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On a Boltzmann equation for Haldane statistics.

Leif ARKERYD 3 and Anne NOURI 4 Abstract. The study of quantum quasi-particles at low temperatures including their statistics, is a frontier area in modern physics. In a seminal paper Haldane [START_REF] Haldane | Fractional statistics in arbitrary dimensions: a generalization of the Pauli principle[END_REF] proposed a definition based on a generalization of the Pauli exclusion principle for fractional quantum statistics. The present paper is a study of quantum quasi-particles obeying Haldane statistics in a fully non-linear kinetic Boltzmann equation model with large initial data on a torus. Strong L 1 solutions are obtained for the Cauchy problem. The main results concern existence, uniqueness and stabililty. Depending on the space dimension and the collision kernel, the results obtained are local or global in time. [START_REF] Arkeryd | A quantum Boltzmann equation for Haldane statistics and hard forces; the spacehomogeneous initial value problem[END_REF] Haldane statistics and the Boltzmann equation.

In a previous paper [START_REF] Arkeryd | Well-posedness of the Cauchy problem for a space-dependent anyon Boltzmann equation[END_REF], we studied the Cauchy problem for a space-dependent anyon Boltzmann equation [START_REF] Bhaduri | Haldane exclusion statistics and the Boltzmann equation[END_REF],

∂ t f (t, x, v) + v 1 ∂ x f (t, x, v) = Q α (f )(t, x, v), t ∈ R + , x ∈ [0, 1], v = (v 1 , v 2 ) ∈ R 2 , f (0, x, v) = f 0 (x, v).
The collision operator Q α in [START_REF] Arkeryd | Well-posedness of the Cauchy problem for a space-dependent anyon Boltzmann equation[END_REF] depends on a parameter α ∈]0, 1[, and is given by

Q α (f )(v) = R 2 ×S 1 B(| v -v * |, n) f f * F α (f )F α (f * ) -f f * F α (f )F α (f * ) dv * dn,
with the kernel B of Maxwellian type, f , f * , f , f * the values of f at v , v * , v and v * respectively, where

v = v -(v -v * , n)n, v * = v * + (v -v * , n)n,
and the filling factor

F α F α (f ) = (1 -αf ) α (1 + (1 -α)f ) 1-α .
Let us recall the definition of anyon. Consider the wave function ψ(R, θ, r, ϕ) for two identical particles with center of mass coordinates (R, θ) and relative coordinates (r, ϕ). Exchanging them, ϕ → ϕ + π, gives a phase factor e 2πi for bosons and e πi for fermions. In three or more dimensions those are all possibilities. Leinaas and Myrheim proved in 1977 [START_REF] Leinaas | On the theory of identical particles[END_REF], that in one and two dimensions any phase factor is possible in the particle exchange. This became an important topic after the first experimental confirmations in the early 1980-ies, and Frank Wilczek in analogy with the terms bos(e)-ons and fermi-ons coined the name any-ons for the new quasi-particles with any phase. By moving from spin to a definition in terms of a generalized Pauli exclusion principle, Haldane [START_REF] Haldane | Fractional statistics in arbitrary dimensions: a generalization of the Pauli principle[END_REF] 1 2010 Mathematics Subject Classification. 82C10, 82C22, 82C40. 2 Key words; anyon, Haldane statistics, low temperature kinetic theory, quantum Boltzmann equation. 3 Mathematical Sciences, 41296 Göteborg, Sweden. 4 Aix-Marseille University, CNRS, Centrale Marseille, I2M UMR 7373, 13453 Marseille, France.

1 extended this to a fractional exclusion statistics valid for any dimension. The conventional Bose-Einstein and Fermi-Dirac statistics are commonly associated with integer spin bosonic elementary particles resp. half integer spin fermionic elementary particles, whereas the Haldane fractional statistics is connected with quasi-particles corresponding to elementary excitations in many-body interacting quantum systems. In this paper we consider the Cauchy problem associated to the Boltzmann equation in a torus [0, 1] k , k ∈ {1, 2, 3}, for quantum particles obeying the Haldane statistics;

∂ t f (t, x, v) + v • ∇ x f (t, x, v) = Q(f )(t, x, v), (t, x, v) ∈ R + × [0, 1] k × R 3 , v = (v 1 , v 2 , v 3 ) ∈ R 3 , (1.1) 
f (0, x, v) = f 0 (x, v), (1.2) 
where v = (v 1 ) ( resp. v = (v 1 , v 2 ), resp. v = v) for k = 1 ( resp. k = 2, resp. k = 3).

The collision operator Q is given by

Q(f )(v) = R 3 ×S 2 B(| v -v * |, n) f f * F α (f )F α (f * ) -f f * F α (f )F α (f * ) dv * dn, v ∈ R 3 .
Strong solutions to the space-homogeneous case were obtained in [START_REF] Arkeryd | A quantum Boltzmann equation for Haldane statistics and hard forces; the spacehomogeneous initial value problem[END_REF] for any dimension bigger than one in velocity. Strong solutions to the space-inhomogeneous case were obtained in [START_REF] Arkeryd | Well-posedness of the Cauchy problem for a space-dependent anyon Boltzmann equation[END_REF] in a periodic slab for two-dimensional velocities. There the proof depends on the two-dimensional velocities setting. In the present paper we prove local in time well-posedness of the Cauchy problem for k = 1 and collision kernels similar to those used in [START_REF] Arkeryd | Well-posedness of the Cauchy problem for a space-dependent anyon Boltzmann equation[END_REF], and for k ∈ {1, 2, 3} global in time well-posedness under the supplementary assumption of very soft potential at infinity [START_REF] Villani | On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations[END_REF]. The solutions conserve mass, momentum and energy.

2 The main results.

With cosθ = n • v-v * |v-v * | , the kernel B(|v -v * |, n)
will from now on be written B(|v -v * |, θ) and be assumed measurable with

0 ≤ B ≤ B 0 , (2.1) 
for some B 0 > 0. It is also assumed for some γ, γ > 0, that

B(|v -v * |, θ) = 0 if either | cos θ| < γ , or 1 -| cos θ| < γ , or |v -v * | < γ, (2.2) 
together with the existence for any Γ > 0 of a constant

c Γ > 0 such that inf u∈[γ,Γ] B(u, θ)dn ≥ c Γ . (2.
3)

The initial datum f 0 (x, v),

periodic in x, is a measurable function with values in [0, 1 α ], (2.4) 
and such that for some positive constants c 0 and c0 ,

(1 + |v| 2 )f 0 (x, v) ∈ L 1 ([0, 1] k × R 3 ), (2.5) sup x∈[0,1] k f 0 (x, v)dv = c 0 , (2.6) 
sup

x∈[0,1] k |v| 2 f 0 (x, v)dv = c0 , (2.7) 
for any subset X of R 3 of positive measure,

X inf x∈[0,1] k f 0 (x, v)dv > 0. (2.8)
Denote by

f (t, x, v) = f (t, x + tv, v) (t, x, v) ∈ R + × [0, 1] k × R 3 , v = (v 1 , • • •, v k ) ∈ R k . (2.9)
Strong solutions to the Cauchy problem with initial value f 0 associated to the quantum Boltzmann equation (1.1) are considered in the following sense.

Definition 2.1 f is a strong solution to (1.1) on the time interval

I if f ∈ C 1 (I; L 1 ([0, 1] k × R 3 )), and 
d dt f = Q(f ) , on I × [0, 1] k × R 3 . (2.10) 
The main results of the present paper are given in the following theorems.

Theorem 2.1 Under the assumptions (2.1)-(2.6) and (2.8), there is a time T 0 > 0, so that there exists a unique periodic in x, strong solution 

f ∈ C 1 ([0, T 0 [; L 1 ([0, 1] × R 3 )) of (1.1)-(1.2). It depends continuously in C([0, T 0 [; L 1 ([0, 1] × R 3 )) on the initial L 1 -datum.
B(u, θ) = B 1 (u)B 2 (θ) with |B 1 (u)| ≤ c|u| -3-η for some η > 0, and B 2 bounded, (2.11 
)

there exists a unique periodic in x, strong solution f ∈ C 1 ([0, ∞[; L 1 ([0, 1] k × R 3 )) of (1.1)-(1.2) for k ∈ {1, 2, 3}. For any T > 0 it continuously depends in C([0, T ]; L 1 ([0, 1] k × R 3 )) on the initial L 1 -datum.
It conserves mass, momentum and energy.

