Comment on "Null Hypothesis Significance

Testing Defended and Calibrated by Bayesian Model Checking -by David R. Bickel (2021)," The American Statistician,75:3,[249][250][251][252][253][254][255] Priyantha Wijayatunga Department of Statistics Umeå University Sweden. Email: priyantha.wijayatunga@umu.se I find this article an interesting and timely one, especially, as far as so-called replication crisis and current discussion on p-values are concern, that might be partially due to negligence of Fisher's advice on frequentist null hypothesis testing (NHT) method. The author could have emphasized it little more. Fisher might have given those advice since NHT is not a complete decision procedure that involves, e.g., loss functions, etc. for taking actions. It is a testing procedure.

First of all, anyone using the NHT should bear in mind that any systematic measurement error cannot be modelled with the method, therefore, it is the user's responsibility to have data without such errors. Given that such errors are no more in the data, still we need to comply with the Fisher's advice in order to obtain valid inferences from the NHT. When a user has seen a p-value that is lesser than, say, 0.05, level of significance then, we say that "either an exceptionally rare chance has occurred or the null hypothesis is not true," as the author has reminded us the all important statement of Fisher. However, sadly, not even in text books of statistics conclude so, for such p-values! Often the conclusion is the latter half of the statement.

Furthermore, according to the Fisher's school of statistical hypothesis testing (see [START_REF] Hubbard | Confusion Over Measures of Evidence (p's) Versus Errors (α's) in Classical Statistical Testing[END_REF]), if an exceptionally rare chance has not occurred, one can say that the p-value is a measure of extent to which the available data obey the model, i.e., the larger the p-value the more the data obey the model. The original thesis of Fisher is that the p-value of a test should be considered as a weak guide for assessing strength of evidence for the null hypothesis. That is, the meaning of expression such as, "p-value < 0.05" is that the respective experiment should be repeated a few more times (until the experimenter is convinced that the null hypothesis cannot be true most probably). In the case of observing such small p-values again and again, one can conclude that the observed effect, difference, etc. may not be solely due to chance. In this way, the user can minimize happening of any exceptionally rare chance in the data. Unfortunately such a practice advised by Fisher is rarely done today. Furthermore, it is important to keep in mind that method based on p-values was originally developed for experimental research by Fisher to analyze effects of randomised assignment of treatments for small groups of subjects. That is, they were defined in causal analyses. However, the p-values are now being used in other contexts such as statistical model building and predictions, and in machine learning where the data are non-experimental (just observational) and perhaps, are massive.

In my opinion, it is better if the author could have a mathematical way to express the non-occurrence of exceptionally rare chance. For example, we can have P r(P ≤ α|H 1 ) > P r(P ≤ α|H 0 ) = α if an exceptionally rare chance has not occurred. This is because there is no explicit way to model such rare chances in the NHT. If we assume the inequality, we can have some calculations as follows. But before that, I argue that the p-values that we obtain need to be inflated. It seems the author has paid no attention to uncertainty of the p-values, even though its random nature [START_REF] Yanagawa | Reproducibility of Statistical Test Results Based on p-value[END_REF]) is considered.

One may wonder that often if we really can obtain the correct p-value for the context. A reasonable argument can be made that the p-value that we calculate is often not its true value for the application. This is because, e.g., we assume that our data are a random sample and in some cases other modelling assumptions too. As stated in Yu and Kumbier (2020) "Resource constraints can limit how data are collected, resulting in samples that do not reflect the population of interest, distorting the probabilistic interpretations of traditional statistical inference." Therefore, there are uncertainties about the observed data and the context. The question is that if we have taken them into account when performing hypothesis tests. In my opinion this is one of the main problems that has caused replication problems.

We can argue that the observed p-value, say, p and the real p-value for a given test can be related as follows. For simplicity, let the p-value is defined as P {T ≥ t o |H 0 is true}, i.e., probability that a test statistic T exceeding the observed value of it given the null hypothesis H 0 is true where the statistic is calculated from a random sample of data (for simplicity, here we ignore any other assumption). Then, we say that we have observed a p-value, p, in case of true H 0 and a random sample of data. So, Note that in our tests we often assume that P {Data are a random sample} = 1, even though it is questionable. In above we have taken only the assumption of randomness of the data in order to calculate p-value. However, there can be other auxiliary assumptions that are needed, e.g., in regression modelling contexts the required modelling assumptions should also be included.

From above we see the p-value that we calculate is often smaller than its true value for the application. So, in practice we may be rejecting the null hypothesis more often than what it should have been. This means that we should inflate our calculated p-value to a certain degree. However, it may be hard to find the inflation factor (≥ 1) that should be used. The inflation factor that should be used to inflate the calculated p-value, p, is the reciprocal of the probability of satisfying all the probabilistic assumptions of the modelling and experimental context. One can calculate it subjectively, since there may not be any objective way of doing it! And if we adjust observed p-values in the above way or similar, then they may alter author's analysis to a certain degree.

If I consider the author's statement "Even apart from such systematic measurement error, the discovery could well be illusory with high probability" we can see that this is due to occurrences of exceptionally rare chances. The ratio

P r(H 0 |P ≤ α) P r(H 0 ) = P r(P ≤ α)|H 0 ) P r(P ≤ α) = α αP r(H 0 ) + P r(P ≤ α|H 1 )P r(H 1 ) = 1 P r(H 0 )(1 + P r(P ≤ α|H 1 )/α × P r(H 1 )/P r(H 0 )) ≤ 1
for all meaningful P r(H 1 )/P r(H 0 )) and non-occurrence of exceptionally rare chance. This implies that P r(H 0 |P ≤ α) < P r(H 0 ). If we follow the Fisher's advice of performing the hypothesis test several times in case of seeing p-value ≤ α in each case, then P r(H 0 |P 1 ≤ α, P 2 ≤ α, ...) becomes smaller and smaller where P i is the p-value at the time i for i = 1, 2.... This can be obtained by applying above inequality again and again, by updating prior probability of H 0 at each step or similarly.

As far as author's Example 2 is concern, where it is claimed P r(H 0 |P ≤ 0.005) = 5/6, to be high it is easy to see that single test has made the null hypothesis less probable since originally, the prior probability P r(H 0 ) = 10/11 that is higher than 5/6. If we do more tests complying the Fisher's advice, then the (conditional) probability of the null hypothesis (being true) becomes even smaller in case of observing small p-values!

  p = P {T ≥ t o |H 0 is true and data are a random sample}. p ≥ P {T ≥ t o and data are a random sample |H 0 is true} = P {T ≥ t o | Data are a random sample and H 0 is true} P {Data are a random sample |H 0 is true} = p P {Data are a random sample} ≥ p.