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Summary

In this paper, a robust Model Predictive Control (MPC) procedure for quasi-Linear
Parameter Varying (qLPV) systems is proposed. The novelty resides in considering a
recursive extrapolation algorithm to estimate the values of the scheduling parameters
along the prediction horizon Np, which fastens the sluggish performances achieved
with the robust qLPVMPCs from the literature. The bounds on the estimation errors
of the scheduling parameters throughNp are taken into account by the robust MPC,
which solves an onlinemin-max problem: firstly, a constrained Convex Program (CP)
is resolved in order to determine the worst-case bound on the cost function and, sub-
sequently, a second constrained Quadratic Program (QP) is solved to minimise this
worst-case cost function with respect to a control sequence vector. Since the bounds
on the estimation error for the scheduling parameters are usually much smaller than
the bounds on the actual scheduling parameter, the conservativeness of the solu-
tion is quite reduced. Recursive feasibility and stability of the proposed algorithm
are demonstrated with dissipativity arguments given in the form of a Linear Matrix
Inequality (LMI) remedy, which determines the zone of attraction for which input-
to-state stability is ensured. The nonlinear temperature regulation problem of a flat
solar collector is considered as a case study. Using a realistic simulation benchmark,
the proposed technique is compared to other robust min-max LPV MPC algorithms
from the literature, proving itself efficient while achieving good performances.

KEYWORDS:
Robust Model Predictive Control, Linear Parameter Varying Systems, Dissipativity, Quadratic Program-
ming, Solar Collectors.

1 INTRODUCTION

Model Predictive Control (MPC) is one of the most widespread control techniques, with many industrial applications1. Its
implementation is relatively simple, requiring the solution of an online optimisation problem, written in terms of a prediction
model and operational constraints. MPC is a sliding-horizon paradigm, which means that the algorithm takes into account the
process behaviour along the following Np steps ahead of each sampling instant; as time evolves, the instants are incremented
and the horizon slides forward. For the case of processes with linear time-invariant (LTI) models, a state-feedback predictive
control action u(k) can be generated by solving a Quadratic Programming Problem (QP) of the following form:

0Abbreviations: LPV, Linear Parameter Varying; LTI, Linear Time Invariant; MPC, Model Predictive Control.
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Problem 1. LTI MPC

min
Uk

Jk(Uk) = min
Uk
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l (x(k + j|k), u(k + j − 1|k))
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(1)

s.t. x(k + j) = fLTI (x, u, k + j − 1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

System Model

, ∀j ∈ ℕ[1,Np] , (2)

u(k + j − 1|k) ∈  , ∀j ∈ ℕ[1,Np] , (3)
x(k + j|k) ∈  , ∀j ∈ ℕ[1,Np] , (4)
x(k +Np|k) ∈ Xf . (5)

The model function fLTI (⋅) is generally expressed as Ax(k + j − 1) + Bu(k + j − 1), being x(k) the vector of controlled
states. It is implied that Jk is a quadratic cost on the vector Uk, which defines the sequence of control actions along the horizon:
Uk = col{u(k|k) ,… , u(k + Np − 1|k)}. The feasibility sets  and  define the admissible values for x and u, considering
operational constraints of the controlled process.Xf is a terminal set for the states. We note that, usually, a terminal (offset) cost
V (x(k +Np|k)) is added to Jk.
While with great theoretical value, LTI MPC is restricted to processes represented by LTI models. Nevertheless, the majority

of systems is nonlinear and when controlled over larger operating conditions (or when heavily affected by external parameters),
the nonlinearities become quantitative and, thus, the previous LTI MPC algorithm must be replaced. Accordingly, the concept
of Nonlinear MPC (NMPC) grew on progressively literature since the 00’s2. The major drawback of NMPC algorithms is that
their numerical burdon is much greater than what is required in an LTI setting (which renders QPs), since the nonlinear model
predictions generate aNonlinear Programming Problems (NPs), which are not at all easy to solve (and could even be non-convex).
Regarding Problem 1, the NMPC version would have a nonlinear system model, i.e. x(k + j) = f (x(k + j − 1), u(k + j − 1)),
with f (⋅) as a nonlinear map. Due to this constraint, NMPC algorithms were hardly able to be computed for real-time embedded
applications, requiring excessive online computational capacities and thus violating the sampling period constraint3.
In order to address this complexity drawback of “full-blown” NMPC strategies, literature points out to the option of consid-

ering quasi-/Linear Parameter Varying (qLPV/LPV) model structures to embed the nonlinear process. LPV models maintain
the linearity property along the input/output channels, since they are linear in the state space, while nonlinear in the parameter
space. The LPV state transition depends ona vector of scheduling parameters denoted � ∈  , which is known and bounded
at each sampling instant. The LPV toolkit has progressively become popular to model process with complex dynamics, with
a variety of successful results4,5,6,7. Many nonlinear processes can be described within a qLPV formalism, as long as Linear
Differential Inclusion (LDI) is respected8,9.

1.1 Related Works
There are quite a few MPC algorithms specifically conceived for nonlinear systems represented with qLPV/LPV models. A

detailed review on this topic has been recently presented10. Synthetically, we can sort out these works into two main different
categories: (a) robust MPC methods11,12,13,14,15, which treat the future scheduling variables as bounded uncertainties1; and (b)
sub-optimal methods20,21,22,23,24 that replace the actual future scheduling trajectory �(k+ j) by a prediction guess �̂(k+ j), thus
yielding programs with QP-alike burden.
With regard to these LPV MPC scheme, we highlight some issues:
• The robust framework resides in solving theMPC optimisationw.r.t. the worst-case cost that is derivedwith the uncertainty
caused by the variation of the scheduling variables along the prediction horizonNp. These algorithms are usually named
“min-max” because the cost function is found through argmax�∈ Jk(⋅), and then minimised with respect to Uk. The
original papers11,12 assume that the future scheduling parameters �(k + j) vary arbitrarily within the scheduling set  .
More recently, manyworks13,14,15 have demonstrated that themin-max procedure can be simplified for the case of bounded
rates of parameter variations (i.e. ��(k) = �(k)−�(k−1) bounded), which is standard in LPV applications. Nevertheless,

1We also mention the application of tube-based MPC design. This robust synthesis is able to reduce the numerical complexity of the algorithm 16 by preparing offline
tubes that bound the system trajectories. The main advantage is of these methods 17,18,19 is that the numerical toughness grows well-behaved (linearly, in many cases) with
the size of the prediction horizonNp. Nevertheless, tube-based MPC schemes often result in quite conservative performances.
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the major drawbacks with these robust tools are that: (i) they are not implementable for real-time applications, due to the
complexity of solving the maximisation problem for the whole scheduling set  (or, the scheduling variation set �); and
(ii) the formulations through offline preparations (such as the tube paradigm) are often quite hard to design; the synthesis
procedure is usually not trivial and hard to understand, which hinders industrial acceptance.

• The sub-optimal methods can be conceived through iterative20 or recursive23 estimation procedures regarding �(k + j).
The major drawback is that the resulting QPs may find local minima of the original NP, which conversely may lead to
poor or insufficient performances. Despite being able to run in real-time, these algorithms lack performance guarantees,
which may compromises the overall results.

There is an evident gap in the literature: the lack of robust nonlinear MPC algorithms, with direct and simple-enough online
implementation, using the qLPV embedding approach. Therefore, in this paper, we seek a formulation that is able to run in real-
time and, yet, maintains optimality concerns, leading to good performance. The bottleneck is for the algorithm to run in the
range of milliseconds, whilst taking into account the model nonlinearities.

1.2 Contributions
In several of the listed papers20,21,23, estimation algorithms have been used regarding the future values of the scheduling

parameters, along the prediction horizon. We progress on this idea by using a recursive extrapolation algorithm with bounded
estimation errors �� ∈  ⊂  . Then, the bounds are used to formulate a robust min/max MPC. Motivated by the previous
discussion and the literature gap, our contributions are as follows:

• We present an error-bounded recursive estimation algorithm for the extrapolates of the scheduling parameters along the
horizon, i.e. �(k + j) for j = 1,… , Np − 1;

• We develop an min/max robust qLPVMPC framework, the use of the extrapolation of � to make model-based predictions;

• A dissipativity inequality formulation for input-to-state stability (ISS) analysis is applied. This analysis also serves to
verify the recursive feasibility property of the proposed algorithm. An LMI-solvable remedy to estimate the ISS zone is
obtained.

Remark 1. Some previous papers21,25 had already conceived NMPC formulations via qLPV embedding. Nonetheless, in the
prior, optimality concerns were not ensured, since the extrapolation error is not taken into account in the design procedure.
Moreover, these works reframe the NP into a 2ndOCP version (or as a series of sequential QPs), which is also not easy to solve.
Therefore, in this paper, we provide a formulation for the problem through, at most, two consecutive Convex Programming
Problems (CPs), in order to achieve comparable results (in terms of computational load).

1.3 Organisation
This paper is structured as follows. In Section 2, the preliminaries and formalities are presented, especially regarding how

nonlinear processes can be embedded into a qLPV representation through LDI. Section 3 presents the formulation for recur-
sive extrapolation of the qLPV scheduling parameters along the prediction horizon. Section 4 formulates the robust min-max
MPC. Section 5 shows the application of the dissipativity constraints to verify stability and recursive feasibility of the proposed
algorithm. Section 6 details the considered case study, of nonlinear temperature control in solar collectors, for which the pro-
posed strategy is tested. Section 6.2 exhibits the achieved simulation results regarding this case study. General conclusions are
drawn in Section 8.
1.4 Notation
The set of nonnegative real number is denoted by ℝ+, whist the set of nonnegative integers including zero is denoted by ℕ. The
index set ℕ[a,b] represents {i ∈ ℕ | a ≤ i ≤ b}, with 0 ≤ a ≤ b. The identity matrix of size j is denoted as Ij ; col{a , b , c}
denotes the vectorisation (collection) of the entries and diag{v} denotes the diagonal matrix generated with the line vector v.
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The value of a given variable v(k) at time instant k + j, computed based on the information available at instant k, is denoted as
v(k+ j|k). refers to the class of positive and strictly increasing scalar functions that pass through the origin. A given function
f ∶ ℝ → ℝ is of class  if f (0) = 0 and lim�→+∞ f (�) → +∞. A real-valued scalar function � ∶ ℝ+ → ℝ+ belongs to
class ∞ if it belongs to class  and it is radially unbounded (this is lims→+∞ �(s) → +∞. A function � ∶ ℝ+ × ℝ+ → ℝ+
belongs to class  if, for each fixed m ∈ ℝ+, �(⋅, m) ∈  and, for each fixed s ∈ ℝ+, �(s, ⋅) is non-increasing and holds
for limm→+∞ �(s, m) = 0. n denotes the set of all compact convex subsets of ℝn. A convex and compact set X ∈ n with
non-empty interior, which contains the origin, is named a PC-set. A subset of ℝn is denoted a polyhedron if it is an intersection
of a finite number of half spaces. A polytope is defined as a compact polyhedron. A polytope can be analogously represented as
the convex hull of a finite number of points inℝn. A hyperbox is a convex polytope where all the ruling hyperplanes are parallel
with respect to their axes.
In Appendix A, we provide a Nomenclature and Symbology table, which details all acronyms, variables, indexes, and symbols

used in this paper. In the sequel, all the necessary definitions for further development are recalled.

