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A fast dissipative robust nonlinear model predictive control procedure via quasi-linear parameter varying embedding and parameter extrapolation

INTRODUCTION

Model Predictive Control (MPC) is one of the most widespread control techniques, with many industrial applications [START_REF] Camacho | Model predictive control[END_REF] . Its implementation is relatively simple, requiring the solution of an online optimisation problem, written in terms of a prediction model and operational constraints. MPC is a sliding-horizon paradigm, which means that the algorithm takes into account the process behaviour along the following steps ahead of each sampling instant; as time evolves, the instants are incremented and the horizon slides forward. For the case of processes with linear time-invariant (LTI) models, a state-feedback predictive control action ( ) can be generated by solving a Quadratic Programming Problem (QP) of the following form: (2)

( + -1| ) ∈  , ∀ ∈ ℕ [1, ] , (3) 
( + | ) ∈  , ∀ ∈ ℕ [1, ] , (4) 
( + | ) ∈ . ( 5 
)
The model function (⋅) is generally expressed as ( + -1) + ( + -1), being ( ) the vector of controlled states. It is implied that is a quadratic cost on the vector , which defines the sequence of control actions along the horizon:

= col{ ( | ) , … , ( + -1| )}. The feasibility sets  and  define the admissible values for and , considering operational constraints of the controlled process.

is a terminal set for the states. We note that, usually, a terminal (offset) cost ( ( + | )) is added to . While with great theoretical value, LTI MPC is restricted to processes represented by LTI models. Nevertheless, the majority of systems is nonlinear and when controlled over larger operating conditions (or when heavily affected by external parameters), the nonlinearities become quantitative and, thus, the previous LTI MPC algorithm must be replaced. Accordingly, the concept of Nonlinear MPC (NMPC) grew on progressively literature since the 00's 2 . The major drawback of NMPC algorithms is that their numerical burdon is much greater than what is required in an LTI setting (which renders QPs), since the nonlinear model predictions generate a Nonlinear Programming Problems (NPs), which are not at all easy to solve (and could even be non-convex). Regarding Problem 1, the NMPC version would have a nonlinear system model, i.e. ( + ) = ( ( + -1), ( + -1)), with (⋅) as a nonlinear map. Due to this constraint, NMPC algorithms were hardly able to be computed for real-time embedded applications, requiring excessive online computational capacities and thus violating the sampling period constraint [START_REF] Camacho | Nonlinear model predictive control: An introductory review[END_REF] .

In order to address this complexity drawback of "full-blown" NMPC strategies, literature points out to the option of considering quasi-/Linear Parameter Varying (qLPV/LPV) model structures to embed the nonlinear process. LPV models maintain the linearity property along the input/output channels, since they are linear in the state space, while nonlinear in the parameter space. The LPV state transition depends ona vector of scheduling parameters denoted ∈ , which is known and bounded at each sampling instant. The LPV toolkit has progressively become popular to model process with complex dynamics, with a variety of successful results [START_REF] Tóth | Modeling and identification of linear parameter-varying systems[END_REF][START_REF] Tóth | The behavioral approach to linear parameter-varying systems[END_REF][START_REF] Mohammadpour | Control of linear parameter varying systems with applications[END_REF][START_REF] Hoffmann | A survey of linear parameter-varying control applications validated by experiments or high-fidelity simulations[END_REF] . Many nonlinear processes can be described within a qLPV formalism, as long as Linear Differential Inclusion (LDI) is respected [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF][START_REF] Abbas | Embedding of nonlinear systems in a linear parametervarying representation[END_REF] .

Related Works

There are quite a few MPC algorithms specifically conceived for nonlinear systems represented with qLPV/LPV models. A detailed review on this topic has been recently presented [START_REF] Morato | Model predictive control design for linear parameter varying systems: A survey[END_REF] . Synthetically, we can sort out these works into two main different categories: (a) robust MPC methods [START_REF] Cao | Min-max MPC algorithm for LPV systems subject to input saturation[END_REF][START_REF] Besselmann | Explicit LPV-MPC with bounded rate of parameter variation[END_REF][START_REF] Li | The feedback robust MPC for LPV systems with bounded rates of parameter changes[END_REF][START_REF] Jungers | MPC for LPV systems with bounded parameter variations[END_REF][START_REF] Bumroongsri | An offline formulation of MPC for LPV systems using linear matrix inequalities[END_REF] , which treat the future scheduling variables as bounded uncertainties [START_REF] Camacho | Model predictive control[END_REF] ; and (b) sub-optimal methods [START_REF] Cisneros | Efficient nonlinear model predictive control via quasi-LPV representation[END_REF][START_REF] Cisneros | Fast nonlinear MPC for reference tracking subject to nonlinear constraints via quasi-LPV representations[END_REF][START_REF] Mate | A Stabilizing Sub-Optimal Model Predictive Control For Quasi-Linear Parameter Varying Systems[END_REF][START_REF] Morato | Novel qLPV MPC Design with Least-Squares Scheduling Prediction[END_REF][START_REF] Alcalá | LPV-MPC Control for Autonomous Vehicles[END_REF] that replace the actual future scheduling trajectory ( + ) by a prediction guess ̂ ( + ), thus yielding programs with QP-alike burden.

With regard to these LPV MPC scheme, we highlight some issues:

• The robust framework resides in solving the MPC optimisation w.r.t. the worst-case cost that is derived with the uncertainty caused by the variation of the scheduling variables along the prediction horizon . These algorithms are usually named "min-max" because the cost function is found through arg max ∈  (⋅), and then minimised with respect to . The original papers [START_REF] Cao | Min-max MPC algorithm for LPV systems subject to input saturation[END_REF][START_REF] Besselmann | Explicit LPV-MPC with bounded rate of parameter variation[END_REF] assume that the future scheduling parameters ( + ) vary arbitrarily within the scheduling set .

More recently, many works [START_REF] Li | The feedback robust MPC for LPV systems with bounded rates of parameter changes[END_REF][START_REF] Jungers | MPC for LPV systems with bounded parameter variations[END_REF][START_REF] Bumroongsri | An offline formulation of MPC for LPV systems using linear matrix inequalities[END_REF] have demonstrated that the min-max procedure can be simplified for the case of bounded rates of parameter variations (i.e. ( ) = ( ) -( -1) bounded), which is standard in LPV applications. Nevertheless, [START_REF] Camacho | Model predictive control[END_REF] We also mention the application of tube-based MPC design. This robust synthesis is able to reduce the numerical complexity of the algorithm [START_REF] Hanema | Stabilizing tube-based model predictive control: Terminal set and cost construction for LPV systems[END_REF] by preparing offline tubes that bound the system trajectories. The main advantage is of these methods [START_REF] Hanema | Tube-based anticipative model predictive control for linear parameter-varying systems[END_REF][START_REF] Abbas | Tube-based model predictive control for linear parameter-varying systems with bounded rate of parameter variation[END_REF][START_REF] Hanema | Heterogeneously parameterized tube model predictive control for LPV systems[END_REF] is that the numerical toughness grows well-behaved (linearly, in many cases) with the size of the prediction horizon . Nevertheless, tube-based MPC schemes often result in quite conservative performances.

the major drawbacks with these robust tools are that: (i) they are not implementable for real-time applications, due to the complexity of solving the maximisation problem for the whole scheduling set  (or, the scheduling variation set ); and (ii) the formulations through offline preparations (such as the tube paradigm) are often quite hard to design; the synthesis procedure is usually not trivial and hard to understand, which hinders industrial acceptance.

• The sub-optimal methods can be conceived through iterative [START_REF] Cisneros | Efficient nonlinear model predictive control via quasi-LPV representation[END_REF] or recursive [START_REF] Morato | Novel qLPV MPC Design with Least-Squares Scheduling Prediction[END_REF] estimation procedures regarding ( + ).

The major drawback is that the resulting QPs may find local minima of the original NP, which conversely may lead to poor or insufficient performances. Despite being able to run in real-time, these algorithms lack performance guarantees, which may compromises the overall results.

There is an evident gap in the literature: the lack of robust nonlinear MPC algorithms, with direct and simple-enough online implementation, using the qLPV embedding approach. Therefore, in this paper, we seek a formulation that is able to run in realtime and, yet, maintains optimality concerns, leading to good performance. The bottleneck is for the algorithm to run in the range of milliseconds, whilst taking into account the model nonlinearities.

Contributions

In several of the listed papers [START_REF] Cisneros | Efficient nonlinear model predictive control via quasi-LPV representation[END_REF][START_REF] Cisneros | Fast nonlinear MPC for reference tracking subject to nonlinear constraints via quasi-LPV representations[END_REF][START_REF] Morato | Novel qLPV MPC Design with Least-Squares Scheduling Prediction[END_REF] , estimation algorithms have been used regarding the future values of the scheduling parameters, along the prediction horizon. We progress on this idea by using a recursive extrapolation algorithm with bounded estimation errors ∈  ⊂ . Then, the bounds are used to formulate a robust min/max MPC. Motivated by the previous discussion and the literature gap, our contributions are as follows:

• We present an error-bounded recursive estimation algorithm for the extrapolates of the scheduling parameters along the horizon, i.e. ( + ) for = 1, … , -

• We develop an min/max robust qLPV MPC framework, the use of the extrapolation of to make model-based predictions;

• A dissipativity inequality formulation for input-to-state stability (ISS) analysis is applied. This analysis also serves to verify the recursive feasibility property of the proposed algorithm. An LMI-solvable remedy to estimate the ISS zone is obtained.

