
HAL Id: hal-03527029
https://hal.science/hal-03527029

Submitted on 26 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Carbonic Anhydrase Inhibitors Targeting Metabolism
and Tumor Microenvironment

Andrea Angeli, Fabrizio Carta, Alessio Nocentini, Jean-Yves Winum, Raivis
Zalubovskis, Atilla Akdemir, Valentina Onnis, Wagdy Eldehna, Clemente

Capasso, Giuseppina De Simone, et al.

To cite this version:
Andrea Angeli, Fabrizio Carta, Alessio Nocentini, Jean-Yves Winum, Raivis Zalubovskis, et al.. Car-
bonic Anhydrase Inhibitors Targeting Metabolism and Tumor Microenvironment. Metabolites, 2020,
10 (10), pp.412. �10.3390/metabo10100412�. �hal-03527029�

https://hal.science/hal-03527029
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


metabolites

H

OH

OH

Review

Carbonic Anhydrase Inhibitors Targeting Metabolism
and Tumor Microenvironment

Andrea Angeli 1 , Fabrizio Carta 1 , Alessio Nocentini 1 , Jean-Yves Winum 2 ,
Raivis Zalubovskis 3, Atilla Akdemir 4 , Valentina Onnis 5 , Wagdy M. Eldehna 6 ,
Clemente Capasso 7 , Giuseppina De Simone 8, Simona Maria Monti 8 , Simone Carradori 9 ,
William A. Donald 10 , Shoukat Dedhar 11 and Claudiu T. Supuran 1,*

1 Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6,
Sesto Fiorentino, 50019 Florence, Italy; andrea.angeli@unifi.it (A.A.); fabrizio.carta@unifi.it (F.C.);
alessio.nocentini@unifi.it (A.N.)

2 IBMM, Univ. Montpellier, CNRS, ENSCM, 34296 Montpellier, France; jean-yves.winum@umontpellier.fr
3 Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006 Riga, Latvia, Institute of Technology of Organic

Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, 3/7 Paula Valdena
Str., 1048 Riga, Latvia; raivis@osi.lv

4 Computer-aided Drug Discovery Laboratory, Department of Pharmacology, Faculty of Pharmacy,
Bezmialem Vakif University, Fatih, Istanbul 34093, Turkey; aakdemir@bezmialem.edu.tr

5 Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical
Sciences, University of Cagliari, University Campus, S.P. n◦ 8, Km 0.700, I-09042 Monserrato, Cagliari, Italy;
vonnis@unica.it

6 Department of Pharmaceutical Chemistry, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
wagdy2000@gmail.com

7 Institute of Biosciences and Bioresources—National Research Council, via Pietro Castellino 111,
80131 Napoli, Italy; clemente.capasso@ibbr.cnr.it

8 Institute of Biostructures and Bioimages—National Research Council, 80131 Napoli, Italy;
gdesimon@unina.it (G.D.S.); marmonti@unina.it (S.M.M.)

9 Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31,
66100 Chieti, Italy; simone.carradori@unich.it

10 School of Chemistry, University of New South Wales, 1466 Sydney, Australia; w.donald@unsw.edu.au
11 Department of Integrative Oncology, BC Cancer Research Centre,

Vancouver Vancouver, BC V5Z 1L3, Canada; sdedhar@bccrc.ca
* Correspondence: claudiu.supuran@unifi.it

Received: 24 September 2020; Accepted: 13 October 2020; Published: 14 October 2020
����������
�������

Abstract: The tumor microenvironment is crucial for the growth of cancer cells, triggering particular
biochemical and physiological changes, which frequently influence the outcome of anticancer
therapies. The biochemical rationale behind many of these phenomena resides in the activation of
transcription factors such as hypoxia-inducible factor 1 and 2 (HIF-1/2). In turn, the HIF pathway
activates a number of genes including those involved in glucose metabolism, angiogenesis, and pH
regulation. Several carbonic anhydrase (CA, EC 4.2.1.1) isoforms, such as CA IX and XII, actively
participate in these processes and were validated as antitumor/antimetastatic drug targets. Here, we
review the field of CA inhibitors (CAIs), which selectively inhibit the cancer-associated CA isoforms.
Particular focus was on the identification of lead compounds and various inhibitor classes, and the
measurement of CA inhibitory on-/off-target effects. In addition, the preclinical data that resulted in
the identification of SLC-0111, a sulfonamide in Phase Ib/II clinical trials for the treatment of hypoxic,
advanced solid tumors, are detailed.
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1. Introduction