Remarks.

Theorem 2.1 is restricted to the slab case, since its proof below uses an estimate for the Bony functional only valid in one space dimension. Theorems 2.1 and 2.2 also hold with the same proofs in the fermion case where α = 1, in particular giving strong solutions to the Fermi-Dirac equation. Theorems 2.1 and 2.2 also hold with a limit procedure when α → 0 in the boson case where α = 0, in particular giving strong solutions to the Boltzmann Nordheim equation [START_REF] Nordheim | On the kinetic methods in the new statistics and its applications in the electron theory of conductivity[END_REF]. It is the object of a separate paper [START_REF] Arkeryd | On the Cauchy problem with large data for the space-dependent Boltzmann-Nordheim equation III[END_REF] (see also [START_REF] Escobedo | Finite time blow-up and condensation for the bosonic Nordheim equation[END_REF], [START_REF] Lu | The Boltzmann equation for Bose-Einstein particles: condensation in finite time[END_REF] and [START_REF] Briant | On the Cauchy problem for the homogeneous Boltzmann-Nordheim equation for bosons: local existence, uniqueness and creation of moments[END_REF]) Theorems 2.1 and 2.2 also hold for v ∈ R n , n ≥ 3. The proofs in [START_REF] Arkeryd | Well-posedness of the Cauchy problem for a space-dependent anyon Boltzmann equation[END_REF] strongly rely on the property that for any unit vector n with direct orthogonal unit vector n ⊥ , either n 1 or n ⊥1 is bigger that 1 √ 2 , where n 1 (resp. n ⊥1 ) is the component of n (resp. n ⊥ ) along the x-axis. This allows to control the mass density of the solution from its Bony functional. This is no more the case in the three-dimensional velocity setting of the present paper. It is why our results are local in time under the same assumptions on the collision kernel B as in [START_REF] Arkeryd | Well-posedness of the Cauchy problem for a space-dependent anyon Boltzmann equation[END_REF]. They are global in time under the supplementary assumption of a very soft potential at infinity. The paper is organized as follows. Approximations are introduced in Section 3 for k ∈ {1, 2, 3} together with for k = 1, a control of their Bony functional. Their mass density is uniformly controlled under the assumptions of Theorem 2.1 (resp. Theorem 2.2) in Section 4 (resp. Section 5). The well-posedness of the Cauchy problem is proven in Section 6. Conservation of mass, momentum and energy is proven in Section 7.

3 Preliminaries on solution approximations and the Bony functional.

Let k ∈ {1, 2, 3}. For any j ∈ N * , denote by ψ j , the cut-off function with

ψ j (r) = 0 if r > j 2 and ψ j (r) = 1 if r ≤ j 2 ,
and set

χ j (v, v * ) = ψ j (|v 2 | + |v * | 2 ).
Let F j be the C 1 function defined on [0, 1 α ] by

F j (y) = 1 -αy ( 1 j + 1 -αy) 1-α (1 + (1 -α)y) 1-α .
Denote by Q j (resp. Q + j , and Q - j to be used later), the operator

Q j (f )(v) := B(|v -v * |, θ)χ j (v, v * ) f f * F j (f )F j (f * ) -f f * F j (f )F j (f * ) dv * dn, (resp. its gain part Q + j (f )(v) := B(|v -v * |, θ)χ j (v, v * )f f * F j (f )F j (f * )dv * dn, (3.1) 
and its loss part

Q - j (f )(v) := B(|v -v * |, θ)χ j (v, v * )f f * F j (f )F j (f * )dv * dn ). (3.2)
For j ∈ N * , let a mollifier ϕ j be defined by ϕ j (x, v) = j 3+k ϕ(jx, jv), where

ϕ ∈ C ∞ 0 (R 3+k ), support(ϕ) ⊂ [0, 1] k × {v ∈ R 3 ; |v| ≤ 1}, ϕ ≥ 0, [0,1] k ×R 3 ϕ(x, v)dxdv = 1. Let f 0,j be the restriction to [0, 1] k × {v; |v| ≤ j} of min{f 0 , 1 α - 1 j } * ϕ j . (3.3) 
The following lemma concerns a corresponding approximation of (1.1)-(1.2) for k ∈ {1, 2, 3}.

Lemma 3.1

For any T > 0, there is a unique solution

f j ∈ C [0, T ] × [0, 1] k ; L 1 ({v; |v| ≤ j}) to ∂ t f j + v • ∇ x f j = Q j (f j ), f j (0, •, •) = f 0,j . (3.4)
There is η j > 0 such that f j takes its values in [0, 1 α -η j ]. The solution conserves mass, momentum and energy.

Proof of Lemma 3.1. Let T > 0 be given. We shall first prove by contraction that for T 1 > 0 and small enough, there is a unique solution

f j ∈ C [0, T 1 ] × [0, 1] k ; L 1 ({v; |v| ≤ j}) ∩ {f ; f ∈ [0, 1 α ]}
to (3.4). Let the map C be defined on periodic in x functions in

C [0, T ] × [0, 1] k ; L 1 ({v; |v| ≤ j}) ∩ {f ; f ∈ [0, 1 α ]} by C(f ) = g, where ∂ t g + v • ∇ x g = (1 -αg) 1 + (1 -α)f 1 j + 1 -αf 1-α Bχ j f f * F j (f * )dv * dn -g Bχ j f * F j (f )F j (f * )dv * dn, g(0, •, •) = f 0,j .
The previous linear partial differential equation has a unique periodic solution

g ∈ C([0, T ] × [0, 1] k ; L 1 ({v; |v| ≤ j})).
For f with values in [0, 1 α ], g takes its values in [0, 1 α ]. Indeed, denoting by

σf := α 1 + (1 -α)f ) 1 j + 1 -αf 1-α Bχ j f f * F j (f * )dv * dn + Bχ j f * F j (f )F j (f * )dv * dn, and 
g (t, x, v) = g(t, x + tv, v), it holds that g (t, x, v) = f 0,j (x, v)e -t 0 σ f (r,x,v)dr + t 0 ds 1 + (1 -α)f 1 j + 1 -αf 1-α Bχ j f f * F j (f * )dv * dn (s, x, v)e -t s σ f (r,x,v)dr ≥ f 0,j (x, v)e -t 0 σ f (r,x,v)dr ≥ 0,
and

(1 -αg) (t, x, v) = (1 -αf 0,j )(x, v)e -t 0 σ f (r,x,v)dr + t 0 Bχ j f * F j (f )F j (f * )dv * dn (s, x, v)e -t s σ f (r,x,v)dr ds ≥ (1 -αf 0,j )(x, v)e -t 0 σ f (r,x,v)dr ≥ 0. C is a contraction on C([0, T 1 ] × [0, 1] k ; L 1 ({v; |v| ≤ j})) ∩ {f ; f ∈ [0, 1 α ]},
for T 1 > 0 small enough only depending on j, since the derivative of the map F j is bounded by (3jα α-1 + 1)j 1-α on [0, 1 α ]. Let f j be its fixed point, i.e. the solution of (3.4) on [0, T 1 ]. The argument can be repeated and the solution continued up to t = T . By Duhamel's form for f j (resp. 1 -αf j ),

f j (t, x, v) ≥ f 0,j (x, v)e -t 0 σ f j (r,x,v)dr ≥ 0, (t, x) ∈ [0, T ] × [0, 1] k , |v| ≤ j, (resp. 
(

-αf j ) (t, x, v) ≥ (1 -αf 0,j )(x, v)e -t 0 σ f j (r,x,v)dr ≥ 1 je cj 4 T , (t, x) ∈ [0, T ] × [0, 1] k , |v| ≤ j). 1 
Consequently, for some η j > 0, there is a periodic in x solution

f j ∈ C([0, T ] × [0, 1] k ; L 1 ({v; |v| ≤ j})) to (3.4) with values in [0, 1 α -η j ].
If there were another nonnegative local solution fj to (3.4), defined on [0, T ] for some T ∈]0, T ], then by the exponential form it would strictly stay below 1 α . The difference f j -fj would for some constant c T satisfy

|(f j -fj ) (t, x, v)|dxdv ≤ c T t 0 |(f j -fj ) (s, x, v)|dsdxdv, t ∈ [0, T ], (f j -fj ) (0, x, v) = 0,
implying that the difference would be identically zero on [0, T ]. Thus f j is the unique solution on [0, T ] to (3.4), and has its range contained in [0, 1 α -η j ].

