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On a Boltzmann equation for Haldane statistics.

Leif ARKERYD ® and Anne NOURI

Abstract. The study of quantum quasi-particles at low temperatures including their statistics,
is a frontier area in modern physics. In a seminal paper Haldane [10] proposed a definition based
on a generalization of the Pauli exclusion principle for fractional quantum statistics. The present
paper is a study of quantum quasi-particles obeying Haldane statistics in a fully non-linear kinetic
Boltzmann equation model with large initial data on a torus. Strong L' solutions are obtained for
the Cauchy problem. The main results concern existence, uniqueness and stabililty. Depending on
the space dimension and the collision kernel, the results obtained are local or global in time.

1 Haldane statistics and the Boltzmann equation.

In a previous paper [2], we studied the Cauchy problem for a space-dependent anyon Boltzmann
equation [5],

Ouf(t,z,v) + v10u f(t, 2,v) = Qu(f)(t,z,v), tER,, z€[0,1], v= (v1,v2) € R?,
f(O,:L’,’U) :fQ(ZIZ,’U).

The collision operator @, in [2] depends on a parameter « €]0, 1, and is given by

Qa(f)(v) = /IR? 5 B(| U — U« ’an)(f/fiFa(f)Fa(f*) - ff*Fa(f,)Fa(fi))dv*dnv
X

with the kernel B of Maxwellian type, f’, f., f, f« the values of f at v/, v/, v and v, respectively,

where

vVV=v—(v—vi,n)n, v, =0+ (v—vi,n)n,

and the filling factor F,
Fo(f)=(1—af)*(1+ (1 —a)f)i™"

Let us recall the definition of anyon. Consider the wave function (R, 6,r, ) for two identical
particles with center of mass coordinates (R, #) and relative coordinates (7, ¢). Exchanging them,
© — @ + m, gives a phase factor e?™ for bosons and e™ for fermions. In three or more dimensions
those are all possibilities. Leinaas and Myrheim proved in 1977 [11], that in one and two dimensions
any phase factor is possible in the particle exchange. This became an important topic after the
first experimental confirmations in the early 1980-ies, and Frank Wilczek in analogy with the terms
bos(e)-ons and fermi-ons coined the name any-ons for the new quasi-particles with any phase.

By moving from spin to a definition in terms of a generalized Pauli exclusion principle, Haldane [10]
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extended this to a fractional exclusion statistics valid for any dimension. The conventional Bose-
FEinstein and Fermi-Dirac statistics are commonly associated with integer spin bosonic elementary
particles resp. half integer spin fermionic elementary particles, whereas the Haldane fractional
statistics is connected with quasi-particles corresponding to elementary excitations in many-body
interacting quantum systems.

In this paper we consider the Cauchy problem associated to the Boltzmann equation in a torus
[0,1]%, k € {1,2,3}, for quantum particles obeying the Haldane statistics;

atf(ta$7v) +v- fo(t,x,v) = Q(f)(t,&?,’l)), (t,CC,’U) € R-‘r X [07 1]k X R37 v = (’Ul,’UQ,Ug) € Rga
(1.1)
f(O,J},’U):f()(.f,U), (12)
where
v = (v1) (resp. v = (v1,v2), resp. v =wv) for k =1 ( resp. k =2, resp. k = 3).

The collision operator Q) is given by

AN = [ Blv= o ) LE(NFa(£) = Lol Falf) dvuin, v € B,
X

Strong solutions to the space-homogeneous case were obtained in [1] for any dimension bigger than
one in velocity. Strong solutions to the space-inhomogeneous case were obtained in [2] in a periodic
slab for two-dimensional velocities. There the proof depends on the two-dimensional velocities
setting. In the present paper we prove local in time well-posedness of the Cauchy problem for £ = 1
and collision kernels similar to those used in [2], and for k € {1,2,3} global in time well-posedness
under the supplementary assumption of very soft potential at infinity [15]. The solutions conserve
mass, momentum and energy.

2 The main results.

With cosf = n - ‘5:51‘, the kernel B(|v — vi|,n) will from now on be written B(|v — v,[,0) and be

assumed measurable with

0 < B < By, (2.1)
for some By > 0. It is also assumed for some ~,~" > 0, that

B(|v — v4],0) = 0 if either |cosf| <+, or1—|cosf| <+, or|v—uv| <7, (2.2)

together with the existence for any I' > 0 of a constant cr > 0 such that

/ inf B(u,0)dn > cr. (2.3)

u€[y,T]

The initial datum fo(x,v),

1
periodic in z, is a measurable function with values in [0, —], (2.4)
«



and such that for some positive constants ¢y and ¢y,

(L+ [0 fo(a,v) € L'([0,1]* x R?), (2.5)

/ sup fo(z,v)dv = ¢y, (2.6)
z€[0,1]F

/ sup |v|fo(z,v)dv = é, (2.7)
x€[0,1]F

for any subset X of R? of positive measure, / i[nf]k fo(z,v)dv > 0. (2.8)

x z€0,1
Denote by
it z,v) = f(t,x +t0,0) (t,z,0) € Ry x [0,1]* xR®, T = (vq,---,v) € RE. (2.9)

Strong solutions to the Cauchy problem with initial value fj associated to the quantum Boltzmann
equation (1.1) are considered in the following sense.

Definition 2.1 f is a strong solution to (1.1) on the time interval I if
fect(r; L([0,1]* x R?)),

and
%fﬁ —(Q())", onIx[0,1]* xR (2.10)

The main results of the present paper are given in the following theorems.

Theorem 2.1

Under the assumptions (2.1)-(2.6) and (2.8), there is a time Ty > 0, so that there exists a unique
periodic in x, strong solution f € C1([0,Tp[; L1 ([0,1] x R3)) of (1.1)-(1.2). It depends continuously
in C([0, To[; L*([0,1] x R3)) on the initial L*-datum. It conserves mass, momentum and energy.

Theorem 2.2
Under the assumptions (2.1)-(2.8) and the supplementary assumption of very soft collision kernels
at infinity,

B(u,0) = By(u)B2(0) with |By(u)| < clu| ™" for some n > 0, and By bounded, (2.11)

there exists a unique periodic in x, strong solution f € C*([0,00[; L1([0,1]F x R3)) of (1.1)-(1.2)
for k € {1,2,3}. For any T > 0 it continuously depends in C([0,T]; L*([0,1]* x R3)) on the initial
L'-datum. It conserves mass, momentum and energy.

Remarks.

Theorem 2.1 is restricted to the slab case, since its proof below uses an estimate for the Bony
functional only valid in one space dimension.

Theorems 2.1 and 2.2 also hold with the same proofs in the fermion case where oo = 1, in particular
giving strong solutions to the Fermi-Dirac equation.

