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ABSTRACT

Context. Gravity shapes stars to become almost spherical because of the isotropic nature of gravitational attraction in Newton’s
theory. However, several mechanisms break this isotropy, such as their rotation generating a centrifugal force, magnetic pressure, or
anisotropic equations of state. The stellar surface therefore slightly or significantly deviates from a sphere depending on the strength
of these anisotropic perturbations.
Aims. In this paper, we compute analytical and numerical solutions of the electromagnetic field produced by a rotating spheroidal star
of oblate or prolate nature. This study is particularly relevant for millisecond pulsars for which strong deformations are produced by
rotation or a strong magnetic field, leading to indirect observational signatures of the polar cap thermal X-ray emission.
Methods. First we solve the time harmonic Maxwell equations in vacuum by using oblate and prolate spheroidal coordinates adapted
to the stellar boundary conditions. The solutions are expanded in series of radial and angular spheroidal wave functions. Particular
emphasis is put on the magnetic dipole radiation. Second, we compute approximate solutions by integrating the time-dependent
Maxwell equations in spheroidal coordinates numerically.
Results. We show that the spin-down luminosity corrections compared to a perfect sphere are, to leading order, given by terms
involving (a/rL)2 and (a/R)2 where a is the stellar oblateness or prolateness, R the smallest star radius, and rL the light-cylinder
radius. The corresponding perturbations in the electromagnetic field are only perceptible close to the surface, deforming the polar cap
rims. At large distances r � a, the solution tends asymptotically to the perfect spherical case of a rotating dipole.

Key words. methods: analytical – methods: numerical – magnetic fields – stars: general – stars: rotation – pulsars: general

1. Introduction

Large celestial bodies are approximately spherical because of
the preponderance of gravity against other internal forces and
stresses. Gravitation does not favor any direction in the sky
and therefore a perfect spherical shape is expected for isotropic
materials. However, celestial bodies such as stars and molecular
clouds are often subject to rotation, producing a centrifugal force
Fcen breaking the isotropy imposed by gravity Fgrav. A reference
direction appears along the rotation axis. The surface of the body
is deformed and can be approximated, for instance, by an ellip-
soidal shape of oblate nature. The strength of this force must be
compared to gravity at the surface. A good guess for this ratio is
given by the comparison between centrifugal and gravitational
forces:

Fcen

Fgrav
≈

Ω2

Ω2
k

, (1)

with Ω being the rotation rate of the star (assumed to be in solid
body rotation) and Ωk being the Keplerian angular frequency at
the equator. For a more quantitative description, readers can refer
to the discussion from Chandrasekhar (1970) about spheroids
and ellipsoids of revolution and to Horedt (2004) who presents a
comprehensive analysis of rotational effects on polytropic stars.
Centrifugal forces are particularly important during the violent
birth of a neutron star, where they deform the proto-neutron star
to an oblate shape. The study proposed in this paper will be rel-
evant to such early infancy of a newly born neutron star.

For fast rotating stars, with a rotation rate being a fraction
of the equatorial Keplerian frequency, we expect their shape to
deviate from a spherical body by a fraction given by Eq. (1). Fol-
lowing Zanazzi & Lai (2015), the rotation-induced oblateness

of a celestial corps of uniform density is estimated analytically
through the parameter

ε =
15

16 π
Ω2

G ρ
=

5
4

Ω2 R3

G M
=

5
4

Ω2

Ω2
k

, (2)

which is defined by the moment of inertia difference between
the equatorial and polar direction. This is in agreement with the
estimate derived in Eq. (1). It gives an estimate (likely an over-
estimate) for the oblateness ratio a/R. Exact analytical solutions
exist for a constant density and uniformly rotating axisymmetric
ellipsoidal fluid. If the ellipticity is defined as

e =

√
1 −

(
Rpol

Req

)2

, (3)

with Rpol and Req being the polar and equatorial radii of the fluid,
the frequency Ω given by Chandrasekhar (1970) reads as fol-
lows:

Ω2

2 πG ρ
=

√
1 − e2

e3 (3 − 2 e2) arcsin e − 3
1 − e2

e2 ≈
4

15
e2. (4)

The approximation is valid for small ellipticities e � 1. A more
realistic estimate is obtained for instance for the SLy4 equation
of state as found from Table 1 of Silva et al. (2021).

The body becomes oblate and impacts its immediate sur-
roundings gravitationally, but also electromagnetically, if it pos-
sesses a magnetic field. We are interested in the latter possibility,
namely an oblate magnetic star rotating in vacuum. It launches
an electromagnetic wave responsible for its magnetic braking.
Strongly magnetized neutron stars are of particular interest in
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this respect because they spin down according to the magne-
todipole losses. Millisecond pulsars are the fastest rotating neu-
tron stars known; they become elongated along their equator
because of strong centrifugal forces. It is therefore important to
understand how their oblate shape perturbs the electromagnetic
field and Poynting flux in conjunction with their aging and spin
evolution. So far, exact analytical solutions only exist for a per-
fect sphere as expressed by Deutsch (1955). Extension to mul-
tipolar fields has been thoroughly investigated by Pétri (2015);
readers can also refer to Bonazzola et al. (2015). It is our goal
to extend these important results to oblate stars by introducing
a coordinate system adapted to the stellar surface shape. Conse-
quently oblate spheroidal coordinates are best suited to achieve
this goal. These coordinates are among the 11 separable systems
(Morse & Feshbach 1953), leading to well-defined solutions for
the Laplace and Helmholtz equations. For completeness, we also
consider prolate shapes, although these cannot be produced by
rotation, but for instance by magnetic pressure. Indeed, observa-
tional signatures of such prolateness is witnessed by the torque-
free precession of magnetars subject to strong toroidal magnetic
fields (Makishima et al. 2016, 2019).

For strongly magnetized systems, the magnetic pressure
becomes comparable to the gaseous pressure and deforms its sur-
face to an aspherical shape with no particular symmetry axis.
Spheroidal geometries could therefore be used as a first step
toward more general configurations. Spheroidal coordinate sys-
tems possess the interesting and important properties of full sep-
aration of a variable for the Laplace and Helmholtz operators. It
is therefore possible to solve time harmonic wave emission and
propagation in spheroidal coordinates analytically. Moreover for
compact objects, anisotropic equation of states for nuclear matter
at a very high density as in neutron stars also produce nonspher-
ical astronomical objects.

From a mathematical perspective, spheroidal wave functions
applied to electromagnetic theory have been extensively dis-
cussed in Li et al. (2001). An early application to light scat-
tering was studied by Asano & Yamamoto (1975). A different
approach employing only spheroidal coordinates was proposed
by Zeppenfeld (2009).

In this paper, we formally compute exact analytical solutions
to the electromagnetic wave radiation of a stationary rotating star
of a spheroidal shape, oblate, or prolate. In Sect. 2, we recall the
useful and important properties of the curvilinear and orthogo-
nal coordinate systems that formed by oblate and prolate coor-
dinates, with their metric and natural basis. The separation of
variables is presented and the related spheroidal wave functions
are introduced. Next in Sect. 3, we compute static solutions for
the multipolar magnetic field sustained by a spheroidal object.
We discuss the important question about the normalization of a
spheroidal multipole with respect to a spherical multipole being
used as the reference solution. Eventually, in Sect. 4 we com-
pute the solution for a rotating spheroid by expansion of the
electromagnetic field into spheroidal wave functions. Some use-
ful approximate analytical solutions are presented to the low-
est order in oblateness or prolateness. We close our work with
accurate numerical results of spheroidal stars rotating in vac-
uum performed by pseudo-spectral time-dependent simulations
in Sect. 5. Conclusions are drawn in Sect. 6.

2. Spheroidal coordinates

We start with a brief overview of both spheroidal coordinate sys-
tems, namely oblate and prolate. We assume a star with minimal
radius R, corresponding to the polar radius for oblate coordinates

and to the equatorial radius for prolate coordinates. An oblate
shape describes a self-gravitating gas well which is deformed
by its own rotation. For completeness, we also consider prolate
shapes, although these deformations are not produced by rota-
tion. It is advantageous to adapt the curvilinear coordinate sys-
tem to the boundary conditions imposed by the gas or the star.