Denote by M j the mass density

M j (t) = sup (s,x)∈[0,t]×[0,1] f j (s, x, v)dv. (3.5) 
In Lemma 3.2 the tails for large velocities of the mass are controlled with respect to the mass density.

Lemma 3.2

Given T > 0, the solution f j of (3.4) satisfies

1 0 |v|>λ |v| sup t∈[0,T ] f j (t, x, v)dvdx ≤ c T λ M j (T ), j ∈ N,
where c T only depends on T and |v| 2 f 0 (x, v)dxdv.

Proof of Lemma 3.2. Denote f j by f for simplicity. By the non-negativity of f , sup

t∈[0,T ] f (t, x, v) ≤ f 0 (x, v) + T 0 (Q + j (f )) (s, x, v)ds, (3.6) 
where Q + j (f ) is defined in (3.1). Integration with respect to (x, v) for |v| > λ, gives

1 0 |v|>λ |v| sup t∈[0,T ] f (t, x, v)dvdx ≤ |v|>λ |v|f 0 (x, v)dvdx + T 0 |v|>λ Bχ j |v|f (s, x + sv 1 , v )f (s, x + sv 1 , v * )F j (f )(s, x + sv 1 , v)F j (f )(s, x + sv 1 , v * )dvdv * dndxds.
Here in the last integral, either |v | or |v * | is the largest and larger than λ √ 2 . The two cases are symmetric, and we discuss the case |v | ≥ |v * |. After a translation in x, the integrand of the r.h.s of the former inequality is estimated from above by

c|v |f # (s, x, v ) sup (t,x)∈[0,T ]×[0,1] f # (t, x, v * ). The change of variables (v, v * , n) → (v , v * , -n) and the integration over (s, x, v, v * , n) ∈ [0, T ] × [0, 1] × {v ∈ R 3 ; |v| > λ √ 2 } × R 3 × S 2 ,
give the bound

c λ T 0 |v| 2 f # (s, x, v)dxdvds sup (t,x)∈[0,T ]×[0,1] f # (t, x, v * )dv * ≤ cT M j (T ) λ |v| 2 f 0 (x, v)dxdv.
The lemma follows.

For k = 1 there is a Bony type inequality available (cf [START_REF] Bony | Solutions globales bornées pour les modèles discrets de l'équation de Boltzmann, en dimension 1 d'espace, Journées " Équations aux dérivées partielles[END_REF] [8]) as follows.

Lemma 3.3

For any n ∈ S 2 , denote by n 1 the component of n along the x-axis. It holds that

t 0 n 2 1 [(v -v * ) • n] 2 Bχ j f j f j * F j (f j )F j (f j * )dvdv * dndxds ≤ c 0 (1 + t), t > 0, j ∈ N * , (3.7) 
with c 0 only depending on f 0 (x, v)dxdv and |v| 2 f 0 (x, v)dxdv.

Proof of Lemma 3.3. Denote f j by f . The integral over time of the first component of momentum

v 1 f (t, 0, v)dv (resp. v 2 1 f (t, 0, v)dv ) is first controlled. Let β ∈ C 1 ([0, 1]) be such that β(0) = -1 and β(1) = 1. Multiply (3.4) for k = 1 by β(x) (resp. v 1 β(x) ) and integrate over [0, t] × [0, 1] × R 3 . It gives t 0 v 1 f (τ, 0, v)dvdτ = 1 2 β(x)f 0,j (x, v)dxdv -β(x)f (t, x, v)dxdv + t 0 β (x)v 1 f (τ, x, v)dxdvdτ , resp. t 0 v 2 1 f (τ, 0, v)dvdτ = 1 2 β(x)v 1 f 0,j (x, v)dxdv -β(x)v 1 f (t, x, v)dxdv + t 0 β (x)v 2 1 f (τ, x, v)dxdvdτ .
Consequently, using the conservation of mass and energy of f ,

| t 0 v 1 f (τ, 0, v)dvdτ | + t 0 v 2 1 f (τ, 0, v)dvdτ ≤ c(1 + t). (3.8) 
Let

I(t) = x<y (v 1 -v * 1 )f (t, x, v)f (t, y, v * )dxdydvdv * .
It results from

I (t) = -(v 1 -v * 1 ) 2 f (t, x, v)f (t, x, v * )dxdvdv * + 2 v * 1 (v * 1 -v 1 )f (t, 0, v * )f (t, x, v)dxdvdv * ,
and the conservations of the mass, momentum and energy of f that

t 0 1 0 (v 1 -v * 1 ) 2 f (s, x, v)f * (s, x, v * )dvdv * dxds ≤ 2 f 0 (x, v)dxdv |v 1 |f 0 (x, v)dv + 2 f (t, x, v)dxdv |v 1 |f (t, x, v)dxdv + 2 t 0 v * 1 (v * 1 -v 1 )f (τ, 0, v * )f (τ, x, v)dxdvdv * dτ ≤ 2 f 0 (x, v)dxdv (1 + |v| 2 )f 0 (x, v)dv + 2 f (t, x, v)dxdv (1 + |v| 2 )f (t, x, v)dxdv + 2 t 0 ( v 2 * 1 f (τ, 0, v * )dv * )dτ f 0 (x, v)dxdv -2 t 0 ( v * 1 f (τ, 0, v * )dv * )dτ v 1 f 0 (x, v)dxdv ≤ c 1 + t 0 v 2 1 f (τ, 0, v)dvdτ + | t 0 v 1 f (τ, 0, v)dv| .
And so, by (3.8),

t 0 1 0 (v 1 -v * 1 ) 2 f (τ, x, v)f (τ, x, v * )dxdvdv * dτ ≤ c(1 + t). (3.9)
Here, c is a constant depending only on f 0 (x, v)dxdv and |v| 2 f 0 (x, v)dxdv.

Denote by

u 1 = v 1 f dv f dv . It holds t 0 1 0 (v 1 -u 1 ) 2 Bχ j f f * F j (f )F j (f * )(s, x, v, v * , n)dvdv * dndxds ≤ c t 0 1 0 (v 1 -u 1 ) 2 f f * (s, x, v, v * )dvdv * dxds = c 2 t 0 1 0 (v 1 -v * 1 ) 2 f f * (s, x, v, v * )dvdv * dxds ≤ c(1 + t). (3.10) Multiply equation (3.4) for f by v 2 1 , integrate and use that v 2 1 Q j (f )dv = (v 1 -u 1 ) 2 Q j (f )dv and (3.10). It results t 0 (v 1 -u 1 ) 2 Bχ j f f * F j (f )F j (f * )dvdv * dndxds = v 2 1 f (t, x, v)dxdv -v 2 1 f 0,j (x, v)dxdv + t 0 (v 1 -u 1 ) 2 Bχ j f f * F j (f )F j (f * )dxdvdv * dnds < c (1 + t),
where c is a constant only depending on f 0 (x, v)dxdv and |v| 2 f 0 (x, v)dxdv.