1.5 Definitions
Definition 1. Nonlinear Programming Problem
Consider an arbitrary real-valued nonlinear function fc(xc). A Nonlinear Programming Problem (NP) finds the vector xc that
minimises fc(xc) subject to gi(xc) ≤ 0, ℎj(xc) = 0 and xc ∈ c , where gi and ℎj are also nonlinear.

Definition 2. Convex Programming Problem
A Convex Programming Problem is a linearly constrained optimisation problem of a convex function. A CP is a particular type
of nonlinear programming problem, for which the function fc(xc) is inherently convect with respect to xc and the constraints
gi(xc) ≤ 0 and ℎj(xc) = 0 are linear on xc . Any CP can be formulated as x⋆c = argminxc ∈c fc(xc) subject to constraints
Aineqxc ≤ bineq and Aeqxc = beq . It follows that: Aineq ∈ ℝmc×nc , Aeq ∈ ℝmc×nc , bineq ∈ ℝmc and beq ∈ ℝmc . The solution x⋆c
to this kind of problem is found through interior-point algorithms and gradient-based methods.

Definition 3. Quadratic Programming Problem
A Quadratic Programming Problem (or simply Quadratic Problem, QP) is a linearly constrained mathematical optimisation
problem of a quadratic function. A QP is a particular type of convex programming problems. The quadratic function may be
defined with respect to several variables, all of which may be subject to linear contraints. Considering a c ∈ ℝnc gradient vector
and a symmetric Hessian matrix Qc ∈ ℝnc×nc , the goal of a QP is to determine the vector xc ∈ ℝnc that minimises a regular
quadratic function of form 1

2

(

xTc Qxxc + cTx
)

subject to constraints Aineqxc ≤ bineq and Aeqxc = beq . The solution x⋆c to this
kind of problem is found by many solvers seen in the literature, based on Interior Point algorithms, quadratic search, etc.

Definition 4. Closed-Loop Input-to-State Stability26

Consider a generalised discrete-time nonlinear plant regulated under a state-feedback closed-loop structure. This closed-loop
has its dynamics ruled by:

x(k + 1) = cl (x(k), w(k)) , (6)

where x(k) is the state of the system regulated under closed-loop, while w(k) is a bounded load disturbance variable such that
||w(k)|| ≤ wmax ∀ k ∈  . Then, this nonlinear system is said to be input-to-state stable in closed-loop if there exists a pair of
-functions �(⋅, ⋅) and �(⋅) such that the following inequality holds: ||x(k)|| ≤ �(x(0), k) + �(wmax).

Definition 5. Regional ISpS (ISS)27
The system in Eq. (6) is said to be ISpS in RISS ⊆ ℝnx if there exists a-function �r, a-function �r and a scalar dr ∈ ℝ+
such that, for each x0 ∈ RISS , all w(k) and all v(k), it holds that the corresponding state trajectory satisfies the following
inequality ||x(k)|| ≤ �r(x(0), k)+�r(||v(k−1)||)+dr ∀k ∈ [1,+∞]. If the origin lies in the interior ofRISS and the inequality
also holds for dr = 0, the system is said to be ISS in RISS . Note that the presence of a non-null dr in the above inequality is a
conservative solution, i.e. for a greater ||dr||, one finds a smaller ISpS region RISS .

Definition 6. Recursive Feasibility
An optimisation algorithm is said to be recursively feasible inside the feasibility set if, for any starting condition x(k0) = x0 ∈
ISS , the optimisation is feasible and remains feasible throughout the following instants k > k0.
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Definition 7. Robust Positively Invariant Set28
A set Xf ⊂  is said to be a robust positively invariant (RPI) set for the considered qLPV embedded system given in Eq.
(9) with u(k) = I1U⋆

k if, for the whole state evolution sequence Xk and for any x(k) ∈ Xf and �(k) ∈  , it follows that
x(k + 1) ∈ Xf . This is, the state evolution Xk always lies inside the RPI set Xf .

Definition 8. D/G Scalings29
Let Θ = diag{�1(k)Isize{�1} , … , �np(k)Isize{�np}}, with �j ∈ ℝ. Accordingly, the set of D/G-Scalings is defined as follows:

D∕G ∶=
{[

M11 M12
MT

12 −M11

]

∶ M11 =MT
11 ≻ 0,M12 +MT

12 = 0,M11Θ = ΘM11,M12Θ = ΘM12

}

.

2 PRELIMINARIES AND FORMALITIES

2.1 The Nonlinear System and qLPV Embedding
Consider the following generic discrete-time nonlinear system:

x(k + 1) = f (x(k), u(k), w(k)) , (7)

where k ∈ ℕ represents the sampling instant, x ∶ ℕ →  ⊂ ℝnx represents the system states, u ∶ ℕ →  ⊂ ℝnu is the vector
of control inputs and w ∶ ℕ →  ⊆ ℝnw stands for load disturbance variables.
This process satisfies the following Assumptions:

Assumption 1. The nonlinear map f ∶  × × →  is continuous and continuously differentiable with respect to x, i.e.
class ∞

Assumption 2. The (box-type) sets  and  define the feasibility constraints for the system states and the control vector,
delimited by the operational (physical) limitations of these variables. These sets yield ultimate bounds on x and u, as follows:

 ∶=
{

x ∈ ℝnx ∶ ||x|| ≤ x
}

,  ∶=
{

u ∈ ℝnu ∶ ||u|| ≤ u
}

.

Assumption 3. The set defines the load disturbances. For regularity purposes, we consider that is a priori an open set.

Assumption 4. The states are measurable at all sampling instants k ∈ ℕ, which means that control can be formulated under a
state-feedback fashion u(k) = �(k)x(k).

Assumption 5. This nonlinear system satisfies the Linear Differential Inclusion property.

The nonlinear dynamics in Eq. (7) can be given through a qLPV realisation if Assumption 5 is satisfied. The LDI property is as
follows8: suppose that, for each x, u andw and for every sampling instant k, there exists a matrixH(x, u, k) ∶  × ×ℕ → 
such that the following equality holds:

[

f (x(k), u(k), w(k))
]

= H(x, u, k)
⎡

⎢

⎢

⎣

x(k)
u(k)
w(k)

⎤

⎥

⎥

⎦

. (8)

In this case, LDI is verified and, thus, it follows that:

G ∶=
{

x(k + 1) = A(�(k))x(k) + B(�(k))u(k) + Bw(�(k))w(k)
�(k) = f�(x(k), u(k)) ∈  , (9)

is a qLPV realisation2 of Eq. (8) with f� ∶  ×  →  ⊂ ℝnp representing the endogenous nonlinear scheduling proxy.
Note that �(k) is bounded and known online at each instant k, but generally unknown for any future instant k + j ∀j ∈ ℕ[1,∞].
Ultimate bounds are considered upon �, as follows:

 ∶=
{

� ∈ ℝnp
| ||�|| ≤ �

}

.

2There is a conceptual difference between proper LPV and qLPV models: for the first class, the scheduling parameters are generally exogenous variables, such as
external activation signals, completely independent from x and u; in the second class, there exists some proxy to compute the scheduling parameters as an endogenous
(possibly nonlinear) map of states and inputs f�(x(k)). We discern qLPV models for LPV ones in order to highlight that the considered embedding has an inherent
endogenous scheduling proxy f�(⋅).
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Remark 2. The LDI property, as expressed through Eq. (8), is satisfied for closed sets  and  and not for the whole spaces
ℝnx and ℝnu . For this reason,  is a subset of ℝ(nx)×(nx+nu+nw).

Remark 3. Through the sequel, for simplicity, we drop the dependency of f� on w and u, simply taking �(k) = f�(x(k)).
Nonetheless, we stress that all developments presented in the sequel can be easily extended to broader case. For the sake of
simplicity, we also drop the parameter dependency from Bw, i.e. Bw(�(k)) = Bw. Note that this can always be done via
the inclusion of the parameter dependency into the load disturbance signal, e.g. Bw(�(k))w(k) = Bw2w2(k) with w2(k) =
fw(�(k), w(k)).

Complementary, we consider that Assumption 6 is satisfied3. This Assumption does not compromise the proposed approach;
it serves only to analytically account for model-process mistmatch uncertainties. We also consider that the qLPV embedding of
Eq. (9) satisfies Assumptions 7 (local Lipschitz property of f�(⋅)), 8 (bounded rates of variation for �) and 9 (stabilisability).

Assumption 6. Matrices A(�(k)) and B(�(k)) are affine-dependent on �(k), as in: A(�(k)) = A0 + A1�(k) and B(�(k)) =
B0 + B1�(k).

Assumption 7. The nonlinear scheduling parameter map f� ∶  →  agrees to a local Lipschitz condition around any
arbitrary point x ∈  , this is:

||f�(x) − f�(x̂)|| ≤ Γ||(x − x̂)|| , ∀ x ∈  , ∀ x̂ ∈  , (10)

where the smallest constant Γ that satisfies Eq. (10) is known as the Lipschitz constant for f�(⋅).

Assumption 8. The deviation of the scheduling parameters is bounded, i.e. ��(k) = (�(k) − �(k − 1)) ∈ � ,∀k ∈ ℕ.

Assumption 9. The open-loop qLPV model (A(�(k)), B(�(k))) is structurally stabilizable for all � ∈  .

2.2 Model-based Predictions through qLPV embedding
Since the qLPV embedding in Eq. (9) retains the linearity property from inputs to outputs, it is possible to formulate numerically-
efficient design procedures using these models. While LPV control is standard in both state-feedback and dynamics output-
feedback formulations6,30,31,32, the design predictive control algorithms for LPV systems is not trivial, since solving the inherent
constrained argminUk J optimisation problem requires the knowledge of future values for the scheduling parameter.
The key difficulty of LPV MPC algorithms is that the prediction of the future state variables x(k + j|k),∀j ∈ ℕ[1,Np] gets

rather complicated from the two-steps ahead prediction onwards, since nonlinear terms appear:
{

x(k + 2|k) = A(�(k + 1))A(�(k))x(k) + A(�(k + 1))B(�(k))u(k|k) . (11)

Note that a cross-product term between different instances of parameter-dependent matrices arises. For the considered qLPV
embedding, �(k + j) is a function of the states, which converts the previous equation to:

{

x(k + 2|k) = A(f�(x(k + 1|k)))A(�(k))x(k) + A(f�(x(k + 1|k)))B(�(k))u(k|k) , (12)

which still is nonlinear and, therefore, it follows that Problem 1 formulated with a qLPV embedded model remains an NP.
We can expand20 the state predictions from Eq. (11) for the whole sequence of the future states within the prediction horizon.