The microenvironment of tumor cells is different from that of normal cells and plays a crucial
role in shaping the behavior of tumors, which, in turn, frequently influences treatment outcomes as
well as treatment strategies [1,2]. Many decades ago, Warburg [3] recognized this phenomenon, which
later became known as the “Warburg effect” and constitutes a hallmark of many cancers: these cells
are hypoxic, more acidic than normal, and possess a dysregulated glucose (and not only glucose)
metabolism [3,4]. In the last 20 years, it became obvious that the orchestrators of all these phenomena
are transcription factors called hypoxia-inducible factor 1 and 2 (HIF-1/2). The understanding of the
intricate biochemical and physiological processes by which HIF-1/2 sense tumor oxygen levels and
regulate genes involved in metabolism (such as the glucose transporters), pH regulation (such as
monocarboxylate transporters, MCTs; and carbonic anhydrases, CAs), and angiogenesis (vascular
endothelial growth factor (VEGF)) led to the award of the 2019 medicine Nobel prize to three scientists
who contributed significantly to the field, Kaelin [5], Ratcliffe [6], and Semenza [7,8]. Their crucial
discoveries and those from many other laboratories [9–17] established the basis for exploiting the tumor
microenvironment abnormalities for developing a new generation of antitumor therapies and drugs,
which should specifically target tumor cells without relevant toxicity to normal cells and tissues [18,19].

As a result of HIF-1/2 activation, two of the proteins that were identified to be highly overexpressed
in many tumor types were the CA isoforms, CA IX and XII [9–19]. CAs are a superfamily of
metalloenzymes present in all kingdoms of life that catalyze the conversion of CO2 to bicarbonate
and protons [20–26]. There are 15 CA isoforms that are known in humans (h); i.e., hCA I - hCA XIV,
including two V-type isoforms, hCA VA and hCA VB) [27–30]. The field of CAs and their inhibitors
were recently reviewed and will not be discussed in detail here [19–24]. Briefly, the X-ray crystal
structures are available for the two tumor-associated isoforms hCA IX and XII [25,26], as well as for
many other members of the human CA family [27–30]. Such structures of the enzymes alone and
in complex with many types of inhibitors have been highly relevant for the design of compounds
with a range of applications, not only in the anticancer field but also in the renal, central nervous
system, ophthalmologic, obesity, and other medical fields [31–39]. Furthermore, recently, CA inhibitors
were shown to be of potential use in the management of cerebral ischemia, neuropathic pain, and
arthritis [40–44], which are conditions for which this class of pharmacologic agents was previously
considered inappropriate. However, the attentive search for novel classes of compounds with efficacy
and selectivity for the different isoforms involved in these quite diverse conditions resulted in proof of
concept studies, which have suggested that all catalytically active hCA isoforms may be considered
interesting drug targets.

2. Validation of CA IX/XII as Anticancer Drug Targets

2.1. Sulfonamides and Other Classes of CA inhibitors (CAIs): Selectivity for Tumor-Associated vs. Cytosolic Isoforms

hCA IX was discovered in 1994 by Pastorekova’s group [45] and hCA XII in 1998 by Türeci et al. [46].
Both isoforms were shown to be extracellular, multi-domain proteins, with the enzyme active site
situated outside the cell [45,46]. Years later, with the demonstration that both enzymes are activated
through the HIF-1/2 pathway, a reason for this localization became obvious: both enzymes, together
with a range of other proteins that will be not discussed here, are involved in the pH regulation and
metabolism of the cancer cell [1,2,47–53]. Both enzymes possess significant catalytic activity for the
CO2 hydration reaction [19–21].

