned onto data can be expressed as:

      | | mes mes p p p  ξ y y ξ ξ , ( 27 
)
where   A synthetic pumping test is generated by running the analytical solution using the reference parameter values given in Table 1 for

    2 2 ξ ξy h h N mes h h SS p | exp        , (28) 
0 f K , 0 f S , 0
 , a and b . As in Fahs et al. [START_REF] Fahs | An efficient numerical model for hydrodynamic parameterization in 2D fractured dual-porosity media[END_REF], the stor- age coefficient in the matrix 0 m S is fixed in this study to be 4 10  m -1 . Delay et al [START_REF] Delay | Inversion of interference hydraulic pumping tests in both homogeneous and fractal dual media[END_REF] showed that results of calibration improved when several drawdown curves at several locations are inverted at once. In the sequel, the analytical solution is run for a long period of Gaussian noise with a standard deviation of 0.01m and a mean of zero was added to the target responses. We assume that all hydraulic parameters have uniform prior distributions over the ranges given in Table 1. As recommended in Vrugt et al. [START_REF] Vrugt | A shuffled complex evolution Metropolis algorithm for optimization and uncertainty assessment for hydrologic model parameters[END_REF], we consider that the posterior distribution is stationary if the Gelman and Ruban [START_REF] Gelman | Inference from iterative simulation using multiple sequences[END_REF] criterion is less than 1.2 and that the chains are not autocorrelated.

The MCMC method was terminated after 15000 model runs. The convergence was reached at around 10000 model runs. Figure 3 shows the results of the identification based on the last 25% of individuals of the MCMC sampler (when the chains have converged). The "ondiagonal" plots in these figures display the inferred parameter distributions, whereas the "offdiagonal" plots represent the pairwise correlations in the MCMC sample. If the drawings are independent, non-sloping scatterplots should be observed. However, if a good value of a giv- The mean and 95% confidence intervals of the samples that adequately fit the model onto observations are reported in Table 2. From this table, we can see that the parameters 0 f K , a and b are well identified with respectively a mean value of 0.9910 -5 ms -1 , 0.299 and 0.2.

These values are almost identical to the reference values of Table 1. The uncertainty on these parameters is small since the 95% confidence intervals are respectively [0.9-1.1]10 -5 ms -1 , [0.28-0.32] and [0.17  , a and b was not possible. Indeed, in this case, the MCMC algorithm was faced to convergence problem because of equifinality issues.

CONCLUSION

A new analytical solution for interference hydraulic pumping tests in fractal fractured porous media is developed using the dual-porosity concept and power laws in space for all hydrodynamic parameters. The developed analytical solution is compared to a numerical one obtained with the FV method using different time step sizes. Discrepancies are observed between analytical and numerical solutions when the latter is used with large time steps. These discrepancies are more pronounced with dual fractal media than with homogeneous dual media. When the size of the time step decreases, the numerical solution converges toward the analytical one for both homogeneous and fractal dual media.

The applicability of the fractal dual-porosity model was then assessed by investigating identifiability of the hydraulic parameters from a synthetic interference pumping test with a set of noisy data using the MCMC sampler. The results show that if the storage coefficient in the matrix is fixed, the rest of the parameters can be appropriately identified, whereas convergence problems can be encountered if all the hydraulic parameters are to be estimated.

Appendix: Derivation of the Analytical Solution in the Laplace Domain

Using the boundary condition at infinity [START_REF] Campbell | Statistical calibration of computer simulations[END_REF] and the following asymptotic expansions for large arguments   z  of J  and Y  [22],

        2 / , cos , sin J z z P z Q z         and         2 / , cos , sin Y z z P z Q z         for arg z   with 11 24 z          ,         2 0 , 2 ,1 2 k k k k Pz z       and         21 0 , 2 1 ,1 2 k k k k Qz z        
, equation ( 16) gives 12 0 C iC  . Therefore, this latter can be written as