Thus, the complete future state sequence, denoted Xk, is expressed as regular bilinear function of the sampled state x(k), the
control sequence and the “scheduling sequence” Pk. This yields:

Xk = Ax(Pk)x(k) + Bx(Pk)Uk , (13)

where the scheduling sequence and the sequence of future state variables are respectively given by:

Pk =
[

�(k) �(k + 1) �(k + 2) … �(k +Np − 1)
]T . (14)

Xk =
[

x(k + 1|k) x(k + 2|k) … x(k +Np|k)
]T . (15)

3We stress that any other kind of parameter dependency could be used (polynomial, Linear Fractional Transformations, etc.)
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Matrices Ax(Pk) and Bx(Pk) in Eq. (13) are given as follows:

Ax =

⎡

⎢

⎢

⎢

⎢

⎣

A(�(k))
A(�(k + 1))A(�(k))

⋮
A(�(k +Np − 1))A(�(k +Np − 2))…A(�(k))

⎤

⎥

⎥

⎥

⎥

⎦

, (16)

Bx =

⎡

⎢

⎢

⎢

⎢

⎣

B(�(k)) 0 …
A(�(k + 1))B(�(k)) B(�(k + 1)) …

⋮
A(�(k +Np − 1))…A(�(k + 1))B(�(k) A(�(k +Np − 1))…A(�(k + 2))B(�(k + 1)) …

⎤

⎥

⎥

⎥

⎥

⎦

. (17)

2.3 Extrapolating the Scheduling Sequence
As formulated in previous works20, guessing mechanisms can be used to estimate the values of Pk. In fact, different formulations
for these extrapolation algorithms have been previously presented: through recursive Least-Square minimisation23 or iterative
guessing through the actual qLPV proxy4Pk = f�(Xk), computed via sequential QPs, ensuring refined extrapolations as k
increases.
In this paper, we follow this same idea, considering an algorithm that estimates the scheduling sequence at each instant, with

bounded estimation errors. This is, for P̂k as the extrapolation guess, the algorithm provides:

P̂k = col {�̂(k + j)} ∀j ∈ ℕ[0,Np−1]with (18)
��(k + j) = �(k + j) − �̂(k + j) ∀j ∈ ℕ[0,Np−1] and (19)

��(k + j) ∈  ∶=
{

�� ∈ ℝnp
| ||��|| ≤ �bound�

}

. (20)

Generally, these algorithms20,23 yield horizon-increasing errors ||��(k + j + 1)|| ≥ ||��(k + j)|| for j ∈ ℕ[0,Np−2], due to
the fact the more information is available regarding the present instant than the future ones, which depend on future variables
which haven’t yet been defined.

2.4 The Generated Sub-Optimal MPC
Regarding the application of the MPC algorithm in Problem 1 simply based on an extrapolation guess P̂k, the following finite-
horizon cost is considered:

Jk =
⎛

⎜

⎜

⎝

Np
∑

j=1
(l(x(k + j), u(k + j − 1)))

⎞

⎟

⎟

⎠

, (21)

where l(⋅) is themain stage cost. Note that we disregard the use of a terminal cost V (⋅). This cost function is formalised according
to traditional tuning methods33, with a quadratic form:

l (⋅) = (x(k + j|k))TQ(x(k + j|k)) + (u(k + j − 1|k))TR(u(k + j − 1|k)) j ∈ ℕ[1,Np] . (22)

Sub-optimal MPC algorithms23 have been applied to regulate nonlinear systems with qLPV models. Accordingly, the
following constrained QP is applied5:

min
Uk

Jk (23)

subject to Xk = Ax(P̂k)x(k) + Bx(P̂k)Uk , (24)
x(k + j) ∈  ∀ j ∈ ℕ[1,Np] , (25)
u(k + j − 1) ∈  ∀ j ∈ ℕ[1,Np] , (26)

�(k + j) = P̂k{j} ∀ j ∈ ℕ[0,Np−1] , (27)

4Abusive notation is used. In fact, each �(k + j) depends individually on f�(x(k + j)), which converts into Pk = col{f�(x(k + j))} with j ∈ ℕ[0,Np−1].
5Note that P̂k{j} denotes the j-th entry of the scheduling sequence vector P̂k.
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This QP can lead to insufficient performances because local minima can be found since, although the qLPV embedding
equivalently represents the nonlinear dynamics, the scheduling parameters are unknown along the horizon. Thus, the model
predictions conceived with P̂k are inaccurate, implying in an prediction error onXk. Therefore, we proceed by adapting this QP
in order to include the bounds on the estimation error of the scheduling sequence ��(k+j) such that optimality can bemaintained.
In general, optimisation problems are represented with Hessian, gradients and inequalities. Accordingly, the previous QP can

be re-stated as:

U⋆
k = argmin

Uk

(1
2
UT
k H(P̂k)Uk − U

T
k g(P̂k, x(k))

)

, (28)

s.t. AineqUk ≤ bineq(k) ,
CineqUk = 0 ,

being U⋆
k the control sequence solution. In this formulation, H(P̂k) is the Hessian of the quadratic cost function Jk and

g(P̂k, x(k)) is its gradient.
The MPC policy that results from the online solution of Eq. (28) is generated under a paradigm of a moving-window horizon,

which slides along k as time evolves. This means that that at instant k the control sequence U⋆
k is computed considering the

system behaviour within the next Np steps. At the following instant, k + 1, the problem min Jk+1 is solved considering the
performances forNp samples ahead of k + 1, computing U⋆

k+1, and so forth. The control policy at each instant is the first entry
of the solution the QP, this is:

u(k) =

I1
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
[

Inu 0nu … 0nu
]

nu×(nuNp)
U⋆
k = �(k)x(k) . (29)

2.5 Terminal Ingredients and Dissipativity Constraints
The concept of input-to-state stability (ISS) is used to verify stability and also allows control synthesis for nonlinear systems.
We use the concept of ISS generalised for discrete-time nonlinear processes26, as presented in the prequel. We are concerned
with ISS since the considered MPC generates a state-feedback control law, which means that the states should be stabilised.
Recent results regarding ISS and Input-to-State Practical Stability (ISpS), which is a weaker property6, have been presented

regarding min-max nonlinear MPCs, see34,35,36. In general, many min-max MPC methods are not able ensure ISS (but simply
ISpS) because the effect of non-null disturbance inputs is taken into account by the min-max procedure even if the disturbance
vanishes in reality. Anyhow,27 demonstrates that only a local upper bound on the min-max cost function Jk (instead of a global
one, which is more costly to demonstrate) is sufficient to ensure ISS. In this paper, we build from these previous results, specially
concerning the feasibility property of the maximisation procedure.
We stress that an ISS sytem is asymptotically stable in the absence of inputs u and w or if the inputs are time-decaying. Note

that if the inputs are merely bounded, the evolution of the system states are ultimately bounded to a set whose size depends on
the bounds of the inputs, which is quite logical.
In order to verify that the MPC algorithm ensures closed-loop ISS and recursive feasibility of the optimisation procedure,

there are two main options:

• To use the so-called “terminal ingredients”37, this is: verify some conditions with respect to the terminal stage cost V (⋅)
and the terminal constraintXf . Essentially, the terminal set must be an RPI set, while l(⋅)must be-class lower bounded,
and V (⋅) must be -class upper bounded. A Lyapunov-decreasing inequality must also be satisfied.

• The second option is to use dissipativity arguments38. The main characteristic of this second stability-verification path is
that LMI formulations are yielded for a priori verification. This is the path followed in this paper, following the lines of
a previous works38,29.

6ISpS does not impose asymptotic stability for null disturbance inputs.
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3 THE RECURSIVE EXTRAPOLATION ALGORITHM

In this Section, we propose a simple method to recursively construct the extrapolation for the scheduling sequence along the
horizon. The method resides in a first-order Taylor expansion of the scheduling proxy f�(x(k)) around the state deviation. We
denote Δx(k + j) = (x(k + j + 1) − x(k + j)) as the incremental state deviation, which is naturally bounded due to the bounds
on x(k), i.e. Δx(k + j) ∈ Δ ∀ j ∈ ℕ. We consider that the following Assumptions are satisfied.

Assumption 10. The state deviations are ultimately bounded. This is:

Δx(k) = A(�(k))x(k) + B(�(k))u(k) − x(k) =
(

A(�(k)) − Inx
)

x(k) + B(�(k))u(k) .
‖Δx(k)‖ = ‖

(

A(�(k)) − Inx
)

x(k) + B(�(k))u(k)‖ ≤ ‖(A(�) − Inx)x + B(�)u‖
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Δx

.

Assumption 11. The static map f�(�) can be approximated by a first-order Taylor expansion for any arbitrary �:

f�(�) = f�(�)|�⋆ +
)f�
)�

|

|

|

|

|�⋆
(� − �⋆) + �� , (30)

being �⋆ the expansion point and �� a residual noise which inherits the discrepancy between the real static map and its
approximate.

Assumption 12. The static map f�(⋅) is class 1, i.e. first-order differentiable with respect to x, for all x points in  .

Assumption 13. The differentiation function f )� (k) is ultimately bounded.

Thus, on the basis of Assumption 11, the following expression is written:

f�(x(k + j)) = f�(x(k + j − 1)) + ��(k + j − 1) +
)f�

)x(k + j)

|

|

|

|

|x(k+j−1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

f )� (k+j−1)

Δx(k + j − 1) . (31)

Expanding Eq. (31) along a prediction horizon ofNp steps and embedding it to �(k+1) = �(k)+f�(x(k+1))−f�(x(k)), gives:

�(k + 1) = �(k) + f )� (k)Δx(k) + ��(k) ,
⋮

�(k +Np − 1) = �(k +Np − 2) + f )� (k +Np − 2)Δx(k +N − 2) + ��(k +Np − 2) .

It is a fact that, �(k) andΔx(k) are known variables at each instant k, whereas f )� (k) can be numerically evaluated. Nonetheless,
in practice, the values for f )� (k + j) considering j ∈ ℕ[1,N−2] is unknown.

Proposition 1. For simplicity, one can assume that the partial derivative f )� (k) stays constant along the prediction horizon, i.e.
f )� (k + j) = f )� ∀ j ∈ ℕ[1,N−2], where f )� denotes the partial derivative evaluated at instant k.