Remark 1. Some previous papers [START_REF] Cisneros | Fast nonlinear MPC for reference tracking subject to nonlinear constraints via quasi-LPV representations[END_REF][START_REF] Cisneros | Nonlinear model predictive control for models in quasi-linear parameter varying form[END_REF] had already conceived NMPC formulations via qLPV embedding. Nonetheless, in the prior, optimality concerns were not ensured, since the extrapolation error is not taken into account in the design procedure. Moreover, these works reframe the NP into a 2 OCP version (or as a series of sequential QPs), which is also not easy to solve. Therefore, in this paper, we provide a formulation for the problem through, at most, two consecutive Convex Programming Problems (CPs), in order to achieve comparable results (in terms of computational load).

Organisation

This paper is structured as follows. In Section 2, the preliminaries and formalities are presented, especially regarding how nonlinear processes can be embedded into a qLPV representation through LDI. Section 3 presents the formulation for recursive extrapolation of the qLPV scheduling parameters along the prediction horizon. Section 4 formulates the robust min-max MPC. Section 5 shows the application of the dissipativity constraints to verify stability and recursive feasibility of the proposed algorithm. Section 6 details the considered case study, of nonlinear temperature control in solar collectors, for which the proposed strategy is tested. Section 6.2 exhibits the achieved simulation results regarding this case study. General conclusions are drawn in Section 8.

Notation

The set of nonnegative real number is denoted by ℝ + , whist the set of nonnegative integers including zero is denoted by ℕ. The index set ℕ [ , ] represents { ∈ ℕ | ≤ ≤ }, with 0 ≤ ≤ . The identity matrix of size is denoted as ; col{ , , } denotes the vectorisation (collection) of the entries and diag{ } denotes the diagonal matrix generated with the line vector .

The value of a given variable ( ) at time instant + , computed based on the information available at instant , is denoted as ( + | ).  refers to the class of positive and strictly increasing scalar functions that pass through the origin. A given function ∶ ℝ → ℝ is of class  if (0) = 0 and lim → +∞ ( ) → +∞. A real-valued scalar function ∶ ℝ + → ℝ + belongs to class  ∞ if it belongs to class  and it is radially unbounded (this is lim →+∞ ( ) → +∞. A function ∶ ℝ + × ℝ + → ℝ + belongs to class  if, for each fixed ∈ ℝ + , (⋅, ) ∈  and, for each fixed ∈ ℝ + , ( , ⋅) is non-increasing and holds for lim →+∞ ( , ) = 0.  denotes the set of all compact convex subsets of ℝ . A convex and compact set ∈  with non-empty interior, which contains the origin, is named a PC-set. A subset of ℝ is denoted a polyhedron if it is an intersection of a finite number of half spaces. A polytope is defined as a compact polyhedron. A polytope can be analogously represented as the convex hull of a finite number of points in ℝ . A hyperbox is a convex polytope where all the ruling hyperplanes are parallel with respect to their axes.

In Appendix A, we provide a Nomenclature and Symbology table, which details all acronyms, variables, indexes, and symbols used in this paper. In the sequel, all the necessary definitions for further development are recalled. 

Definitions

( + 1) =  ( ( ), ( )) , (6) 
where ( ) is the state of the system regulated under closed-loop, while ( ) is a bounded load disturbance variable such that

|| ( )|| ≤ ∀ ∈  .
Then, this nonlinear system is said to be input-to-state stable in closed-loop if there exists a pair of -functions (⋅, ⋅) and (⋅) such that the following inequality holds: || ( )|| ≤ ( (0), ) + ( ).

Definition 5. Regional ISpS (ISS) [START_REF] Magni | Regional input-to-state stability for nonlinear model predictive control[END_REF] The system in Eq. ( 6) is said to be ISpS in  ⊆ ℝ if there exists a -function , a -function and a scalar ∈ ℝ + such that, for each 0 ∈  , all ( ) and all ( ), it holds that the corresponding state trajectory satisfies the following inequality || ( )|| ≤ ( (0), )+ (|| ( -1)||)+ ∀ ∈  [1,+∞] . If the origin lies in the interior of  and the inequality also holds for = 0, the system is said to be ISS in  . Note that the presence of a non-null in the above inequality is a conservative solution, i.e. for a greater || ||, one finds a smaller ISpS region  .

Definition 6. Recursive Feasibility

An optimisation algorithm is said to be recursively feasible inside the feasibility set if, for any starting condition ( 0 ) = 0 ∈  , the optimisation is feasible and remains feasible throughout the following instants > 0 .

Definition 7. Robust Positively Invariant Set [START_REF] Blanchini | Set-theoretic methods in control[END_REF] A set ⊂  is said to be a robust positively invariant (RPI) set for the considered qLPV embedded system given in Eq. ( 9) with ( ) = 1 ⋆ if, for the whole state evolution sequence and for any ( ) ∈ and ( ) ∈ , it follows that ( + 1) ∈ . This is, the state evolution always lies inside the RPI set .

Definition 8. D/G Scalings 29

Let Θ = diag{ 1 ( ) size{ 1 } , … , ( ) size{ } }, with ∈ ℝ. Accordingly, the set of D/G-Scalings is defined as follows: 

 ∕ ∶=

PRELIMINARIES AND FORMALITIES

The Nonlinear System and qLPV Embedding

Consider the following generic discrete-time nonlinear system:

( + 1) = ( ( ), ( ), ( )) , (7) 
where ∈ ℕ represents the sampling instant, ∶ ℕ →  ⊂ ℝ represents the system states, ∶ ℕ →  ⊂ ℝ is the vector of control inputs and ∶ ℕ →  ⊆ ℝ stands for load disturbance variables. This process satisfies the following Assumptions:

Assumption 1. The nonlinear map ∶  ×  ×  →  is continuous and continuously differentiable with respect to , i.e. class  ∞ Assumption 2. The (box-type) sets  and  define the feasibility constraints for the system states and the control vector, delimited by the operational (physical) limitations of these variables. These sets yield ultimate bounds on and , as follows:

 ∶= ∈ ℝ ∶ || || ≤ ,  ∶= ∈ ℝ ∶ || || ≤ .
Assumption 3. The set  defines the load disturbances. For regularity purposes, we consider that  is a priori an open set.

Assumption 4. The states are measurable at all sampling instants ∈ ℕ, which means that control can be formulated under a state-feedback fashion ( ) = ( ) ( ).

Assumption 5. This nonlinear system satisfies the Linear Differential Inclusion property.

The nonlinear dynamics in Eq. ( 7) can be given through a qLPV realisation if Assumption 5 is satisfied. The LDI property is as follows [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF] : suppose that, for each , and and for every sampling instant , there exists a matrix ( , , ) ∶  ×  × ℕ →  such that the following equality holds:

( ( ), ( ), ( )) = ( , , ) ⎡ ⎢ ⎢ ⎣ ( ) ( ) ( ) ⎤ ⎥ ⎥ ⎦ . ( 8 
)
In this case, LDI is verified and, thus, it follows that:

∶= ( + 1) = ( ( )) ( ) + ( ( )) ( ) + ( ( )) ( ) ( ) = ( ( ), ( )) ∈  , ( 9 
)
is a qLPV realisation2 of Eq. ( 8) with ∶  ×  →  ⊂ ℝ representing the endogenous nonlinear scheduling proxy. Note that ( ) is bounded and known online at each instant , but generally unknown for any future instant

+ ∀ ∈ ℕ [1,∞] .
Ultimate bounds are considered upon , as follows:

 ∶= ∈ ℝ | || || ≤ .
Remark 2. The LDI property, as expressed through Eq. ( 8), is satisfied for closed sets  and  and not for the whole spaces ℝ and ℝ . For this reason,  is a subset of ℝ ( )×( + + ) .

Remark 3. Through the sequel, for simplicity, we drop the dependency of on and , simply taking ( ) = ( ( )). Nonetheless, we stress that all developments presented in the sequel can be easily extended to broader case. For the sake of simplicity, we also drop the parameter dependency from , i.e. ( ( )) = . Note that this can always be done via the inclusion of the parameter dependency into the load disturbance signal, e.g.

( ( )) ( ) = 2 2 ( ) with 2 ( ) = ( ( ), ( )).
Complementary, we consider that Assumption 6 is satisfied [START_REF] Camacho | Nonlinear model predictive control: An introductory review[END_REF] . This Assumption does not compromise the proposed approach; it serves only to analytically account for model-process mistmatch uncertainties. We also consider that the qLPV embedding of Eq. ( 9) satisfies Assumptions 7 (local Lipschitz property of (⋅)), 8 (bounded rates of variation for ) and 9 (stabilisability). Assumption 6. Matrices ( ( )) and ( ( )) are affine-dependent on ( ), as in: ( ( )) = 0 + 1 ( ) and ( ( )) = 0 + 1 ( ). Assumption 7. The nonlinear scheduling parameter map ∶  →  agrees to a local Lipschitz condition around any arbitrary point ∈ , this is:

|| ( ) -( ̂ )|| ≤ Γ||( -̂ )|| , ∀ ∈  , ∀ ̂ ∈  , ( 10 
)
where the smallest constant Γ that satisfies Eq. ( 10) is known as the Lipschitz constant for (⋅). 