After a change of variables the left hand side can be written

t 0 (v 1 -u 1 ) 2 Bχ j f f * F j (f )F j (f * )dvdv * dndxds = t 0 (c 1 -n 1 [(v -v * ) • n]) 2 Bχ j f f * F j (f )F j (f * )dvdv * dndxds,
where

c 1 = v 1 -u 1 . Expand (c 1 -n 1 [(v -v * ) • n]) 2 , remove the positive term containing c 2 1 .
The term containing

n 2 1 [(v -v * ) • n] 2 is estimated as follows; t 0 n 2 1 [(v -v * ) • n] 2 Bχ j f f * F j (f )F j (f * )dvdv * dndxds ≤ c (1 + t) + 2 t 0 (v 1 -u 1 )n 1 [(v -v * ) • n]Bχ j f f * F j (f )F j (f * )dvdv * dndxds ≤ c (1 + t) + 2 t 0 v 1 3 l=2 (v l -v * l )n 1 n l Bχ j f f * F j (f )F j (f * )dvdv * dndxds, since u 1 (v l -v * l )n 1 n l χ j Bf f * F j (f )F j (f * )dvdv * dndx = 0, l = 2, 3,
by an exchange of the variables v and v * . Moreover, exchanging first the variables v and v * ,

2 t 0 v 1 3 l=2 (v l -v * l )n 1 n l Bχ j f f * F j (f )F j (f * )dvdv * dndxds = t 0 (v 1 -v * 1 ) 3 l=2 (v l -v * l )n 1 n l Bχ j f f * F j (f )F j (f * )dvdv * dndxds ≤ 1 β 2 t 0 (v 1 -v * 1 ) 2 Bχ j f f * F j (f )F j (f * )dvdv * dndxds + β 2 4 t 0 3 l=2 (v l -v * l ) 2 n 2 1 n 2 l Bχ j f f * F j (f )F j (f * )dvdv * dndxds ≤ 2c β 2 (1 + t) + β 2 4 t 0 n 2 1 3 l=2 (v l -v * l ) 2 n 2 l Bχ j f f * F j (f )F j (f * )dvdv * dndxds, for any β > 0. It follows that t 0 n 2 1 [(v -v * ) • n] 2 Bχ j f f * F j (f )F j (f * )dvdv * dndxds ≤ c 0 (1 + t),
with c 0 only depending on f 0 (x, v)dxdv and |v| 2 f 0 (x, v)dxdv. This completes the proof of the lemma.

4 Control of the mass density under the assumptions of Theorem 2.1.

Let k = 1. Lemmas 4.1 to 4.3 are devoted to the local in time uniform control with respect to j of the mass density defined in (3.5).

Lemma 4.1

For any > 0, there exists a constant c 1 only depending on f 0 (x, v)dxdv and f (s, x, v) ≤ f 0 (x, v)

|v| 2 f 0 (x, v)dxdv, such that sup s∈[0,t] f j (s, x, v)dxdv ≤ c 1 (1 + 1 2 )(1 + t) + tM j (t) , t > 0, j ∈ N * . ( 4 
+ t 0 Bχ j f (r, x + rv 1 , v )f (r, x + rv 1 , v * )F j (f ) (r, x, v)F j (f )(r, x + rv 1 , v * )dndv * dr. (4.2)
For any (v, v * ) ∈ R 3 × R 3 , let N be the set of n ∈ S 2 with max{n 1 , n ⊥1 } < , where n ⊥ is the unit vector in the direction v -v * (orthogonal to n) in the plane defined by v -v * and n, and n 1 is the component of n along the x-axis.

Let N c be the complement of N in S 2 . Denote by 

I (t) = t 0 N Bχ j f (r, x + rv 1 , v )f (r, x + rv 1 , v * ) F j (f ) (r, x, v)F j (f )(r, x + rv 1 , v * )dndvdv * dxdr. ( 3 
f (s, x, v)dxdv ≤ f 0 (x, v)dxdv + I (t) + t 0 N c Bχ j f (r, x + rv 1 , v )f (r, x + rv 1 , v * ) F j (f ) (r, x, v)F j (f )(r, x + rv 1 , v * )dvdv * dndxdr = f 0 (x, v)dxdv + I (t) + t 0 N c Bχ j f f * F j (f )F j (f * )dvdv * dndxdr ≤ f 0 (x, v)dxdv + I (t) + 1 (γγ ) 2 t 0 (n 2 1 + n 2 ⊥1 )[(v -v * ) • n] 2 Bχ j f f * F j (f )F j (f * )dvdv * dndxdr ≤ f 0 (x, v)dxdv + I (t) + 2c 0 (γγ ) 2 (1 + t). (4.3) 
Moreover,

I (t) ≤ 2πB 0 t F α 2 ∞ M j (t) f 0 (x, v)dxdv.
And so, (4.1) holds with

c 1 = max{ f 0 (x, v)dxdv, 2c 0 (γγ ) 2 , 2πB 0 F α 2 ∞ f 0 (x, v)dxdv}. Lemma 4.2
There is c 2 only depending on f 0 (x, v)dxdv and |v| 2 f 0 (x, v)dxdv such that, for any δ ∈]0, 1[, sup 11 (1 + t) 3 11 1 + M j (t) , t > 0, j ∈ N * . (4.4) Proof of Lemma 4.2. Denote f j by f for simplicity. For s ∈ [0, t] it holds,

x 0 ∈[0,1] |x-x 0 |<δ sup s∈[0,t] f j (s, x, v)dxdv ≤ c 2 δ 2 5 + t 8
f (s, x, v) = f (t, x, v) - t s Q j (f ) (r, x, v)dr ≤ f (t, x, v) + t s (Q - j (f )) (r, x, v)dr,
where

Q - j is defined in (3.2). And so sup s∈[0,t] f (s, x, v) ≤ f (t, x, v) + t 0 Bχ j f (r, x, v)f (r, x + rv 1 , v * )F j (f )(r, x + rv 1 , v )F j (f )(r, x + rv 1 , v * )dv * dndr. (4.5)
Denote by

J (t) = sup x 0 ∈[0,1] t 0 |x-x 0 |<δ N Bχ j f (r, x, v)f (r, x + rv 1 , v * ) F j (f )(r, x + rv 1 , v )F j (f )(r, x + rv 1 , v * )dvdv * dndxdr.
Integrating (4.5) with respect to (x, v), using Lemma 3.3, the 1 α (resp. α α-1 ) bound from above of f (resp. F j (y),y ∈ [0, 1 α ]), gives for any x 0 ∈ [0, 1], λ > 0 and Λ > 0 that

|x-x 0 |<δ sup s∈[0,t] f (s, x, v)dxdv ≤ |x-x 0 |<δ f (t, x, v)dxdv + J (t) + 1 (λγ ) 2 t 0 |v-v * |≥λ (n 2 1 + n 2 ⊥1 )[(v -v * ) • n] 2 Bχ j f f * F j (f )F j (f * )dvdv * dndxds + c t 0 |v-v * |<λ Bχ j f (s, x, v)f (s, x + sv 1 , v * )dvdv * dndxds ≤ |x-x 0 |<δ f (t, x, v)dxdv + J (t) + c 0 (1 + t) (λγ ) 2 + ctλ 3 f 0 (x, v)dxdv ≤ 1 Λ 2 v 2 f 0 dxdv + cδΛ 3 + J (t) + c 0 (1 + t) (λγ ) 2 + ctλ 3 f 0 (x, v)dxdv ≤c δ 2 5 + t 2 5 -6 5 (1 + t) 3 5 + J (t), (4.6) 
for an appropriate choice of (Λ, λ). Moreover,

J (t) ≤ 2πB 0 t F α 2 ∞ M j (t) f 0 (x, v)dxdv.
Taking = c 1+t 

f (s, x, v)dxdv ≤ c δ 2 5 + t 8 11 (1 + t) 3 11 M j (t) 6 11 
.

The lemma follows.

Lemma 4.3

There is T > 0 such that the solutions f j of (3.4) satisfy

sup (t,x)∈[0,T ]×[0,1] f j (t, x, v)dv ≤ 2c 0 , j ∈ N * ,
with c 0 defined in (2.6).

Proof of Lemma 4.3.