The Cartesian coordinate system is defined by the unit
orthonormal basis (ex, ey, ez) with the associated coordinates
(x, y, z). We define the spheroidal coordinates relying on the
Cartesian correspondence.

2.1. Oblate spheroidal coordinates

We introduce the oblate spheroidal coordinate system (ρ, ψ, ϕ),
such that the Cartesian coordinates (x, y, z) are given by

x = η sinψ cosϕ (5a)
y = η sinψ sinϕ (5b)
z = ρ cosψ, (5c)

where we define η =
√
ρ2 + a2 and a is a real and positive

parameter related to the oblateness. The equatorial radius of the
surface is then Req =

√
R2 + a2. The ellipticity is defined by

(Shapiro & Teukolsky 1983)

ε =
Req − R

(Req + R)/2
. (6)

The natural basis vectors derived from Eq. (5) are expressed as
follows:

η eρ = ρ sinψ cosϕ ex + ρ sinψ sinϕ ey + η cosψ ez (7a)
eψ = η cosψ cosϕ ex + η cosψ sinϕ ey − ρ sinψ ez (7b)
eϕ = −η sinψ sinϕ ex + η sinψ cosϕ ey. (7c)

The position vector r is then expanded into

r =
ρ η2

∆o
eρ +

a2 cosψ sinψ
∆o

eψ, (8)

with ∆o = ρ2+a2 cos2 ψ. The oblate coordinate system is orthog-
onal, thus leading to a diagonal metric g with the following coef-
ficients:

gρρ =
ρ2 + a2 cos2 ψ

η2 =
∆o

η2 (9a)

gψψ = ρ2 + a2 cos2 ψ = ∆o (9b)

gϕϕ = η2 sin2 ψ. (9c)

Its determinant is

γ = det(g) = (ρ2 + a2 cos2 ψ)2 sin2 ψ = ∆2
o sin2 ψ. (10)

For the computation of fluxes along the coordinate ρ, it is useful
to have the surface element vector dΣ defined for an orthogonal
coordinate system such as the oblate one expressed in terms of
the variation of the position vector r along two directions e1 and
e2 such that (with the indices 1 and 2 being ρ, ψ, or ϕ)

dΣ = dr1 ∧ dr2 =
∂r
∂x1
∧
∂r
∂x2

dx1 dx2. (11)

Defined by its covariant components, we get

dΣi =
√
γ εi12 dx1 dx2, (12)
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with εi jk being the spatial Levi-Civita tensor (Arfken & Weber
2005). For instance, the radial Poynting flux across a closed sur-
face Σ defined by the spheroid ρ = ρ0 follows as

L =

	
Σ

S · dΣ =

	
Σ

S ρ dΣρ, (13)

with dΣρ = gρρ dΣρ = ∆o sinψ dψ dϕ and S being the Poynting
vector. Exactly similar reckoning is performed for prolate coor-
dinates, as shown in the next paragraph.

2.2. Prolate spheroidal coordinates

The prolate spheroidal coordinate system (ρ, ψ, ϕ) is given by

x = ρ sinψ cosϕ (14a)
y = ρ sinψ sinϕ (14b)
z = η cosψ. (14c)

It has the same functional form as Eq. (5), except that it inverts ρ
and η. Now the polar radius of the surface delimiting the gas or
the star is then Rpol =

√
R2 + a2. The definition of the ellipticity

must be changed accordingly, such that

ε =
Rpol − R

(Rpol + R)/2
. (15)

The natural basis vectors derived from Eq. (14) are expressed
as

η eρ = η sinψ cosϕ ex + η sinψ sinϕ ey + ρ cosψ ez (16a)
eψ = ρ cosψ cosϕ ex + ρ cosψ sinϕ ey − η sinψ ez (16b)
eϕ = −ρ sinψ sinϕ ex + ρ sinψ cosϕ ey. (16c)

The position vector r is given by

r =
ρ η2

∆p
eρ −

a2 cosψ sinψ
∆p

eψ, (17)

with ∆p = ρ2 + a2 sin2 ψ. The prolate coordinate system is also
orthogonal and the metric is given by the following:

gρρ =
ρ2 + a2 sin2 ψ

η2 =
∆p

η2 (18a)

gψψ = ρ2 + a2 sin2 ψ = ∆p (18b)

gϕϕ = ρ2 sin2 ψ. (18c)

Its determinant is

γ = det(g) =
ρ2

η2 (ρ2 + a2 sin2 ψ)2 sin2 ψ =
ρ2 ∆2

p

η2 sin2 ψ. (19)

The surface element on a surface ρ = ρ0 is in contravariant com-
ponents

dΣρ = η ρ sinψ dψ dφ. (20)

In the whole paper, we work in these coordinate systems,
using the natural basis either from Eq. (7) or from Eq. (16) for the
components of vector fields. We now discuss the central property
of spheroidal coordinates leading to fully separable variables for
the scalar Helmholtz equation.

2.3. Separation of oblate variables

The scalar Helmholtz equation that reads as

∆W + k2 W = 0, (21)

where W is the unknown scalar field in three dimensions,
is well known to be separable in 11 coordinate systems
(Morse & Feshbach 1953). The spheroidal coordinates, being
prolate or oblate, belong to these sets. Therefore Eq. (21) can
be separated into three functions of one independent variable
each, including a radial part P(ρ), an angular part Ψ(ψ), and an
azimuthal part Φ(ϕ). The second order linear differential equa-
tions derived from this separation generate the radial and angular
spheroidal wave functions (Olver 2010; Abramowitz & Stegun
1965).

Explicitly writing the solution with the ansatz W(ρ, ψ, ϕ) =
P(ρ) Ψ(ψ) Φ(ϕ), the separation of the variable leads to an
azimuthal dependence Φ(ϕ) ∝ ei mϕ, where m is an integer
because Φ(ϕ) must be single-valued in ϕ ∈ [0, 2 π] and to
two second order linear differential equations for ρ ≥ 0 and
ψ ∈ [0, π], given by

d
dρ

[
(ρ2 + a2)

dP
dρ

]
+

[
k2 (ρ2 + a2) +

m2 a2

ρ2 + a2

]
P = +λ P (22a)

1
sinψ

d
dψ

[
sinψ

dΨ

dψ

]
−

[
k2 a2 sin2 ψ +

m2

sin2 ψ

]
Ψ = −λΨ, (22b)

respectively, where λ is a separation constant, being an eigen-
value determined by the boundary conditions. By a change to
a new independent variable z, letting ρ = ±i a z for Eq. (22a)
and z = cosψ for Eq. (22b), both equations reduce to the same
Sturm-Liouville problem

d
dz

[
(1 − z2)

d f
dz

]
+

[
λ + γ2 (1 − z2) −

m2

1 − z2

]
f = 0, (23)

with γ2 = −k2 a2 < 0 meaning that γ is purely imaginary. We
note that the angular and radial wave functions are defined in
different intervals, |z| < 1 and z > 0, respectively.