Model-based Predictions through qLPV embedding

Since the qLPV embedding in Eq. ( 9) retains the linearity property from inputs to outputs, it is possible to formulate numericallyefficient design procedures using these models. While LPV control is standard in both state-feedback and dynamics outputfeedback formulations [START_REF] Mohammadpour | Control of linear parameter varying systems with applications[END_REF][START_REF] Shamma | An overview of LPV systems[END_REF][START_REF] Sename | Robust control and linear parameter varying approaches: application to vehicle dynamics[END_REF][START_REF] Scorletti | Toward nonlinear tracking and rejection using LPV control[END_REF] , the design predictive control algorithms for LPV systems is not trivial, since solving the inherent constrained arg min optimisation problem requires the knowledge of future values for the scheduling parameter. The key difficulty of LPV MPC algorithms is that the prediction of the future state variables ( + | ), ∀ ∈ ℕ [1, ] gets rather complicated from the two-steps ahead prediction onwards, since nonlinear terms appear:

( + 2| ) = ( ( + 1)) ( ( )) ( ) + ( ( + 1)) ( ( )) ( | ) . ( 11 
)
Note that a cross-product term between different instances of parameter-dependent matrices arises. For the considered qLPV embedding, ( + ) is a function of the states, which converts the previous equation to:

( + 2| ) = ( ( ( + 1| ))) ( ( )) ( ) + ( ( ( + 1| ))) ( ( )) ( | ) , ( 12 
)
which still is nonlinear and, therefore, it follows that Problem 1 formulated with a qLPV embedded model remains an NP. We can expand [START_REF] Cisneros | Efficient nonlinear model predictive control via quasi-LPV representation[END_REF] the state predictions from Eq. ( 11) for the whole sequence of the future states within the prediction horizon. Thus, the complete future state sequence, denoted , is expressed as regular bilinear function of the sampled state ( ), the control sequence and the "scheduling sequence" . This yields:

= ( ) ( ) + ( ) , (13) 
where the scheduling sequence and the sequence of future state variables are respectively given by:

= ( ) ( + 1) ( + 2) … ( + -1) . ( 14 
) = ( + 1| ) ( + 2| ) … ( + | ) . ( 15 
)
Matrices ( ) and ( ) in Eq. ( 13) are given as follows:

= ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ ( ( )) ( ( + 1)) ( ( )) ⋮ ( ( + -1)) ( ( + -2)) … ( ( )) ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ , ( 16 
) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ ( ( )) 0 … ( ( + 1)) ( ( )) ( ( + 1)) … ⋮ ( ( + -1)) … ( ( + 1)) ( ( ) ( ( + -1)) … ( ( + 2)) ( ( + 1)) … ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ . ( 17 
)

Extrapolating the Scheduling Sequence

As formulated in previous works [START_REF] Cisneros | Efficient nonlinear model predictive control via quasi-LPV representation[END_REF] , guessing mechanisms can be used to estimate the values of . In fact, different formulations for these extrapolation algorithms have been previously presented: through recursive Least-Square minimisation [START_REF] Morato | Novel qLPV MPC Design with Least-Squares Scheduling Prediction[END_REF] or iterative guessing through the actual qLPV proxy4 = ( ), computed via sequential QPs, ensuring refined extrapolations as increases.

In this paper, we follow this same idea, considering an algorithm that estimates the scheduling sequence at each instant, with bounded estimation errors. This is, for ̂ as the extrapolation guess, the algorithm provides:

̂ = col { ̂ ( + )} ∀ ∈ ℕ [0, -1] with ( 18 
) ( + ) = ( + ) -̂ ( + ) ∀ ∈ ℕ [0, -1] and (19) 
( + ) ∈  ∶= ∈ ℝ | || || ≤ bound . (20) 
Generally, these algorithms [START_REF] Cisneros | Efficient nonlinear model predictive control via quasi-LPV representation[END_REF][START_REF] Morato | Novel qLPV MPC Design with Least-Squares Scheduling Prediction[END_REF] yield horizon-increasing errors

|| ( + + 1)|| ≥ || ( + )|| for ∈ ℕ [0, -2]
, due to the fact the more information is available regarding the present instant than the future ones, which depend on future variables which haven't yet been defined.

The Generated Sub-Optimal MPC

Regarding the application of the MPC algorithm in Problem 1 simply based on an extrapolation guess ̂ , the following finitehorizon cost is considered:

= ⎛ ⎜ ⎜ ⎝ ∑ =1 ( ( ( + ), ( + -1))) ⎞ ⎟ ⎟ ⎠ , (21) 
where (⋅) is the main stage cost. Note that we disregard the use of a terminal cost (⋅). This cost function is formalised according to traditional tuning methods [START_REF] Mayne | Model predictive control: Recent developments and future promise[END_REF] , with a quadratic form:

(⋅) = ( ( + | )) ( ( + | )) + ( ( + -1| )) ( ( + -1| )) ∈ ℕ [1, ] . (22) 
Sub-optimal MPC algorithms [START_REF] Morato | Novel qLPV MPC Design with Least-Squares Scheduling Prediction[END_REF] have been applied to regulate nonlinear systems with qLPV models. Accordingly, the following constrained QP is applied [START_REF] Tóth | The behavioral approach to linear parameter-varying systems[END_REF] :

min (23) subject to = ( ̂ ) ( ) + ( ̂ ) , ( 24 
) ( + ) ∈  ∀ ∈ ℕ [1, ] , (25) 
( + -1) ∈  ∀ ∈ ℕ [1, ] , (26) 
( + ) = ̂ { } ∀ ∈ ℕ [0, -1] , (27) 
This QP can lead to insufficient performances because local minima can be found since, although the qLPV embedding equivalently represents the nonlinear dynamics, the scheduling parameters are unknown along the horizon. Thus, the model predictions conceived with ̂ are inaccurate, implying in an prediction error on . Therefore, we proceed by adapting this QP in order to include the bounds on the estimation error of the scheduling sequence ( + ) such that optimality can be maintained.

In general, optimisation problems are represented with Hessian, gradients and inequalities. Accordingly, the previous QP can be re-stated as:

⋆ = arg min 1 2 ( ̂ ) - ( ̂ , ( )) , (28) 
s.t. ≤ ( ) , = 0 ,
being ⋆ the control sequence solution. In this formulation, ( ̂ ) is the Hessian of the quadratic cost function and ( ̂ , ( )) is its gradient. The MPC policy that results from the online solution of Eq. ( 28) is generated under a paradigm of a moving-window horizon, which slides along as time evolves. This means that that at instant the control sequence ⋆ is computed considering the system behaviour within the next steps. At the following instant, + 1, the problem min +1 is solved considering the performances for samples ahead of + 1, computing ⋆ +1 , and so forth. The control policy at each instant is the first entry of the solution the QP, this is:

( ) = 1 ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞ 0 … 0 ×( ) ⋆ = ( ) ( ) . ( 29 
)

Terminal Ingredients and Dissipativity Constraints

The concept of input-to-state stability (ISS) is used to verify stability and also allows control synthesis for nonlinear systems. We use the concept of ISS generalised for discrete-time nonlinear processes [START_REF] Jiang | Input-to-state stability for discrete-time nonlinear systems[END_REF] , as presented in the prequel. We are concerned with ISS since the considered MPC generates a state-feedback control law, which means that the states should be stabilised.

Recent results regarding ISS and Input-to-State Practical Stability (ISpS), which is a weaker property [START_REF] Mohammadpour | Control of linear parameter varying systems with applications[END_REF] , have been presented regarding min-max nonlinear MPCs, see [START_REF] Limón | Input to state stability of min-max MPC controllers for nonlinear systems with bounded uncertainties[END_REF][START_REF] Lazar | On input-to-state stability of min-max nonlinear model predictive control[END_REF][START_REF] He | Quasi-min-max MPC for constrained nonlinear systems with guaranteed input-to-state stability[END_REF] . In general, many min-max MPC methods are not able ensure ISS (but simply ISpS) because the effect of non-null disturbance inputs is taken into account by the min-max procedure even if the disturbance vanishes in reality. Anyhow, [START_REF] Magni | Regional input-to-state stability for nonlinear model predictive control[END_REF] demonstrates that only a local upper bound on the min-max cost function (instead of a global one, which is more costly to demonstrate) is sufficient to ensure ISS. In this paper, we build from these previous results, specially concerning the feasibility property of the maximisation procedure.

We stress that an ISS sytem is asymptotically stable in the absence of inputs and or if the inputs are time-decaying. Note that if the inputs are merely bounded, the evolution of the system states are ultimately bounded to a set whose size depends on the bounds of the inputs, which is quite logical.

In order to verify that the MPC algorithm ensures closed-loop ISS and recursive feasibility of the optimisation procedure, there are two main options:

• To use the so-called "terminal ingredients" [START_REF] Mayne | Constrained model predictive control: Stability and optimality[END_REF] , this is: verify some conditions with respect to the terminal stage cost (⋅)

and the terminal constraint . Essentially, the terminal set must be an RPI set, while (⋅) must be -class lower bounded, and (⋅) must be -class upper bounded. A Lyapunov-decreasing inequality must also be satisfied.

• The second option is to use dissipativity arguments [START_REF] Seiler | A dissipation inequality formulation for stability analysis with integral quadratic constraints[END_REF] . The main characteristic of this second stability-verification path is that LMI formulations are yielded for a priori verification. This is the path followed in this paper, following the lines of a previous works [START_REF] Seiler | A dissipation inequality formulation for stability analysis with integral quadratic constraints[END_REF][START_REF] Cisneros | A dissipativity formulation for stability analysis of nonlinear and parameter dependent MPC[END_REF] .