Theorems 2.1 and 2.2 also hold with a limit procedure when a — 0 in the boson case where o = 0,
in particular giving strong solutions to the Boltzmann Nordheim equation [14]. It is the object of
a separate paper [4] (see also [9], [13] and [7])



Theorems 2.1 and 2.2 also hold for v € R", n > 3.
The proofs in [2] strongly rely on the property that for any unit vector n with direct orthogonal
unit vector n |, either n; or n 1 is bigger that %, where n; (resp. n1) is the component of n

(resp. n, ) along the z- axis. This allows to control the mass density of the solution from its Bony
functional. This is no more the case in the three-dimensional velocity setting of the present paper.
It is why our results are local in time under the same assumptions on the collision kernel B as in
[2]. They are global in time under the supplementary assumption of a very soft potential at infinity.

The paper is organized as follows. Approximations are introduced in Section 3 for k € {1,2,3}
together with for £ = 1, a control of their Bony functional. Their mass density is uniformly
controlled under the assumptions of Theorem 2.1 (resp. Theorem 2.2) in Section 4 (resp. Section
5). The well-posedness of the Cauchy problem is proven in Section 6. Conservation of mass,
momentum and energy is proven in Section 7.

3 Preliminaries on solution approximations and the Bony func-
tional.
Let k € {1,2,3}. For any j € N*, denote by v;, the cut-off function with
Yi(r) =0 ifr>4* and ;(r)=1 ifr < ;2
and set
X3 (v, 0:) = P ([0?] + [vi]?).
Let F; be the C! function defined on [0, 1] by
1—ay
(% +1—ay)l-—

Fj(y) = 1+ (1 —a)y)' ™
Denote by Q; (resp. Q;r, and Q; to be used later), the operator

QD) = [ Bllo = 003 (0.0) (FELEE (L) = FEFAF)E(LD) dod,

(resp. its gain part Q;r(f)(v) = /B(|U — v, 0)x; (v, v) f FLEj (f)Fj(fo)dvsdn, (3.1)
and its loss part Q; (f)(v) := /B(]v — v, 0)x;j (v, v) f [ F (f)Fj(fL)dvsdn). (3.2)
34k

For j € N*, let a mollifier ¢; be defined by ¢;(z,v) = j° " (jz, jv), where

p € CP(R™"), support(p)  [0,1)" x {v € R |v] < 1},
0 >0, / o(z,v)dzdv = 1.
[0,1]% xR3
Let
. N , _ 11
fo,; be the restriction to [0,1]% x {v; |[v| < j} of (min{fo, — — =}) * ;. (3.3)
a ]

The following lemma concerns a corresponding approximation of (1.1)-(1.2) for k € {1, 2, 3}.



Lemma 3.1
For any T > 0, there is a unique solution f; € C([0,T] x [0,1]%; L' ({v; [v| < j})) to

Ofy +0-Vafj =Qi(f5), [fi(0,,-) = fo- (3.4)

There is n; > 0 such that f; takes its values in [0, é — ;).
The solution conserves mass, momentum and energy.

Proof of Lemma 3.1.
Let T > 0 be given. We shall first prove by contraction that for 77 > 0 and small enough, there is
a unique solution

5 € C10.73] x 0,11 L' (fus ol < j1) N {F: £ € 0, 2]}

to (3.4). Let the map C be defined on periodic in = functions in
: 1
C (10,77 x [0, 1% L ({us [o] < 1)) N {f; f € [0, -]}
by C(f) = g, where

1+(1—()é)f l1-«a L
;+1—af) /BXjf fiFj(fi)dvidn

=9 [ BGLESIF (£ do.dn,
9(0,+,-) = fo,;-
The previous linear partial differential equation has a unique periodic solution

g € C([0,T] x [0,1]% L' ({vs [v] < 4})).

8tg+17-ng:(1—0é9)(

For f with values in [0, é], g takes its values in [0, =]. Indeed, denoting by

1
14+ (1 —a)f)\?!

Gpi= a< Y ) Q/ijf’f;Fj(f*)du*dn+/ijf*Fj(f’)Fj(f;)du*dn,

and
g (t,z,v) = g(t, x + tv,0),
it holds that
gt (t,z,v) = foi(z,v)e” Jy &4 (rav)dr

! 1+ (1 - Oé)f 1-a gl o f — I & (r,,v)dr
*Ad*<yu_af> [ B v e 7

> fo,j(z,v)e” Jo 74 (ra)dr >0,
and
(1= ag)i(t,2,0) = (1 = afo)(a, v)e” fooHrrmlin
" /Ot (/BXjf*Fj(f/)Fj(fi)dv*dn)ﬂ(S’ z,v)e” I f_’gv(m,v)drds

> (1 —afy;)(z,v)e” Js o3 (rav)dr > 0.
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C is a contraction on C([0,T1] x [0, 1]¥; L' ({v; |v| < j})) N {f; f € [0, 2]}, for T} > 0 small enough
only depending on j, since the derivative of the map Fj is bounded by (3ja®~! + 1)1~ on [0, é]
Let f; be its fixed point, i.e. the solution of (3.4) on [0,T}]. The argument can be repeated and the
solution continued up to ¢t = T. By Duhamel’s form for f; (resp. 1 — af;),

s — [i&h (raw)dr . ‘
fi(tz,v) > foi(z,v)e 7000 >0, (t,x)€el0,T]x[0,1]% |v| <3,
(resp.
— [t5h (r r
(1= afi)f(t,z,0) = (1 - afog)(e,v)e 0750

1
jecj4T I

AV

(t,2) € [0,7] x [0,1]", Ju] < j).

Consequently, for some 7; > 0, there is a periodic in x solution
fi € C([0,7] x [0, 117 L' ({v; |v] < 4}))

to (3.4) with values in [0, 2 — n;].

If there were another nonnegative local solution f; to (3.4), defined on [0,7"] for some T’ €]0, T7,
then by the exponential form it would strictly stay below é The difference f; — f] would for some
constant cpv satisfy

~ t ~ ~
/ (f; = fi)H(t,2,v)|dzdv < e /0 (f; = f3)*(s,z,v)|dsdzdv, t € [0,T"],  (f; — f;)*(0,2,v) =0,

implying that the difference would be identically zero on [0,7”]. Thus f; is the unique solution on
0,77 to (3.4), and has its range contained in [0, 2 — n;]. |

Denote by M; the mass density

M;(t) = /( sup f}i(s,x,v)dv. (3.5)

s,z)€[0,t]x[0,1]

In Lemma 3.2 the tails for large velocities of the mass are controlled with respect to the mass
density.

Lemma 3.2
Given T > 0, the solution f; of (3.4) satisfies

1
/ / |v| sup f?(t,x,v)dvdeC—TMj(T), JjeN,
0 Jv|>A te[0,7 A

where cp only depends on T and [ |v|? fo(z,v)dzdv.