The hypothesis that interfering with the activity of such proteins may have anticancer effects
was proposed by Pouysségur in 2006 [18], but no selective inhibitors for cancer-associated CAs
or other proteins involved in the regulation of the tumor microenvironment (MCTs, bicarbonate
transporters, or Na+/H+-exchangers, etc.) were available at that time. Thus, a program for developing
CA IX/XII selective compounds was initiated in some of our (CT Supuran and S Dedhar) laboratories.
Acetazolamide 1 (Figure 1), the classical sulfonamide inhibitor, was the starting point [54,55]. Indeed,
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primary sulfonamides [56–58] such as acetazolamide were known for decades to potently inhibit CAs,
as they bind as anions (RSO2NH−) to the metal ion in the enzyme active site, as shown in a classical
crystallographic study from Liljas’ group [59]. However, acetazolamide is a non-selective CAI [20],
which potently inhibits most human CA isoforms and is, thus, not an appropriate compound for
designing isoform-selective compounds. The tail approach was thus employed for developing CA
IX/XII-selective inhibitors [60]. The idea is very simple: attach moieties that may induce the desired
properties (e.g., enhanced hydrosolubility) to scaffolds of simple sulfonamides (e.g., sulfanilamide,
metanilamide, and their derivatives; 5-amino-1,3,4-thiadiazole-2-sulfonamide, etc.) that may lead to
interactions with the external part of the CA isoforms active site, which is the region at the entrance
of the cavity that is more diverse than the active site residues between the 12 catalytically active
human isoforms [60,61]. Detailed kinetic and crystallographic studies were performed on a large
number of derivatives (more than 10,000 sulfonamides were synthesized and investigated in our
laboratories). This research demonstrated that it was possible to design CAIs selective for the various
isoforms by tailoring the dimensions (length, bulkiness, etc.) as well as the chemical nature of the
various tails [60–69]. For example, the fluorescein-derivatized sulfonamides 2 and 3 were only mildly
selective for CA IX vs. CA II [47,48], but they were highly useful for understanding the role of CA
IX in tumor pH regulation [47–50]. In contrast, the ureido-substituted sulfonamides 4 and 5 were
members of a congeneric series in which many CA IX/XII selective inhibitors were discovered [51,52],
and their selectivity for the tumor-associated vs. the cytosolic isoforms was explained by detailed
X-ray crystallographic data [70,71]. Another highly interesting approach was reported by Neri’s
group [72–74], who designed DNA-encoded libraries of sulfonamides and identified highly potent
in vitro CA IX inhibitors in a series of very interesting papers [75–77].
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Figure 1. Carbonic anhydrase inhibitors (CAIs) that were crucial for validation of CA IX/XII as antitumor
targets: acetazolamide 1 is the classical inhibitor in clinical use for decades; the fluorescein-derivatized
sulfonamides 2 and 3 were used in the proof of concept studies to demonstrate the involvement of CA
IX in acidification of the external pH of the tumor cell [47–50], the ureido-substituted-sulfonamides 4
and 5 were among the first CAIs to show significant antitumor effects in animal models of hypoxic
tumors [51,52], together with coumarin inhibitors 6 and 7 [53].

Thus, by 2009–2010, sulfonamide CAIs targeting CA IX with high specificity were available [78],
which fostered renewed interest in targeting not only primary tumors but also metastases [79–81].
However, in parallel with these studies mentioned above, the last decade also brought important
developments in the discovery of non-sulfonamide CAIs. The first highly relevant new class of CAIs
is represented by the coumarins [82–85]. The coumarins were shown to act as “prodrug inhibitors”:
they undergo CA-mediated hydrolysis of the lactone ring (as in the compounds 6 and 7 of Figure 1),
which generates the de facto inhibitor, belonging to the 2-hydroxycinnamic acid class of compounds.
Extensive kinetic, crystallographic, and synthetic efforts led to a thorough understanding of this
innovative inhibition mechanism [82–85]. In fact, the 2-hydroxycinnamic acids formed by coumarin
hydrolysis do not interact with the catalytic metal ion but instead bind at the entrance of the active site
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cavity, in a highly variable region of the different CA isoforms, which explains the very isoform-selective
inhibitory effects of many representatives of this class of CAIs [82–85]. Furthermore, this new CA
inhibitory class inspired the discovery of many other chemotypes, such as the sulfocoumarins and the
homosulfocoumarins by Zalubovskis group [86–88], the homocoumarins [89], the thiocoumarins by
Ferraroni et al. [90], etc.