THE RECURSIVE EXTRAPOLATION ALGORITHM

In this Section, we propose a simple method to recursively construct the extrapolation for the scheduling sequence along the horizon. The method resides in a first-order Taylor expansion of the scheduling proxy ( ( )) around the state deviation. We denote Δ ( + ) = ( ( + + 1) -( + )) as the incremental state deviation, which is naturally bounded due to the bounds on ( ), i.e. Δ ( + ) ∈ Δ ∀ ∈ ℕ. We consider that the following Assumptions are satisfied.

Assumption 10. The state deviations are ultimately bounded. This is:

Δ ( ) = ( ( )) ( ) + ( ( )) ( ) -( ) = ( ( )) - ( ) + ( ( )) ( ) . ‖Δ ( )‖ = ‖ ( ( )) - ( ) + ( ( )) ( )‖ ≤ ‖( ( ) -) + ( ) ‖ ⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ Δ .
Assumption 11. The static map ( ) can be approximated by a first-order Taylor expansion for any arbitrary :

( ) = ( )| ⋆ + | | | | | ⋆ ( -⋆ ) + , (30) 
being ⋆ the expansion point and a residual noise which inherits the discrepancy between the real static map and its approximate.

Assumption 12. The static map (⋅) is class  1 , i.e. first-order differentiable with respect to , for all points in .

Assumption 13. The differentiation function ( ) is ultimately bounded. Thus, on the basis of Assumption 11, the following expression is written:

( ( + )) = ( ( + -1)) + ( + -1) + ( + ) | | | | | ( + -1) ⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞ ⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞ ⏟ ( + -1) Δ ( + -1) . ( 31 
)
Expanding Eq. ( 31) along a prediction horizon of steps and embedding it to ( + 1) = ( ) + ( ( + 1)) -( ( )), gives:

( + 1) = ( ) + ( )Δ ( ) + ( ) , ⋮ ( + -1) = ( + -2) + ( + -2)Δ ( + -2) + ( + -2) .
It is a fact that, ( ) and Δ ( ) are known variables at each instant , whereas ( ) can be numerically evaluated. Nonetheless, in practice, the values for ( + ) considering ∈ ℕ [1, -2] is unknown. Proposition 1. For simplicity, one can assume that the partial derivative ( ) stays constant along the prediction horizon, i.e.

( + ) = ∀ ∈ ℕ [1, -2]
, where denotes the partial derivative evaluated at instant .

Based on the previous Proposition, the extrapolation at a given instant can be given as a function of the previous extrapolation, this is:

= ⋆ -1 + Δ ⋆ + Ξ , where ⋆ -1 = ( -1) ( ) ( + 1| -1) … ( + -2| -1)
represents the previous estimation for the scheduling trajectory with the first term corrected (since ( | -1) is known at instant and Δ ⋆ represents the state deviations along the horizon, corrected with the known value Δ ( ) ; Ξ represents a bias residual vector, which "corrupts" the extrapolation, but is obviously not known.

Since the bias residual cannot be accounted for, the extrapolation for this scheduling sequence is simply given by:

̂ = ̂ ⋆ -1 + Δ ⋆ . ( 32 
)
For such, Δ ⋆ is computed by adapting Eq. ( 13), based on the corrected sequence of control inputs computed at the last sample holds, this is: ̃ -1 = ( ) … ( + | -1) × , and based on the previous, corrected scheduling trajectory

guess ⋆ -1 . It follows: Δ = ( ⋆ -1 )Δ ( ) + ( ⋆ -1 ) ̃ -1 .
The corrections upon variables ̂ -1 and Δ are:

̂ ⋆ -1 = ̂ -1 + ( ) , (33) 
Δ ⋆ = Δ + Δ ( ) , (34) 
with = 0 … and = 0 … 0 .

The dimensions of and in Eqs. ( 33)-( 34) should be in accordance with and . If sought, a forgetting factor can be added to the algorithm, replacing the identity matrices in with exponentially decaying terms, such as -∕ . This forgetting factor attenuates the amount of mistaken information passed from on scheduling sequence estimate ̂ to the following ̂ +1 . In order to ensure that the recursive extrapolation procedure holds, Assumptions 12 and 13 must be satisfied. Therefore, (⋅) should be at least class  1 , so that the derivative ( ) exists for all ( + ) ∈ , in order to construct the first-order Taylor expansion. Moreover, Assumption 13 is necessary so that every extrapolated term ̂ ( + ) is bounded.

Finally, we mention that the recursive law in Eq. ( 32) does not ensure that the extrapolation guess abides to the scheduling parameter set . Therefore, in order to take into account that the variation of the parameters ( ) ∈ , each extrapolation vector ̂ is "clipped" with respect to  and .

Convergence and Estimation Error Bounds

Proposition 2. This recursive extrapolation algorithm, as given through Eq. ( 32), indeed converges. This is, after a finite amount of steps it holds that lim → ̂ → .

Proof. Refer to Appendix B.

Proposition 3. The ultimate bound of the estimation error bound achieved with this algorithms yields an error set  which is a subset of . This ultimate bound is given by bound = Γ + Δ and it known a prior, i.e. there is no need to execute the algorithm to check it.

Proof. Refer to Appendix C.

PROPOSED MIN/MAX QLPV MPC ALGORITHM

Considering that ∈  ⊂ , the sub-optimal MPC algorithm in Eq. ( 23) is adapted in order to ensure robustness. We seek performances guarantees despite the uncertainties introduced by the scheduling sequence estimation error.

As previously discussed, solving a single QP w.r.t. a scheduling sequence guess as in Eq. ( 28) does not ensure performances, since the solution ⋆ may represent a local minima of . Anyhow, we know that the actual nonlinear process model in Eq. ( 7) differs from the ̂ -based prediction in Eqs. ( 13)-( 14) due to the discrepancy variable . Then, as gives Eq. ( 32), these modelprocess mismatches along the horizon can be treated robustly, providing a worst-case bound bound > . Then, as done in robust min/max LPV MPC procedures, the QP is formulated with respect to bound , ensuring the overlap of local minima and robust performances.

Based on Assumption 6 and Eq. ( 19), we can thus expand the LPV model along the prediction horizon:

( + + 1) = ( ̂ ( + )) ( + ) + ( ̂ ( + )) ( + ) + ( + ) (35) 
+ 1 ( + ) ( + ) + 1 ( + ) ( + ) ⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ ( + )
.

The uncertainties introduced due to the model-process mismatch (extrapolation of the scheduling sequence) are denoted henceforth as ( + ), which belongs to compact set  whose bounds can be computed offline, w.r.t. bound ,  and  :

 ∶= ∈ ℝ | ‖ ‖ ≤ . ( 36 
)
We concatenate ( + ) along the horizon as follows:

Σ = ( | ) … ( + -1| ) . ( 37 
)
Remark 4. In regular min-max LPV MPC algorithms [START_REF] Cao | Min-max MPC algorithm for LPV systems subject to input saturation[END_REF] ,  is computed w.r.t. much larger possible variations for (the whole set ). In works [START_REF] Bumroongsri | An offline formulation of MPC for LPV systems using linear matrix inequalities[END_REF] that consider bounded rates of variations for , the uncertainty set  is computed as if ( + ) = ( ) ± ( ), which yields a smaller uncertainty set , but in general also larger than the set considered in this paper.

Embedding the uncertainty to the process predictions, we obtain:

= ( ̂ ) ( ) + ( ̂ ) + Σ . ( 38 
)
Then, the core idea of the proposed method is quite simple, following the lines of the original min/max algorithms, but formulating the worst-case cost function with respect to the uncertainties introduced by the estimation errors . It follows that Σ ⋆ , which induces the worst-case bound on the cost function bound , is found by solving the following maximisation CP:

max Σ (39) 
subject to constraints in Eqs. ( 24), ( 25), ( 26) and (27) .

Then, the solution that derives from this QP, Σ ⋆ , is plugged to the regular minimisation MPC CP, given in Eq. ( 23). The complete solution achieved with the proposed tool is ⋆ = arg min max Σ subject to constraints ( 24)-( 27). This solution resides in the sequential operation of both CPs: maximisation with respect to Σ (CP) followed by minimisation w.r.t.

(QP).

The Implementation

Regarding the proposed min/max method, its implementation is performed according to the following guideline:

1. Offline Procedure:

• Firstly, one should verify if the considered nonlinear process should satisfies Assumptions 1 to 5.

• LDI should be performed, finding the LPV model as in Eq. ( 9).

• Regarding model , one should verify if Assumptions 6 to 9 are satisfied.

• The smallest Lipschitz constant Γ in Eq. ( 7) should be defined and so should the bounds on Δ .

• With the aid of simulation tools, the recursive extrapolation algorithm of Eq. ( 32) should be tested and the forgetting factors and should be adequately tuned.

• Compute the worst-case bound on the estimation error with respect to Eq. (C7).

• Compute the compact uncertainty set  due to the wrong scheduling guess as of Eq. ( 36).

• Prepare the MPC procedure by tuning the cost weighting matrices and .

• Compute the nominal cost function in the Hessian-gradient form of Eq. ( 28).

2. Online Procedure: solve Algorithm 1.

RECURSIVE FEASIBILITY ANALYSIS

This Section is concerned with the recursive feasibility properties of both CPs, and ISS of the closed-loop system regulated by the proposed MPC paradigm. We proceed by demonstrating the asymptotic stability of the closed-loop system and estimating the region of attraction of each CP. The zone of attraction for the complete algorithm is given by the smallest intersection of the two regions. Note that asymptotic ISS is demonstrated for a given region  . Then, it is proved that for any starting condition within this region, the algorithm is recursively feasible.