Proof of Lemma 3.2.
Denote f; by f for simplicity. By the non-negativity of f,

T
sup fi(t.0) < foeo) + [ (@F (s, (3.6)

t€[0,T)]



where Qj(f) is defined in (3.1). Integration with respect to (x,v) for |v| > A, gives

/ / lv| sup fH(t, x,v)dvde < // v fo(z,v dvdx—i—/ By
[v|>XA  t€[0,T] [v|>A 0 Jv|>A
[o] f (s, + sv1,v") f(s,x + svi, vL)F;(f)(s, 2 + sv1,v)Fj(f)(s, @ + sv1,vs)dvdv.dndzds.

Here in the last integral, either [o/| or |[v.| is the largest and larger than 2=. The two cases are

V2

symmetric, and we discuss the case |[v| > |v)|. After a translation in x, the integrand of the r.h.s
of the former inequality is estimated from above by

C|'U/|f#(8,.il?,’0/) sSup f#(t,.%‘,l}/*)
(t,z)€[0,T]x[0,1]

The change of variables (v, v,,n) — (v/, v}, —n) and the integration over

(s5,2,0,v,,n) € [0,T] x [0,1] x {v € R |v| > \[} x R3

give the bound
T
C(/ /|U\2f#(s,x, U)dacdvds) (/ sup f#(t, v*)dv*>
(t,x)€[0,T]%[0,1]

TM
<=2 /!v| fo(z,v)dzdv.

The lemma follows. u

For k =1 there is a Bony type inequality available (cf [6] [8]) as follows.

Lemma 3.3
For any n € 8%, denote by ny the component of n along the x-axis. It holds that

t
/0 /nﬂ(v 0 By f i Fy (P F () dodvsdndads < ch(14+ ), £ 0,5 €N, (3.7)

with ¢, only depending on [ fo(z,v)dzdv and [ |v]?fo(z,v)dzdv.

Proof of Lemma 3.3.

Denote f; by f. The integral over time of the first component of momentum [ vy f(¢,0,v)dv (resp.
[v3f(t,0,v)dv ) is first controlled. Let 8 € C1([0,1]) be such that 3(0) = —1 and B(1) =
Multiply (3.4) for k =1 by (z) (resp. v13(x) ) and integrate over [0,¢] x [0,1] x R3. Tt gives

//UlfTOUdvdT—/ﬁ fO’Jwvd:L‘dv—/B ft,z,v)dzdv

+/0 /ﬁ’(g:)mf(T,x,v)da:dvdT),

( resp.
/Ot/v%f(ﬂO,v)dvdT = ;(/ﬁ(w)vlf()’j(x,v)dxdv — /5(x)v1f(t,x,v)dxdv

/ /B V2 f(T, x v)dxdvdT))



Consequently, using the conservation of mass and energy of f,

\//UlfT,OvdvdTH—// 2f(r,0,v)dvdr < ¢(1+1).

I(t) = /< (Ul - U*l)f(t,!E, U)f(taya v*)dmdydvdv*
<Y

Let

It results from
T'(t) = — /(m — 02 f(t, x,0) f(t, z, v.)dzdvdu,

+ 2/11*1(1}*1 — 1) f(t,0,v,) f(t, 2, v)drdvduy,

and the conservations of the mass, momentum and energy of f that

t pl
/0/0/(Ul_U*l)Qf(S,l’,U)f*(S,x,v*)dvdv*dxds

< 2/f0(x,v)dxdv/\m]fo(m,v)dv+2/f(t,:):,v)dxdv/]vﬂf(t,:c,v)dwdv

t
+ 2/ /v*l(v*l — 1) f(7,0,vs) f (7, z, v)dxdvdv.dT
0

< 2/f0(x,v)dxdv/(1 + |v[2)f0(m,v)dv + 2/f(t,x,v)dzdv/(1 + |v|2)f(t,x,v)dxdv

+2/t(/vflf(7',0,v*)dv*)d7'/fo(:c,v)dxdv
0

- Q/Ot(/ v*lf(T,O,v*)dv*)dT/vlfo(x,v)d:cdv

1+/0t/vff(7-,0,v)dvd7'—|—]/Ot/vlf(r,o,v)dvo.

And so, by (3.8),

/Ot /01 /(vl —v41) 2 f (7, 2,0) (7, 2, v ) dzdvdv,dT < o1 +t).

Here, c is a constant depending only on [ fo(z,v)dzdv and [|v|? fo(z,v)dzdv.

Denote by u; = / fv }{ldv It holds

t 1
/0 /0 /(m —w)?Bx; [ (f)F(f2) (s, 2,0, vs, n)dvdv,dndrds

= C/t/l /(Ul — 1) f fi(s, 2, v, v, )dvdv,dzds
/ / /Ul_”*l [ f«(s, 2,0, v )dvdv.dads

c(l+1).

(3.9)

(3.10)



Multiply equation (3.4) for f by v?, integrate and use that [v?Q;(f)dv = [(vi —u1)?Q;(f)dv
and (3.10). It results

//vl—ul Bx;f'f.F (f)Fj(f*)dvdv*dndJ:ds:/v%f(t,x,v)d:vdv

- /U%fo,j(x,v)dxdan/o /(U1 —w1)?Bx; f [+ Fi(f)E;(f2)dedvdv.dnds
< d(L+1),

where ¢ is a constant only depending on [ fo(z,v)dzdv and [|v|?fo(z,v)dzdv.

After a change of variables the left hand side can be written
[ [ 5= Bt (vt dns
= [ [er = mlto = o) B £ v dndds,
where ¢; = v; — u1. Expand (c; — n1[(v — vi) - n])?, remove the positive term containing c3.

The term containing n?[(v — vy) - n)? is estimated as follows;

[ [ o = - nPB s FE OB ddvdnas

0

<Jd1+t)+ 2/t /(vl —up)ny[(v —vi) - n]Bx; f [ F (f)Fj(fi)dvdv.dndzds
0

t 3
<d1+t)+ 2/0 / <v1 Z(UZ - v*l)nlnl>ijff*Fj(f')Fj(f,i)dvdv*dndxds,

=2

since
/ul(vl —v)mnx; Bf fFj(f)Fj(fi)dvdv.dndz = 0, 1=2,3,

by an exchange of the variables v and v.. Moreover, exchanging first the variables v and vy,

t 3
2 / / or SO = va)mimBy; [ F5 () Fy (1) dvdv,dndads
0 1=2

t 3
_/0 /(v1 — Vy1) Z(UZ —v)mBx; [ [ Fj(f)Fj(fi)dvdv.dndzds

=2

¢
S612/0 /(Ul — U*l)QBXjff*Fj(f/)Fj(fi)dvdv*dndxds

/32 t 3
iy / / Z(vz — va)*nin} Bx; [ .y (') Fj (1) dvdv.dndads

20

52 1+1) +/ /nlz v — va) 20 B, | f Fj (f)Fj(fL)dvdv.dndads,



for any 8 > 0. It follows that

/ t [ nil0 = v wP B EE () F £ dudo.dndads < (1 +1),
0

with ¢}, only depending on [ fo(z,v)dzdv and [|v|?fo(x,v)dzdv. This completes the proof of the
lemma. [

4 Control of the mass density under the assumptions of Theorem
2.1.

Let £ = 1. Lemmas 4.1 to 4.3 are devoted to the local in time uniform control with respect to j of
the mass density defined in (3.5).