The most general solutions in each direction are given by

P(ξ) = p1 S m
`

(1)(i ξ, γ) + p2 S m
`

(2)(i ξ, γ) (24a)

Ψ(ψ) = s1 Psm
` (ψ, γ2) + s2 Qsm

` (ψ, γ2) (24b)
Φ(ϕ) = h1 cos(mϕ) + h2 sin(mϕ), (24c)

with ξ = ρ/a. The radial S m
`

( j) ( j = 1, 2) and angular Psm
` ,Qsm

`
spheroidal functions are defined in Olver (2010) and normalized
according to Meixner & Schäfke (1954). Outgoing wave solu-
tions require one to fix P proportional to S m

`
(3)(i ξ, γ) with

S m
`

(3)(i ξ, γ) = S m
`

(1)(i ξ, γ) + i S m
`

(2)(i ξ, γ), (25)

which represents a generalization of the spherical Hankel func-
tions h(1)

`
and h(2)

`
. The angular regularity condition imposes

s2 = 0. In complex form, a particular solution for the scalar
Helmholtz equation Eq. (21) with outgoing wave boundary con-
ditions is

W = S m
`

(3)(i ξ, γ) Psm
` (ψ, γ2) ei mϕ. (26)

The same technique is applied to prolate coordinates as shown
below.
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2.4. Separation of prolate variables

Following the above lines, a same procedure for prolate coor-
dinates leads to the angular and radial equations identical to
Eq. (23), but with the important difference that γ2 = k2 a2 > 0,
meaning that γ is real. The solution for outgoing waves now
reads as

W = S m
`

(3)(ζ, γ) Psm
` (ψ, γ2) ei mϕ, (27)

with ζ = η/a =
√

1 + ξ2. The arguments of S m
`

(3) are all real,
whereas for oblate coordinates they are all purely imaginary.

Rotating objects in a stationary state leading to vector
Helmholtz equations reducible to a set of scalar Helmholtz equa-
tions is studied in Sect. 4. However, we first need to set the
background magnetic field of a static magnetized object. This
is explored in the next section.

3. Static spheroidal star

For nonrotating stars, the Helmholtz equation reduces to the
Poisson equation. By introducing a magnetic scalar potential φM ,
the solution to the magnetic field structure in vacuum can be
solved as an electrostatic problem (Jackson 2001). We describe
the procedure for any spheroidal multipole and give explicit
examples of magnetic monopoles and dipoles in oblate and pro-
late geometries.

3.1. Oblate magnetic star

The magnetic field B in vacuum outside a static star is curl-free
and divergenceless. It can be written as the gradient of a mag-
netic scalar potential φM , such that

B = −∇φM . (28)

The condition ∇ · B = 0 implies that the scalar potential satisfies
the Laplace equation

∆φM = 0. (29)

This equation is fully separable in oblate spheroidal coordinates.
Assuming that the inner boundary is located on the surface ρ =
ρ0, the general solution is expanded with ξ = ρ/a into

φM(ρ, ψ, ϕ) =
∑
`,|m|≤`

(
am
`

Pm
` (i ξ)

Pm
`

(i ξ0)
+ bm

`

Qm
` (i ξ)

Qm
`

(i ξ0)

)
Ym
` (ψ, ϕ), (30)

where Pm
` and Qm

` are the Legendre functions of first and sec-
ond kind, respectively, and Ym

` are the spherical harmonics
(see Appendix A). The potential is imposed at ρ = ρ0 with
φM(ρ0, ψ, ϕ) = V(ψ, ϕ) and must vanish at infinity at ρ = +∞.
Therefore, the coefficients am

` vanish. Moreover, the coefficients
bm
` are determined by the decomposition of the surface potential

into spherical harmonics

V(ψ, ϕ) =
∑
`,|m|≤`

Vm
` Ym

` (ψ, ϕ) (31)

and then these bm
` are identified as the surface potential coeffi-

cients such that bm
` = Vm

` . The solution for any magnetic poten-
tial is therefore

φM(ρ, ψ, ϕ) =
∑
`,|m|≤`

Vm
`

Qm
` (i ξ)

Qm
`

(i ξ0)
Ym
` (ψ, ϕ). (32)

The magnetic field follows from Eq. (28). The physical compo-
nents are as follows:

Bî = −
1
√
gii
∂iφM . (33)

When the stellar shape tends to a perfect sphere, a vanishes and

lim
a→0

Qm
` (i ξ)

Qm
`

(i ξ0)
=

(R
r

)`+1

(34)

and we retrieve the expressions for standard magnetic multipoles
(Pétri 2015). We note that in this limit, ρ0 = R = Req.

3.1.1. Monopole solution

For completeness and to better understand the impact of the stel-
lar ellipticity on the electromagnetic field, we start by comput-
ing the monopole solution given by the numbers (`,m) = (0, 0).
Assuming a constant potential V at its surface ρ = R (R should
not be confused with the stellar radius that depends on colati-
tude ψ), the magnetic potential reads as

φM(ρ, ψ, ϕ) = V0
0

Q0
0(i ξ)

Q0
0(i ξ0)

Y0
0 (ψ, ϕ) = V

arccot ξ
arccot ξ0

, (35)

getting rid of the spherical harmonic normalization factor by set-
ting V0

0 = V
√

4 π. This potential actually only depends on the
coordinate ρ. The magnetic field therefore only has a ρ compo-
nent,

Bρ = −∂ρφM = V
a

(ρ2 + a2) arccot ξ0
. (36)

Introducing the constant magnetic field strength B at the surface
ρ = R by the definition B = Bρ(R), the magnetic surface potential
reads as

V =
R2 + a2

a
B arccot ξ0 (37)

and the magnetic field becomes

Bρ = B
R2 + a2

ρ2 + a2 . (38)

The physical component where B is the magnetic field strength
at the pole (ρ = R, ψ = 0) is

Bρ̂ = B
R2 + a2√

(ρ2 + a2) (ρ2 + a2 cos2 ψ)
. (39)

The physical component at the equator Beq
ρ̂ is stronger because

Beq
ρ̂ = B

√
1 +

a2

R2 . (40)

For a = 0, the star becomes perfectly spherical and the field that
is purely radial simplifies into

Br = B
R2

r2 . (41)

In the case of a small deformation with a � R, the field expands
into

Bρ̂ ≈ B
R2

ρ2

[
1 +

a2

R2

(
1 −

R2

2 ρ2 (1 + cos2 ψ)
)]
. (42)
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We stress that the ρ component does not correspond to the
spherical radial component and as such the monopolar magnetic
field actually has two components that are both contained in the
meridional plane. In the spherical coordinate system (r, θ, ϕ), Bρ
decomposes into a Br and a Bθ component because of the natural
basis expressions in Eq. (7).

At large distances, the field simplifies into

Bρ̂ ≈ B
R2

ρ2

[
1 +

a2

R2

]
≈ B

R2

r2

[
1 +

a2

R2

]
, (43)

showing that the oblateness still has an imprint far away from
the surface depicted by the correcting factor (1 + a2/R2). This
factor corresponds to an increase in the magnetic field strength,
compared to a spherical dipole with surface field B as measured
by a distant observer.

3.1.2. Dipole solution

The procedure to follow for the dipole or for any multipole is
very similar to the monopole case. Because of the linearity of
the problem, we solve for an aligned and an orthogonal dipole
separately. Even in the static case, both solutions are different
because the ellipsoid defines new preferred axes breaking the
spherical symmetry.

For an oblique rotator, the magnetic potential with a paral-
lel V0

1 and perpendicular V1
1 contribution is

φM(ρ, ψ, ϕ) = V0
1

Q0
1(i ξ)

Q0
1(i ξ0)

Y0
1 (ψ, ϕ) + V1

1

Q1
1(i ξ)

Q1
1(i ξ0)

Y1
1 (ψ, ϕ), (44)

or again in getting rid of spherical harmonic normalization fac-
tors with parallel V‖ and perpendicular V⊥ contributions and a
possible negative sign for the magnetic field components, we
write

− φM(ρ, ψ, ϕ) = V‖
ξ arccot ξ − 1
ξ0 arccot ξ0 − 1

cosψ

+ V⊥
(ξ2 + 1) arccot ξ − ξ

(ξ2
0 + 1) arccot ξ0 − ξ0

√
ξ2

0 + 1
ξ2 + 1

sinψ eiϕ. (45)

The magnetic field is decomposed into an aligned rotator as

Bρ =
V‖
a

(ξ2 + 1) arccot ξ − ξ
(ξ2 + 1) (ξ0 arccot ξ0 − 1)

cosψ (46a)

Bψ = −V‖
ξ arccot ξ − 1
ξ0 arccot ξ0 − 1

sinψ (46b)