Algorithm 1 Proposed Robust min/max NMPC Algorithm

Initialise: (0) = 0 , (0) = 0 , = 0. Require: 0 , , ; Require: , , , ; Loop:

• Step (1): Measure the states ( ) and get the scheduling parameters ( );

• Step (2): Evaluate the derivative ;

• Step (3): Compute the extrapolation of the scheduling parameters along the horizon through Eq. ( 32);

• Step (4): Solve the maximisation CP, computing max Σ subject to constraints ( 24)-( 27), finding Σ ⋆ ;

• Step (5): Solve the minimisation QP, computing min subject to constraints ( 24)-( 27) with Σ ⋆ , finding ⋆

• Step (6) Apply the local control policy ( ) as in Eq. ( 29);

• Step (7): Increment , i.e. ← + 1. end

The Maximisation CP

In order to demonstrate the recursive feasibility property of the maximisation CP, we follow closely discussions of previous works [START_REF] Magni | Regional input-to-state stability for nonlinear model predictive control[END_REF][START_REF] Limón | Input to state stability of min-max MPC controllers for nonlinear systems with bounded uncertainties[END_REF][START_REF] Lazar | On input-to-state stability of min-max nonlinear model predictive control[END_REF] .

Remark 5. In this previous papers, ISS and ISpS properties are verified for the whole min-max CP through the use of terminal ingredients. In this paper, we follow a dissipativity formulation, since we do not make use of RPI sets as terminal constraints nor of terminal stage costs in our formulation. Anyhow, the analysis of recursive feasibility of the maximisation step can be maintained.

Remark 6. Some of the following steps are easier to follow if the weak duality property of CPs is considered [START_REF] Löfberg | Oops! I cannot do it again: Testing for recursive feasibility in MPC[END_REF] : an maximisation CP can be equivalently written as a minimisation CP over the same variables with adjusted slack variables.

The considered maximisation CP solves Σ ⋆ = arg max Σ (⋅) subject to the inequality constraints ( 24)-( 27) and based on the available scheduling sequence guess ̂ , being Σ the sequence of uncertainties along the horizon, as gives Eq. ( 37). Note that it can be adequately re-written in a generalised formulation with respect to Σ , this is:

Σ ⋆ ( ̂ ) = arg max Σ 1 2 Σ Σ -Σ ( ̂ , ( )) . (40) 
Replacing in Eq. ( 40), it follows 7 that = 2 ̆ and = -2 ̆ ( ̂ ) ( ) + ( ̂ ) .

Remark 7. Note that, if constraints are disregarded, for rationale purposes only, it is direct to evaluate that the maximal value for , w.r.t. Σ would be found with Σ ⋆ = ( ) -1 . Since is linear on , the value for would be = col{ } (a sequence of maximal control signals), this is:

Σ ⋆ = -(2 ̆ ) -1 ( ̂ ) ( ) + ( ̂ ) .
Regarding the CP constraints, it follows that (27) adds no difference to this possible result. Moreover, constraints (25) and ( 26) are only box-type operations over and , respectively. Therefore, it follows directly that for any starting condition 0 within the feasibility set , this maximisation CP is recursively feasible since is never be unbounded w.r.t. Σ due to its regular quadratic formulation on Σ , operated through Eq. (40). Nonetheless, this property only remains true if and only if -1 exists, since ( ) -1 = (2 ̆ ) -1 .

In order to demonstrate the recursive feasibility property of the CP in Eq. ( 40), we consider that:

• The minimisation QP is also feasible. This is quite logical because the min-max formulation resides in the operation of both these CPs consecutively. [START_REF] Hoffmann | A survey of linear parameter-varying control applications validated by experiments or high-fidelity simulations[END_REF] Notation ̆ and ̆ denote block-diagonal matrices with and repeated times in the diagonal, respectively.

• The stage cost (⋅) is lower bounded for all ∈  Max CP (this set denotes the feasibility region for the maximisation CP). Indeed, it follows directly from Eqs. ( 21)-( 22):

(⋅) ≥ (‖ ‖) , (41) 
being (‖ ‖) a -class function.

Lemma 1.

Based on these previous conditions, of a feasible minimisation QP and of Eq. ( 41), it follows that the worst-case cost function bound , computed w.r.t. Σ ⋆ , is upper-bounded, considering that the uncertainties are described as of Eq. ( 36), such that:

bound ≤ (‖ ‖) + ( ) , (42) where and are  ∞ -class functions.

Proof. Refer to Appendix D.

Remark 8. Since the previous Lemma requires that the min. QP to be recursively feasible, it is implied that  Max CP ∶=  Min QP , where  Min QP is the feasibility set of the second CP. For simplicity, we henceforth denote the maximisation CP using an abstraction: as an operator Υ upon the measured state vector ( ), as follows:

Σ ⋆ ∶= Υ( ̂ ) ( ) . ( 43 
)

The Minimisation QP

The analysis of the ISS property of the minimisation QP is more complex. This CP solves ⋆ = arg min (⋅) subject to constraints ( 24)-( 27), based on the available scheduling sequence guess ̂ and on the uncertainty vector Σ ⋆ . Figure 1 gives a graphical block-diagram interpretation of the system, considering both CPs ( 1) and ( 39) and the extrapolation algorithm, where represents the open-loop LPV embedding of Eq. ( 9). We replace of Eq. ( 38) in Eq. ( 28), which leads to the following Hessian and gradient8 :

( ̂ ) = 2 ̆ + ( ̂ ) ̆ ( ̂ ) , ( 44 
) ( ̂ , ( )) = -2 ( ̂ ) ̆ ( ̂ ) ( ) + Σ ⋆ . ( 45 
)
Thus, in order to verify ISS, we proceed by defining a nonlinear static map ∶ → ⋆ implied by the constrained minimisation QP in its regular form of Eq. (28).

As demonstrated in previous works [START_REF] Seiler | A dissipation inequality formulation for stability analysis with integral quadratic constraints[END_REF] , the stability of the closed-loop system with ( ) = 1 ⋆ deriving from Eq. ( 28) can be verified if the following sector boundary inequality is satisfied:

( ̂ ) - ≤ 0 ∀ . ( 46 
)
Regarding this stability inequality, we show a graphical interpretation of the considered system, presented in Figure 2. The proposed MPC policy is divided by the upper block, which comprises the minimisation QP, and by the lower Υ block, which embeds the maximisation CP. Regarding, Figure 1, the output of the minimisation QP ⋆ is now replaced by the nonlinear operator . Moreover, the main open-loop process in Figure 2 In order to evaluate the previous stability inequality, a factorisation of the Hessian is necessary so that parameter-dependency can be smartly dropped. We define the block-diagonal compact set  ⊂ ℝ × as the compact set within which ̂ lies (recall that each entry of this vector, ̂ ( + ) is bounded to . The factorisation is the following:

0 0 0 ( ̂ ) = 0 ( ̂ ) 0 ⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟ ( ̂ ) 2 ̆ 0 0 2 ̆ ⏟⏞⏞⏞⏟⏞⏞⏞⏟ 0 0 ( ̂ ) 0 ⏟⏞⏞⏞⏞⏞ ⏟⏞⏞⏞⏞⏞ ⏟ ( ̂ ) . ( 47 
)
Based on the prior factorisation, we re-write inequality (46) as follows:

* 0 0 -0 + ( ̂ ) 0 ( ̂ ) ⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ Π( ̂ ) ≤ 0 . ( 48 
)
As provided in previous works [START_REF] Megretski | System analysis via integral quadratic constraints[END_REF][START_REF] Scherer | LPV control and full block multipliers[END_REF] , the above parameter-dependent quadratic constraint can be cast into a regular multiplier form ≤ 0, where is the output of a bounded linear operator Ψ( ̂ ) which factorises Π( ̂ ), this is:

Π( ̂ ) = Ψ( ̂ ) * Ψ( ̂ ).
The operator Π(⋅) stands for the "filling" of the previous inequality (48). Thus, we continue by using the previous factorisation to write Π(⋅) in a multiplier form, as follows:

Π( ̂ ) = Ψ * ( ̂ ) ⎡ ⎢ ⎢ ⎣ 0 0 0 0 - 0 ⎤ ⎥ ⎥ ⎦ ⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟ 0 ( ̂ ) ⏟⏞⏞⏞⏟⏞⏞⏞⏟ Ψ( ̂ ) . ( 49 
)
Figure 3 gives a graphical interpretation of the extraction of parameter-dependency through Ψ. It follows that the multiplier form of Π(⋅) is built with:

= ⎡ ⎢ ⎢ ⎣ 0 0 0 0 2 ̆ 0 -0 2 ̆ ⎤ ⎥ ⎥ ⎦ , Ψ( ̂ ) = ⎡ ⎢ ⎢ ⎣ 0 0 ( ̂ ) 0 ⎤ ⎥ ⎥ ⎦ . ( 50 
)
FIGURE 3 Graphical Representation of the Parameter-dependency Extraction.