Based on the previous Proposition, the extrapolation at a given instant k can be given as a function of the previous
extrapolation, this is: Pk = P ⋆

k−1 + f
)
�ΔX

⋆
k + Ξk, where

P ⋆
k−1 =

[

�(k − 1) �(k) �(k + 1|k − 1) … �(k +Np − 2|k − 1)
]

represents the previous estimation for the scheduling trajectory with the first term corrected (since �(k|k−1) is known at instant
k and ΔX⋆

k represents the state deviations along the horizon, corrected with the known value Δx(k) ; Ξk represents a bias
residual vector, which “corrupts” the extrapolation, but is obviously not known.
Since the bias residual cannot be accounted for, the extrapolation for this scheduling sequence is simply given by:

P̂k = P̂ ⋆
k−1 + f

)
�ΔX

⋆
k . (32)

For such, ΔX⋆
k is computed by adapting Eq. (13), based on the corrected sequence of control inputs computed at the last

sample holds, this is: Ũk−1 =
[

u(k) … u(k +Np|k − 1)
]T
nu×Np

, and based on the previous, corrected scheduling trajectory
guess P ⋆

k−1. It follows: ΔXk = Ax(P ⋆
k−1)Δx(k) + Bx(P

⋆
k−1)Ũk−1.
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The corrections upon variables P̂k−1 and ΔXk are:

P̂ ⋆
k−1 = �P̂k−1 + ��(k) , (33)

ΔX⋆
k = �ΔXk + �Δx(k) , (34)

with � =
[

0 I … I
]

and � =
[

I 0 … 0
]

.

The dimensions of � and � in Eqs. (33)-(34) should be in accordance with np and nx. If sought, a forgetting factor can be
added to the algorithm, replacing the identity matrices in � with exponentially decaying terms, such as Ie−k∕kmax . This forgetting
factor attenuates the amount of mistaken information passed from on scheduling sequence estimate P̂k to the following P̂k+1.
In order to ensure that the recursive extrapolation procedure holds, Assumptions 12 and 13 must be satisfied. Therefore, f�(⋅)

should be at least class 1, so that the derivative f )� (k) exists for all x(k + j) ∈  , in order to construct the first-order Taylor
expansion. Moreover, Assumption 13 is necessary so that every extrapolated term �̂(k + j) is bounded.
Finally, we mention that the recursive law in Eq. (32) does not ensure that the extrapolation guess abides to the scheduling

parameter set  . Therefore, in order to take into account that the variation of the parameters ��(k) ∈ � , each extrapolation
vector P̂k is “clipped” with respect to  and � .

3.1 Convergence and Estimation Error Bounds
Proposition 2. This recursive extrapolation algorithm, as given through Eq. (32), indeed converges. This is, after a finite amount
of steps kc it holds that limk→kc P̂k → Pkc .

Proof. Refer to Appendix B.

Proposition 3. The ultimate bound of the estimation error �bound� achieved with this algorithms yields an error set  which is a
subset of  . This ultimate bound is given by �bound� =

(

Γ + f )�
)

Δx and it known a prior, i.e. there is no need to execute the
algorithm to check it.

Proof. Refer to Appendix C.

4 PROPOSED MIN/MAX QLPV MPC ALGORITHM

Considering that �� ∈  ⊂  , the sub-optimal MPC algorithm in Eq. (23) is adapted in order to ensure robustness. We seek
performances guarantees despite the uncertainties introduced by the scheduling sequence estimation error.
As previously discussed, solving a single QP w.r.t. a scheduling sequence guess as in Eq. (28) does not ensure performances,

since the solution U⋆
k may represent a local minima of Jk. Anyhow, we know that the actual nonlinear process model in Eq. (7)

differs from the P̂k-based prediction in Eqs. (13)-(14) due to the discrepancy variable ��. Then, as gives Eq. (32), these model-
process mismatches along the horizon can be treated robustly, providing a worst-case bound J bound

k > Jk. Then, as done in robust
min/max LPV MPC procedures, the QP is formulated with respect to J bound

k , ensuring the overlap of local minima and robust
performances.
Based on Assumption 6 and Eq. (19), we can thus expand the LPV model along the prediction horizon:

x(k + j + 1) = A(�̂(k + j))x(k + j) + B(�̂(k + j))u(k + j) + Bww(k + j) (35)
+

(

A1��(k + j)x(k + j) + B1��(k + j)u(k + j)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�(k+j)

.

The uncertainties introduced due to the model-process mismatch (extrapolation of the scheduling sequence) are denoted
henceforth as �(k + j), which belongs to compact set  whose bounds can be computed offline, w.r.t. �bound� ,  and  :

 ∶=
{

� ∈ ℝnx
| ‖�‖ ≤ �

}

. (36)
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We concatenate �(k + j) along the horizon as follows:

Σk =
[

�(k|k) … �(k +Np − 1|k)
]

. (37)

Remark 4. In regular min-max LPVMPC algorithms11,  is computed w.r.t. much larger possible variations for � (the whole set
). In works15 that consider bounded rates of variations for �, the uncertainty set  is computed as if �(k+ j) = �(k) ± j��(k),
which yields a smaller uncertainty set  , but in general also larger than the set considered in this paper.

Embedding the uncertainty to the process predictions, we obtain:

Xk = Ax(P̂k)x(k) + Bx(P̂k)Uk + Σk . (38)

Then, the core idea of the proposed method is quite simple, following the lines of the original min/max algorithms, but formu-
lating the worst-case cost function with respect to the uncertainties introduced by the estimation errors ��. It follows that Σ⋆k ,
which induces the worst-case bound on the cost function J bound

k , is found by solving the following maximisation CP:

max
Σk

Jk (39)

subject to constraints in Eqs. (24), (25), (26) and (27) .

Then, the solution that derives from this QP, Σ⋆k , is plugged to the regular minimisation MPC CP, given in Eq. (23). The
complete solution achieved with the proposed tool is U⋆

k = argminUk maxΣk Jk subject to constraints (24)-(27). This solution
resides in the sequential operation of both CPs: maximisation with respect to Σk (CP) followed by minimisation w.r.t. Uk (QP).

4.1 The Implementation
Regarding the proposed min/max method, its implementation is performed according to the following guideline:

1. Offline Procedure:

• Firstly, one should verify if the considered nonlinear process should satisfies Assumptions 1 to 5.
• LDI should be performed, finding the LPV model G as in Eq. (9).
• Regarding model G, one should verify if Assumptions 6 to 9 are satisfied.
• The smallest Lipschitz constant Γ in Eq. (7) should be defined and so should the bounds on Δx.
• With the aid of simulation tools, the recursive extrapolation algorithm of Eq. (32) should be tested and the forgetting
factors � and � should be adequately tuned.

• Compute the worst-case bound on the estimation error with respect to Eq. (C7).
• Compute the compact uncertainty set  due to the wrong scheduling guess as of Eq. (36).
• Prepare the MPC procedure by tuning the cost weighting matrices Q and R.
• Compute the nominal cost function Jk in the Hessian-gradient form of Eq. (28).

2. Online Procedure: solve Algorithm 1.

5 RECURSIVE FEASIBILITY ANALYSIS

This Section is concerned with the recursive feasibility properties of both CPs, and ISS of the closed-loop system regulated by
the proposed MPC paradigm. We proceed by demonstrating the asymptotic stability of the closed-loop system and estimating
the region of attraction of each CP. The zone of attraction for the complete algorithm is given by the smallest intersection of the
two regions. Note that asymptotic ISS is demonstrated for a given region ISS . Then, it is proved that for any starting condition
within this region, the algorithm is recursively feasible.
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Algorithm 1 Proposed Robust min/max NMPC Algorithm

Initialise: x(0) = x0, �(0) = �0, k = 0.
Require: P0, �, �; Require: Q, R,Np, ;
Loop:

• Step (1): Measure the states x(k) and get the scheduling parameters �(k);

• Step (2): Evaluate the derivative f )� ;

• Step (3): Compute the extrapolation of the scheduling parameters along the horizon through Eq. (32);

• Step (4): Solve the maximisation CP, computing maxΣk Jk subject to constraints (24)-(27), finding Σ
⋆
k ;

• Step (5): Solve the minimisation QP, computing minUk Jk subject to constraints (24)-(27) with Σ
⋆
k , finding U

⋆
k

• Step (6) Apply the local control policy u(k) as in Eq. (29);

• Step (7): Increment k, i.e. k← k + 1.

end

5.1 The Maximisation CP
In order to demonstrate the recursive feasibility property of the maximisation CP, we follow closely discussions of previous
works27,34,35.

Remark 5. In this previous papers, ISS and ISpS properties are verified for the whole min-max CP through the use of terminal
ingredients. In this paper, we follow a dissipativity formulation, since we do not make use of RPI sets as terminal constraints
nor of terminal stage costs in our formulation. Anyhow, the analysis of recursive feasibility of the maximisation step can be
maintained.

Remark 6. Some of the following steps are easier to follow if the weak duality property of CPs is considered39: an maximisation
CP can be equivalently written as a minimisation CP over the same variables with adjusted slack variables.

The considered maximisation CP solves Σ⋆k = argmaxΣk Jk(⋅) subject to the inequality constraints (24)-(27) and based on
the available scheduling sequence guess P̂k, being Σk the sequence of uncertainties along the horizon, as gives Eq. (37). Note
that it can be adequately re-written in a generalised formulation with respect to Σk, this is:

Σ⋆k (P̂k) = argmax
Σk

(1
2
ΣTkH�Σk − ΣTk g�(P̂k, x(k))

)

. (40)

Replacing Xk in Eq. (40), it follows7 thatH� = 2Q̆ and g� = −2Q̆
(

Ax(P̂k)x(k) + Bx(P̂k)Uk
)

.

Remark 7. Note that, if constraints are disregarded, for rationale purposes only, it is direct to evaluate that the maximal value for
Jk, w.r.t. Σk would be found with Σ⋆k = (H�)−1g� . Since g� is linear on Uk, the value for Uk would be U = col{u} (a sequence
of maximal control signals), this is: Σ⋆k = −(2Q̆)−1

(

Ax(P̂k)x(k) + Bx(P̂k)U
)

. Regarding the CP constraints, it follows that
(27) adds no difference to this possible result. Moreover, constraints (25) and (26) are only box-type operations over x and u,
respectively. Therefore, it follows directly that for any starting condition x0 within the feasibility set  , this maximisation CP
is recursively feasible since Jk is never be unbounded w.r.t. Σk due to its regular quadratic formulation on Σk, operated through
Eq. (40). Nonetheless, this property only remains true if and only if Q−1 exists, since (H�)−1 = (2Q̆)−1.

In order to demonstrate the recursive feasibility property of the CP in Eq. (40), we consider that:

• The minimisation QP is also feasible. This is quite logical because the min-max formulation resides in the operation of
both these CPs consecutively.

7Notation Q̆ and R̆ denote block-diagonal matrices with Q and R repeatedNp times in the diagonal, respectively.
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• The stage cost l(⋅) is lower bounded for all x ∈ Max CP (this set denotes the feasibility region for the maximisation CP).
Indeed, it follows directly from Eqs. (21)-(22):

l(⋅) ≥ al(‖x‖) , (41)

being al(‖x‖) a -class function.