Denote by

E(x) the integer part of x ∈ R, E(x) ≤ x < E(x) + 1. As in (3.6), sup s∈[0,t] f (s, x, v) ≤ f 0 (x, v) + t 0 Bχ j f (s, x + sv 1 , v )f (s, x + sv 1 , v * )(F j (f )) (s, x, v)F j (f )(s, x + sv 1 , v * )dv * dnds ≤ f 0 (x, v)+ F α 2 ∞ (A 1 + A 2 + A 3 + A 4 ), (4.7) 
where, for > 0, δ > 0 and λ that will be fixed later,

A 1 = t 0 |n 1 |≥ , t|v 1 -v 1 |>δ Bχ j sup τ ∈[0,t] f # (τ, x + s(v 1 -v 1 ), v ) sup τ ∈[0,t] f # (τ, x + s(v 1 -v * 1 ), v * )dv * dnds, A 2 = t 0 |n 1 |≥ , t|v 1 -v 1 |<δ, |v |<λ Bχ j sup τ ∈[0,t] f # (τ, x + s(v 1 -v 1 ), v )× × sup τ ∈[0,t] f # (τ, x + s(v 1 -v * 1 ), v * )dv * dnds, A 3 = t 0 |n 1 |≥ , t|v 1 -v 1 |<δ, |v |>λ Bχ j sup τ ∈[0,t] f # (τ, x + s(v 1 -v 1 ), v )× × sup τ ∈[0,t] f # (τ, x + s(v 1 -v * 1 ), v * )dv * dnds, A 4 = t 0 |n 1 |< Bχ j sup τ ∈[0,t] f # (τ, x + s(v 1 -v 1 ), v ) sup τ ∈[0,t] f # (τ, x + s(v 1 -v * 1 ), v * )dv * dnds.
In A 1 , A 2 and A 3 , bound the factor sup τ ∈[0,t] f (τ, x+s(v 1 -v * 1 ), v * ) by its supremum over x ∈ [0, 1], and make the change of variables

s → y = x + s(v 1 -v 1 ),
with Jacobian

Ds Dy = 1 |v 1 -v 1 | = 1 |v -v * | |(n, v-v * |v-v * | )| |n 1 | ≤ 1 γγ . Consequently, sup x∈[0,1] A 1 (t, x, v) ≤ sup x∈[0,1] t|v 1 -v 1 |>δ Bχ j |v 1 -v 1 | y∈(x,x+t(v 1 -v 1 )) sup τ ∈[0,t] f # (τ, y, v )dy sup (τ,X)∈[0,t]×[0,1] f # (τ, X, v * )dv * dn ≤ t|v 1 -v 1 |>δ Bχ j |v 1 -v 1 | |E(t(v 1 -v 1 ) + 1)| 1 0 sup τ ∈[0,t] f # (τ, y, v )dy sup (τ,X)∈[0,t]×[0,1] f # (τ, X, v * )dv * dn. Performing the change of variables (v, v * , n) → (v , v * , -n), sup x∈[0,1] A 1 (t, x, v)dv ≤ t|v 1 -v 1 |>δ Bχ j |v 1 -v 1 | |E(t(v 1 -v 1 ) + 1)| 1 0 sup τ ∈[0,t] f # (τ, y, v)dy sup (τ,X)∈[0,t]×[0,1] f # (τ, X, v * )dvdv * dn ≤ t(1 + 1 δ ) Bχ j 1 0 sup τ ∈[0,t] f # (τ, y, v)dy sup (τ,X)∈[0,t]×[0,1] f # (τ, X, v * )dvdv * dn ≤ 4πB 0 t(1 + 1 δ ) sup τ ∈[0,t] f # (τ, y, v)dydv M j (t).
Apply Lemma 4.1, so that sup

x∈[0,1] A 1 (t, x, v)dv ≤ 4πB 0 c 1 t(1 + 1 δ ) (1 + 1 2 )(1 + t) + tM j (t) M j (t). (4.8) Moreover, c sup x∈[0,1] A 2 (t, x, v)dv ≤ δ α |v |<λ Bχ j sup (τ,X)∈[0,t]×[0,1] f # (τ, X, v * )dvdv * dn = δ α |v|<λ Bχ j sup (τ,X)∈[0,t]×[0,1] f # (τ, X, v * )dvdv * dn by the change of variables (v, v * , n) → (v , v * , -n) ≤ cδλ 3 α M j (t), (4.9) 
and 

c sup x∈[0,1] A 3 (t, x, v)dv ≤ |v |>λ Bχ j 1 0 sup τ ∈[0,t] f # (τ, y, v )dy sup (τ,X)∈[0,t]×[0,1] f # (τ, X, v * )dvdv * dn ≤ c 1 0 |v|>λ sup τ ∈[0,t] f # (τ, y, v)dvdy sup (τ,X)∈[0,t]×[0,1] f # (τ, X, v * )dv * by the change of variables (v, v * , n) → (v , v * , -n) ≤ c λ 2 M 2 j (t)
(v, v * , n) → (v , v * , -n), sup x∈[0,1] A 4 (t, x, v)dv ≤ B 0 t |n 1 |< dn sup (τ,x)∈[0,t]×[0,1] f # (τ, x, v)dv 2 ≤ 2πB 0 tM 2 j (t). ( 4 
a(t)M 2 j (t) -b(t)M j (t) + c 0 ≥ 0, t ≤ 1, (4.12) 
where for some positive constants (c l ) 2≤l≤4 independent on , δ and λ,

a(t) = c 2 t(1 + δ -1 ) + -1 λ -2 , b(t) = 1 -c 3 t(1 + δ -1 )(1 + -2 ) -c 4 -1 δλ 3 .
Choose λ = -1 , δ = 5 and = which is sufficient for the polynomial in (4.12) to have two nonnegative roots and take a negative value at 2c 0 . Recalling that M j (0) = c 0 and M j is continuous by the continuity in time and space of f j , it follows that

M j (t) ≤ 2c 0 , t ∈ [0, T ].
5 Control of the mass density under the assumptions of Theorem 2.2.

Let k ∈ {1, 2, 3}. Under the supplementary assumption (2.11), we prove a uniform control with respect to j of the mass density M j (t) defined in (3.5). It relies on the two following lemmas.

Lemma 5.1 Given > 0, there exists a constant c 5 only depending on f 0 (x, v)dxdv, such that

sup s∈[0,t] f j (s, x, v)dxdv ≤ c 5 (1 + t), t > 0, j ∈ N * . (5.1)
Proof of Lemma 5.1 Denote f j by f for simplicity. By the non-negativity of f , it holds 

f # (s, x, v) ≤f 0 (x, v) + s 0 f (τ, x + τ (v -v ), v )f (τ, x + τ (v -v * ), v * )× × F j (f (τ, x, v))F j (f (τ, x + τ (v -v * ), v * ))B 1 (v -v * )B 2 (θ)dv * dndτ. Using the 1 α bound for f (τ, x + τ (v -v * ), v * ),
f # (s, x, v) ≤ f 0 (x, v) + c t 0 f # (s, x + s(v -v ), v )B 1 (v -v * )B 2 (θ)dv * dnds. (5.2) Hence, sup s∈[0,t] f # (t, x, v)dxdv ≤ f 0 (x, v)dxdv + c t 0 f # (s, x + s(v -v ), v )B 1 (v -v * )B 2 (θ)dxdv * dvdnds = f 0 (x, v)dxdv + c t 0 f (s, x, v)B 1 (v -v * )B 2 (θ)dxdv * dvdnds ≤ f 0 (x, v)dxdv + c t 0 ∞ γ f (s, x, v)r -(1+η) dxdvdrds by (2.11) = f 0 (x, v)dxdv + c ηγ η t 0 f (s, x, v)dxdvds =: c 5 (1 + t),
by the mass conservation.

Lemma 5.2

Given T > 0, the solutions f j of (3.4) satisfy

M j (T ) ≤ c 1 (T ), j ∈ N * ,
where c 1 (T ) only depends on T and c 0 .