By comparing the sulfur-based, carbon-based [91], and phosphorus-based zinc-binding
groups, a range of novel classes of inhibitors that interact with the zinc ion were
reported, including phosphonamidates [92], dithiocarbamates [93], monothiocarbamates [94],
xanthates and trithiocarbonates [95], selenols [96,97], carboxylates [98] and hydroxamates [99],
benzoxaboroles [100–102], as well as carbamates [103]. Additional inhibitors that have been developed
exhibit a different inhibition mechanism: they anchor to the zinc-coordinated water molecule [104,105].
Polyamines, such as spermine and its derivatives [104], and the simple phenol [105] and many of
its derivatives [106–109] together with polyphenols [110] inhibit CAs in this way. This inhibition
mechanism is also shared by the sulfocoumarins, as demonstrated by Zalubovskis group [86] by using
kinetic and crystallographic studies. However, probably, one of the strangest CA inhibition mechanism
is the one reported by De Simone’s and Carradori’s group for a benzoic acid derivative that binds
outside the active site cavity [111].

2.2. Measurement of Inhibition Efficacy

All these inhibitors discussed above and many others that are not mentioned here have been
profiled for their inhibition of many CA isoforms by using a stopped-flow CO2 hydrase assay, which
was originally reported in 1971 by Khalifah [112] and validated by others as a rapid method for
determining the enzyme kinetics and inhibitory constants of various classes of compounds against
different CAs [113–118]. In a recent paper by Jonsson and Liljas [119], some inhibition data from
several papers from the Supuran group were considered. Jonsson and Liljas queried the enzyme and
substrate concentrations that were used in some experiments. Many of the early stopped-flow assay
papers cited above [113–118], which are not from Supuran’s group but from several well-established
laboratories, provided exactly the same level of information. That is, the range of CO2 concentrations
at which the experiments were performed was reported, without detailing enzyme concentrations.
On the contrary, in many of our papers, the enzyme concentrations are reported either for the CO2

hydrase or esterase assays [60,62,68,69,120–127], and they range between 3.5 and 14 nM. The vast
majority of the analyses performed by Jonsson and Liljas [119] are based on supplementary information
that was reported in six of our papers (two of the other papers that they considered in the analysis
contained CA inhibitory data obtained from a completely different laboratory). The presumed lack
of precision results from erroneously typed concentrations for the enzymes in one of the analyzed
paper’s supplementary information [128]. That is, a concentration of 10−7 M was erroneously written,
which is, in fact, the stock solution of enzyme and not the enzyme concentration at which the
measurements were performed. As mentioned above, in most of our experiments, we work at enzyme
concentrations ranging from 3.5 and 14 nM, and sometimes even lower when exceedingly strong
inhibitors are analyzed. Jonsson and Liljas [119] also raised a query about the enzyme inhibition
curves from the supplementary information of another paper [129]. For these figures, the uncatalyzed
reaction was not subtracted in the curves plotted in the supplementary figures, but those values were
automatically subtracted when the IC50 was calculated due to the use of the algorithm in the computer
software that is used for the stopped-flow instrument. Despite these minor errors (now corrected
through submission of errata), the inhibitory constants (Kis) determined by the University of Florence
stopped-flow kinetic measurements of CA enzyme inhibition have been validated by native mass
spectrometry (MS) measurements performed in another laboratory on a number of sulfonamides,
which gave results in excellent agreement with the kinetic inhibition data [130,131]. Dissociation
constants (Kds) were obtained from native mass spectrometry measurements of buffered aqueous
solutions containing hCA I and hCA II with acetazolamide, ethoxzolamide, brinzolamide, furosemide,
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dichlorophenamide, and indapamide, which are well known CAIs [20]. Kd values were obtained
by either measuring individual ligand–protein interactions in single experiments or simultaneously
in competition experiments (Table 1) [130]. Kd values are equivalent to Ki values for inhibitors that
bind at the site of the substrate, which is the case for sulfonamide CAIs. The agreement between the
native MS measurements and those for the stopped-flow kinetic assay was excellent. For example,
the measured Kd values of all nanomolar inhibitors were within 30% of the Ki values obtained by
stopped-flow kinetic experiments. Moreover, Kd values obtained by native MS for the micromolar
inhibitors were within 50% of the Ki values. More recently, native MS was used to measure the Kd

values of 15 perfluoroalkyl substances with either carboxylate, sulfate, or sulfonamide zinc-binding
groups to hCA I and hCA II [131]. The 30 measured Kd values obtained from native MS measurements
were also in excellent agreement with the corresponding Ki measurements (data not shown here) [131].
In fact, the Kd values were within 37% of the Ki values. The native MS approach to measuring Kd values
has also been validated for ligand–DNA interactions compared to other well-established biophysical
methods (isothermal titration calorimetry and differential scanning calorimetry) [132].