Bϕ = 0, (46c)

or by introducing a typical surface magnetic field strength B‖ =
Bρ(R, ψ = 0)

Bρ = 2 B‖
ξ2

0 + 1
ξ2 + 1

(ξ2 + 1) arccot ξ − ξ
(ξ2

0 + 1) arccot ξ0 − ξ0
cosψ (47a)

Bψ = 2 a B‖
(ξ2

0 + 1) (1 − ξ arccot ξ)

(ξ2
0 + 1) arccot ξ0 − ξ0

sinψ (47b)

Bϕ = 0 (47c)

and an orthogonal rotator as

Bρ =
V⊥
a

(ξ2 + 1) ξ arccot ξ − ξ2 − 2
(ξ2

0 + 1) arccot ξ0 − ξ0

√
ξ2

0 + 1

(ξ2 + 1)3/2 sinψ eiϕ (48a)

Bψ = V⊥
(ξ2 + 1) arccot ξ − ξ

(ξ2
0 + 1) arccot ξ0 − ξ0

√
ξ2

0 + 1
ξ2 + 1

cosψ eiϕ (48b)

Bϕ = i V⊥
(ξ2 + 1) arccot ξ − ξ

(ξ2
0 + 1) arccot ξ0 − ξ0

√
ξ2

0 + 1
ξ2 + 1

sinψ eiϕ, (48c)

or by introducing a typical surface magnetic field strength B⊥ =
Bρ(R, ψ = π/2, ϕ = 0)

Bρ=2 B⊥
ξ2 + 2 − (ξ2 + 1) ξ arccot ξ
ξ2

0 + 2 − (ξ2
0 + 1) ξ0 arccot ξ0

ξ2
0 + 1
ξ2 + 1

3/2

sinψ eiϕ

(49a)

Bψ=2 a B⊥
(ξ2 + 1) arccot ξ − ξ

(ξ2
0 + 1) ξ0 arccot ξ0 − ξ

2
0 − 2

(ξ2
0 + 1)3/2√
ξ2 + 1

cosψ eiϕ

(49b)

Bϕ=2 i a B⊥
(ξ2 + 1) arccot ξ − ξ

(ξ2
0 + 1)ξ0 arccot ξ0 − ξ

2
0 − 2

(ξ2
0 + 1)3/2√
ξ2 + 1

sinψ eiϕ.

(49c)

In order to better connect these expressions to the spherical
dipole, we introduced the magnetic field strength at the north
pole by 2 B‖ and 2 B⊥, respectively, for the aligned and orthog-
onal rotator. Because the metric coefficient gρρ = 1 at the pole
for an oblate coordinate system, the natural component is equal
to the physical component, therefore Bρ̂ = Bρ = 2 B‖ for aligned
and Bρ̂ = Bρ = 2 B⊥ for perpendicular rotators.

At large distances, aligned and perpendicular components of
an oblate dipole tend to

Bρ =
4
3

B‖
a3

ρ3

ξ2
0 + 1

(ξ2
0 + 1) arccot ξ0 − ξ0

cosψ (50a)

Bψ =
2
3

B‖
a3

ρ2

ξ2
0 + 1

(ξ2
0 + 1) arccot ξ0 − ξ0

sinψ (50b)

Bϕ = 0 (50c)

for the aligned part and

Bρ =
8
3

B⊥
a3

ρ3

(ξ2
0 + 1)3/2

ξ2
0 + 2 − (ξ2

0 + 1) ξ0 arccot ξ0
sinψ eiϕ (51a)

Bψ =
4
3

B⊥
a3

ρ2

(ξ2
0 + 1)3/2

(ξ2
0 + 1) ξ0 arccot ξ0 − ξ

2
0 − 2

cosψ eiϕ (51b)

Bϕ =
4
3

i B⊥
a3

ρ2

(ξ2
0 + 1)3/2

(ξ2
0 + 1) ξ0 arccot ξ0 − ξ

2
0 − 2

sinψ eiϕ (51c)

for the orthogonal part, respectively.

3.2. Prolate magnetic star

Following the same procedure as for the oblate magnetic star, we
find the magnetic potential φM for prolate star as

φM(ρ, ψ, ϕ) =
∑
`,|m|≤`

Vm
`

Qm
` (ζ)

Qm
`

(ζ0)
Ym
` (ψ, ϕ) (52)
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with ζ =
√

1 + (ρ/a)2 and ζ0 =
√

1 + (R/a)2.
For small prolateness tending to a spherical shape, a tends to

be around zero and the potential simplifies to a multipole such
as

lim
a→0

Qm
` (ζ)

Qm
`

(ζ0)
=

(R
r

)`+1

, (53)

which is the same expression as in the previous subsection
because oblate and prolate both tend to have a spherical shape
when a→ 0.

3.2.1. Monopole solution

For the monopole, the potential reads explicitly as

φM(ρ, ψ, ϕ) = V0
0

Q0
0(ζ)

Q0
0(ζ0)

Y0
0 (ψ, ϕ) = V

arccoth ζ
arccoth ζ0

. (54)

It actually only depends on the ρ coordinate. The magnetic field
therefore only has a ρ component

Bρ = −∂ρφM = V
a

ρ
√
ρ2 + a2 arccoth ζ0

. (55)

At the stellar surface, ρ = R and Bρ = B, thus

V =
R
√

R2 + a2

a
B arccoth ζ0, (56)

such that

Bρ = B
R
ρ

√
R2 + a2

ρ2 + a2 . (57)

The physical component where B is the magnetic field strength
at the equator (ρ = R, ψ = π/2) is

Bρ̂ = B
R
ρ

√
R2 + a2

ρ2 + a2 sin2 ψ
. (58)

The physical component at the pole Bpole
ρ̂ is stronger because

Bpole
ρ̂ = B

√
1 +

a2

R2 . (59)

For small prolateness a � R, the potential and the field become

φM ≈ V
R
ρ

[
1 +

1
6

a2

R2

(
1 −

R2

ρ2

)]
(60a)

Bρ̂ ≈ B
R2

ρ2

[
1 +

1
2

a2

R2

(
1 −

R2

ρ2 sin2 ψ

)]
, (60b)

reducing to the spherical monopole in the limit of a perfect
sphere.

At large distances, the physical component reduces to

Bρ̂ = B
R2

ρ2

√
1 +

a2

R2 . (61)

Here we also observe a correcting factor, but with a value of√
1 + a2/R2 compared to a spherical monopole.

3.2.2. Dipole solution

For the prolate dipole, the potential with a parallel V0
1 and per-

pendicular V1
1 contribution is

φM(ρ, ψ, ϕ) = V0
1

Q0
1(ζ)

Q0
1(ζ0)

Y0
1 (ψ, ϕ) + V1

1

Q1
1(ζ)

Q1
1(ζ0)

Y1
1 (ψ, ϕ), (62)

or explicitly with parallel V‖ and perpendicular V⊥ contributions
(getting rid of spherical harmonic normalization factors)

− φM(ρ, ψ, ϕ) = V‖
ζ arccoth ζ − 1
ζ0 arccoth ζ0 − 1

cosψ

+ V⊥
(ζ2 − 1) arccoth ζ − ζ

(ζ2
0 − 1) arccoth ζ0 − ζ0

√
ζ2

0 − 1
ζ2 − 1

sinψ eiϕ. (63)

As for oblate stars in vacuum, because of linearity, we solve for
an aligned and an orthogonal rotator separately. For the aligned
rotator, the magnetic field is

Bρ = −
V‖
ρ

[
1 −

ρ2

a2

arccoth ζ
ζ

]
1

ζ0 arccoth ζ0 − 1
cosψ (64a)

Bψ = V‖
1 − ζ arccoth ζ
ζ0 arccoth ζ0 − 1

sinψ (64b)

Bϕ = 0. (64c)

By introducing a typical magnetic field strength at the surface,
we get

Bρ = 2 B‖
R
ρ

[
1 − ξ2 arccoth ζ

ζ

] [
1 − ξ2

0
arccoth ζ0

ζ0

]−1

cosψ (65a)