Lemma 1. Based on these previous conditions, of a feasible minimisation QP and of Eq. (41), it follows that the worst-case cost
function J bound

k , computed w.r.t. Σ⋆k , is upper-bounded, considering that the uncertainties are described as of Eq. (36), such that:

J bound
k ≤ �J (‖x‖) + �J (�) , (42)

where �J and �J are ∞-class functions.

Proof. Refer to Appendix D.

Remark 8. Since the previous Lemma requires that the min. QP to be recursively feasible, it is implied thatMax CP ∶= Min QP,
where Min QP is the feasibility set of the second CP. For simplicity, we henceforth denote the maximisation CP using an
abstraction: as an operator Υ upon the measured state vector x(k), as follows:

Σ⋆k ∶= Υ(P̂k)x(k) . (43)

5.2 The Minimisation QP
The analysis of the ISS property of the minimisation QP is more complex. This CP solves U⋆

k = argminUk Jk(⋅) subject to
constraints (24)-(27), based on the available scheduling sequence guess P̂k and on the uncertainty vector Σ⋆k . Figure 1 gives a
graphical block-diagram interpretation of the system, considering both CPs (1) and (39) and the extrapolation algorithm, where
G represents the open-loop LPV embedding of Eq. (9).

FIGURE 1 Graphical Representation of the LPV Embedded Nonlinear System and Proposed Algorithm.

We replace Xk of Eq. (38) in Eq. (28), which leads to the following Hessian and gradient8:

H(P̂k) = 2
(

R̆ + Bx(P̂k)T Q̆Bx(P̂k)
)

, (44)
g(P̂k, x(k)) = −2Bx(P̂k)T Q̆

(

Ax(P̂k)x(k) + Σ⋆k
)

. (45)

Thus, in order to verify ISS, we proceed by defining a nonlinear static map � ∶ g → U⋆
k implied by the constrained

minimisation QP in its regular form of Eq. (28).

8For notation compactness, we denote henceforth simply gk = g(P̂k, x(k)) and �k = �(g(P̂k, x(k))).
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As demonstrated in previous works38, the stability of the closed-loop system with u(k) = I1U⋆
k deriving from Eq. (28) can

be verified if the following sector boundary inequality is satisfied:

�TkH(P̂k)�k − �
T
k gk ≤ 0 ∀gk . (46)

Regarding this stability inequality, we show a graphical interpretation of the considered system, presented in Figure 2. The
proposed MPC policy is divided by the upper � block, which comprises the minimisation QP, and by the lower Υ block, which
embeds the maximisation CP. Regarding, Figure 1, the output of the minimisation QP U⋆

k is now replaced by the nonlinear
operator �k. Moreover, the main open-loop process in Figure 2 is represented byGI1 , which is a compacted operator comprising
the open-loop plant and matrix I1, since u(k) = I1U⋆

k . It follows that x =∶ G(u,w), u = I1�, and, x ∶= GI1(�,w).

FIGURE 2 Graphical Representation of the Closed-Loop System.

In order to evaluate the previous stability inequality, a factorisation of the Hessian is necessary so that parameter-dependency
can be smartly dropped. We define the block-diagonal compact set ̆ ⊂ ℝNp×np as the compact set within which P̂k lies (recall
that each entry of this vector, �̂(k + j) is bounded to  . The factorisation is the following:

[

0 0
0 H(P̂k)

]

=
[

0 Bx(P̂k)
0 I

]T

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
HP (P̂k)T

[

2Q̆ 0
0 2R̆

]

⏟⏞⏞⏞⏟⏞⏞⏞⏟
H0

[

0 Bx(P̂k)
0 I

]

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
HP (P̂k)

. (47)

Based on the prior factorisation, we re-write inequality (46) as follows:
[

∗
]T

([

0 0
−I 0

]

+HP (P̂k)TH0HP (P̂k)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Π(P̂k)

[

gk
�k

]

≤ 0 . (48)

As provided in previous works40,41, the above parameter-dependent quadratic constraint can be cast into a regular multiplier
form zTgMzzg ≤ 0, where zg is the output of a bounded linear operator Ψ(P̂k) which factorises Π(P̂k), this is: Π(P̂k) =
(

Ψ(P̂k)
)∗
MzΨ(P̂k). The operator Π(⋅) stands for the “filling” of the previous inequality (48). Thus, we continue by using the

previous factorisation to write Π(⋅) in a multiplier form, as follows:

Π(P̂k) = Ψ∗(P̂k)
⎡

⎢

⎢

⎣

0
[

0 0
]

[

0
−I

]

H0

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
Mz

[ [

I 0
]

HP (P̂k)

]

⏟⏞⏞⏞⏟⏞⏞⏞⏟
Ψ(P̂k)

. (49)
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Figure 3 gives a graphical interpretation of the extraction of parameter-dependency through Ψ. It follows that the multiplier
form of Π(⋅) is built with:

Mz =
⎡

⎢

⎢

⎣

0 0 0
0 2Q̆ 0
−I 0 2R̆

⎤

⎥

⎥

⎦

, Ψ(P̂k) =
⎡

⎢

⎢

⎣

I 0
0 Bx(P̂k)
0 I

⎤

⎥

⎥

⎦

. (50)

FIGURE 3 Graphical Representation of the Parameter-dependency Extraction.

Through the above development, we express the dissipativity inequality (46) simply as:
[

∗
]T Ψ(P̂k)TMzΨ(P̂k)

[

gk
�k

]

≤ 0 , (51)

which is can be compacted as:
[

∗
]T Mzzg ≤ 0 ∀P̂k ∈ ̆ , (52)

being zg ∶= Ψ(P̂k)
[

gk  k
]T the output of the Ψ(⋅) operator.

The parameter-dependency has been dropped through the previous factorisation procedures. Therefore, we can perform a
Linear Fractional Transformation (LFT) to extract the LPV scheduling parameter dependency as an upper Θ-block (which is
connected to an LTI nominal block). Considering zg as an output the lifted system, we graphically illustrate the LFT in Figure
4, where Gn

I1
is an LTI nominal model of the augmented plant, as follows:

Gn
I1
∶=

⎧

⎪

⎨

⎪

⎩

x(k + 1) = Anx(k) + Bnww(k) + Bn��k + Bn�u�(k)
y�(k) = Cn

�x(k) + Dn
�,��k + Dn

�u�(k)
zg(k) = Cn

zx(k) + Dn
z,��k + Dn

z,�u�(k) + Dn
z,ΣΣ

⋆
k

, (53)

where u�(k) ∶= Θy�(k) makes the interconnection between this nominal LTI block and the LPV-lifted upper Θ-block and Σ⋆k
appears now as an input to the Gn

I1
block, since it is present in gk as gives Eq (45).

Finally, in order to check if the system is ISS, it remains to verify the following Lemma29, which ensures that the lowerGn
I1
-Θ

block is stable despite the upper � transfer.

Lemma 2. Adapted from a previous paper29
The closed-loop system given in the LFT form in Eq. (53), regulated under the proposed min./max MPC law in the form
of U⋆

k = argminUk Jk(⋅) subject to constraints (24)-(27) and based on the available scheduling sequence guess P̂k and on
the uncertainty Σ⋆k , is quadratically stable, verifying the dissipativity inequality (46), if there exists a positive-definite matrix
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FIGURE 4 Graphical Representation of the Closed-Loop with LPV-Dependency Extracted.

P = P T > 0 and a constant � > 0 such that:
⎡

⎢

⎢

⎢

⎢

⎣

(An)TPAn − P (An)TPBn� (A
n)TPBn� 0

⋆ (Bn�)
TPBn� (B

n
�)
TPBn� 0

⋆ ⋆ (Bn�)
TPBn� 0

⋆ ⋆ ⋆ 0

⎤

⎥

⎥

⎥

⎥

⎦

− �Π� + ΠΘ ≺ 0 (54)

where

Π� = [∗]T

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 0
0 2Q̆ 0 0
−I 0 2R̆ 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

[

Cn
z D

n
z,� D

n
z,� D

n
z,Σ

]

, (55)

ΠΘ = [∗]T MΘ

[

Cn
� D

n
�,� D

n
� D

n
�,Σ

0 0 I 0

]

, (56)

andMΘ ∈ D∕G.

Proof. Refer to Appendix E.

The positive definite matrix P found through Lemma 2 defines the following set:

Min CP ∶=
{

x ∈ ℝnx
| xTPx ≤ 1

}

. (57)

Thus, for any starting condition x0 contained in the interior of Min CP, the minimisation QP ensures (local) asymptotic stabili-
sation to the origin. Since the proposed MPC is made of two consecutive CPs, the complete set within which ISS is verified is
given by:

ISS ∶= Max CP ∩ Min QP . (58)

Since Max CP ∶= Min QP, it follows that ISS = Min QP.

6 APPLICATION EXAMPLE

In this Section, we present a case-study for which the robust dissipative MPC method is applied. As discussed in energy systems
literature42,43,44, the addition of renewable energy sources to power plants can be a good route to reduce greenhouse gas emissions
and environmental impact. Anyhow, an inherent problem to be solved is how to integrate these energy sources without loosing
efficiency and dispatchability of energy plants.
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6.1 Solar-thermal system, phenomenological model, and control problem
We consider modern solart-thermal (ST) systems, which are structures that integrate collector fields, accumulation tanks and

gas heaters. Each subsystem has independent dynamics that strongly influence the total output. These ST units are controlled
in order to ensure efficiency despite variations on the energy input caused due to cloudy periods of the day. We assume that the
global ST coordination as well as the control of the tanks and gas heaters are regularly working: the heated fluid is accumulated
on the tanks to compensate for the lack of heated flow coming from the solar collectors in cloudy periods. Moreover, if the outlet
temperature is not enough to comply with demands, the gas heater is used to further heat the outlet. The heated fluid is used to
attend the heating demands of a separate industrial process.
The focus of the control system is solely to the regulate the temperature of the ST collector panel. Accordingly, the collector

outlet flow temperature signal must track a constant steady-state reference, despite instaneous variations on the solar irradiance
or on the external temperature. Figure 5 illustrates the considered ST system.

FIGURE 5 Schematic Illustration of a solar-thermal collector field.

Complete phenomenological models have previously been derived for ST collector fields43, with according model-
validation45. These models are derived on the basis of the following set of assumptions:

• The fluid flow through the solar collector is incompressible (with density �f ), with uniform pressure along the field; the
heat transfer capacity of the fluid is constant and denoted Cf ;

• The heat transfer capacity of the collector plates is constant and denoted Cm; the density of these metal plates is also
constant and denoted �m;

• The balance of energy equations assume a constant thermal loss coefficient �, with respect to the thermal energy that
derives from the incident solar radiance;

• The heat transfer coefficient of the absorver (external temperature to plates), denoted ℎ0, is constant, while the heat transfer
coefficient of the fluid (fluid to plates), denoted ℎi(⋅), varies positively according to the temperature of the plates.