Table 1. Measured dissociation constants (µM) of six sulfonamides to human (h)CA I and hCA II
using native mass spectrometry with nanoscale ion emitter tips in individual ligand–protein binding
experiments (Single) and simultaneously in a competition experiment (Competition). Data adapted
from Reference [130].
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hCA I hCA II

Inhibitor Single Competition Literature Single Competition Literature

Acetazolamide (AAZ) 0.24 ± 0.02 0.29 ± 0.03 0.25 a [133] 0.015 ± 0.001 0.022 ± 0.002 0.012 a [133]

Ethoxzolamide (EZA) 0.014 ± 0.002 0.016 ± 0.004 0.025 a [133],
0.009 b [134] 0.010 ± 0.001 0.014 ± 0.002 0.008 a [133]

Brinzolamide (BRZ) 1.06 ± 0.05 1.12 ± 0.06 0.73 ± 0.04a [135] 0.005 ± 0.001 0.007 ± 0.001 0.003 a [135]

Furosemide (FUR) 0.055 ± 0.005 0.048 ± 0.006 0.062 a [130] 0.098 ± 0.009 0.110 ± 0.010 0.065 a [135]

Dichlorophenamide (DCP) 1.3 ± 0.1 1.4 ± 0.1 1.2 a [136] 0.027 ± 0.002 0.035 ± 0.002 0.038 a [136]

Indapamide (IND) 9.2 ± 0.3 9.5 ± 1.0 51.9 a [137] 3.22 ± 0.20 3.32 ± 0.31 2.52 a [137]

a U. Florence stopped-flow kinetic inhibition constant measurements (µM) [68,69,82,120–127]. b U. Florida buffer
indicator kinetic method measurements [134].

Overall, these native MS data strongly support that Ki values can be obtained using the
stopped-flow kinetic method for a range of different types of CAIs with sufficient accuracy for
drug discovery and development applications.

2.3. Drug Design Studies Using SLC-0111 as Lead Compound

Compound 5, SLC-0111, possesses a variable affinity for the diverse hCA isoforms and selective
inhibitory action toward tumor expressed CA isoforms IX and XII over the off-target ubiquitous
hCA I and hCA II [51,52,70,81]. Compound 5 is characterized by the presence of the ureido
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functionality as a linker between the benzenesulfonamide fragment and the tail of the inhibitor.
By means of X-ray crystallography on SLC-0111, it was demonstrated that the reason for the isoform
selectivity is the ureido linker, which allows great flexibility to the CAI “tails” that may adopt a
range of conformations and participate in different interactions within the enzyme active site [52,70].
Such different favorable/unfavorable contacts between the inhibitor tail and the enzyme active site lead
to different inhibition profiles for the entire class of sulfonamides to which SLC-0111 belongs [52,70].
The different tail orientations allow the specific interactions between the inhibitor tail and amino
acid residues at the entrance of the active site cavity, which is the most variable region in the
various α-CA isoforms with medicinal chemistry applications, such as, for example, CA I, II, IX, and
XII [19–21,138–142]. SLC-0111 binds selectively to hCA IX coordinating through the SO2NH− moiety
(the deprotonated form of sulfonamide group) to the positively charged Zn(II) ion in the CA active site.
In addition, a second strong contact with the Zn(II) ion involves oxygen of the sulfonamide. In contrast,
these interactions are either weak or absent in the case of the hCA II isoform. The large difference in
the electrostatic interactions accounts for the selectivity of the ligand to hCA IX. It was suggested that
the potency of SLC-0111 against isoform IX is due to the hydrophobic contacts, whereas the selectivity
is due to the electrostatic interactions, by means of computational approaches [143].

As a front-runner selective inhibitor for the tumor-associated isoform CA IX, and being currently
in Phase Ib/II clinical trials, SLC-0111 has been utilized as a lead CAI for the development of novel
promising small molecules with selective inhibitory activity toward CA IX, and with good druggability
and lead-likeness characters. Several drug design approaches have been utilized to develop a range
of new SLC-0111 analogs. The following subsection will present an overview of most of these drug
design approaches.