      0 0 1/2 /2 1 2 1 1/2 2 , Α n a f f f iS r H r p C r H p nK       (A.1)
where   1 H  is the Hankel function of the first kind defined by

        1 H z J z iY z   
 for any complex number z .

The boundary condition at the well ( 18) is then used to find 1 C . Note that for 0

  the Hankel function     1 1 ~Γ 2 i Hz         
as z approaches zero [START_REF] Polyanin | Handbook of Exact Solutions for Ordinary Differential Equations[END_REF], where Γ is the Gamma function. Using this expansion we can write , where K  is the modified Bessel function of the second kind of order  , we get the solution in the Laplace domain as defined by [START_REF] Moench | Double-porosity models for a fissured groundwater reservoir with fracture skin[END_REF]. Table 1: Reference values, lower and upper bounds of the parameters for a synthetic pumping test case in fractal dual media.

                0 0 1 /2 1 11 /2 , ~Γ Γ 1 Γ 1 2 f f aa f i S C H r t r r n A p a n n A p rK                             (A.
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  ) is developed using the standard Finite Volume (FV) method. The domain of size 10,000 Lm  is discretized using a uniform spatial discretization of size 5 r  m. A similar solution is obtained using a finer spatial discretization of size 1 r m which shows the weak sensitivity of the numerical solution to the spatial discretization. The duration of the simulation is  m 3 /h. The initial head in the aquifer is 0 100 h  m and the aquifer thickness is 100 B  m. The specific storage of the fractures and rock matrix are respectively

  function measuring how well the model fits the observations mes y , and   p ξ is the prior information about the parameter before the observations are made. In this work, a Gaussian distribution defines the likelihood function because the observations are simulated and corrupted with Gaussian errors. Hence, the parameter posterior distribution is expressed as:

  are the sums of the squared differences between the observed and modeled drawdowns. For instance,

  the drawdown at four observation wells located respectively at 1 1 r  m, 2 10 r  m, 3 100 r  m and 4 500 r  m from the pumping well. Four datasets of 2000 values each (corresponding to the drawdown at the observation wells measured each 4 10 s) are used as target responses for model inversion.

fSfK

  en parameter is conditioned by the value of another parameter, then their pairwise scatterplot should show a narrow sloping stripe. The results of Figure3show that the five parameters 0 , a and b are appropriately estimated; they have almost symmetric bell-shaped posterior distributions and have strongly narrowed their prior intervals. The scatter plots in this figure show a moderate correlation between the parameters a and b (a correlation factor of 0.61), a high correlation between the parameters 0 and b (a correlation factor of 0.79) and a very high correlation between the parameters 0 and a (a correlation factor of 0.98).

 0 mS

 0 are less well identified. Indeed, alt- hough their mean values (respectively 5.0310 -5 m -1 and 3.0610 -11 m -1 s -1 ) are very close to the reference values, their posterior uncertainty remains quite large since their confidence intervals are respectively [3.2-7.6]10 -5 m -1 and [2.1-4.5]10 -11 m -1 s -1 .Finally note that the identification procedure does not converge if the storage coefficient in the matrix is involved in the inversion procedure (not fixed). In that case, the identifica- tion of the six parameters 0
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 1 Figure 1: Drawdown versus time curves for a pumping test in homogeneous and fractal dual
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 2 Figure 2: Comparison between analytical and numerical solutions in the case of (i) homoge-

Figure 3 :

 3 Figure 3: MCMC solutions of the interference pumping test in fractal dual media. The diago-
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  2)as r appraches zero. Using the property of the Gamma function    

									Γ 1	Γ    	for	0   ,
	the first term of right hand side of equation (A.2) vanishes since	na   . Substituting (A.2)
	into (18) we get	1 C		1 i n 1    	  Γ 1  	  00 1 /2 /2 ff Qp Β K S   	  A p   	.
	Finally, inserting the value of	1 C	into (A.1) and using the relationship
	  K z     11 1 22 1 2 ii ie H ze      	for	1 2   -arg z
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