Then, the following partial-differential dynamics arise due to balance of energy equations, where t represents the time variable
and s the space variable:

�mCmAe
dTp
dt
(t) = de��I(t) − de�ℎ0(Tp(t) − Te(t)) − di�ℎi(Tp(t))(Tp(t) − Tf (t)) , (59)

�fCfAi
)Tf
)t
(t, s) = −u(t)�fCf

)Tf
)s
(t, s) + di�ℎi(Tp(t))(Tp(t) − Tf (t)) . (60)

In these temperature gradient dynamics of Eqs. (59)-(60), I(t) stands for solar radiance focused upon the collectors (which is
a load disturbance from a control viewpoint); Tp, Te and Tf are, respectively, the collector plate, the external (load disturbance
as well) and the fluid temperatures; u is the inlet fluid flow, which is the control input of the system; finally, Ai and Ae are,
respectively, the internal and external surfaces of the pipes, that have (internal and external) diameters of di and de.
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For application purposes, the space-derivative term )Tf
)s
(t, s) can be replaced43,45,46 by either a nonlinear function or an

apparent transport delay. In this paper, it is approximated by the following nonlinearity:

)Tf (t, s)
)s

≈ 1 − e
−

Tf (t)

Tmaxf

(1 − e−1)
, (61)

which means that the diffusion of the thermal energy of the fluid flowing along the flat collectors increases with respect to its
temperature Tf (t) until a certain level is attained T maxf , after which the diffusion is constant, i.e. the whole fluid inside the flat
collector is at the same temperature. This approximation is quite reasonable with respect to the ST application and in accordance
with the literature43.
The heat transfer coefficient of the fluid ℎi

(

Tp(t)
)

is given according to the following nonlinear equation:

ℎi
(

Tp(t)
)

= ℎi
⎛

⎜

⎜

⎝

1 − e
−Tp(t)
Tmaxp

1 − e−1

⎞

⎟

⎟

⎠

, (62)

where ℎi is the maximal heat transfer coefficient of fluid, attained for Tp(t) = T maxp .
Regarding the nonlinear model of Eqs. (59)-(60) with the relaxations of Eqs. (61)-(62), the parameters have been identified

and adjusted for the CIESOL ST plant, located in the CIESOL-ARFR-ISOL R&D Centre of the University of Almería, Spain.
The numerical values for these parameters, from paper43, are given in Table 1.

TABLE 1Model Parameters of the ST Process in Eqs. (59)-(60).

�m 1100 kg∕m3 Cm 440 J∕(kgoC)
�f 1000 kg∕m3 Cf 4018 J∕(kgoC)
Ae 0.0038m2 Ai 0.0013m2

di 0.04m de 0.07m
ℎ0 11 ℎi 800
� 3.655 − −

6.2 Problem under consideration
The goal of this ST system is to track outlet temperature references to cover a certain heat demand, which is done by varying
the inlet fluid flow u. This collector field has a 160m2 surface area, distributed in ten parallel rows composed of eight collectors
per row.
In terms of performances, the temperature set-point tracking should be done as fast as possible, while respecting the maximal

temperature of 300 oC that the inlet fluid can tolerate. Moreover, the temperature of the plates should not surpass 600 oC. These
performances can be evaluated using usual reference-tracking indexes, such as the integral of the average tracking error. Through
the sequel, we denote T spp and T spf as the constant steady-state temperature references to the collector plate and to flowing fluid,
respectively. The considered steady-state targets for reference tracking are:

T spp = 109.93 oC , Tspf = 97 oC .

The inlet flow (control signal) should be always positive, since no fluid can be extracted from the ST units, only injected,
and abide to a upper bound of 0.35m3∕s. Moreover, the control policy has to be evaluated within Ts = 0.01 s, which is the
considered sampling period.
We stress that the dynamics of this ST process exhibit average settling periods in the order of 100 s. In practice, many control

schemes have been tuned considering a sampling period of a few seconds, e.g.43,45. Nevertheless, we choose a tighter sampling
period for illustration purposes, in order to verify whether the proposed method could serve for embedded real-time applications.
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The disturbances to this system (the solar radiance and external temperature variables) are assumed to be measurable from
a control viewpoint. This is quite reasonable, given that accurate estimations for the future behaviour of these disturbances can
be indeed obtained42. These estimation results (for solar radiance and outside temperature) are easily provided with Neural
Network tools47.
Table 2 resumes the state and input constraints. Note that the fluid and plate temperatures are lower-bounded by external

temperature to the ST system, Te(t). If there is no sun, the ST system reaches a thermal equilibrium with Te(t). For simplicity,
since Te(t) > 0, the lower bounds on Tp and Tf can be taken as 0.

TABLE 2 Constraints of the considered ST system.

u(t) ∈   ∶=
{

u ∈ ℝ | 0 ≤ u ≤ 0.35m3∕s
}

Tp(t) ∈ p p ∶=
{

Tp ∈ ℝ | Te(t) ≤ Tp ≤ T maxp

}

, T maxp = 600 oC

Tf (t) ∈ f f ∶=
{

Tf ∈ ℝ | Te(t) ≤ Tf ≤ T maxf

}

, T maxf = 300 oC

6.3 qLPV-embedded Model
Since this paper is concerned with the application of MPC technique, the ST nonlinear phenomenological model of Eqs. 59-

60, with the relaxations of Eqs. (61)-(62), is Euler-discretised with the sampling period of Ts = 0.01 s. This procedure yields
a nonlinear discrete-time model. Given that the proposed min/max MPC method is conceived for qLPV embedded nonlinear
models, and due to the fact that the LDI property holds for the yielded discrete-time model, a qLPV model is obtained. We
consider the following system states:

x(k) =
[

x1(k)
x2(k)

]

=
[

Tp(k) − T
sp
p

Tf (k) − T
sp
f

]

, (63)

and the scheduling parameters as � = [�1, �2]T , which are respectively derived directly from the nonlinearities added to the bal-
ance of energy equations due to the time-varying thermal loss term given in Eq. (62) and due the partial derivative approximation
given in Eq. (61):

[

�1(k)
�2(k)

]T

= f�(x(k)) =

⎡

⎢

⎢

⎢

⎢

⎣

di�ℎi

(

1−e
−

x1(k)
(Tmaxp −T spp )

1−e−1

)

1−e
−

x2(k)
(Tmaxf −T spf )

(1−e−1)Ai

⎤

⎥

⎥

⎥

⎥

⎦

. (64)

Evidently, each of the scheduling parameters is bounded to a convex set:

�1 ∈ [�1 , �1] = [0 , di�ℎi] and (65)

�2 ∈ [�2 , �2] =
[

0 , 1
Ai

]

, (66)

which means that � ∈  . Furthermore, note that the time-derivatives of �, denoted �� are also available and ultimately bounded
in a convex set � . Accordingly, the following qLPV realisation is obtained:

x(k + 1) = A(�(k))x(k) + B(�(k))u(k) + Bw(�(k))w(k) , (67)
�(k) = f�(x(k)) . (68)
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Note that [A(�), B(�), Bw(�)] are affine on the scheduling vector �. The vector of load disturbances is given as followsw(k) =
[

I(k) Te(k) T
sp
p T spf

]

. The model matrices are:

A(�(k)) = Inx + Ts

[

− de�ℎ0
�mCmAe

− 1
�mCmAe

�1(k)
1

�mCmAe
�1

1
�fCfAi

�1 − 1
�fCfAi

�1

]

(69)

B(�(k)) = Ts

[

0
−�2

]

, (70)

Bw(�(k)) = Ts

[ de��
�mCmAe

de�ℎ0
�mCmAe

− de�ℎ0
�mCmAe

− 1
�mCmAe

�1(k)
1

�mCmAe
�1

0 0 1
�fCfAi

�1 − 1
�fCfAi

�1

]

. (71)

6.4 Offline MPC Preparations
The system is conceived for a steady-state reference tracking goal with the aforementioned T spp = 109.93 oC and T spf =

97 oC. Regarding this matter, we note that:
• The box-type set for the states,  , is defined with the following ultimate bound: x =

[

490 203
]T oC.

• The deviation of the states Δx is, thus ultimately bounded by: Δx =
[

0.162 0.2637
]T oC.

• The differentiation function f )� (k) is ultimately bounded:

|

|

|

|

|

|

|

|

|

|

)f�
)x

|

|

|

|

|

|

|

|

|

|

=
|

|

|

|

|

|

|

|

|

|

|

|

|

|

⎡

⎢

⎢

⎣

( di�ℎi
(1−e−1)

) 1
490
e−

x1
490

( 1
Ai(1−e−1)

) 1
203
e−

x2
203

⎤

⎥

⎥

⎦

|

|

|

|

|

|

|

|

|

|

|

|

|

|

≤ 0.3246 ∀ x ∈  . (72)

• With respect to  , the smallest local Lipschitz constant for the nonlinear map f�(⋅) is found for:
|

|

|

|

|

|

|

|

|

|

|

|

|

|

( di�ℎi
(1−e−1)

)
(

e−
x1
490 − e−

x̂1
490

)

( 1
Ai(1−e−1)

)
(

e−
x2
203 − e−

x̂2
203

)

|

|

|

|

|

|

|

|

|

|

|

|

|

|

≤ Γ
|

|

|

|

|

|

|

|

|

|

(

x1 − x̂1
x2 − x̂2

)

|

|

|

|

|

|

|

|

|

|

, (73)

where

Γ =
|

|

|

|

|

|

( di�ℎi
(1−e−1)

) e
1

490

( 1
Ai(1−e−1)

) e
1

230

|

|

|

|

|

|

= 0.8825 . (74)

• The worst-case scheduling sequence estimation error is given by:

�bound� =
(

Γ + f )�
)

Δx =
[

0.046 0.0015
]T . (75)

• The uncertainties � introduced due to the model-process mismatches, thus, are bounded to the compact set  , defined as:

 ∶= {� ∈ ℝnx
| ‖�‖ ≤ 4.89oC} . (76)

Notice, for comparison purposes, that the uncertainty set computed as if the scheduling parameters varied arbitrarily inside
 (as done in the original min/max LPV MPC design algorithms11) is given by:

Cao et al., 2005 ∶= {� ∈ ℝnx
| ‖�‖ ≤ 599oC} . (77)

while the uncertainty set computed taking the rates of variations of the scheduling parameters (��) into account, as done in13,
for a control horizon ofNp = 30 steps, is given by:

Li et al., 2010 ∶= {� ∈ ℝnx
| ‖�‖ ≤ 489oC} . (78)

Evidently, these two sets are much wider than the one with the proposed method. This means that the online computational effort
to solve the maximisation CP is smaller with the proposed method. This is tested and demonstrated in the following Section.
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7 SIMULATION RESULTS AND ANALYSIS OF THE MPC SCHEME

Now, the proposed dissipative fast robust MPC method for nonlinear systems is applied to the ST collector system. The
following simulations are performed in Matlab, with the aid of Yalmip software, Gurobi and fmincon solvers, on a 2.4 GHz,
8 GB RAM Macintosh computer.The considered process is emulated through the nonlinear high-fidelity phenomenological
partial-differential model given in Eqs. (59)-(60), with parameters given by Table 1.
The proposed method is implemented with the uncertainties defined by the set  in Eq. (76). The solutions of the CPs are

obtained with fmincon (maximisation CP, through an interior-point mechanism) and Gurobi (minimisation QP) solvers.
Through the sequel, the proposed control scheme is denoted “Proposed qLPVMPC”. For comparison purposes, it is compared

to the following key methods from the literature:
• A full-blown NMPC algorithm2, which embeds the complete nonlinear model predictions. To solve the resulting NP,
fmincon solver is used; this method is referred to as “Full-Blown NMPC”.