Through the above development, we express the dissipativity inequality ( 46) simply as:

* Ψ( ̂ ) Ψ( ̂ ) ≤ 0 , ( 51 
)
which is can be compacted as:

* ≤ 0 ∀ ̂ ∈  , ( 52 
)
being ∶= Ψ( ̂ ) the output of the Ψ(⋅) operator. The parameter-dependency has been dropped through the previous factorisation procedures. Therefore, we can perform a Linear Fractional Transformation (LFT) to extract the LPV scheduling parameter dependency as an upper Θ-block (which is connected to an LTI nominal block). Considering as an output the lifted system, we graphically illustrate the LFT in Figure 4, where 1 is an LTI nominal model of the augmented plant, as follows:

1 ∶= ⎧ ⎪ ⎨ ⎪ ⎩ ( + 1) = ( ) + ( ) + + ( ) ( ) = ( ) + , + ( ) ( ) = ( ) + , + , ( ) + ,Σ Σ ⋆ , ( 53 
)
where ( ) ∶= Θ ( ) makes the interconnection between this nominal LTI block and the LPV-lifted upper Θ-block and Σ ⋆ appears now as an input to the 1 block, since it is present in as gives Eq (45). Finally, in order to check if the system is ISS, it remains to verify the following Lemma [START_REF] Cisneros | A dissipativity formulation for stability analysis of nonlinear and parameter dependent MPC[END_REF] , which ensures that the lower 1 -Θ block is stable despite the upper transfer. Lemma 2. Adapted from a previous paper [START_REF] Cisneros | A dissipativity formulation for stability analysis of nonlinear and parameter dependent MPC[END_REF] The closed-loop system given in the LFT form in Eq. (53), regulated under the proposed min./max MPC law in the form of ⋆ = arg min (⋅) subject to constraints ( 24)-( 27) and based on the available scheduling sequence guess ̂ and on the uncertainty Σ ⋆ , is quadratically stable, verifying the dissipativity inequality (46), if there exists a positive-definite matrix 

=

> 0 and a constant > 0 such that:

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ ( ) -( ) ( ) 0 ⋆ ( ) ( ) 0 ⋆ ⋆ ( ) 0 ⋆ ⋆ ⋆ 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ -Π + Π Θ ≺ 0 (54) 
where

Π = [ * ] ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 0 0 0 0 0 2 ̆ 0 0 -0 2 ̆ 0 0 0 0 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ , , ,Σ , (55) 
Π Θ = [ * ] Θ , ,Σ 0 0 0 , (56) 
and Θ ∈  ∕ .

Proof. Refer to Appendix E.

The positive definite matrix found through Lemma 2 defines the following set:

 Min CP ∶= ∈ ℝ | ≤ 1 . (57) 
Thus, for any starting condition 0 contained in the interior of  Min CP , the minimisation QP ensures (local) asymptotic stabilisation to the origin. Since the proposed MPC is made of two consecutive CPs, the complete set within which ISS is verified is given by:

 ∶=  Max CP ∩  Min QP . (58) 
Since  Max CP ∶=  Min QP , it follows that  =  Min QP .

APPLICATION EXAMPLE

In this Section, we present a case-study for which the robust dissipative MPC method is applied. As discussed in energy systems literature [START_REF] Camacho | Control Issues in Solar Systems[END_REF][START_REF] Pasamontes | Hybrid modeling of a solar-thermal heating facility[END_REF][START_REF] Morato | LPV-MPC fault-tolerant energy management strategy for renewable microgrids[END_REF] , the addition of renewable energy sources to power plants can be a good route to reduce greenhouse gas emissions and environmental impact. Anyhow, an inherent problem to be solved is how to integrate these energy sources without loosing efficiency and dispatchability of energy plants.

Solar-thermal system, phenomenological model, and control problem

We consider modern solart-thermal (ST) systems, which are structures that integrate collector fields, accumulation tanks and gas heaters. Each subsystem has independent dynamics that strongly influence the total output. These ST units are controlled in order to ensure efficiency despite variations on the energy input caused due to cloudy periods of the day. We assume that the global ST coordination as well as the control of the tanks and gas heaters are regularly working: the heated fluid is accumulated on the tanks to compensate for the lack of heated flow coming from the solar collectors in cloudy periods. Moreover, if the outlet temperature is not enough to comply with demands, the gas heater is used to further heat the outlet. The heated fluid is used to attend the heating demands of a separate industrial process.

The focus of the control system is solely to the regulate the temperature of the ST collector panel. Accordingly, the collector outlet flow temperature signal must track a constant steady-state reference, despite instaneous variations on the solar irradiance or on the external temperature. Figure 5 illustrates the considered ST system. Complete phenomenological models have previously been derived for ST collector fields [START_REF] Pasamontes | Hybrid modeling of a solar-thermal heating facility[END_REF] , with according modelvalidation [START_REF] Ampuño | Apparent delay analysis for a flat-plate solar field model designed for control purposes[END_REF] . These models are derived on the basis of the following set of assumptions:

• The fluid flow through the solar collector is incompressible (with density ), with uniform pressure along the field; the heat transfer capacity of the fluid is constant and denoted ;

• The heat transfer capacity of the collector plates is constant and denoted ; the density of these metal plates is also constant and denoted ;

• The balance of energy equations assume a constant thermal loss coefficient , with respect to the thermal energy that derives from the incident solar radiance;

• The heat transfer coefficient of the absorver (external temperature to plates), denoted ℎ 0 , is constant, while the heat transfer coefficient of the fluid (fluid to plates), denoted ℎ (⋅), varies positively according to the temperature of the plates.

Then, the following partial-differential dynamics arise due to balance of energy equations, where represents the time variable and the space variable:

( ) = ( ) - ℎ 0 ( ( ) -( )) - ℎ ( ( ))( ( ) -( )) , (59) 
( , ) = -( ) ( , ) + ℎ ( ( ))( ( ) -( )) . (60) 
In these temperature gradient dynamics of Eqs. ( 59)-( 60), ( ) stands for solar radiance focused upon the collectors (which is a load disturbance from a control viewpoint); , and are, respectively, the collector plate, the external (load disturbance as well) and the fluid temperatures; is the inlet fluid flow, which is the control input of the system; finally, and are, respectively, the internal and external surfaces of the pipes, that have (internal and external) diameters of and .

For application purposes, the space-derivative term ( , ) can be replaced [START_REF] Pasamontes | Hybrid modeling of a solar-thermal heating facility[END_REF][START_REF] Ampuño | Apparent delay analysis for a flat-plate solar field model designed for control purposes[END_REF][START_REF] Pipino | Nonlinear temperature regulation of solar collectors with a fast adaptive polytopic LPV MPC formulation[END_REF] by either a nonlinear function or an apparent transport delay. In this paper, it is approximated by the following nonlinearity:

( , ) ≈ 1 - - ( ) (1 --1 ) , (61) 
which means that the diffusion of the thermal energy of the fluid flowing along the flat collectors increases with respect to its temperature ( ) until a certain level is attained , after which the diffusion is constant, i.e. the whole fluid inside the flat collector is at the same temperature. This approximation is quite reasonable with respect to the ST application and in accordance with the literature [START_REF] Pasamontes | Hybrid modeling of a solar-thermal heating facility[END_REF] .

The heat transfer coefficient of the fluid ℎ ( ) is given according to the following nonlinear equation:

ℎ ( ) = ℎ ⎛ ⎜ ⎜ ⎝ 1 - -( ) 1 --1 ⎞ ⎟ ⎟ ⎠ , ( 62 
)
where ℎ is the maximal heat transfer coefficient of fluid, attained for ( ) = . Regarding the nonlinear model of Eqs. ( 59)-( 60) with the relaxations of Eqs. ( 61)-(62), the parameters have been identified and adjusted for the CIESOL ST plant, located in the CIESOL-ARFR-ISOL R&D Centre of the University of Almería, Spain. The numerical values for these parameters, from paper [START_REF] Pasamontes | Hybrid modeling of a solar-thermal heating facility[END_REF] , are given in Table 1. 

Problem under consideration

The goal of this ST system is to track outlet temperature references to cover a certain heat demand, which is done by varying the inlet fluid flow . This collector field has a 160 m 2 surface area, distributed in ten parallel rows composed of eight collectors per row.

In terms of performances, the temperature set-point tracking should be done as fast as possible, while respecting the maximal temperature of 300 o C that the inlet fluid can tolerate. Moreover, the temperature of the plates should not surpass 600 o C. These performances can be evaluated using usual reference-tracking indexes, such as the integral of the average tracking error. Through the sequel, we denote and as the constant steady-state temperature references to the collector plate and to flowing fluid, respectively. The considered steady-state targets for reference tracking are:

= 109.93 o C , T sp f = 97 o C .
The inlet flow (control signal) should be always positive, since no fluid can be extracted from the ST units, only injected, and abide to a upper bound of 0.35 m 3 ∕s. Moreover, the control policy has to be evaluated within = 0.01 s, which is the considered sampling period.

We stress that the dynamics of this ST process exhibit average settling periods in the order of 100 s. In practice, many control schemes have been tuned considering a sampling period of a few seconds, e.g. [START_REF] Pasamontes | Hybrid modeling of a solar-thermal heating facility[END_REF][START_REF] Ampuño | Apparent delay analysis for a flat-plate solar field model designed for control purposes[END_REF] . Nevertheless, we choose a tighter sampling period for illustration purposes, in order to verify whether the proposed method could serve for embedded real-time applications.