Bψ = 2 B‖ R
[
ζ arccoth ζ − 1

] [
1 − ξ2

0
arccoth ζ0

ζ0

]−1

sinψ (65b)

Bϕ = 0. (65c)

For the orthogonal rotator, we find

Bρ =
V⊥
a

√
ζ2

0 − 1((ζ2 − 1) ζ arccoth ζ − ζ2 + 2)

((ζ2
0 − 1) arccoth ζ0 − ζ0)(ζ2 − 1)ζ

sinψ eiϕ (66a)

Bψ = V⊥
(ζ2 − 1) arccoth ζ − ζ

(ζ2
0 − 1) arccoth ζ0 − ζ0

√
ζ2

0 − 1
ζ2 − 1

cosψ eiϕ (66b)

Bϕ = i V⊥
(ζ2 − 1) arccoth ζ − ζ

(ζ2
0 − 1) arccoth ζ0 − ζ0

√
ζ2

0 − 1
ζ2 − 1

sinψ eiϕ (66c)

or with the typical surface magnetic field strength B⊥ we find

Bρ = 2 B⊥
ζ0

ζ

ζ2
0 − 1
ζ2 − 1

(ζ2 − 1) ζ arccoth ζ − ζ2 + 2
(ζ2

0 − 1) ζ0 arccoth ζ0 − ζ
2
0 + 2

sinψ eiϕ

(67a)

Bψ = 2 a B⊥
ζ0 (ζ2

0 − 1)√
ζ2 − 1

(ζ2 − 1) arccoth ζ − ζ
(ζ2

0 − 1) ζ0 arccoth ζ0 − ζ
2
0 + 2

cosψ eiϕ

(67b)

Bϕ = 2 i a B⊥
ζ0 (ζ2

0 − 1)√
ζ2 − 1

(ζ2 − 1) arccoth ζ − ζ
(ζ2

0 − 1) ζ0 arccoth ζ0 − ζ
2
0 + 2

sinψ eiϕ.

(67c)
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At large distances, for the aligned component we get

Bρ =
4
3

B‖
a3

ρ3

ζ0

√
ζ2

0 − 1

ζ0 + (1 − ζ2
0 ) arccoth ζ0

cosψ (68a)

Bψ =
2
3

B‖
a3

ρ2

ζ0

√
ζ2

0 − 1

ζ0 + (1 − ζ2
0 ) arccoth ζ0

sinψ (68b)

Bϕ = 0, (68c)

and for the orthogonal component we get

Bρ =
8
3

B⊥
a3

ρ3

ζ0 (ζ2
0 − 1) sinψ eiϕ

(ζ2
0 − 1) ζ0 arccoth ζ0 − ζ

2
0 + 2

(69a)

Bψ =
4
3

B⊥
a3

ρ2

ζ0 (ζ2
0 − 1) cosψ eiϕ

ζ2
0 − 2 − (ζ2

0 − 1) ζ0 arccoth ζ0
(69b)

Bϕ =
4
3

i B⊥
a3

ρ2

sinψ eiϕ

ζ2
0 − 2 − (ζ2

0 − 1) ζ0 arccoth ζ0
. (69c)

This achieves the implementation of the initial background mag-
netic field setup to start the numerical simulations in Sect. 5.
A last important topic concerns the field normalization conven-
tion used to compare results obtained with different neutron star
geometries.

3.3. Field normalization

Our main goal is to compare spheroidal stars to perfect spherical
stars by computing some relevant quantities such as the Poynting
flux. An important related question concerns the normalization
of the spheroidal field compared to the corresponding spherical
case. The impact of the stellar shape will drastically influence
these quantities. Therefore we need a reference configuration
with an appropriately chosen magnetic field strength at the sur-
face. However, there obviously exist several approaches to fix the
electromagnetic field at the surface such as keeping a fixed value
of the magnetic field strength at the pole or at the equator when
deforming the stellar surface. Nevertheless, this does not seem
satisfactory because the spin-down luminosity, for instance, not
only varies because of the spheroidal shape but also because
of the artificial field strength variation related to the evolving
boundary. This problem is reminiscent of the normalization of
the magnetic dipole or multipole in a curved space time of gen-
eral relativity. There, the normalization at the surface is cho-
sen in order to keep the asymptotic structure at large distances
identical, whatever the compactness and frame dragging effects.
We decided to use the same techniques to normalize the surface
spheroidal field, imposing a dipole magnetic field at large dis-
tances, always tending to be the same perfect spherical dipole
keeping a constant asymptotic expression. If we were to nor-
malize it differently, the estimate of the spin down would change
significantly. With our procedure, we expect to minimize all vari-
ations imputed to the field strength value at the surface, retain-
ing only the true effect of spheroidal shapes. This normalization
must be carefully exposed in order to compare it with previous
results such as from Finn & Shapiro (1990) who assumed a star
keeping a constant magnetic flux and not a constant asymptotic
magnetic dipole moment.

4. Rotating spheroidal stars

The quasi-stationary solution is acceptable for slowly rotating
stars or when looking in regions well inside the light-cylinder.

However, when seeking for the field behavior at large distances,
it switches to a wave nature around the light-cylinder due to the
finite speed of propagation of electromagnetic fields F. In this
section, we solve in the whole space outside the star for these
fields. Both the electric and the magnetic part satisfy the vector
wave equation in vacuum given by

1
c2

∂2F
∂t2 − ∆F = 0. (70)

For periodic motion, the time dependence becomes harmonic
and the field F varies in time according to F ∝ e−iω t. Introducing
the wave number k = ω/c, the vector wave equation reduces to
the vector Helmholtz equation

∆F + k2 F = 0. (71)

Next we show how to find exact analytical solutions in
spheroidal coordinates, at least formally.

4.1. Time harmonic solutions

Before treating the vector Helmholtz equation, we summarise
important results about the scalar Helmholtz equation (21). It
can be shown that if W is a solution of (21), then ∇W, Φ = ∇ ∧
(W r), and Ψ = ∇ ∧Φ are all solutions of the vector Helmholtz
equation (71) (Leitner & Spence 1950; Gumerov & Duraiswami
2004). Moreover,Φ and Ψ are solenoidal, meaning that ∇ ·Φ =
∇ ·Ψ = 0 and they satisfy ∇ ∧Ψ = k2Φ.

The time harmonic vacuum Maxwell equations can then
be solved by expanding the electric and magnetic field into
(Asano & Yamamoto 1975)

E =
∑
`,m

aE
`mΨ`m + bE

`mΦ`m (72a)

c B =
∑
`,m

aB
`mΨ`m + bB

`mΦ`m, (72b)

automatically satisfying ∇ · E = ∇ · B = 0. The numbers ` and
m label the multipole expansion modes similarly to the vector
spherical harmonics (Pétri 2013). The coefficients aE/B

`m and bE/B
`m

are constants of integration depending on the boundary condi-
tions. In order to satisfy the time-harmonic Maxwell equations
with temporal behavior e−iω t, these coefficients must be related
by

c bE
`m = +iω aB

`m (73a)

c bB
`m = −iω aE

`m. (73b)

Full solutions to Maxwell equations in vacuum are therefore
summarized by the expansion

E =
∑
`,m

aE
`mΨ`m + i k aB

`mΦ`m (74a)

c B =
∑
`,m

aB
`mΨ`m − i k aE

`mΦ`m. (74b)

The only independent coefficients are therefore aE/B
`m . The central

problem is to find explicit expressions for the vector Ψ`m and
Φ`m in spheroidal coordinates and to adjust the coefficients aE/B

`m
to fit the stellar boundary conditions.
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4.2. Electric field

As is often done for neutron star interiors, we assume a per-
fect conductor inside the star leading to an electric field in the
observer frame given by E + u ∧ B = 0, where

u = Ω ∧ r (75)

is the rotation speed of the star. Outside the star, the elec-
tric field is divergenceless, as the magnetic field. Adapted to
the spheroidal coordinates, the radial component Eρ is uncon-
strained, Eϕ = 0, and

Eψ = −

√
gρρ gϕϕ

gψψ
Ω Bρ. (76)

These boundary conditions on the electric field completely and
uniquely define the whole electromagnetic field in vacuum.