• The original min/max LPV MPC algorithm11, defined with respect to the uncertainty set given in Eq. (77). Its solution
comprises a CP (maximisation, via fmincon) and a QP (minimisation, via Gurobi); it is henceforth denoted “min-max
(Cao et. al, 2005)”.

• The min/max LPV MPC scheme considering bounded rates of parameter variations13, defined with respect to the uncer-
tainty set given in Eq. (78). This approach is also resolved via fmincon and Gurobi; it is denoted “min-max (Li et. al,
2010)”.

• The qLPV-embedding NMPC method25, which uses a scheduling sequence estimation and solves sequential QPs, solved
via through iterated uses of Gurobi. This last method is henceforth marked as “qLPV MPC (Cisneros & Werner, 2020)”.

All these controllers are synthesised with the same cost function Jk and prediction horizon Np = 30 samples. The cost
function is set to further force the regulation of the fluid temperature variable, with the following weights:

Q =
[

0.2 0
0 0.8

]

, R = 10−6 . (79)

We proceed by depicting the obtained results in terms of reference tracking, i.e. regulation of the system states to the origin.
These results comprise 950 s of simulation of the considered solar-thermal unit. The load disturbances (solar irradiance and
environment temperature) are shows in Figure 6. Once again, we remark that the reference tracking goals are taken as constant
values, this is:

T spp = 109.93 oC , Tspf = 97 oC . (80)

7.1 Analysis of the Region of Attraction
Firstly, we aim to demonstrate that the proposed method is indeed recursively feasible, yielding an ISS region of attractionISS .
According to the steps detailed in Sec. 5, the LMI in Lemma 2 yields a positive definite matrix P and a constant � that verify
the dissipativity conditions of the proposed min-max algorithm. This is, indeed there exist P and � such that the cost function
of the minimisation QP decays over the simulation run; they are numerically given:

P =
[

0.18746 0.00011
0.87199 24.00050

]

10−4 , � = 1.67939 10−7 . (81)

Thus, for whichever starting condition x0 found inside the ellipsoidal set ISS ∶=
{

x0 ∈ ℝnx
| xT0 Px0 ≤ 0

}

, input-to-state
stability is ensured. Accordingly, this is shown in Figure 7, where the elipsoid ISS is depicted altogether with the evolution of
the systems states x(k) (obtained with the Proposed qLPV MPC method).
Complementary, Figure 8 displays the decrease of the cost function Jk(⋅) over the simulation run. We note that it has an

asymptotic behaviour towards zero; the instantaneous increasing moments stand for those where the appear harsh variations
of solar irradiance (refer to Fig. 6) and, thus, the scheduling sequence extrapolation does not get such accurate gets and the
maximisation CP computes larger uncertainties Σk. We note that the cost function is compared to that obtained with the Full
Blown NMPC method, which is obviously smoother since it accounts for the complete NP.
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7.2 Extrapolation of Scheduling Sequence
In Figure 9, we present the results concerning the extrapolation of the scheduling parameters �1 and �2 along the prediction
horizon Np. In this Figure, the dashed black line depicts the actual variation of �(k), whilst the full blue line shows different
snippets of scheduling sequences extrapolated according to the recursive algorithm in Eq. (32). The estimation error is quite
small. Furthermore, the average time needed to solve the algorithm is of 0.41ms, much smaller than the considered sampling
period of 10 ms.
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FIGURE 9 Scheduling Sequence Extrapolation.

7.3 Regulation/Tracking Results
The results concerning the regulation of x(k), with all the tested methodologies, are presented in Figure 10. We stress that all
methods ensure state and control constraints (x ∈  and u ∈  ). The regulation of the states to the origin is not thoroughly
ensured by the min-max methods by Cao et al. and Li et al., since their respective uncertainty sets Cao et al., 2005 and Li et al., 2010

are too large with respect to  . We note that the first min-max method stabilised x to (−66.05 , −96.7) oC, while the second
(bounded-rates) method brought the state trajectories to (−65.95 , −96.34) oC. The smoother performances seem to be the ones
attained the Full-blown MPC algorithm, while the proposed method and the one by Cisneros & Werner yield quite comparable
performances. We remark that the control action also acts to attenuate the effect of the load disturbances; this is especially
evident after t = 500 s, when both disturbances vary abruptly (see Figure 6).
The proposedmethod is able to ensure adequate results since its uncertainty set is relatively small. Moreover, the uncertainty

vector Σ⋆k computed through the maximisation CP norm-decreases over the simulation, as the extrapolation of the scheduling
sequences get better (see Figure 9).
We proceed by investigating these performances through performance indexes: Tables 3 and 4 show, respectively, the root-

mean square (RMS) and integral-of-the-absolute-error (IAE) indexes applied to x1(k) (plate temperature tracking) and x2(k)
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TABLE 3 Performances Indexes: Plate Temperature Tracking (x1).

Method IAE (.10−3) RMS
Full-Blown NMPC2 7.6803 24.5295
Proposed qLPV MPC 11.5762 29.7982

min-max (Cao et al., 2005)11 60.5221 64.6373
min-max (Li et al., 2010)13 59.9912 64.2002

qLPV MPC (Cisneros & Werner, 2020)25 7.9062 24.6305

TABLE 4 Performances Indexes: Fluid Temperature Tracking (x2).

Method IAE (.10−3) RMS
Full-Blown NMPC2 1.1509 2.0402
Proposed qLPV MPC 1.0354 1.8946

min-max (Cao et al., 2005)11 93.0361 96.2502
min-max (Li et al., 2010)13 91.5767 94.8112

qLPV MPC (Cisneros & Werner, 2020)25 1.9396 2.8030

(fluid temperature tracking). We note that smaller IAE and RMS values indicate better performances, which conversely means
that the references are tracked faster and with less steady-state error.
With respect to the regulation of x1, these tables show that the performances achieved with the Full-Blown NMPC and the

qLPV MPC by Cisneros & Werner are roughly equivalent in terms of RMS and IAE. The proposed method does not stay far
behind, having slightly slower tracking in the first few seconds, which results in the settling seen by t = 200 s in Figure 10. It is
important to notice that this fact resides in themaximisation procedure, which implies the robustness by finding larger uncertainty
vectors Σ⋆k in these first moments, which reflect on the solution found by the minimisation QP and the slight difference to the
other methods. Anyhow, we stress that the performances are comparable.
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Owing to the regulation of x2, it is seen that the IAE and RMS indexes indicate that the best tracking performances are
obtained with the proposed method. As seen in Figure 10, the Full-Blown NMPC and the qLPV MPC method by Cisneros &
Werner yield comparable results.

7.4 Analysis of the Control Signal
Table 5 presents the TV index, which computes the total variance of the control input over time, this is:

TV ∶=
∑

|�u(k)| =
∑

|u(k + 1) − u(k)| . (82)

Bigger values for the TV index shows that more variation is applied to the control along the simulation; therefore, values closer
to zero indicate better (smoother) control strategies in terms of the use of the actuator.
It is seen that the smoother control values are obtained by the Full-Blown NMPC method, with the proposed method and the

method by Cisneros &Wener not standing far behind. The min-max methods by Cao et al. and Li et al. present negligible results,
at least for this ST application for which � has a big variation set  with also large possible variation rates (i.e. � is also large).

TABLE 5 Total Variance of the Control Signal.

Method TV
Full-Blown NMPC2 0.1987
Proposed qLPV MPC 0.2800

min-max (Cao et al., 2005)11 16.8449
min-max (Li et al., 2010)13 68.97871

qLPV MPC (Cisneros & Werner, 2020)25 0.2789

7.5 Analysis of the Computational Stress
With respect to these results, we present a very important issue: the average computational time needed to solve the optimisation
procedure of the methods are synthesised in Table 6. We recall that the sampling period of the system is of 10ms (which is the
computational time upper bound). Evidently, the Full-Blown NMPC needs a lot of time to solve its inherent NP, which means
that this method is not applicable in practice for processes with small sampling periods. The results obtained with this method
are purely numeric and would not be able to be applied in practice. The qLPV MPC method by Cisneros & Werner solves, in
average, 5 QPs (it iterates the QPs to compute the extrapolation guess P̂k). The proposed method operates, in average, within
6.3ms, spending 0.41ms to make the extrapolation guess P̂k, 4.24ms to solve the maximisation CP via fmincon and 1.65ms via
Gurobi. These are very interesting results, meaning that the proposed solution is indeed fast and able to operate for embedded
applications. The performances of the proposed method are equivalent to the method by Cisneros & Werner, which operates in
the millisecond range as well as the available modern NMPC solutions, such as ACADO and GRAMPC48,49.
We stress that the obtained time performance depends on the operating computer machine and on the size of the controlled

system. In this paper, the considered system is a 2 × 2 system, for which the max. CP and the min. QP are evaluated simply
enough. For larger order models, sub-optimal solutions might be necessary; refer to a previous discussion on this matter50.

TABLE 6 Computational Performance of the Controllers.

Method Average Computational Time
Full-Blown NMPC2 776.50ms
Proposed qLPV MPC 6.3ms

min-max (Cao et al., 2005)11 7.2ms
min-max (Li et al., 2010)13 7.5ms

qLPV MPC (Cisneros & Werner, 2020)25 8.72ms
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8 CONCLUSIONS

In this paper, a novel MPC algorithm for nonlinear system is proposed. The nonlinear system is embedded into a qLPV formu-
lation and its scheduling parameters � are extrapolated using a recursive Taylor expansion law. The predictive control algorithm
is based on a min-max optimisation procedure, written with respect to the uncertainty set derived by wrong estimates of �. The
dissipativity of the proposed method is verified via an LMI-solvable remedy which ensures the Lyapunov-decrease of the stage
cost and an Input-to-state stability region. The method is applied to the nonlinear temperature control problem of solar-thermal
collector plates, exhibiting good performances.
With respect to the obtained results, some key points are mentioned:

• Full-blown nonlinear programming NMPC are not applicable for embedded applications of processes with fast sampling
rates, since the average time needed to solve the NP is usually larger than the available sampling period. Recent literature
has shown how approximated NMPC methods (such as CaSaDi, GRAMPC and ACADO48) and qLPV-embedding MPC
algorithms25 are able to efficiently solve such complex control problem in the range of milliseconds.