Proof of Lemma 5.2. By (5.2), for any (t, x)

∈ [0, T ] × R 3 , sup (s,x)∈[0,t]×[0,1] k f # (s, x, v) ≤ sup x∈[0,1] k f 0 (x, v) + c t 0 sup x∈[0,1] k f (s, x, v )B 1 (v -v * )B 2 (θ)dv * dnds. Consequently, sup (s,x)∈[0,t]×[0,1] k f (s, x, v)dv ≤ c 0 + c t 0 sup x∈[0,1] k f (s, x, v )B 1 (v -v * )B 2 (θ)dv * dvdnds = c 0 + c t 0 sup x∈[0,1] k f (s, x, v)B 1 (v -v * )B 2 (θ)dv * dvdnds ≤ c 0 + c ηγ η t 0 sup x∈[0,1] k f (s, x, v)dvds. It follows that sup (t,x)∈[0,T ]×[0,1] k f (t, x, v)dv ≤ c 0 e c T , with c = c ηγ η .
6 Well-posedness of the Cauchy problem.

Let T 0 be supremum of the times up to which it has been proved that the mass densities of the approximations are uniformly bounded. Recall that T 0 may be finite (resp. is infinite) under the assumptions of Theorem 2.1 (resp. 2.2). We prove in this section that for any T ∈ [0, T 0 [ there is a unique solution to the Cauchy problem (1.1)-(1.2). This section is divided into three steps. In the first step, we study initial layers for the approximations. In the second step, the existence of a solution f to (1.1) on [0, T ] for T ∈]0, T 0 [ is shown. Finally the third step proves the uniqueness and stability result stated in Theorems 2.1 and 2.2.

First step: initial layers. Lemma 6.1 For any T ∈ [0, T 0 [, there are j T ∈ N * , a positive time t m > 0, and for V > 0 positive constants b V and µ V such that

f j (t, •, v) ≤ 1 α -b V t, t ∈ [0, t m ], |v| < V, j ≥ j T , f j (t, •, v) ≤ 1 α -µ V , t ∈ [t m , T ], |v| < V, j ≥ j T .
Proof of Lemma 6.1. Denote f j by f for simplicity. It follows from Lemmas 4.3 and 5.2 that there is c 1 (T ) > 0 such that

M j (T ) ≤ c 1 (T ), j ∈ N * . (6.1) Denote by νj (f ) := Bχ j f f * F j (f * )dv * dn, ν j (f ) := Bχ j f * F j (f )F j (f * )dv * dn, so that Q j (f ) = F j (f )ν j (f ) -f ν j (f ).
It follows from (6.1) that ν j (f ) and νj (f ) are bounded from above uniformly with respect to j. Denote by c 2 (T ) a bound from above of (ν j (f ) ) j∈N . Let us prove that (ν j (f ) ) is bounded from below for large j on [0, T ] × [0, 1] k × {v; |v| < V } for any V > 0. By definition,

ν j (f ) (t, x, v) = Bχ j f (t, x + tv, v * )F j (f (t, x + tv, v ))F j (f (t, x + tv, v * ))dv * dn.
Using Duhamel's form for the solution, (6.1) and (2.8), one gets that

f (t, x + tv, v * ) ≥ c 3 (T )f 0 (x, v * ) > 0, a.a. (t, x, v, v * ) ∈ [0, T ] × [0, 1] k × R 3 × R 3 , (6.2) 
for some constant c 3 (T ) > 0. For any angles (θ, ϕ) ∈ [0, 2π] × [0, π] defining the relative position of v -v with respect to v * -v, the maps v * → v and v * → v * are changes of variables. Indeed, consider the map v * → v , reduce it to v * -v → v -v and denote it by U . Let n be the vector with polar coordinates (θ, ϕ) with respect to v * -v. Choose a coordinates system with the first (resp. second, resp. third) axis in the direction of v * -v (resp. orthogonal to v * -v in the plane defined by v * -v and n, resp. orthogonal to the two first axes). The map U maps the volume

d(v * x -v x )d(v * y -v y )d(v * z -v z ) into d(v x -v x )d(v y -v y )d(v z -v z ) = (cos θ) 4 d(v * x -v x )d(v * y -v y )d(v * z -v z ) + O d(v * x -v x ) 2 + d(v * y -v y ) 2 + d(v * z -v z ) 2 ,
since up to second order terms with respect to

d(v * x -v x ), d(v * y -v y ) and d(v * z -v z ), the length d(v * x -v x ) (resp. d(v * y -v y ), resp. d(v * z -v z )) is changed into | cos θ|d(v * x -v x ) (resp. | cos θ|d(v * y -v y ), resp. cos 2 θd(v * z -v z )).
And so the Jacobian of U equals cos 4 θ. Using these changes of variables and (6.1), it holds that 4 and

f (t, x + tv, v )dv * < c 1 (T ) (γ )
f (t, x + tv, v * )dv * < c 1 (T ) (γ ) 4 , a.a. (t, x, v, θ, ϕ) ∈ [0, T ] × [0, 1] k × R 3 × [0, 2π] × [0, π], | cos θ| > γ .
Consequently, the measure of the set

Z (j,t,x,v,θ,ϕ) := {v * ; f (t, x + tv, v ) > 1 2 or f (t, x + tv, v * ) > 1 2 } (6.3)
is bounded by 2c 1 (T ) (γ ) 4 , uniformly with respect to (x, v, θ, ϕ) with | cos θ| > γ , t ∈ [0, T ], and j ∈ N * . Take j T so large that 4 3 πj 3 T is at least twice this uniform bound. Notice that here j T only depends on T , f 0 (x, v)dxdv and |v| 2 f 0 (x, v)dxdv. Denote by B 0, 3c 1 (T )

π(γ ) 4 1 3 the ball of radius 3c 1 (T ) π(γ ) 4 1 3 .
It follows from (6.2) and the definition of j T that

ν j (f ) (t, x, v) ≥ S 2 B 0, 3c 1 (T ) π(γ ) 4 1 3 ∩Z c (j,t,x,v,θ,ϕ) Bχ j f (t, x + tv, v * )F j (f (t, x + tv, v )) F j (f (t, x + tv, v * ))dv * dn ≥ c 3 (T )(1 - α 2 ) 2α S 2 B 0, 3c 1 (T ) π(γ ) 4 1 3 ∩Z c (j,t,x,v,θ,ϕ) 
B(|v -v * |, θ) inf x∈[0,1] k f 0 (x, v * )dv * dn, j ≥ j T , a.a. (t, x, v) ∈ [0, T ] × [0, 1] k × {v ∈ R 3 ; |v| < V }.
Using a median property for the restriction of

v → inf x∈[0,1] k f 0 (x, v) to the ball B 0, 3c 1 (T ) π(γ ) 4 1 3
, which is a bounded measurable Lebesgue function, there are two disjoint sets Ω 1 and Ω 2 of equal volume, such that inf

x∈[0,1] k f 0 (x, v 1 ) ≤ inf x∈[0,1] k f 0 (x, v 2 ) for a.a. v 1 ∈ Ω 1 , v 2 ∈ Ω 2 . Denote by Γ = V + ( 3c 1 (T ) π(γ ) 4 ) 1 3 . For j ≥ j T and a.a. (n, t, x, v) ∈ S 2 × [0, T ] × [0, 1] k × {v ∈ R 3 ; |v| < V }, B 0, 3c 1 (T ) π(γ ) 4 1 3 ∩Z c (j,t,x,v,θ,ϕ) B(|v -v * |, θ) inf x∈[0,1] k f 0 (x, v * )dv * ≥ inf u∈[γ,Γ] B(u, θ) inf Ω⊂B 0, 3c 1 (T ) π(γ ) 4 1 3 ; |Ω|= 2c 1 (T ) (γ ) 4 Ω inf x∈[0,1] k f 0 (x, v * )dv * = inf u∈[γ,Γ] B(u, θ) Ω 1 inf x∈[0,1] k f 0 (x, v * )dv * .
Hence, by (2.3), for j ≥ j T and a.a.