4.3. Approximate solution for oblique rotators

There are no exact analytical closed forms for the solutions
presented above. However, the parameter γ2 = ±k2 a2 always
remains less than one in modulus because the star must remain
within its light-cylinder thus the constrain k a = a/rL � 1.
Therefore we can expand the solution into a series in γ that con-
verges quickly to the exact expression. In this section we fol-
low this path to get more insight as to the impact of oblateness
and prolateness on the Poynting flux. Our starting points are the
expansion formulae for the angular and radial spheroidal wave
functions as given by Abramowitz & Stegun (1965). We summa-
rize the important results that are useful for our reckoning. The
oblate geometry is tightly related to the prolate geometry and
the results are often only given for prolate functions. Switching
to oblate coordinates only requires a change of variables such
that ρ→ ±i ρ and γ → ∓i γ. For brevity, we only give results for
prolate shapes.

The prolate angular spheroidal wave functions of the first
kind are expanded into Legendre functions via

Psm
` (γ, ψ) =

+∞∑
r=0,1

′

dm`
r Pm

m+r(ψ), (77)

where the prime indicates summation from 0/1 over even and
odd indices when (` − m) is even and odd. The expansion coef-
ficients dm`

r are determined by solving a three-term recurrence
relation with coefficients given in Abramowitz & Stegun (1965).

The prolate radial wave functions are then expanded to

S m
` (γ, ζ) =

(
1 − ζ−2

)m/2∑+∞
r=0,1

′dm`
r

(2 m+r)!
r!

+∞∑
r=0,1

′

dm`
r

(2 m + r)!
r!

ir+m−` zm+r(γ ζ), (78)

where z` is any of the spherical Bessel functions j`, y` or spher-
ical Hankel functions, h(1)

`
or h(2)

`
of order `. For our problem

of outgoing wave solutions, we require radial expansion into a
spherical Hankel function of type h(1)

`
as for the Deutsch solu-

tion.
For analytically tractable purpose, we expand all parameters

to second order in γ. Actually, the coefficients dm`
r only depend

on even powers of γ; therefore, the expansion of any quantity
also follows an expansion in even powers of γ. Consequently,
the first correcting term for a magnetic field structure, Poynting
flux, electromagnetic torque, and so on depends on γ2. The key
expansion coefficients are provided in Appendix B.

4.4. Dipole radiation

Unfortunately, the eigenvector expansion in spheroidal coordi-
nates does not allow an identification term by term of each mode
(`,m) as would be possible in spherical coordinates. To get more
analytical insight into the Poynting flux perturbed by the shape,
we need to resort to a series expansion of the eigenvectors. We
identify various contributions to the Poynting flux, the magnetic
dipole being the dominant loss channel. For a spherical star, the
rotating magnetic dipole induces a quadrupole electric field that
also radiates. Nevertheless, this quadrupole brings in corrections
to a point dipole which are of much higher order in spin param-
eter w = Ω R/c, at least w4 compared to 1 and w2 for the dipole.
This is due to the fact that the quadrupole is already the result of
rotating a magnetic field, thus an w2 strength for a w2 spin-down
rate.

We expect this assertion to hold for a spheroidal star, mean-
ing that useful and exact corrections can be found solely by com-
puting the magnetic radiation part to second order in w without
contributions from the electric quadrupole. Interesting results are
then derived by solving for the coefficient aB

1,1 only. The Poynt-
ing flux in such an approximation which behaves as follows:

L ≈
c

2 µ0
|aB

1,1|
2. (79)

The dominant term in the magnetic dipole radiation is given by
the model (`,m) = (1, 1). The prolate radial wave function is
therefore to second order in γ given by

S 1
1(γ, ζ) ≈

[
1 −

(
2 γ2

25
+

a2

2 ρ2

)]
h(1)

1 (k ρ)

−
2

25
γ2 h(1)

3 (k ρ) + O(γ4). (80)

For outgoing wave boundary conditions, we set z` = h(1)
`

.
Following the procedure explained in detail in Pétri (2015), the
spin-down dependence on a/R and R/rL is approximately pro-
portional to |S 1

1(γ, ζ)|−2. An expansion to lowest order in these
two parameters gives a correction to the luminosity as

Lprolate ≈ L⊥

1 − (
R
rL

)2

+
27
5

( a
R

)2
−

36
5

(
a
rL

)2 , (81)

where the spin-down L⊥ of the vacuum orthogonal point mag-
netic dipole is

L⊥ =
8 π

3 µ0 c3 Ω4 B2 R6. (82)

The above approximation gives only some important hints about
the spin-down change due to the spheroidal shape. It does not
take the normalization of the surface magnetic field strength into
account. Similar analytical investigation can be performed for
an oblate star, but contrary to vector spherical harmonics, vector
spheroidal harmonics as defined in this work do not permit one
to impose the stellar surface boundary conditions on the electric
field in a closed analytical form because even though the scalar
spheroidal harmonics naturally embrace the spheroidal shape,
their vector counterpart does not decompose easily into a tan-
gential and normal component on a spheroidal object. Therefore,
imposing continuity of the normal component of the magnetic
field and continuity of the tangential component of the electric
field is a nontrivial task. Nevertheless, it clearly shows that lead-
ing corrections scale as γ2 = k2 a2 = a2/r2

L and a2/R2, thus they
are of second order in a. We use these results to fit the numerical
simulations performed in the next section.
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Fig. 1. Magnetic field lines in the meridional plane xOz for an aligned spheroidal rotator with oblateness (first two columns) or prolateness (last
two columns) parameter a/R = {0, 0.5, 1} in blue, green, and red, respectively. The blue quarter disk in the bottom left depicts the spherical star.
The vertical dashed black line represents the light-cylinder.

Fig. 2. Magnetic field lines in the equatorial plane xOy for a perpendicular spheroidal rotator with oblateness (first two columns) or prolateness
(last two columns) parameter a/R = {0, 0.5, 1} in blue, green, and red, respectively. The blue disk in the centre depicts the spherical star. The
dashed black circle represents the light-cylinder.

5. Time-dependent simulations

Analytically solving the Helmholtz equation with separate coor-
dinates helps to get insight as to the effect of oblateness or
prolateness on the spin-down luminosity and magnetic field
structure. However, the boundary conditions on the stellar
surface cannot be imposed with a finite number of terms in angu-
lar spheroidal wave functions, contrary to spherical harmon-
ics for perfect spheres. It is therefore enlightening to compute
numerical solutions by performing time-dependent simulations
of Maxwell equations in vacuum by properly taking the bound-
ary conditions on the surface into account with a high accuracy
to catch the effect of the surface electric field. This last section
presents the results of such computations, first showing the struc-
ture of field lines, then investigating the spin-down luminosity
and eventually tracing the shape of the polar caps.

5.1. Numerical setup

Maxwell equations are solved with our pseudo-spectral code
developed in Pétri (2012). However in order to better resolve
the inner computational domain, we map the usual Chebyshev
grid to a truncated rational Chebyshev grid, increasing the reso-
lution in the inner part with respect to the outer part (Boyd 2001).
This allows us to use a coarser grid of only Nρ × Nψ × Nϕ =
129 × 32 × 64. The neutron star is a perfect conductor impos-
ing an electric field on its surface given by Eq. (76). The neu-
tron star radius is set to R/rL = 0.3, which coincides with the
inner boundary of the computational domain R1 = R. The outer
boundary is equal to R2/rL = 7. The oblateness or prolateness

is controlled by the parameter a defining η in spheroidal coor-
dinates. This parameter a/R spans the range [0, 1] although it is
not bounded by R, but by the fact that the equatorial radius of
the star cannot exceed the light-cylinder radius. The obliquity χ
is taken in the set χ = {0◦, 30◦, 60◦, 90◦}.