The disturbances to this system (the solar radiance and external temperature variables) are assumed to be measurable from a control viewpoint. This is quite reasonable, given that accurate estimations for the future behaviour of these disturbances can be indeed obtained [START_REF] Camacho | Control Issues in Solar Systems[END_REF] . These estimation results (for solar radiance and outside temperature) are easily provided with Neural Network tools [START_REF] Vergara-Dietrich | Advanced Chance-Constrained Predictive Control for the Efficient Energy Management of Renewable Power Systems[END_REF] .

Table 2 resumes the state and input constraints. Note that the fluid and plate temperatures are lower-bounded by external temperature to the ST system, ( ). If there is no sun, the ST system reaches a thermal equilibrium with ( ). For simplicity, since ( ) > 0, the lower bounds on and can be taken as 0.

TABLE 2

Constraints of the considered ST system.

( ) ∈   ∶= ∈ ℝ | 0 ≤ ≤ 0.35 m 3 ∕s ( ) ∈   ∶= ∈ ℝ | ( ) ≤ ≤ , = 600 o C ( ) ∈   ∶= ∈ ℝ | ( ) ≤ ≤ , = 300 o C

qLPV-embedded Model

Since this paper is concerned with the application of MPC technique, the ST nonlinear phenomenological model of Eqs. 59-60, with the relaxations of Eqs. ( 61)-( 62), is Euler-discretised with the sampling period of = 0.01 s. This procedure yields a nonlinear discrete-time model. Given that the proposed min/max MPC method is conceived for qLPV embedded nonlinear models, and due to the fact that the LDI property holds for the yielded discrete-time model, a qLPV model is obtained. We consider the following system states:

( ) = 1 ( ) 2 ( ) = ( ) - ( ) - , (63) 
and the scheduling parameters as = [ 1 , 2 ] , which are respectively derived directly from the nonlinearities added to the balance of energy equations due to the time-varying thermal loss term given in Eq. ( 62) and due the partial derivative approximation given in Eq. (61):

1 ( ) 2 ( ) = ( ( )) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ ℎ 1- - 1 ( ) ( - ) 1--1 1- - 2 ( ) ( - ) (1--1 ) ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ . ( 64 
)
Evidently, each of the scheduling parameters is bounded to a convex set:

1 ∈ [ 1 , 1 ] = [0 , ℎ ] and (65) 2 ∈ [ 2 , 2 ] = 0 , 1 , (66) 
which means that ∈ . Furthermore, note that the time-derivatives of , denoted are also available and ultimately bounded in a convex set . Accordingly, the following qLPV realisation is obtained: 

( + 1) = ( ( )) ( ) + ( ( )) ( ) + ( ( )) ( ) , (67) 
( ) = ( ( )) . ( 68 
) ⎡ ⎢ ⎢ ⎣ ( ℎ (1--1 ) ) 1 490 - 1 490 ( 1 (1- 

Extrapolation of Scheduling Sequence

In Figure 9, we present the results concerning the extrapolation of the scheduling parameters 1 and 2 along the prediction horizon . In this Figure, the dashed black line depicts the actual variation of ( ), whilst the full blue line shows different snippets of scheduling sequences extrapolated according to the recursive algorithm in Eq. (32). The estimation error is quite small. Furthermore, the average time needed to solve the algorithm is of 0.41 ms, much smaller than the considered sampling period of 10 ms. 

Regulation/Tracking Results

The results concerning the regulation of ( ), with all the tested methodologies, are presented in Figure 10. We stress that all methods ensure state and control constraints ( ∈  and ∈  ). are too large with respect to . We note that the first min-max method stabilised to (-66.05 , -96.7) o C, while the second (bounded-rates) method brought the state trajectories to (-65.95 , -96.34) o C. The smoother performances seem to be the ones attained the Full-blown MPC algorithm, while the proposed method and the one by Cisneros & Werner yield quite comparable performances. We remark that the control action also acts to attenuate the effect of the load disturbances; this is especially evident after = 500 s, when both disturbances vary abruptly (see Figure 6). The proposed method is able to ensure adequate results since its uncertainty set  is relatively small. Moreover, the uncertainty vector Σ ⋆ computed through the maximisation CP norm-decreases over the simulation, as the extrapolation of the scheduling sequences get better (see Figure 9).

We proceed by investigating these performances through performance indexes: Tables 3 and4 show, respectively, the rootmean square (RMS) and integral-of-the-absolute-error (IAE) indexes applied to 1 ( ) (plate temperature tracking) and 2 ( ) With respect to the regulation of 1 , these tables show that the performances achieved with the Full-Blown NMPC and the qLPV MPC by Cisneros & Werner are roughly equivalent in terms of RMS and IAE. The proposed method does not stay far behind, having slightly slower tracking in the first few seconds, which results in the settling seen by = 200 s in Figure 10. It is important to notice that this fact resides in the maximisation procedure, which implies the robustness by finding larger uncertainty vectors Σ ⋆ in these first moments, which reflect on the solution found by the minimisation QP and the slight difference to the other methods. Anyhow, we stress that the performances are comparable.

Owing to the regulation of 2 , it is seen that the IAE and RMS indexes indicate that the best tracking performances are obtained with the proposed method. As seen in Figure 10, the Full-Blown NMPC and the qLPV MPC method by Cisneros & Werner yield comparable results.

Analysis of the Control Signal

Table 5 presents the TV index, which computes the total variance of the control input over time, this is:

TV ∶= ∑ | ( )| = ∑ | ( + 1) -( )| . ( 82 
)
Bigger values for the TV index shows that more variation is applied to the control along the simulation; therefore, values closer to zero indicate better (smoother) control strategies in terms of the use of the actuator. It is seen that the smoother control values are obtained by the Full-Blown NMPC method, with the proposed method and the method by Cisneros & Wener not standing far behind. The min-max methods by Cao et al. and Li et al. present negligible results, at least for this ST application for which has a big variation set  with also large possible variation rates (i.e.  is also large). [START_REF] Cao | Min-max MPC algorithm for LPV systems subject to input saturation[END_REF] 16.8449 min-max (Li et al., 2010) [START_REF] Li | The feedback robust MPC for LPV systems with bounded rates of parameter changes[END_REF] 68.97871 qLPV MPC (Cisneros & Werner, 2020) [START_REF] Cisneros | Nonlinear model predictive control for models in quasi-linear parameter varying form[END_REF] 0.2789

Analysis of the Computational Stress

With respect to these results, we present a very important issue: the average computational time needed to solve the optimisation procedure of the methods are synthesised in Table 6. We recall that the sampling period of the system is of 10 ms (which is the computational time upper bound). Evidently, the Full-Blown NMPC needs a lot of time to solve its inherent NP, which means that this method is not applicable in practice for processes with small sampling periods. The results obtained with this method are purely numeric and would not be able to be applied in practice. The qLPV MPC method by Cisneros & Werner solves, in average, 5 QPs (it iterates the QPs to compute extrapolation guess ̂ ). The proposed method operates, in average, within 6.3 ms, spending 0.41 ms to make the extrapolation guess ̂ , 4.24 ms to solve the maximisation CP via fmincon and 1.65 ms via Gurobi. These are very interesting results, meaning that the proposed solution is indeed fast and able to operate for embedded applications. The performances of the proposed method are equivalent to the method by Cisneros & Werner, which operates in the millisecond range as well as the available modern NMPC solutions, such as ACADO and GRAMPC [START_REF] Quirynen | Autogenerating microsecond solvers for nonlinear MPC: a tutorial using ACADO integrators[END_REF][START_REF] Englert | A software framework for embedded nonlinear model predictive control using a gradient-based augmented Lagrangian approach (GRAMPC)[END_REF] . We stress that the obtained time performance depends on the operating computer machine and on the size of the controlled system. In this paper, the considered system is a 2 × 2 system, for which the max. CP and the min. QP are evaluated simply enough. For larger order models, sub-optimal solutions might be necessary; refer to a previous discussion on this matter [START_REF] Zhang | A Fast Dissipative Robust Nonlinear MPC Procedure via qLPV Embedding and Parameter Extrapolation[END_REF] .

TABLE 6

Computational Performance of the Controllers.

Method

Average Computational Time Full-Blown NMPC [START_REF] Allgöwer | Nonlinear model predictive control[END_REF] 776.50 ms Proposed qLPV MPC 6.3 ms min-max (Cao et al., 2005) [START_REF] Cao | Min-max MPC algorithm for LPV systems subject to input saturation[END_REF] 7.2 ms min-max (Li et al., 2010) [START_REF] Li | The feedback robust MPC for LPV systems with bounded rates of parameter changes[END_REF] 7.5 ms qLPV MPC (Cisneros & Werner, 2020) [START_REF] Cisneros | Nonlinear model predictive control for models in quasi-linear parameter varying form[END_REF] 8.72 ms

CONCLUSIONS

In this paper, a novel MPC algorithm for nonlinear system is proposed. The nonlinear system is embedded into a qLPV formulation and its scheduling parameters are extrapolated using a recursive Taylor expansion law. The predictive control algorithm is based on a min-max optimisation procedure, written with respect to the uncertainty set derived by wrong estimates of . The dissipativity of the proposed method is verified via an LMI-solvable remedy which ensures the Lyapunov-decrease of the stage cost and an Input-to-state stability region. The method is applied to the nonlinear temperature control problem of solar-thermal collector plates, exhibiting good performances. With respect to the obtained results, some key points are mentioned:

• Full-blown nonlinear programming NMPC are not applicable for embedded applications of processes with fast sampling rates, since the average time needed to solve the NP is usually larger than the available sampling period. Recent literature has shown how approximated NMPC methods (such as CaSaDi, GRAMPC and ACADO [START_REF] Quirynen | Autogenerating microsecond solvers for nonlinear MPC: a tutorial using ACADO integrators[END_REF] ) and qLPV-embedding MPC algorithms [START_REF] Cisneros | Nonlinear model predictive control for models in quasi-linear parameter varying form[END_REF] are able to efficiently solve such complex control problem in the range of milliseconds.