(t, x, v) ∈ [0, T ] × [0, 1] k × {v ∈ R 3 ; |v| < V }, ν j (f ) (t, x, v) ≥ c 3 (T )(1 - α 2 ) 2α S 2 inf u∈[γ,Γ] B(u, θ)dn Ω 1 inf x∈[0,1] k f 0 (x, v * )dv * ≥ c Γ c 3 (T )(1 - α 2 ) 2α Ω 1 inf x∈[0,1] k f 0 (x, v * )dv * . (6.4) 
Applying (2.8) to Ω 1 , this is a positive bound from below of

ν j (f ) (t, x, v) j≥j T on [0, T ] × [0, 1] k × {v ∈ R 3 ; |v| < V }.
The functions defined on ]0, 1 α ] by x →

F j (x) x
are uniformly bounded from above with respect to j by

x → α α-1 (1 -αx) α x ,
that is continuous and decreasing to zero at x = 1 α . Hence there is μV = min{ 1 2α , ( c 4 (T )c Γ 2c 2 (T ) )

1 α } such that x ∈ [ 1 α -μV , 1 α ] implies F j (x) x ≤ c 4 (T )c Γ 4c 2 (T ) , j ≥ j T .
Consequently, for j ≥ j T and |v| < V ,

f (t, x, v) ∈ [ 1 α -μV , 1 α ] ⇒ D t f (t, x, v) = F j (f )ν j - 1 2 f ν j (t, x, v) - 1 2 f ν j (t, x, v) < - 1 2 f ν j (t, x, v) < - c 4 (T )c Γ 4α := -b V . (6.5) 
This gives a maximum time

t 1 = μV b for f # to reach 1 α -μ V from an initial value f 0 (x, v) ∈] 1 α -μ V , 1 α ]. On this time interval D t f ≤ -b V . If t 1 ≥ T , then at t = T the value of f # is bounded from above by 1 α -b V T := 1 α -µ V with 0 < µ ≤ μV . Let t m = min{t 1 , T }, µ V = min{μ V , µ V }. For any (x, v) with |v| < V , if f (0, x, v) < 1 α -µ V were to reach 1 α -µ V at (t, x, v) with t ≤ t m , then D t f # (t, x, v) ≤ -b V , which excludes such a possibility. It follows that f (t, x, v) ≤ 1 α -µ V for j ≥ j T , (t, x) ∈ [t m , T ] × [0, 1] k , |v| < V, f (t, x, v) ≤ 1 α -b V t for j ≥ j T , (t, x) ∈ [0, t m ] × [0, 1] k , |v| < V. (6.6) 
The previous estimates leading to the definition of t m are independent of j ≥ j T .

Second step: existence of a solution f to (1.1).

Let T ∈ [0, T 0 [ where T 0 , defined at the beginning of this section, may be finite under the hypothesis of Theorem 2.1 and is infinite under those of Theorem 2.2. We shall prove the convergence in

L 1 ([0, T ] × [0, 1] k × R 3
)) of the sequence (f j ) to a solution f of (1.1) by proving that it is a Cauchy sequence. Let us first prove that it is a Cauchy sequence in L 1 ([0, T 0 ] × [0, 1] k × R 3 )) for some T 0 ∈]0, T [, i.e. for any β > 0, there exists a ≥ max{1, j T } such that sup t∈[0,T 0 ] |g j (t, x, v)|dxdv < β, j > a, (

where g j = f j -f a . The sequence (f j ) will be proven to be a Cauchy sequence in

L 1 ([T 0 , 2T 0 ] × [0, 1] k × R 3
)) etc. in an analogous way. By the uniform boundedness of energy of (g j ), there is V > 0 such that sup

t∈[0,T ] |v|≥V |g j (t, x, v)|dxdv < β 2 , j > a, (6.8) 
The function g j satisfies the equation

∂ t g j + v • ∇ x g j = (χ j -χ a )B f j f j * F j (f j )F j (f j * ) -f j f j * F j (f j )F j (f j * ) dv * dn + χ a B(f j f j * -f a f a * )F j (f j )F j (f j * )dv * dn -χ a B(f j f j * -f a f a * )F j (f j )F j (f j * )dv * dn + χ a Bf a f a * F j (f j * ) F j (f j ) -F j (f a ) + F a (f a ) F j (f j * ) -F j (f a * ) dv * dn + χ a Bf a f a * F j (f j * ) F j (f a ) -F a (f a ) + F a (f a ) F j (f a * ) -F a (f a * ) dv * dn -χ a Bf a f a * F j (f j * ) F j (f j ) -F j (f a ) + F a (f a ) F j (f j * ) -F j (f a * ) dv * dn -χ a Bf a f a * F j (f j * ) F j (f a ) -F a (f a ) + F a (f a ) F j (f a * ) -F a (f a * ) dv * dn. (6.9) 
Using Lemmas 4.3 and 5.2 and the conservation of energy of f j ,

(χ j -χ a )B f j f j * F j (f j )F j (f j * ) + f j f j * F j (f j )F j (f j * ) dxdvdv * dn ≤ c |v|> a √ 2 f j (t, x, v)dxdv ≤ c a 2 .
Moreover, 

χ a B|f j f j * -f a f a * |F j (f j )F j (f j * )dxdvdv * dn ≤ c sup (t,x)∈[0,T ]×[0,1] k f j (t, x, v)dv + sup (t,x)∈[0,T ]×[0,1] k f a (t, x, v)dv × |(f j -f a )(t, x, v)|dxdv ≤ c |(f j -f a )(t,
χ a B f a f a * F j (f j * )|F j (f a ) -F a (f a )| dxdvdv * dn = χ a Bf a f a * F j (f j * ) (1 -αf a )(1 + (1 -α)f a ) 1-α |( 1 j + 1 -αf a ) α-1 -( 1 a + 1 -αf a ) α-1 |dxdvdv * dn.
By Lemmas 4.1, 4.3 and 5.1, 5.2, this integral restricted to the set where 1 -αf a (t, x, v)) ≤ 2 a , hence where

(1 -αf a )|( 1 j + 1 -αf a ) α-1 -( 1 a + 1 -αf a ) α-1 | ≤ 2 α+1 a α ,
is bounded by c a α for some constant c > 0. For the remaining domain of integration where 1 -αf a (t, x, v)) ≥ 2 a , it holds

|F j (f a ) -F a (f a )| ≤ c(1 -αf a ) α |( 1 j(1 -αf a ) + 1) α-1 -( 1 a(1 -αf a ) + 1) α-1 | = c( 1 j - 1 a )(1 -αf a ) α-1 λ α-2 where λ ∈ [1, 3 2 ] ≤ 2 α-1 c a α .
And so,

χ a B f a f a * F j (f j * )|F j (f a ) -F a (f a )| dxdvdv * dn ≤ c a α . Finally |v|<V χ a B f a f a * F j (f j * )|F j (f j ) -F j (f a )| (t, x, v)dxdvdv * dn ≤ c |v|<V |F j (f j ) -F j (f a )| (t, x, v)dxdv + cβ.
Split the (x, v)-domain of integration of the latest integral into

D 1 := {(x, v); |v| < V and (f j (t, x, v), f a (t, x, v)) ∈ [0, 1 α -µ V ] 2 }, D 2 := {(x, v); |v| < V and (f j (t, x, v), f a (t, x, v)) ∈ [ 1 α -µ V , 1 α ] 2 }, D 3 := {(x, v); |v| < V, (f j , f a )(t, x, v) ∈ [ 1 α -µ V , 1 α ] × [0, 1 α -µ V ] or (f j , f a ) ∈ [0, 1 α -µ V ] × [ 1 α -µ V , 1 α ]}. It holds that D 1 |F j (f j ) -F j (f a )| (t, x, v)dxdv ≤ c(αµ V ) α-1 D 1 |g j (t, x, v)|dxdv, D 2 |F j (f j ) -F j (f a )| (t, x, v)dxdv ≤ c(b V t) α-1 D 2 |g j (t, x, v)|dxdv, by (6.6), D 3 |F j (f j ) -F j (f a )| (t, x, v)dxdv ≤ c (αµ V ) α-1 + (b V t) α-1 D 3 |g j (t, x, v)|dxdv.
The remaining terms to the right in (6.9) are of the same types as the ones just estimated. Consequently,

d dt |v|<V |g j (t, x, v)|dxdv ≤ c a α + cβ + c(1 + µ α-1 V + (b V t) α-1 ) |v|<V |g j (t, x, v)|dxdv . (6.11)
And so,

sup t∈[0,T 0 ] |v|<V |g j (t, x, v)|dxdv ≤ |v|<V | (f 0,j -f 0,a )(x, v) | dxdv + cT a α + cβT 0 e c((1+µ α-1 V )T + b α-1 V T α α ) , (6.12) 
with f 0,j (resp. f 0,a ) defined in (3.3). For a (resp. T 0 ) large (resp. small) enough, the right-hand side of (6.12) is smaller than β 2 , uniformly w.r.t. j ≥ a. This proves that (f j ) j∈N * is a Cauchy sequence in L 1 ([0, T 0 ] × [0, 1] k × R 3 ) and ends the proof of the existence of a solution f to (1.1).