Lemma 4.1
For any € > 0, there exists a constant ¢| only depending on [ fo(z,v)dzdv and [ |v]?fo(z,v)dzdv,
such that

1
/ sup f (s,2,v)dxdv < ) ((1 + :2)(1 +1)+ eth(t)>, t>0, jeN- (4.1)
s€(0,t]

Proof of Lemma 4.1.
Denote f; by f for simplicity. By (3.6),

sup fﬁ(s,x,v) < fo(z,v)
s€[0,t]

—|—/t/BXjf(r,x—l—rvl,v/)f(r,x—f—Tvl,v;)Fj(f)ﬂ(r,x,U)Fj(f)(nx+7"vl,v*)dndv*dr. (4.2)
0

For any (v,v.) € R? x R3, let NV, be the set of n € S? with max{ni,n,1} < ¢, where n is the unit
vector in the direction v — v/, (orthogonal to n) in the plane defined by v — v, and n, and n; is the
component of n along the x-axis.

Let V¢ be the complement of A; in S2. Denote by

/// By f(r,x 4+ rvy,v V) f(r, x4+ Ty, vl)

Fi(f) (r, z,0) Fj(f)(r, & + rv1, v, )dndvdv.dazdr.

10



(3.7) also holds with n; replaced by n ;. Integrating (4.2) with respect to (x,v) and using (2.2)
and Lemma 3.3 leads to

/ sup fﬁ(s,m,v)dzndvS/fg(:ﬂ,v)dwdv—l—Ie(t)

s€[0,t]
/// Bx;f(r,z + rvy, o) f(r,x + rvg,v))
](f)ﬁ(r z,0)F5(f)(r, z 4+ rvy, ve)dvdvo.dndzdr
— [ fatavo)dado + L. / / [ BB VB o,z

/fo x,v)dzdv + L (t (7€) / /n1+nﬂ U*U*)'n}zBXjff*
Fi(f")Fj(fi)dvdv.dndzdr

/

2c
< [ folx,v)dzdv + Z(t + 9 _(141). 4.3
[ fofao) 0+ i1+ ) (4.3)
Moreover,
T.(t) < 2wBoet || Fy |2, M /fol‘vdxdv

And so, (4.1) holds with

¢ = max{/ fo(z,v)dzdv, — =, 27 By || Fau 12, /fo x,v)dzxdv}.

(7)

Lemma 4.2
There is c only depending on [ fo(z,v)dzdv and [ |v|*fo(x,v)dxdv such that, for any & €]0,1],

sup / sup fﬁ(s x,v)dzdy < c2(5 +t11(1+t)%(1+]\/[j(t))>, t>0, jeN-'. (4.4)
z0€[0,1] J |z—xz0|<d s€[0,t]

Proof of Lemma 4.2.
Denote f; by f for simplicity. For s € [0,t] it holds,

t
fi(s,2,0) = fo(t,z,0) / Q;(f)F(r, z,v)dr < f*(t,z,v) —i—/ (Qj_(f))ﬁ(r,x,v)dr,
where @ is defined in (3.2). And so

sup fﬁ(s,w,v) < fﬁ(t,x,v)
s€[0,t]

—I—/t/BXjfﬁ(r,:r,v)f(r,x+rvl,v*)Fj(f)(r,x—i—rvl,v’)Fj(f)(r,:n—|—rv1,vi)dv*dndr. (4.5)
0

Denote by

// // By f*(r, x,v) f(r,x + 101, 04)
xQG[O 1] |z—z0|<8

Fi(f)(ryz + rvg, o) F;(f) (r, @ + roq, v dvdvsdndzdr.
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Integrating (4.5) with respect to (x,v), using Lemma 3.3, the é (resp. a®~1) bound from above of
f (resp. Fj(y),y € [0, 2]), gives for any ¢ € [0,1], A > 0 and A > 0 that

/ sup f4(s,x,v)dzdv < / FA(t, 2, v)ded + T.(t)
|z—x0|<d s€[0,t] |z—x0|<8

t
“ T /| (o4 [ = v B £ () F (£ dvdv.dndeds

t
+ c/ / ijfﬁ(s, x,v) f(s,z + sv1, vy)dvdv.dndzrds
[v—vs| <A

f co(1+1) 3
< fi(t, z,v)dedo + T (t) + —~——5- + ct\’ [ fo(x,v)dzdv
lx—xzo|<d ( )
1 ch(l+t
<4z / v? fodzdv + c6A3 + T.(t) + ?i J“) ) + ctA3 / fo(z,v)dzdv
<e(65 +tie 3 (1+1)3) + Ju(t), (4.6)
for an appropriate choice of (A, X). Moreover,
Je(t) < 2wByet || Fy ||, M /fo z,v)dzdv.

3 5
11

Taking € = (i) M ™11 with ¢ suitably chosen, leads to
4 2 8 3 6
sup f*(s,x,v)dzdv < ¢(65 +¢11(1 + )T M;(¢)1r).
|z—z0|<d s€[0,¢]

The lemma follows. ]

Lemma 4.3
There is T > 0 such that the solutions f; of (3.4) satisfy

/ sup f}(t,:c,v)dv <2cy, Jj€EN
(t,2)€[0,T]x[0,1]
with ¢y defined in (2.6).