5.2. Magnetic field lines

We first compare the impact of the spheroidal shape onto the
magnetic field line structure for an aligned and a perpendicu-
lar rotator for ease to plot accurately in 2D. They are shown in
Figs. 1 and 2 for oblate and prolate stars with different bound-
ary conditions, either being a single multipolar spheroidal field
in vacuum or a spherical field in vacuum, respectively. The
spheroidal parameter is chosen as a/R = {0, 0.5, 1}.

For the aligned rotator, Fig. 1, we observe the deformation
of the surface as a change in the position of the foot-points of
the magnetic field lines. Far from the star, especially outside
the light-cylinder, there is hardly a hint as to the nature of the
spheroidal star. The impact is highest on the surface, and can be
quantified by the polar cap rim change as is shown in the corre-
sponding subsection.

For the orthogonal rotator, Fig. 2, magnetic field lines are
shown in the equatorial plane. For prolate shapes, the stellar
deformation is not seen because its size does not vary at the equa-
tor. The two-armed spiral pattern typical of the Deutsch solution
is preserved for spheroidal stars with slight changes.

As for an offset dipole or for a dipole plus multipole com-
ponents, at large distances outside the light-cylinder, the field
reduces to the magnetic dipole in vacuum, washing the structure
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Fig. 3. Spin-down luminosity for oblate and prolate stars in solid
and dashed lines, respectively, with single dipole stellar boundary
conditions.

Fig. 4. Spin-down luminosity for oblate and prolate stars in solid
and dashed lines, respectively, with spherical dipole stellar boundary
conditions.

at the surface to keep only the leading lowest order term. In our
case, the dominant and most relevant multipole component is
the dipole, decreasing as r−3. Thus even for a spheroidal star, we
expect the spin-down luminosity to follow expressions very sim-
ilar to a spherical star with a dependence on inclination χ such
as sin2 χ as is shown in the next paragraph.

5.3. Poynting flux

The spin-down rate of a magnetic dipole is controlled by the
Poynting flux. Exact analytical formulae exist for spherical
stars, but for spheroidal ones we have to resort to numeri-
cal approximations. Fig. 3 shows the evolution of the spin
down depending on the parameter a normalized to the stellar
radius R for an oblate or a prolate star in solid and dashed lines,
respectively. The background magnetic field is set to the static
spheroidal solution presented in Sect. 3. The obliquity is set to
χ = {0◦, 30◦, 60◦, 90◦}, as given in the legend. Figure 4 shows the
same evolution, but for a star keeping a perfect spherical dipole
structure.

As a general trend, we observe a decrease in the spin-down
luminosity when the normalized asphericity a/R increases. To a

Table 1. Fitted coefficients k1 and k2 as given by Eq. (83).

Model k1 k2

Oblate 0.921 0.0490
Prolate 0.921 0.0186

Oblate spherical 0.921 0.0459
Prolate spherical 0.921 0.0159

very good accuracy, the vacuum spin down can be approximated
by quadratic corrections in a/R, such that

L
L⊥
≈

[
k1 − k2

( a
R

)2
]

sin2 χ. (83)

The coefficients are listed in Table 1.
In fact, the coefficient k1 is known analytically and expressed

in terms of spherical Hankel functions h(1)
`

(R/rL) (see Pétri
2015). For the particular values of our simulations, we should
find approximately k1 ≈ 0.919. However, because the outgo-
ing wave boundary conditions stand at a finite radius, relatively
close to the light-cylinder, the numerical flux is impacted by
these boundary surfaces. As carefully shown in Pétri (2014), the
accuracy scales as R−2

2 . However, the error remains very weak,
amounting to only 0.2%.

This spin down estimate has an impact on the stellar mag-
netic field inference of accreting pulsars. For instance, the mil-
lisecond X-ray pulsar IGR J00291+5934 with a spin frequency
of 599 Hz is a good example; assuming a mass M = 1.4 M� and
a radius R = 12 km, it would have a/R ≈ 0.55 according to
the MacLaurin spheroid expression in Eq. (4). This represents a
large deformation of the stellar surface. The more realistic model
of Silva et al. (2021) with an SLy4 equation of state would give
a slightly lower value of a/R ≈ 0.48, but it is still large. From
equation (81) we can then find that the spheroidal formula for
the luminosity gives a correction of a factor of order 2, which
is significant. However from Eq. (83) we expect a much weaker
impact due to the removal of the a/R dependence by our normal-
ization procedure at large distances. This discrepancy has to be
kept in mind because of the indeterminacy of a relevant normal-
ization.

The spin-down luminosity correction can be large depend-
ing on the choice of neutron star sequences used to compute
the spheroidal electromagnetic field. Indeed, the normalization
significantly affects the correcting factor. The key process is to
choose a meaningful sequence by keeping some physical param-
eters constant, while deforming the stellar surface from a sphere
to a spheroid. Several choices are possible, for instance keeping
the equatorial or the polar magnetic field strength constant as is
done in Sect. 3. But we could keep the magnetic moment or the
magnetic flux threading the star constant or the asymptotic field
structure at a large distance as is done in the numerical simula-
tions. Therefore the central question becomes how to compare a
spherical star to a spheroidal one. There is no unique answer and
the best normalization must be adapted for the problem under
scrutiny. The spheroidal corrections to the spin down can be of
the same order of magnitude as those arising from the force-free
corrections which reach up to a factor 3 for the orthogonal rota-
tor. This leads to a weaker magnetic field estimate compared to
the standard vacuum magneto-dipole losses as shown by Pétri
(2019).

We infer that the combination of spheroidal geometry and
force-free magnetosphere will lower the dipole magnetic field
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Fig. 5. Polar cap shape for oblate and prolate stars with oblateness parameter a/R = {0, 0.5, 1} in blue, green, and red, respectively. The black dashed
line shows the reference solution for the Deutsch field as a check. The obliquity from the left column to the right column is χ = {0◦, 30◦, 60◦, 90◦}.
The first row is for an oblate star with one mode ` = 1, the second row is for a spherical dipole magnetic field at the surface, the third row is for a
prolate star with one mode ` = 1, and the fourth row is for a spherical dipole magnetic field at the surface.

strength expectation even more. The above fitting can be com-
pared with the force-free fitting of a spherical star as found by
Spitkovsky (2006). A quantitative answer would require compu-
tation of force-free spheroidal magnetospheres, which is out of
the scope of the present work. It is difficult to compare Eq. (83)
to Spitkovsky (2006) formula because in vacuum we observe
only a Lvac ≈ L⊥ sin2 χ dependence, which has to be contrasted
with the LFFE ≈ 3/2 L⊥ (1 + sin2 χ) dependence of the force-free
model. Nevertheless we guess that both constant `1 and `2 in the
spheroidal force-free fit Lspheroid

FFE ≈ 3/2 L⊥ (`1 + `2 sin2 χ) will no
longer remain constant, but depend on the ratio a/R at least to
second order (a/R)2 such that `i = αi −βi (a/R)2 for i = {1, 2}, αi

and βi being positive numbers with αi ≈ 1 due to the spherical
force-free results.

5.4. Polar caps

The polar cap rims associated with the field lines structure shown
in Fig. 1 and Fig. 2 for χ = 0◦ and χ = 90◦, but also with
some other obliquities are shown in Fig. 5. We used angles
χ = {0◦, 30◦, 60◦, 90◦}. As a check, the spherical case is com-
pared to the Deutsch solution shown in an orange dashed line
and marked with a “D” in the legend. Both curves overlap to
high precision and are indistinguishable.
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The oblateness tends to elongate the polar caps in the
azimuthal direction, that is in the sense of rotation and a slight
contraction in the orthogonal direction for an almost perpendic-
ular rotator. We notice an overall substantial increase in surface
area for a = R as seen in the first row. The second row corre-
sponds to the same oblateness, but for a spherical dipole bound-
ary condition at the stellar surface. In this case the polar cap rim
inflates in all directions whatever the obliquity.