2.3.1. Modification of the SLC-0111 Benzenesulfonamide Moiety

In 2012, Gieling et al. developed new sulfamate-based SLC-0111 analogs via replacement of
the sulfamoyl zinc-binding group (ZBG) in SLC-0111 with the sulfamate functionality (Compound 8,
Figure 2). The reported sulfamate derivatives in this study displayed selective CA IX/XII inhibition,
as well as inhibited migration and spreading of breast cancer MDA-MB-231 cells. One of these
sulfamate-based CAIs efficiently inhibited the development of MDA-MB-231 metastases in the lung
without signs of toxicity [144].
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In another study, Carta et al. reported new SLC-0111 regioisomers (Compound 9, Figure 2).
The obtained results revealed that shifting of the sulfamoyl ZBG in SLC-0111 from the para- to
meta-position elicited a decrease in the effectiveness toward hCA IX with significant improvement
of the inhibitory action against hCA II, which was detrimental to the selectivity profile for this
regioisomer [145].

On the other hand, Bozdag et al. reported the design and synthesis of new SLC-0111 congeners
incorporating a 2-aminophenol-4-sulfonamide moiety to control the tail flexibility, (Compound 10,
Figure 2). The phenolic OH was able to establish an intra-molecular five-membered ring with the
ureido NH group, which may provoke a C2-N’rotational restriction leading to a 20-fold enhanced hCA
II/hCA IX selectivity ratio in comparison to SLC-0111 [146].
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2.3.2. Modification of the SLC-0111 Ureido Linker

Akocak and co-workers adopted a bioisosteric replacement approach in order to replace the
SLC-0111 ureido linker with a cyanoguanidine (Compound 11, Figure 3) or 1,3-triazene (Compound 12,
Figure 3) linker. The developed N,N′-diaryl cyanoguanidines and 1,3-diaryltriazenes in both studies
emerged as selective hCA II inhibitors [147–149].
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The discovery of other SLC-0111 analogs was continued through two new studies that described
the synthesis of novel sets of thioureido and selenoureido CAIs. In these studies, the SLC-0111 ureido
oxygen was replaced with a sulfur or selenium atom (Compound 13, Figure 3) [150,151]. The inhibition
profile for both thioureido and selenoureido SLC-0111 congeners showed a loss of selectivity for
the inhibition of the cancer-associated cytosolic hCA isoforms [150,151]. Moreover, Eldehna et al.,
in 2019, developed a series of 3/4-(3-aryl-3-oxopropenyl)aminobenzenesulfonamide derivatives as
novel SLC-0111 enaminone analogs (Compound 14, Figure 3). All the reported enaminones exhibited
good selectivity toward hCA IX over hCA I and II. The structure-activity relationship (SAR) outcomes
highlighted the significance of the incorporation of a bulkier aryl tail such as the 2-naphthyl ring [151].

In order to manipulate the flexibility of the SLC-0111 ureido linker, the urea linker outer nitrogen
atom was incorporated into a piperazine ring to produce rigidified SLC-0111 analogs (Compound
15, Figure 3). The rigid congeners displayed a reduction of CA IX/CA II selectivity, although some
nanomolar CA IX inhibitors were obtained [152].

Furthermore, to better understand the importance of a rigid heterocyclic scaffold, the piperazine
ring was substituted with piperidine (Compound 16, Figure 3). In this compound series, a
hydrazinocarbonyl-ureido moiety was introduced for the tail of the inhibitors. The NH group
of the hydrazide moiety may provide a supplementary H-bond donator, which can better interact with
the aminoacidic residues in the hydrophilic region of the active site. Depending on the substitution
pattern at the piperidino ring, several hydrazidoureidobenzensulfonamides inhibited CA IX at low
nanomolar concentrations [153].