Proof of Lemma 4.3.
Denote by E(x) the integer part of z € R, E(z) <z < E(z) + 1. As in (3.6),

sup fH(s,z,v) < fo(z,v)

s€[0,t]
t
b [ B+ s ) (s, 5o, o) E ()5, 0)Fy )5y + 1,0, )dodnds
0
< fo(z,v)+ || Fa [l5 (A1 + Az + Az + Ay), (4.7)
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where, for € > 0, > 0 and A that will be fixed later,

t
a=l) By s 4ot ston 1))
0 Jini|>e, tlvr—vi|>d T€[0,t]

sup f7(1,z 4 s(vy — vly),v.)dv.dnds,
T€[0,¢]
t
Ay = / / By; sup f#(r,z+ s(v; — v}),v')x
0 JIni|>e, tlvr—v]|<8, [v'| <A T7€[0,¢]
x sup f#(r,x+ s(vy —vly),v.)dv.dnds,
T7€[0,t]
t
Az = / / Byx; sup f#(T,:E + s(v1 —v}),v")x
0 Jini|>e, tlop—v]| <6, [v/|>A T€[0,t]
x sup f¥(r,x+ s(vy — vly),vl)dv.dnds,
T€[0,¢]

t
A= [ [ B s st o)) s A (o= o) )dudnds,
0 Jlni|<e T€[0,1] refo.d]

In Aj, Az and A3, bound the factor sup.¢|o fH(r, 2 +s(vy —vly),v.) by its supremum over z € [0, 1],
and make the change of variables

s—y=ux+s(vy —v)),

with Jacobian

Ds 1 1 _ 1
Dy |1 —vi] v —wd](n, |Z:Z:|)’ lna| = ey
Consequently,
sup Ay (t, x,v)
z€0,1]
B .
< sup / Xj,(/ sup f#(T,y,v’)dy>
z€[0,1] Jt|v1 —v}|>6 lu1 — v y€(z,z+t(v1—v})) T€[0,1]

sup 7 (r, X, v.)dv.dn
(7,X)€[0,t]x[0,1]

<[ 2ttt — o)+ 01 [ s 4. f)an)

|v1—v]|>6 |vl - T€[0,t]

sup 7 (r, X, v.)dv.dn.
(m,X)€[0,t] x[0,1]
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Performing the change of variables (v, v,,n) — (v/, v}, —n),

/ sup Aq(t,x,v)dv

z€]0,1]
By; !
<[ P gm o)+ I [ swp o)
thor—v |>6 [v1 — V1] 0 refod]

sup f#(r, X, vy )dvdv,dn
(m,X)€[0,t] x[0,1]

1
< t(l—i—l)/BXj(/ sup f#(T,y,v)dy> sup f#(r, X, v,)dvdv.dn
o 0 refo (1.X)€[0,4]x[0,1]

< 4w Byt(l + (15)(/ sup f#(T,y,v)dydv>Mj(t).

T€[0,¢]

Apply Lemma 4.1, so that

1 1
/le[lopl] Ay (t,z,v)dv < 4 Bocjt(1 + 5) ((1 + 6—2)(1 +t) + eth(t)>Mj(t). (4.8)
Moreover,
ce/ sup As(t,z,v)dv < — // sup f#(T, X, vl)dvdv,.dn
z€[0,1] o[ <A (r,X)€[0,]x[0,1]

/ / sup f# (1, X, ve)dvdv.dn
[v|<A TX)GOt [0,1]
/ !

by the change of variables (v, v.,n) — (v, v}, —n)
cON3
a

<

M; (1), (4.9)
and

ce/ sup As(t,z,v)dv
z€(0,1]

1
S/ BXj</ sup f#(T,y,v’)dy) sup  f7(r, X, v})dvdv.dn
[v/|>X 0 7€0,t] (1,X)€[0,t]x[0,1]

<c / / sup f#(r,y,v )dvdy)/ sup S (7, X, ) d,
[v|>\ T€[0,t] (7,X)€[0,x[0,1]

by the change of variables (v, vs,n) — (v, v}, —n)
< pM?( ) by Lemma 3.2. (4.10)

Finally, with the change of variables (v,v,,n) — (v/, v}, —n),

2

/ sup Ay(t,z,v)dv < Bot(/ dn)(/ sup f#(T,x,v)dv)
z€[0,1] [ni|<e (1,2)€[0,t]x[0,1]

< 2mBoe tM; (t). (4.11)

It follows from (4.7), (4.8), (4.9), (4.10) and (4.11) that

a(t)M2(t) — b()M;(t) + co > 0, ¢ <1, (4.12)
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where for some positive constants (c))2<;<4 independent on €, § and A,
a(t) = cy(et(1 + ohH + 6_1)\_2), b(t) =1 —cht(1+6 (1 +e2) — e toN3.

Choose A=¢1,§ =¢® and e = % min{ci,, ci} For T small enough, it holds that
4 0

b(t)e]z,l[ and coa(t) < =, te[0,7], (4.13)

| =

which is sufficient for the polynomial in (4.12) to have two nonnegative roots and take a negative
value at 2¢o. Recalling that M;(0) = ¢o and M is continuous by the continuity in time and space
of f;, it follows that

M;(t) < 2¢o, tel0,T).

5 Control of the mass density under the assumptions of Theorem
2.2.

Let k € {1,2,3}. Under the supplementary assumption (2.11), we prove a uniform control with
respect to j of the mass density M;(t) defined in (3.5). It relies on the two following lemmas.

Lemma 5.1
Given € > 0, there exists a constant ¢ only depending on [ fo(x,v)dzdv, such that

/ sup ff(s,x,v)dxdv <d(1+t), t>0, jeN- (5.1)
s€0,t]

Proof of Lemma 5.1
Denote f; by f for simplicity. By the non-negativity of f, it holds

o) <heo)+ [ [ P+ ro =00 oo - T),00)x
0
X Fj(fﬁ(Ta £, U))F‘](f(T,{E + 7—(1_] - T*)v v*))Bl(v - U*>B2(9)dv*dnd7

Using the 1 bound for f*(r,z 4+ 7(v — v}),v}), and (2.11) leads to

sup f7 (s, x,v) < fo(z,v) + c/t / f#(s,x + (0 — v'),v")B1(v — v,) Ba(0)dvednds.  (5.2)
s€[0,t] 0
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Hence,

/ sup [ (t,x,v)dxdv

s€[0,t]

< /fo(x, v)dxdv + C/t / f#(s,z + (5 — v'),v")B1(v — v,) Ba(0)dxdv.dvdnds
0

= /fo(x,v)dacdv + c/t/f(s,:c,v)Bl(v — v,) Ba(0)dzdv.dvdnds
0

< /fo(x,v)dacdv+c/t /OO/f(s,x,v)r_(H”)dxdvdrds by (2.11)

/fofUUdl‘dv+//fsxvd:zdvds

(1+1),

by the mass conservation.

Lemma 5.2
Given T > 0, the solutions f; of (3.4) satisfy

M;(T) < er(T), jEeN,
where c1(T) only depends on T and cy.

Proof of Lemma 5.2.
By (5.2), for any (¢,z) € [0,T] x R3,

sup f#(s,z,v) < sup fo(z,v +c/ / sup f(s,x,v")By(v — v.)Be(0)dv.dnds.
(s,x)€[0,t] x[0,1]F z€[0,1]% z€[0,1]%

Consequently,

/ sup f(s,z,v)dv < ¢ +c/ / sup f(s,x,v")B1(v — vs)Ba(0)dv.dvdnds
(s,x)€[0,t] x[0,1]F z€0,1]%

= +c/ / sup f(s,z,v)B1(v — vy)B2(0)dv.dvdnds

:v€01

<co+// sup f(s,x,v)dvds.

ny" z€[0,1]%

It follows that

/ sup f(tvxa 'U)d'l) S COBCNT, Wlth C// = L
(t,x)€[0,T]x[0,1]* ny"
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6 Well-posedness of the Cauchy problem.