It follows from the boundedness of

d dt f that f ∈ C([0, T ]; L 1 ([0, 1] k × R 3 )), which in turn implies that Q(f ) ∈ C([0, T ]; L 1 ([0, 1] k × R 3 )) and f ∈ C 1 ([0, T ]; L 1 ([0, 1] k × R 3 )).
Third step: uniqueness of the solution to (1.1) and stability results.

The previous line of arguments can be followed to obtain that the solution is unique. Namely, assuming the existence of two possibly local solutions f 1 and f 2 to (1.1) with the same initial datum and bounded energy, Lemma 6.1 holds for both solutions. The difference g = f 1 -f 2 satisfies

∂ t g + v • ∇ x g = B(f 1 f 1 * -f 2 f 2 * )F (f 1 )F (f 1 * )dv * dn -B(f 1 f 1 * -f 2 f 2 * )F (f 1 )F (f 1 * )dv * dn + Bf 2 f 2 * F (f 1 * ) F (f 1 ) -F (f 2 ) + F (f 2 ) F (f 1 * ) -F (f 2 * ) dv * dn -Bf 2 f 2 * F (f 1 * ) F (f 1 ) -F (f 2 ) + F (f 2 ) F (f 1 * ) -F (f 2 * ) dv * dn.
The first line in the r.h.s. of the former equation gives rise to c |g (t, x, v)|dxdv in the bound from above of d dt |g (t, x, v)|dxdv, whereas the two last lines in the r.h.s of the former equation give rise to the bound c(1

+ t α-1 ) |g (t, x, v)|dxdv. Consequently, d dt |g (t, x, v)|dxdv ≤ c(1 + t α-1 ) |g (t, x, v)|dxdv.
This implies that |g (t, x, v)|dxdv is identically zero, since it is zero initially.

The proof of stability is similar.

7 Conservations of mass, momentum and energy.

The conservation of mass and momentum of f follow from the boundedness of the total energy. The energy is non-increasing by the construction of f . Energy conservation will follow if the energy is non-decreasing. This requires the preliminary control of the mass density over large velocities, performed in the following lemma. Repeating the previous proof up to time T , the lemma follows.

In the case of Theorem 

Q(f )(t, x, v)ψ (v)dxdv = Bψ f f * F (f )F (f * ) -f f * F (f )F (f * ) dxdvdv * dn
from below by zero in the limit → 0. Similarly to [START_REF] Lu | On isotropic distributional solutions to the Boltzmann equation for Bose-Einstein particles[END_REF],

Q(f )ψ dxdv = 1 2 Bf f * F (f )F (f * ψ (v ) + ψ (v * ) -ψ (v) -ψ (v * ) dxdvdv * dn ≥ -Bf f * F (f )F (f * ) |v| 2 |v * | 2 (1 + |v| 2 )(1 + |v * | 2 )
dxdvdv * dn.

The previous line, with the integral taken over a bounded set in (v, v * ), converges to zero when → 0. In integrating over |v| 2 + |v * | 2 ≥ 2λ 2 , there is symmetry between the subset of the domain with |v| 2 > λ 2 and the one with |v * | 2 > λ 2 . We discuss the first sub-domain, for which the integral in the last line is bounded from below by It follows from Lemma 7.1 that the right hand side tends to zero when λ → ∞. This implies that the energy is non-decreasing, and bounded from below by its initial value. That completes the proof of the lemma.

. 1 )

 1 Proof of Lemma 4.1. Denote f j by f for simplicity. By (3.6), sup s∈[0,t]

  the change of variables

Lemma 7. 1 0 1 ff

 11 Given t ∈ [0, T ], there is a constant c t > 0 such that for every λ > 2 the solution f of (1.1)-(1.2) satisfies|v|>λ sup (s,x)∈[0,t]×[0,1] k f (s, x, v)dv ≤ c t √ λ .Proof of Lemma 7.1. Take λ > 2. First consider the case k = 1. It follows from(3.6) that|v|>λ sup (s,x)∈[0,t]×[0,1] f (s, x, v)dv ≤ |v|>λ sup x∈[0,1] f 0 (x, v)dv+ F α 2 Bf # (s, x + s(v 1 -v 1 ), v )f # (s, x + s(v 1 -v * 1 ), v * )dvdv * dnds.For v , v * outside of the angular cutoff (2.2), let n be the unit vector in the direction v -v and n ⊥ its orthogonal unit vector in the direction v-v * . Split C into C = 0≤i≤2 C i , where |< or |n ⊥1 |< Bf # (s, x + s(v 1 -v 1 ), v )f # (s, x + s(v 1 -v * 1 ), v * )dv * dnds dv,and C 1 (resp. C 2 ) refers to integration with respect to (v * , n) on{(v * , n); |n 1 | ≥ , |n ⊥1 | ≥ , |v | ≥ |v * |}, resp. {(v * , n); |n 1 | ≥ , |n ⊥1 | ≥ , |v | ≤ |v * |} .By Lemma 4.3 and the change of variables(v, v * , n) → (v * , v, n ⊥ ), C 0 ≤ c t,(7.2)for some constant c > 0. Analogously to the control of A 1 in the proof of Lemma 4.3 and using Lemma 3.2, it holds that (τ,x + s(v 1 -v 1 ), v )ds) sup (τ,X)∈[0,t]×[0,1] f (τ, X, v * )dvdv * dn = |v|≥λ sup x∈[0,1] |v |>|v * | B |v 1 -v 1 | ( y∈(x,x+t(v 1 -v 1 ) sup τ ∈[0,t] f (τ, y, v )dy) sup (τ,X)∈[0,t]×[0,1] f (τ, X, v * )dvdv * dn ≤ |v|≥λ,|v |>|v * | B E(t|v 1 -v 1 |) + 1 |v 1 -v 1 | ( (τ, y, v )dy) sup (τ,X)∈[0,t]×[0,1] f (τ, X, v * )dvdv * dn ≤ c(t + 1 γγ ) t ≤ max{1, T }.The term C 2 can be controlled similarly to C 1 with the change of variables s → y = x + s(v 1 -v * 1 ). And so, max{1, T }.

-

  c |v * | 2 f (t, x, v * )dxdv * |v|≥λ B sup (s,x)∈[0,t]×[0,1] k f # (s, x, v)dvdn ≥ -c |v|≥λ sup (s,x)∈[0,t]×[0,1] k f # (s, x, v)dv.

  .7) also holds with n 1 replaced by n ⊥1 . Integrating (4.2) with respect to (x, v) and using (2.2) and Lemma 3.3 leads to

	sup
	s∈[0,t]

  2.2 where in particular k ∈ {1, 2, 3} and (2.7) is assumed, analogously to the proof of Lemma 5.2 we obtain sup(s,x)∈[0,t]×[0,1] k |v| 2 f (s, x, v)dv ≤ c0 e ct ,for some constant c. It follows that Proof of Lemma 7.2. It remains to prove that the energy is non-decreasing. Taking ψ = |v 2 | 1+ |v| 2 as approximation for |v| 2 , it is enough to bound

	|v|>λ	sup (s,x)∈[0,t]×[0,1] k	f (s, x, v)dv ≤	1 λ 2 |v| 2	(s,x)∈[0,t]×[0,1] k sup	f (s, x, v)dv
			≤	c0 e ct λ 2 .		

Lemma 7.2 

The solution f to the Cauchy problem (1.1)-(1.2) conserves energy.
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