2.3.3. Modification of the SLC-0111 Tail

The replacement of the 4-fluorophenyl tail with a 3-nitrophenyl group afforded low nanomolar CA
IX/XII inhibitor with good selectivity for the transmembrane over the cytosolic isoforms (Compound 4,
Figure 1). The same SLC-0111 analog significantly inhibited the formation of metastases by the highly
aggressive 4T1 mammary tumor cells [52]. Furthermore, novel SLC-0111 congeners were synthesized
either via grafting different substituents within the phenyl tail, rather than p-fluoro (Compound
17, Figure 4) or via replacement of the 4-fluorophenyl moiety with polycyclic tails (Compound
18, Figure 4) [52]. On the other hand, replacement of the 4-fluorophenyl tail of SLC-0111 with
4-arylthiazole (Compound 19, Figure 4) and 5-arylthiadiazole (Compound 20, Figure 4) successfully
improved the inhibitory activity toward hCA IX. Unfortunately, the most active thiadiazole analogs
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showed a decrease of the hCA IX/II selectivity as compared to SLC-0111 [154]. Another recent study
has utilized the bioisosteric replacement approach to design and synthesize new SLC-0111 analogs
featuring 3-methylthiazolo[3,2-a]benzimidazole moiety as a tail that connected to the zinc-anchoring
benzenesulfonamide moiety via a ureido linker (Compound 21, Figure 4). Thereafter, the ureido linker
was either elongated (Compound 22, Figure 4) or replaced by an enaminone linker (Compound 23,
Figure 4) [155]. The results obtained from the stopped-flow CO2 hydrase assay elucidated that three
compounds possessed single-digit nanomolar CA IX inhibitory action with good selectivity profile
toward hCA IX over hCA I and II. Moreover, these compounds exerted effective anti-proliferative and
pro-apoptotic activities toward breast cancer MCF-7 and MDA-MB-231 cell lines. It is worth noting that
the molecular docking analysis disclosed that thiazolo[3,2-a]benzimidazole moiety is a good bioisoster
for the SLC-0111 phenyl tail due to its ability to establish many hydrophobic interactions within the
hCA IX and XII active sites, as well as involving the sp2 nitrogen of the tricyclic ring in hydrogen
bonding. The fluorine atom from SLC-0111 was also replaced by metal-complexing polycyclic amines,
which coordinate positron-emitting (PET) metal ions (e.g., 111In and 90Y) for PET imaging [156].
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2.3.4. Development of SLC-0111 Hybrids

In 2016, Eldehna et al. has utilized a hybrid pharmacophore approach to merge the pharmacophoric
elements of the isatin, a privileged scaffold in cancer drug discovery, and SLC-0111 in a single chemical
framework to develop a new series of novel isatins-SLC-0111 hybrids (Compound 24, Figure 5) [157].
Whilst most of the prepared hybrids exerted excellent inhibition for hCA XII in the sub- to low-nanomolar
range, they weakly inhibited hCA IX. Thereafter, a structural extension approach has been exploited
through N-alkylation and N-benzylation of the isatin moiety in order to enhance the hydrophobic
interactions of the tail within the CA IX binding site, with the prime goal of improving the activity and
selectivity toward the CA IX isoform (Compound 25, Figure 5). As planned, an improvement of hCA IX
inhibitory activity for the hybrids, in comparison to N-unsubstituted counterparts (Compound 24), was
achieved. Furthermore, one of the developed N-substituted isatin-SLC-0111 hybrids showed potent
VEGFR-2 inhibitory activity and good anti-proliferative action toward breast cancer MDA-MB-231 and
MCF-7 cell lines under hypoxic conditions. Furthermore, it disrupted the MDA-MB-231 cell cycle via
alteration of the Sub-G1 phase and arrest of G2-M stage, as well as, it resulted in a significant increase
in the percent of Annexin V positive apoptotic cells [158].
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3. In Vivo Studies, Preclinical and Clinical Trials of CA IX/XII Inhibitors

Overall, the methodology used to determine the inhibitory constants for the various compounds
determined in the papers discussed above, and validated by independent technologies (see above),
represent bona fide, accurate data, which in no way compromise the development of CA IX and CA
XII-specific inhibitors for validation in preclinical cancer models and in clinical trials, based on the vast
biological literature demonstrating CA IX/CA XII as promising cancer therapeutic targets in hypoxic
solid tumors.