Let Ty be supremum of the times up to which it has been proved that the mass densities of the
approximations are uniformly bounded. Recall that Ty may be finite (resp. is infinite) under the
assumptions of Theorem 2.1 (resp. 2.2). We prove in this section that for any 7" € [0, Tp[ there is
a unique solution to the Cauchy problem (1.1)-(1.2). This section is divided into three steps. In
the first step, we study initial layers for the approximations. In the second step, the existence of
a solution f to (1.1) on [0,7] for T" €]0,Tp| is shown. Finally the third step proves the uniqueness
and stability result stated in Theorems 2.1 and 2.2.

First step: initial layers.

Lemma 6.1
For any T € [0, Ty[, there are j7 € N*, a positive time t,, > 0, and for V > 0 positive constants by
and py such that

1

fg(tv‘vv)gi_bvta tE[O,tm], ’U’<‘/7 ijT7
(6
1 C
fit0) < = —py, tE [t T), | <V, 2 jr.

Proof of Lemma 6.1.
Denote f; by f for simplicity. It follows from Lemmas 4.3 and 5.2 that there is ¢;(7") > 0 such that

M;(T) < ei(T), j € N*. (6.1)
Denote by

(1) = [ Bl S (F)dvdn, v(7) = [ Bx LB ()E(fdv.dn,
so that

Q;(f) = Fi(Hv;(f) — frvi(f).

It follows from (6.1) that v;(f)* and 7;(f)? are bounded from above uniformly with respect to j.
Denote by c2(7') a bound from above of (7;(f)*)en.

Let us prove that (;(f)*) is bounded from below for large j on [0, 7] x [0, 1]¥ x {v; |v| < V} for any
V > 0. By definition,

l/j(f)ﬁ(t,:c,v) = /ijf(t,x—i—tv,v*)Fj(f(t,a:—i—tv,v’))Fj(f(t,:c+tv,fu;))dv*dn.

Using Duhamel’s form for the solution, (6.1) and (2.8), one gets that
[tz +t0,v,) > e3(T) folx,vs) >0, aa. (t,z,v,0,) € [0,T] x [0,1]* x R? x R?, (6.2)

for some constant c3(7") > 0. For any angles (6,¢) € [0,27] x [0, 7] defining the relative position
of v/ — v with respect to v, — v, the maps v, — v’ and v, — v, are changes of variables. Indeed,
consider the map v, — v/, reduce it to v, — v — v’ — v and denote it by U . Let n be the vector
with polar coordinates (6, ) with respect to v, —v. Choose a coordinates system with the first
(resp. second, resp. third) axis in the direction of v, — v (resp. orthogonal to v, — v in the plane
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defined by v, — v and n, resp. orthogonal to the two first axes). The map U maps the volume
d(Veg — V3)d(Vsy — vy)d(v4, — v;) into

d(vl, — vx)d(v; —vy)d(vl, — v;) = (cos 0)d(vey — V) d(Vsyy — Uy )d(Vsz — ;)
+0((dlvee = 1)) + (d(vey = )" + (d(wez = 2))*))

since up to second order terms with respect to d(vig — vz), d(vsy — vy) and d(vs. — v;), the length
d(Veg — Vz) (resp. d(viy — vy), resp. d(vs; — vz)) is changed into | cos 0|d(vie — v2)

(resp. |cos@|d(v.y, — vy), resp. cos®Od(v., —v;)). And so the Jacobian of U equals cos? §. Using
these changes of variables and (6.1) it holds that

(T) ci(T)
/ftertU v dv, < (7/4 /ftx+tvv)dv* CE

a. (t,x,0,0,¢) €[0,T] x [0,1]% x R® x [0,27] x [0,7], |cosf| >~

Consequently, the measure of the set

1 1
Z(jvt»xvv’97§0) = {/U*7 f(t7 X + tf}? U/) > 5 or f(t7 X + tf}? U>/k) > 5} (63)

is bounded by 2 o7 ()4), unlformly with respect to (z,v,0,¢) with |cosf| > ~', t € [0,T], and j € N*.
Take jr so large that 2 ﬂ'jT is at least twice this uniform bound. Notice that here jp only depends

on T, [ fo(z,v)dzdv and [ |v]?fo(z,v)dzdv. Denote by B(0, (361())) ) the ball of radius (ic(i/(,:)rz) .
It follows from (6.2) and the definition of jr that

“(t,x,v)
/ / % Bx;f(t,x + tv,v.) F;(f(t,x + tv,v"))
S2
(] t,z,v,0,p)
Fi(f(t,z +tv,v)))dv.dn
> c3 / / B(|lv —vi|,0) inf  fo(z,vi)dvedn,
S2 361 (T> ch z€l0,1]k
/)4 (Gty,0,6,0)

j>jr, aa. (t,z,v)€0,T] x |0, 1] x {v € R3: lv| <V}

1
Using a median property for the restriction of v — inf g 1 fo(x,v) to the ball B(O, (‘j’rc(lw(};l)) 3)’
which is a bounded measurable Lebesgue function, there are two disjoint sets £; and €y of equal

volume, such that

inf  fo(z,v1) < inf fo(z,ve) for a.a. v € Q1, w9 € Qo.

z€[0,1]% z€[0,1]F
Denote by I' =V + (‘:’rc(lw(@)%
For j > jr and a.a. (n,t,z,v) € 82 x [0,7] x [0,1]* x {v € R3;|v| < V'},

B - Ux 79 inf , Us d N
/B<o,<3cw>1> (jo = eul,6) Jof  folav)dv

=t ) )02

(4:t,z,v,0,0)
> inf B(u,0) inf / inf  fo(x,vs)dv,
2e1(T) JQ

B (o () w0

ot

= inf B(u,6 / inf T, Uy ) dvy.
i (u, ) lee[m]kfo( )
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Hence, by (2.3), for j > jr and a.a. (¢,2,v) € [0,T] x [0,1]* x {v € R3;|v| < V},

vi(f)H(t, x,v) > e3(T)(1 — 0‘)2a(/8 inf B(u, t9)aln>/Q inf  fo(z,ve)dvus

2 2 u€fy.T] | €[0,1]*

> cres(T)(1 — 2)2e / inf  fo(z,v,)dvs. (6.4)
2 0, z€[0,1]%

Applying (2.8) to €y, this is a positive bound from below of (v;(f)*(t, z,v))

on [0,7] x [0,1]* x {v € R3; |v| < V}.