• For the considered case study, through IAE and RMS indexes, the reference tracking performances obtained with the
proposed qLPV-embedding min-max MPC method are equivalent to these fast modern nonlinear MPC methods25. The
numerical operability of the proposed. method is similar to previousworks48,25.We note that the complexity of the problem
grows with the order of the system.

• The proposed method solves the maximisation convex programming problem with respect to the error regarding the
estimation of the scheduling parameters along the prediction horizon. We note that any kind of algorithm with bounded
estimation errors could be used in the place of the Taylor expansion one proposed in this paper. An alternative and elegant
option could be the use of the iterated mechanism25, which uses the state sequence computed with the minimisation QP
to compute the evolution of � along the horizon.

• The proposedmethod is compared to two keystonemin-max LPVMPC algorithms from the literature11,13, which consider,
respectively, that � can vary arbitrarily inside  and considers bounded rates of variations for �. Since the variations of
the scheduling parameters and its convex set are quite large for the considered application, the results obtained with these
methods are quite poor. The uncertainty set with the proposedmethod is much smaller (by a factor of 1∕100). Furthermore,
as time control law progresses, the extrapolation method gets better estimations of �, which also makes the uncertainty
output of the maximisation problem to converge to zero, as the state trajectories converge.

• Finally, the method has ensured input-to-state stability for a larger regional domain ISS . This property is ensure together
with recursive feasibility through a dissipativity verification framework, solved via LMIs. We note that the advantage
of this framework is that it does not require the use of terminal ingredients (constraints and costs) on the optimisation
problem, which may be quite hard to compute online for LPV systems. Therefore, the MPC cost function is quadratic on
x and u (and quite simple), which allows its fast operation.
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APPENDIX

A NOMENCLATURE AND SYMBOLOGY

Acronyms
MPC Model Predictive Control
LPV Linear Parameter Varying
LTI Linear Time-Invariant
QP Quadratic Programming Problem
NMPC Nonlinear Model Predictive Control
NP Nonlinear Programming Problem
qLPV Quasi-linear Parameter Varying
LDI Linear Differential Inclusion
ISS Input-to-State Stability
ISpS Input-to-State Practical Stability
LMI Linear Matrix Inequality
2ndOCP Second-order Cone Programming Problem
CP Convex Programming Problem
Variables
Np Prediction horizon
Jk MPC quadratic cost
Q,R MPC weighting matrices
l Stage cost
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x States
Δx Deviation of the states
u Control inputs
� Scheduling parameters
�� Scheduling parameters’ rates of variations
w Load disturbances
 State admissibility set
 Control input admissibility set
 Scheduling set
 Disturbance set
Xf Terminal state set
V Terminal offset cost
Uk Future control actions vector
H(x, u, k) LDI matrix
G Process representation
f�(⋅) Scheduling proxy
Γ Lipschitz constant
Xk Future state evolution
Pk Future scheduling sequence
�� Scheduling sequence estimation error
H(Pk) Hessian of Jk
g(Pk, x) Gradient of Jk
f )� Scheduling proxy derivative
�, � Forgetting factors
� Model-process mismatch uncertainties
 Uncertainty set
Σk Uncertainty vector
ISS ISS set
�k Nonlinear MPC operator
Ψ(Pk) Parameter-dependency extraction operator
Gn
I1

Nominal LTI model of augmented system
Θ Scheduling dependency operator
Cf Fluid heat transfer capacity
�f Fluid density
Cm Collector plates heat transfer capacity
�m Metal plate density
� Thermal loss coefficient
ℎ0, ℎi Heat transfer coefficients
de, di Diameters
Tf , Tp Fluid and plate temperatures
I Solar irradiance
Te External temperature

B PROOF OF PROPOSITION 2

The convergence property can be demonstrated with the aid of the residual term ��(k+j), which should turn null.We demonstrate
this for j = 1; the proof for the following steps is equivalent. Considering that the system is regulated by an MPC controller, and
since it is robustly stable despite the residual term, it holds that limk→∞ x(k + 1) = x(k). Then, take ��(k) = f�(x(k + 1)) −
f�(x(k))−f )�Δx(k). Due to the stabilisation implied by theMPC, it directly follows that limk→∞ f�(x(k+1)) = limk→∞ f�(x(k))
and limk→∞Δx(k) = 0. Then, limk→∞ ��(k) = − limk→∞ f )�Δx(k) → 0. This concludes the proof.
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C PROOF OF PROPOSITION 3

Firstly, note that at any given moment ahead of k, the scheduling parameters can be given as:

�(k + j + 1) = �(k + j) + f� (x(k + j + 1)) − f� (x(k + j)) ∀ k + j ∈ ℕ , (C1)

whereas the “extrapolated” value is:

�̂(k + j + 1) = �(k + j) + f̂� (x(k + j + 1)) − f� (x(k + j)) ∀ k + j ∈ ℕ , (C2)

where f̂�(⋅) represents the Taylor expansion. The residual �� is given by the difference between Eqs. (C1) and (C2), as follows:

��(k + j + 1) = f� (x(k + j + 1)) − f̂� (x(k + j + 1)) , (C3)
= f�(x(k + j + 1)) − f�(x(k + j)) − f )�Δx(k + j) .

Computing the ultimate bounds on the estimation error:

‖��(k + j + 1)‖ = ‖f�(x(k + j + 1)) − f�(x(k + j)) − f )�Δx(k + j)‖ . (C4)

Due to the Triangular inequality:

‖��(k + j + 1)‖ ≤ ‖f�(x(k + j + 1)) − f�(x(k + j))‖ + ‖f )�Δx(k + j)‖ . (C5)

Due to the local Lipschitz property of f�(⋅) (Assumption 7), it follows:

‖��(k + j + 1)‖ ≤ Γ‖Δx(k + j)‖ + ‖f )�Δx(k + j)‖ . (C6)

Since f )� is ultimately bounded (Assumption 13), i.e. ‖f )� ‖ ≤ f )� , it holds that:

�bound� =
(

Γ + f )�
)

Δx. (C7)

Note that the ultimate bound on the state deviation is computed with respect to Assumption 10. Moreover, since �bound� < �,
 ⊂  . This concludes the proof.

D PROOF OF LEMMA 1

The compactness of  , and  imply that any predicted evolution of the system statesXk and sequence of control actions Uk
are bounded. This fact guarantees that the optimal (maximised) cost J bound

k is upper bounded, i.e. there exists a finite real value
Jk s.t. J bound

k ≤ Jk for all x ∈ Max CP.
In the virtue of the previous discussion and by optimality, it is implied that the sequence of control inputs Uk is feasible (note

that the min. QP is assumably feasible). Thence, we denote ΔJ bound
k as the

(

J bound
k − J bound

k−1

)

, i.e. the difference between the
worst-case cost functions at two consecutive instants. For all x ∈ Max CP, we consider that the MPC is formulated under a
feasible time-varying state-feedback u(k) = �(k)x(k), as gives Assumption 4 and Eq. (29), and, thus:

ΔJ bound
1 ≤ max

Σk

{1
2
ΣTkH�Σk − ΣTk g�(P̂k, x(k))

}

≤ �J (�) .

Assume thatΔJ bound
k ≤ �J (�) for all x ∈ Max CP. Consider that the control action is well defined (resulting from the min QP).

Then, it follows that:

J bound
k+1 ≤ max

Σk

{1
2
ΣTkH�Σk − ΣTk g�(P̂k, x(k)) + J

bound
k

}

,

and, thus, we arrive at:

ΔJ bound
k+1 ≤ max

Σk

{1
2
ΣTkH�Σk − ΣTk g�(P̂k, x(k)) + J

bound
k

}

− max
Σk

{1
2
ΣTkH�Σk − ΣTk g�(P̂k, x(k)) + J

bound
k−1

}

≤ max
Σk

{1
2
ΣTkH�Σk − ΣTk g�(P̂k, x(k)) + J

bound
k − 1

2
ΣTkH�Σk + ΣTk g�(P̂k, x(k)) − J

bound
k−1

}

= max
Σk

{

ΔJ bound
k

}

≤ �J (�) .
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Therefore, by induction, it is inferred that the decay of the worst-case cost function is upper bounded for all k ≥ 0, considering
that the evolution of x belongs to the feasibility set Max CP.
Consider that the system state x(k) is measured and the min-max algorithm computes a control action u(k) = �(k)x(k). Then,

the system is driven to x(k+1). Since we consider that x(k) ∈ Max CP and the model-process uncertainties are upper-bounded
(by �), it is clear that the x(k+ 1) ∈ Max CP. This is valid for a feasible min. QP (which is demonstrated in the sequel). By the
monotonicity results, it also follows that:

ΔJ bound
k+1 = J bound

k+1 − max
Σk

{1
2
ΣTkH�Σk − ΣTk g�(P̂k, x(k)) + J

bound
k + J bound

k−1

}

= ΔJ bound
k − 1

2
ΣTkH�Σk + ΣTk g�(P̂k, x(k))

≤ −1
2
ΣTkH�Σk + ΣTk g�(P̂k, x(k)) + �J (�) .

E PROOF OF LEMMA 2

Firstly, we define the quadratic Lyapunov function V = xTPx. Then, we pre-multiply and post-multiply the LMI (54) by
[

xT �T uT�
]

and
[

xT �T uT�
]T

, respectively. This yields the following inequality:

(V (k + 1) − V (k)) −
(

�zTgMzzg
)

+

(

[

u�(k) y�(k)
]T

[

I
0

]T

MΘ

[

I
0

]

[

u�(k) y�(k)
]

)

< 0 . (E8)

Then, we can substitute u�(k) ∶= Θy�(k) which yields:

(V (k + 1) − V (k)) − �
(

zTgMzzg
)

+

(

u�(k)T
[

I
Θ

]T

MΘ

[

I
Θ

]

u�(k)

)

< 0 . (E9)

Due to inequality (52) the term
(

zTgMzzg
)

is implied as negative. Equivalently,
(

u�(k)T
[

I
Θ

]T

MΘ

[

I
Θ

]

u�(k)

)

is implied as positive due to the structure ofMΘ. Therefore, for any � > 0, it holds that:

V (k + 1) − V (k) < 0 , (E10)

which means that the propose storage function is a Lyapunov function for the system and, thus, for any starting condition
x0 ∈ ISS , local asymptotical stabilisation to origin of the state-space is ensured by the MPC policy.
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