The compounds from which SLC-0111, the lead clinical CA IX/CA XII inhibitor, was derived
(5 in Figure 1), were identified by the Supuran group [51,52]. These ureidobenzene sulfonamide
compounds were then assessed for “druggability” criteria, including ADME (Absorption, Distribution,
Metabolism, Excretion) analysis, from which SLC-0111 was selected for further in vitro and in vivo
analysis in appropriate cancer models. The evaluation of CA IX/CA XII inhibitors as anticancer
compounds takes a different path from the development of other cytotoxic anticancer drugs. This is
because the targets, CA IX/CA XII are only expressed within the hypoxic niches of solid tumors
and may represent a minor portion of the total tumor cell population. However, these hypoxic cells
have the properties for self-renewal [159–161], migration/invasion [162–164], and survival in an acidic
tumor microenvironment [163–168] and significantly contribute to resistance to chemo-, radiation,
and immunotherapies. Thus, CA IX/CA XII inhibitors are not likely to have a major effect on tumor
growth and metastasis by themselves as mono-therapeutics but need to be used in combination with
chemo-, radiation-, and immunotherapies to eliminate resistant populations and for maximum durable
suppression of tumor growth and metastasis.

Indeed, the extensive preclinical models carried out by several independent groups with
the lead CA IX/XII inhibitors, including SLC-0111, have demonstrated that the use of such
inhibitors in combination with chemotherapy agents [51,169–171], immunotherapy [172–174], and
radiotherapy [173–176] is highly important and desirable for sustained therapeutic response.
The extensive studies reported in these and other papers, utilizing multiple in-depth in vivo models,
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provided solid positive preclinical data to warrant the initiation of Phase 1 clinical trials in 2014, of
which a Phase 1 safety trial with SLC-0111 (as a monotherapeutic agent), has been completed [177]
and a Phase 1b trial is currently underway to evaluate SLC-0111 in combination with gemcitabine in
metastatic pancreatic cancer patients whose tumors are CA IX positive (ClinicalTrials.gov Identifier:
NCT03450018).

A multitude of other combination therapy studies has been performed with CA IX inhibitors,
including SLC-0111, in combination with proton pump inhibitors [178], antimetabolites [179],
cisplatin [180], APE1-Ref-1 inhibitors [181], and histone deacetylase (HDAC) inhibitors [182]. All these
studies showed a synergistic effect between the CAI and the second antitumor agent, as well as the
lack of endothelial toxicity [183].

Other groups also used SLC-0111 in various biomedical studies in which selective inhibition
of some CA isoforms was needed. These include the effects on prostate cancer cells of SLC-0111
alone or in combination with daunorubicin [184], radiobiological effects of CA IX inhibition in human
breast cancer cells [185], microvascular endothelial cell pH regulation [186], glycolysis and migration
suppression in pulmonary microvascular endothelial cells [187], and the involvement of CA isoforms in
mitochondrial biogenesis and in the control of lactate production in human Sertoli cells [188]. All these
studies confirm the usefulness of this clinical candidate in tumors and other biomedical conditions.

4. Conclusions

The tumor microenvironment is critical in cancer cell growth and can substantially influence the
outcome of anticancer interventions. Transcription factors, such as HIF-1/2, can activate a number of
key genes including those involved in tumor pH regulation. The human carbonic anhydrase isoforms
CA IX and XII have active roles in regulating the extracellular pH in cancers including in advanced
solid metastatic tumors. As a result of careful preclinical studies involving X-ray crystallography [189]
and the screening of tens of thousands of potential inhibitors [190–193] by use of a functional kinetic
enzyme inhibition assay based on stopped-flow kinetic measurements, key lead compounds for CA
IX and XII, including the sulfonamide CA inhibitor SLC-0111, have been discovered, developed, and
validated. The results from the stopped-flow kinetic enzyme inhibition assay are in excellent agreement
with: (i) orthogonal native mass spectrometry measurements that can be used to directly measure
protein–ligand interactions and (ii) kinetic inhibition measurements that do not involve a stopped-flow
apparatus. Thus, the stopped-flow kinetic method has been used to screen tens of thousands of potential
CA inhibitors with sufficiently high accuracy for drug discovery and development applications. Based
on the vast literature demonstrating the development and validation of specific CA IX and CA XII
inhibitors, including in preclinical cancer models and in clinical trials, these two enzymes are promising
cancer therapeutic targets in advanced, hypoxic solid tumors. We anticipate that the use of selective
CA IX/XII inhibitors, such as SLC-0111, will be beneficial in combination with chemo-, radiation-, and
immunotherapies to eliminate resistant cancer cell populations and for maximum durable suppression
of tumor growth and metastasis.
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