Contrary to an oblate star, the prolate star shrinks its cap
shape for almost aligned rotators as seen in the third row. While
increasing the inclination angle, the polar cap elongates in the
meridional direction with a slight squeezing in the sense of rota-
tion. If spherical dipole boundary conditions are applied at the
surface, the variation of polar cap shapes becomes irrelevant for
an orthogonal rotator (see fourth row). This is simply explained
by the fact that the stellar surface does not significantly vary
around the equatorial plane for prolate shapes.

Finding realistic polar cap shapes for fast rotating neutron
stars is important to model the hot spot emission seen in ther-
mal X-rays. A careful analysis of such pulsed emission in X-ray
from the NICER collaboration led to an estimate of the neu-
tron star compactness and equatorial radius (Riley et al. 2019;
Bogdanov et al. 2019). The impact of the stellar surface shape
on these hot spots is discussed in Silva et al. (2021), also taking
the observer orientation into account. Our simulation could help
to reckon even more realistic polar caps.

6. Conclusions

Extending well-known results from spherical magnetic stars, we
have shown how to express multipolar vacuum magnetic fields
around spheroidal magnetized objects, being oblate or prolate.
Exact analytical solutions have been derived in the case of static
stars, involving Legendre functions of the third kind for the
radial part, the angular part being expanded into spherical har-
monics. For rotating stars, the problem cannot be solved exactly
in a closed analytical form because of the introduction of radial
and angular spheroidal wave functions. We have shown how-
ever that some approximate solutions can be found for any real-
istic configuration by an expansion into the small parameter
|γ| = a/rL � 1. From a practical point of view, the lowest order
correction is enough to achieve high accuracy.

As a check, we also solved numerically for spheroidal rotat-
ing stars, computing the magnetic field line structure as well as
the Poynting flux and the polar cap shape. This study is particu-
larly relevant for millisecond pulsars for which strong centrifu-
gal forces inflate the equatorial part leading to an oblate shape.
The change in the polar cap rim could have a significant impact
on the thermal X-ray emission, modifying their light-curve in
addition to general-relativistic effects such as frame-dragging
and light bending.

The neutron star surrounding is seldom vacuum, and a pair
plasma usually fills its magnetosphere, producing currents and
charges modifying the electromagnetic field outside the star. We
plan to add such plasma effects to the description of a spheroidal
rotating magnetized celestial body.
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Appendix A: Legendre functions of third type

Legendre polynomials P`(x) and their associated func-
tions Pm

` (x) are usually defined in the interval x ∈ [−1, 1]. In
spheroidal coordinates, we often require solutions of the Legen-
dre differential equations outside this range. For instance when
studying fields outside an object up to infinity, we require x > 1.
We are particularly interested in solutions decreasing to zero
at large distances, meaning an electric and magnetic potential
falling to zero when x → +∞. These solutions are then called
Legendre functions of the third type Qm

` (x) and related to prolate
coordinates for |x| ≤ 1 by analytical continuation in the complex
plane, starting from x ∈ [−1, 1]. They are solutions of the second
order linear differential equation

d
dx

[
(1 − x2)

dQm
` (x)

dx

]
+

(
` (` + 1) −

m2

1 − x2

)
Qm
` (x) = 0, (A.1)

where ` and m are two integers. It corresponds to the radial part
of a multipole of order (`,m) in prolate spheroidal coordinates
and related to the spherical harmonic Ym

` (θ, φ).
For practical purposes, we list the first few useful functions

for the monopole ` = 0, the dipole ` = 1, and the quadrupole
` = 2, which are real-valued and given by the following:

Q0
0(x) = arccoth x (A.2a)

Q0
1(x) = x arccoth x − 1 (A.2b)

Q1
1(x) =

(x2 − 1) arccoth x − x
√

x2 − 1
(A.2c)

Q0
2(x) =

(3 x2 − 1) arccoth x − 3 x
2

(A.2d)

Q1
2(x) =

3 x (x2 − 1) arccoth x + 2 − 3 x2

√
x2 − 1

(A.2e)

Q2
2(x) = 3 (x2 − 1) arccoth x + x

5 − 3 x2

x2 − 1
. (A.2f)

These expressions are used to compute the radial profile of the
electric or magnetic potential in prolate spheroidal coordinates.

For oblate spheroidal coordinates, we require solutions Qm
`

for x > 1, such that

d
dx

[
(1 + x2)

dQm
` (x)

dx

]
+

(
m2

1 + x2 − ` (` + 1)
)

Qm
` (x) = 0 (A.3)

with the correspondence Qm
` (x) = i` Qm

` (i x). We note the change
in sign in front of the factor x2 of eq. (A.3) compared to eq. (A.1).

For practical purposes, here, we also list the first few useful
functions for the monopole ` = 0, the dipole ` = 1, and the
quadrupole ` = 2, which are again all real-valued and given by
the following:

Q0
0(x) = arccot x (A.4a)

Q0
1(x) = 1 − x arccot x (A.4b)

Q1
1(x) =

x − (1 + x2) arccot x
√

1 + x2
(A.4c)

Q0
2(x) =

(1 + 3 x2) arccot x − 3 x
2

(A.4d)

Q1
2(x) =

3 x (1 + x2) arccot x − 2 − 3 x2

√
1 + x2

(A.4e)

Q2
2(x) = 3 (1 + x2) arccot x − x

(
3 +

2
1 + x2

)
. (A.4f)

These expressions are used to compute the radial profile of
the electric or magnetic potential in oblate spheroidal coordi-
nates.

Appendix B: Angular functions expansion

The prolate angular wave functions Psm
` (γ, η) are expanded into

Legendre functions Pm
` (η), according to

Psm
` (γ, η) =

+∞∑
r=0,1

′

dm`
r Pm

m+r(η), (B.1)

where the prime indicates summation from 0/1 over even and
odd indices when (` − m) is even and odd. The expansion coef-
ficients dm`

r are determined by solving a three-term recurrence
relation with coefficients given in Abramowitz & Stegun (1965).
The lowest order corrections in γ2 are

dm`
`−m ≈ 1 + O(γ4) (B.2a)

dm`
`−m−2 ≈ −

(` + m − 1) (` + m)
2 (2 n − 1)2 (2 n + 1)

γ2 + O(γ4) (B.2b)

dm`
`−m+2 ≈ −

(` − m + 1) (` − m + 2)
2 (2 n + 3)2 (2 n + 1)

γ2 + O(γ4). (B.2c)

If the subscript is negative, the coefficient vanishes by conven-
tion. To this level of approximation, we neglect corrections being
of the order γ4 or higher and therefore no corrections apply to the
dominant coefficient dm`

`−m ≈ 1.
For the expansion of the first multipoles with m = 1, we give

the expression of dm`
r to the γ2 order for ` − m = ±2 for m = 1.

The first non vanishing coeffifients are listed below

d1,1
2 ≈

γ2

75
+ O(γ4) (B.3a)

d1,2
3 ≈

3 γ2

245
+ O(γ4) (B.3b)

d1,3
0 ≈ −

6 γ2

175
+ O(γ4) ; d1,3

4 ≈
2 γ2

189
+ O(γ4) (B.3c)

d1,4
1 ≈ −

10 γ2

441
+ O(γ4) ; d1,4

5 ≈
10 γ2

1089
+ O(γ4). (B.3d)

Explicitly, for the first wave functions, this means the
following:

Ps1
1(γ, η) ≈ P1

1(η) +
γ2

75
P1

3(η) + O(γ4) (B.4a)

Ps1
2(γ, η) ≈ P1

2(η) +
3 γ2

245
P1

4(η) + O(γ4) (B.4b)

Ps1
3(γ, η) ≈ P1

3(η) −
6 γ2

175
P1

1(η) +
2 γ2

189
P1

5(η) + O(γ4) (B.4c)

Ps1
4(γ, η) ≈ P1

4(η) −
10 γ2

441
P1

2(η) +
10 γ2

1089
P1

6(η) + O(γ4). (B.4d)
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