The functions defined on |0, é] by © — FJT(x) are uniformly bounded from above with respect to j

by

Jj2ir

T — aa—l (1 B aw)a
€T )
that is continuous and decreasing to zero at # = 1. Hence there is fiyy = min{g-, (‘;‘(EZT();)F )é} such
that
1 . 1. . . Fi(z)  ca(T)er L
€~ — gy, — lies —< , > jr.
z €[~ —fv,~] impli v S ) T

Consequently, for j > jpr and |v| <V,

Flhav) €l =i, o] = Diftlta0) = (B — 514 (t,0) — 5 Pkt ,0)

1
< —Qfﬁyf.(t, x,v)

cq(T)er
< i
4o

= —by. (6.5)

This gives a maximum time t; = ﬂTV for f# to reach é—/]v from an initial value fo(z,v) E]é—ﬂv, 1)
On this time interval thﬁ < —by. If t1 > T, then at t = T the value of f# is bounded from above
by L —byT =1 — pf, with 0 </ < fiy. Let

tm = min{ty, T}, py = min{ay, uy }-

For any (z,v) with [v] < V, if f(0,z,v) < 1 — uy were to reach 1 — py at (¢, z,v) with ¢ < tp,,
then D;f#(t,z,v) < —by, which excludes such a possibility. It follows that

1
it w,0) < = = py for j > g, (@) € [tm, T) % [0,1)%, o] <V,
1
fﬁ(tvxav) < a - th fOI‘j > .jT7 (t,[]?) S [07tm] X [07 l]kv "U’ <V (66)

The previous estimates leading to the definition of t,, are independent of j > jr.

Second step: existence of a solution f to (1.1).

Let T € [0, Ty[ where Tj, defined at the beginning of this section, may be finite under the hypoth-
esis of Theorem 2.1 and is infinite under those of Theorem 2.2. We shall prove the convergence in
LY([0,T] x [0, 1]% x R3)) of the sequence (f;) to a solution f of (1.1) by proving that it is a Cauchy
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sequence. Let us first prove that it is a Cauchy sequence in L'([0,Tp] x [0,1]% x R3)) for some
Ty €]0,T7, i.e. for any 3 > 0, there exists a > max{1, jr} such that

sup /|gj(t,x,v)\dacdv <B, j>a, (6.7)
te[0,To]

where g; = fj — fa. The sequence (f;) will be proven to be a Cauchy sequence in
LY([Ty, 2Tp) x [0,1]F x R?)) etc. in an analogous way.
By the uniform boundedness of energy of (g;), there is V' > 0 such that

sup / lgj(t, z,v)|dzdv < ﬁ, Jj>a, (6.8)
te[0,7] J ju|>V 2

The function g; satisfies the equation
Orgj + 0 - Vyg;
— [ 6 = B(BLLEEIF )~ BB F 5 do.dn
4 [ XaBUL = Fuad Ei)F o

- /XaB(f]fj* - fafa*) (f]) (fj*)dv*dn

4 [XaBEf (B (EN) = (1) + Fulf) (Bi(f3e) = Fy(fa0) )dondn
b [ XaB L (B3 (B ) = Ful ) + Fal£a) (B for) = Falfo) ) o
~ [ XaBfutor (B E) = F(720) + FuF) (Bi(F2) = F(£2) )dowdn
/Xanafa*( (fj*)(F] (fa) — Fa(f;)) + Fa(f;)(FJ( )dv*dn. (6.9)
Using Lemmas 4.3 and 5.2 and the conservation of energy of f;,
[ 06 = xB(BHEF ) + 55 F ) F (1)) dedodv.d
< c/|v|>\;§ fi(t, z,v)dzdv
<.
a
Moreover,
/XaB|fjfj* — fafax|Fj (f]) (fj*)d:cdvdv*dn
< f t,z,v)d 5 t,z,v)d
<) i T S0
< (f18 = syt o)l dodo)
< c/](f]Ij — 5 (t, z,v)|dzdv, by Lemmas 4.3 and 5.2, (6.10)
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and

f
[ B (R B IE ) - Fa(fa>|) dodvdo.dn = [ XaBILLL (55
(1—af)14 (1 —a)f)'™ ay( +1—af)* (2 + 1 — af,)* dzdvdv,dn.

By Lemmas 4.1, 4.3 and 5.1, 5.2, this integral restricted to the set where 1 —af, (¢, z,v)) < %, hence
where

a+1
(-l e 1 anr - e anyon < 20

is bounded by -5 for some constant ¢ > 0.
For the remaining domain of integration where 1 — af, (¢, z,v)) > %, it holds

1 1

. _ _ ol - a—1 - a—1
IFyfa) = Fulfo € el = )l sy + 0% = (o + 1
:c(; i)(l—afa)o‘ 102 where A € [1, 2]
20— 1¢
S —5
And so,
P f c
[ aB(Luf2 BB IE ) ~ Ful)]) dndvdvadn < 5.
Finally
i
[ xaB(RLF B - Fi(f)]) o) dododudn
lv|<V
<c [ IB(5) - Bl a,v)dedo + o,
Jv|<V
Split the (x,v)-domain of integration of the latest integral into
Dy += {(w,): ol <V and (f(0,2,0), fi(0,2.0)) € 0.~ — pv]?).
Dy = {(z,0); o] < V and (f(t,,v), f3(t,,v)) € [é s éF},
1 1 1
D3 = {(.%‘,’U); |U| <V, (fjj'iafg)(tvxvv) € [a - MV, a] X [O? a - ,UV]
1 1 1
or (Ff, f5) € [0~ — ] % [~ — v, ]}
It holds that
/ |Ej(f;) — Fi(fa)*(t, @, v)dzdv < c(apy)®™ 1/ |g] (t,z,v)|dzdv,
/ \Ei(f;) — Fi(fa)F(t, 2, v)dedv < c(byt)®™ 1/ |g (t,z,v)|dzdv, by (6.6),
/ |E(f;) — Fi(fa)*(t, @, v)dado < c((apy)* 1+ (byt)* ) / \g] (t,z,v)|dzdv.
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The remaining terms to the right in (6.9) are of the same types as the ones just estimated.
Consequently,

d
dt J a“ v
o] <V vl <
And so,

sup / |g§(t, x,v)|dxdv
tel0,To] J |v|<V

< ([ 1o foaao) | dodo+ S5+ BTy )0 TH0) (6.12)
lv|<V a®

with fo; (resp. foq) defined in (3.3). For a (resp. Tp) large (resp. small) enough, the right-hand
side of (6.12) is smaller than g, uniformly w.r.t. j > a. This proves that (f;)jen+ is a Cauchy
sequence in L'([0,Tp] x [0,1]¥ x R3) and ends the proof of the existence of a solution f to (1.1).
It follows from the boundedness of 4 f# that f € C([0,7]; L'([0,1]¥ x R?)), which in turn implies

that Q(f) € C([0,T); L*([0,1]F x R3)) and f € C*([0,T]; L' ([0, 1]* x R?)).

Third step: uniqueness of the solution to (1.1) and stability results.

The previous line of arguments can be followed to obtain that the solution is unique. Namely,
assuming the existence of two possibly local solutions f; and fo to (1.1) with the same initial datum
and bounded energy, Lemma 6.1 holds for both solutions. The difference g = f; — f2 satisfies

0tg + 0 - Vg
= [ BUiS. ~ BHIFGF()dvadn ~ [ Blifie = ffa) PUDF()dv.dn
+ [ BB (U (PUD) = F(2) + F(R) (P(R) = F(fa.)) )do.dn
~ [ Bhpa(FULIEWD) = F(B) + FUFL) - F(f3.)) )dvedn.
The first line in the r.h.s. of the former equation gives rise to ¢ [|g*(t, z,v)|dzdv in the bound from

above of %| g (t, x,v)|dzdv, whereas the two last lines in the r.h.s of the former equation give rise
to the bound ¢(1 + t*~1) [|g#(t, z,v)|dzdv. Consequently,

d
It /\gﬁ(t,x,vﬂdwdv <c(1 +ta_1)/]gﬁ(t,x,v)|dxdv.
This implies that [|g*(t, ,v)|dzdv is identically zero, since it is zero initially.

The proof of stability is similar.
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7 Conservations of mass, momentum and energy.

The conservation of mass and momentum of f follow from the boundedness of the total energy.
The energy is non-increasing by the construction of f. Energy conservation will follow if the energy
is non-decreasing. This requires the preliminary control of the mass density over large velocities,
performed in the following lemma.

Lemma 7.1
Given t € [0,T), there is a constant ¢, > 0 such that for every A\ > 2 the solution f of (1.1)-(1.2)
satisfies

/
f €t
sup fi(s,x,v)dv < —=.
/|v|>)\ (,2)€[0,4]x[0,1]* VA

Proof of Lemma 7.1.
Take A > 2. First consider the case k = 1. It follows from (3.6) that

/ sup fﬁ(s,x,v)dv < / sup fo(z,v)dv+ || F, ||% C, (7.1)
[v|>A (s,x)€[0,t]x[0,1] [v|>A z€[0,1]
where
t
C = sup / /Bf#(s, z+ s(vy — ), V) f7 (s, 2 + s(v; — vy, v.)dvdv.dnds.
o[> z€[0,1] Jo

For v/, v, outside of the angular cutoff (2.2), let n be the unit vector in the direction v —v" and n
its orthogonal unit vector in the direction v — v’. Split C into C' = Zogigz C;, where

¢
Co = sup (/ / Bf#(s,x + s(v; — v}),v") (s, + s(v —vil),v;)dv*dnds)dv,
[v|>A z€[0,1] 0 J|ni|<eor |nii|<e

and C; (resp. Cy) refers to integration with respect to (vs,n) on

{(ven); Il Z e, il =€ | = [uil},
(resp. {(ve,n); |l 2 €, [nul e ] <[uil}).

By Lemma 4.3 and the change of variables (v,vs,n) = (vi,v,n1),

Co < cet, (7.2)

23



for some constant ¢ > 0. Analogously to the control of A; in the proof of Lemma 4.3 and using
Lemma 3.2, it holds that

t
C1 §/ sup / B([ sup fi(r,x+ s(v; —v}),v")ds)
| v’ [>[vi]

v|>X z€[0,1] 0 7€[0,t]

sup A, X, vl dvdv.dn
(7,X)€[0,t]x[0,1]

B
:/ sup / 7,( Sup fﬁ(T,y,v’)dy)
[v|>A z€[0,1] J [v|>|v] |U1 Ul’ ye(x,x+t(vi—vy) T€[0,]

sup fﬁ(T, X, vl)dvdv.dn
(m,X)€[0,¢]x[0,1]

E@Wr—%D+1/q
< B ([ sup fi(r,y,0")dy)
@A;>A1w>wg lv1 — v 0 refo.]

sup fﬂ(T, X, vl)dvdv,.dn
(7,X)€[0,t]x[0,1]

sup f 7,1y, v)dydv
0 7€[0,¢]

e’w |

U|>—

1
)\(l—l— -), t<max{1,T}.

The term Cy can be controlled similarly to Cy with the change of variables s — y = x + s(v1 — vl;).
And so,

1 1
< -4 = < 1,T}.
C_C(€+)\+e/\)’ t < max{1,T}
Choosing € = \} leads to
c< -2 i< max{1,T}.

<7

Repeating the previous proof up to time 7', the lemma follows.
In the case of Theorem 2.2 where in particular k£ € {1,2,3} and (2.7) is assumed, analogously to
the proof of Lemma 5.2 we obtain

/ sup lv|2f (5,2, v)dv < ége,
(s,x)€[0,t] x[0,1]*

for some constant c. It follows that

/ sup fi(s,z,v)do < /|U\2 sup fi(s, @, v)dv
[v[>X (s,x)

€[0,6]x[0,1]* (s,2)€[0,4]x[0,1]

006

Lemma 7.2 The solution f to the Cauchy problem (1.1)-(1.2) conserves energy.
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Proof of Lemma 7.2.
2
It remains to prove that the energy is non-decreasing. Taking ¢, = % as approximation for
%,

|v|#, it is enough to bound

[ etttz ooidsds = [ Bo(F 1P~ FF(F(F) )dodudo.dn
from below by zero in the limit ¢ — 0. Similarly to [12],

[ atvdsas =5 [ BEEFGEE(50) + 00 = o) = bu(o.)) dudedv.dn

elv[*|v.f?

dxdvdu.dn.
(1 + e[o2) (1 + efon?) T

> / Bff.F(F)F(f)

The previous line, with the integral taken over a bounded set in (v,v,), converges to zero when
€ — 0. In integrating over |v|? + |v.|> > 2A? | there is symmetry between the subset of the domain
with |v]? > A? and the one with |v.|? > A\2. We discuss the first sub-domain, for which the integral
in the last line is bounded from below by

—c/|v*\2f(t,:r,v*)dxdv*/ B sup 7 (s, z,v)dvdn
[v|>X  (s,z)€[0,t]x[0,1]F

> —c/ sup f#(s,z,v)dv.
[v]>X (s,2)€[0,¢] x[0,1]F

It follows from Lemma 7.1 that the right hand side tends to zero when A — oo.
This implies that the energy is non-decreasing, and bounded from below by its initial value.
That completes the proof of the lemma. [ |
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