• For the considered case study, through IAE and RMS indexes, the reference tracking performances obtained with the proposed qLPV-embedding min-max MPC method are equivalent to these fast modern nonlinear MPC methods [START_REF] Cisneros | Nonlinear model predictive control for models in quasi-linear parameter varying form[END_REF] . The numerical operability of the proposed. method is similar to previous works [START_REF] Quirynen | Autogenerating microsecond solvers for nonlinear MPC: a tutorial using ACADO integrators[END_REF][START_REF] Cisneros | Nonlinear model predictive control for models in quasi-linear parameter varying form[END_REF] . We note that the complexity of the problem grows with the order of the system.

• The proposed method solves the maximisation convex programming problem with respect to the error regarding the estimation of the scheduling parameters along the prediction horizon. We note that any kind of algorithm with bounded estimation errors could be used in the place of the Taylor expansion one proposed in this paper. An alternative and elegant option could be the use of the iterated mechanism [START_REF] Cisneros | Nonlinear model predictive control for models in quasi-linear parameter varying form[END_REF] , which uses the state sequence computed with the minimisation QP to compute the evolution of along the horizon.

• The proposed method is compared to two keystone min-max LPV MPC algorithms from the literature [START_REF] Cao | Min-max MPC algorithm for LPV systems subject to input saturation[END_REF][START_REF] Li | The feedback robust MPC for LPV systems with bounded rates of parameter changes[END_REF] , which consider, respectively, that can vary arbitrarily inside  and considers bounded rates of variations for . Since the variations of the scheduling parameters and its convex set are quite large for the considered application, the results obtained with these methods are quite poor. The uncertainty set with the proposed method is much smaller (by a factor of 1∕100). Furthermore, as time control law progresses, the extrapolation method gets better estimations of , which also makes the uncertainty output of the maximisation problem to converge to zero, as the state trajectories converge.

• Finally, the method has ensured input-to-state stability for a larger regional domain  . This property is ensure together with recursive feasibility through a dissipativity verification framework, solved via LMIs. We note that the advantage of this framework is that it does not require the use of terminal ingredients (constraints and costs) on the optimisation problem, which may be quite hard to compute online for LPV systems. Therefore, the MPC cost function is quadratic on and (and quite simple), which allows its fast operation.

Assumption 8 .Assumption 9 .

 89 The deviation of the scheduling parameters is bounded, i.e. ( ) = ( ( ) -( -1)) ∈ , ∀ ∈ ℕ. The open-loop qLPV model ( ( ( )), ( ( ))) is structurally stabilizable for all ∈ .

FIGURE 1

 1 FIGURE 1 Graphical Representation of the LPV Embedded Nonlinear System and Proposed Algorithm.

  is represented by 1 , which is a compacted operator comprising the open-loop plant and matrix 1 , since ( ) = 1 ⋆ . It follows that =∶ ( , ), = 1 , and, ∶= 1 ( , ).

FIGURE 2

 2 FIGURE 2 Graphical Representation of the Closed-Loop System.
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 4 FIGURE 4 Graphical Representation of the Closed-Loop with LPV-Dependency Extracted.
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 5 FIGURE 5 Schematic Illustration of a solar-thermal collector field.
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 7 FIGURE 6Disturbances.
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 89 FIGURE 8 Decay of (⋅) over time.

  The regulation of the states to the origin is not thoroughly ensured by the min-max methods by Cao et al. and Li et al., since their respective uncertainty sets  Cao et al., 2005 and  Li et al., 2010

FIGURE 10

 10 FIGURE 10 ST Unit: Reference Tracking and Control Signal.

is found by many solvers seen in the literature, based on Interior Point algorithms, quadratic search, etc. Definition 4. Closed-Loop Input-to-State Stability 26 Consider a generalised discrete-time nonlinear plant regulated under a state-feedback closed-loop structure. This closed-loop has its dynamics ruled by:

  

	Definition 1. Nonlinear Programming Problem			
	Consider an arbitrary real-valued nonlinear function ( ). A Nonlinear Programming Problem (NP) finds the vector that
	minimises ( ) subject to ( ) ≤ 0, ℎ ( ) = 0 and	∈  , where and ℎ are also nonlinear.
	Definition 2. Convex Programming Problem				
	A Convex Programming Problem is a linearly constrained optimisation problem of a convex function. A CP is a particular type
	of nonlinear programming problem, for which the function ( ) is inherently convect with respect to	and the constraints
	( ) ≤ 0 and ℎ ( ) = 0 are linear on . Any CP can be formulated as ⋆ = arg min ∈  ( ) subject to constraints
	≤	and	=	. It follows that:	∈ ℝ × ,	∈ ℝ × ,	∈ ℝ and	∈ ℝ . The solution ⋆
	to this kind of problem is found through interior-point algorithms and gradient-based methods.
	Definition 3. Quadratic Programming Problem			
	A Quadratic Programming Problem (or simply Quadratic Problem, QP) is a linearly constrained mathematical optimisation
	problem of a quadratic function. A QP is a particular type of convex programming problems. The quadratic function may be
	defined with respect to several variables, all of which may be subject to linear contraints. Considering a ∈ ℝ gradient vector
	and a symmetric Hessian matrix	∈ ℝ × , the goal of a QP is to determine the vector	∈ ℝ that minimises a regular
	quadratic function of form 1 2 kind of problem	+	subject to constraints	≤	and	=	. The solution ⋆ to this

TABLE 1

 1 Model Parameters of the ST Process in Eqs. (59)-(60).

		1100 kg∕m 3		440 J∕(kg o C)
		1000 kg∕m 3		4018 J∕(kg o C)
		0.0038 m 2		0.0013 m 2
		0.04 m		0.07 m
	ℎ 0	11	ℎ	800
		3.655	-	-

TABLE 3

 3 Performances Indexes: Plate Temperature Tracking ( 1 ).

	Method	IAE (.10 -3 )	RMS
	Full-Blown NMPC 2	7.6803	24.5295
	Proposed qLPV MPC	11.5762	29.7982
	min-max (Cao et al., 2005) 11	60.5221	64.6373
	min-max (Li et al., 2010) 13	59.9912	64.2002
	qLPV MPC (Cisneros & Werner, 2020) 25	7.9062	24.6305

TABLE 4

 4 Performances Indexes: Fluid Temperature Tracking ( 2 ).

	Method	IAE (.10 -3 )	RMS
	Full-Blown NMPC 2	1.1509	2.0402
	Proposed qLPV MPC	1.0354	1.8946
	min-max (Cao et al., 2005) 11	93.0361	96.2502
	min-max (Li et al., 2010) 13	91.5767	94.8112
	qLPV MPC (Cisneros & Werner, 2020) 25	1.9396	2.8030
	(fluid temperature tracking). We note that smaller IAE and RMS values indicate better performances, which conversely means
	that the references are tracked faster and with less steady-state error.		

TABLE 5

 5 Total Variance of the Control Signal.

	Method	TV
	Full-Blown NMPC 2	0.1987
	Proposed qLPV MPC	0.2800
	min-max (Cao et al., 2005)	

Abbreviations: LPV, Linear Parameter Varying; LTI, Linear Time Invariant; MPC, Model Predictive Control.

There is a conceptual difference between proper LPV and qLPV models: for the first class, the scheduling parameters are generally exogenous variables, such as external activation signals, completely independent from and ; in the second class, there exists some proxy to compute the scheduling parameters as an endogenous (possibly nonlinear) map of states and inputs ( ( )). We discern qLPV models for LPV ones in order to highlight that the considered embedding has an inherent endogenous scheduling proxy (⋅).

We stress that any other kind of parameter dependency could be used (polynomial, Linear Fractional Transformations, etc.)

Abusive notation is used. In fact, each ( + ) depends individually on ( ( + )), which converts into = col{ ( ( + ))} with ∈ ℕ [0,-1] .

Note that ̂ { } denotes the -th entry of the scheduling sequence vector ̂ .

ISpS does not impose asymptotic stability for null disturbance inputs.

For notation compactness, we denote henceforth simply = ( ̂ , ( )) and = ( ( ̂ , ( ))).

-̂ 1

-̂ 2 | | | | | | | | | |
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Note that [ ( ), ( ), ( )] are affine on the scheduling vector . The vector of load disturbances is given as follows ( ) = ( ) ( )

. The model matrices are:

(71)

Offline MPC Preparations

The system is conceived for a steady-state reference tracking goal with the aforementioned = 109.93 o C and = 97 o C. Regarding this matter, we note that:

• The box-type set for the states, , is defined with the following ultimate bound: = 490 203 o C.

• The deviation of the states Δ is, thus ultimately bounded by: Δ = 0.162 0.2637 o C.

• The differentiation function ( ) is ultimately bounded: 

• The worst-case scheduling sequence estimation error is given by: bound = Γ + Δ = 0.046 0.0015 . (75)

• The uncertainties introduced due to the model-process mismatches, thus, are bounded to the compact set , defined as:

Notice, for comparison purposes, that the uncertainty set computed as if the scheduling parameters varied arbitrarily inside  (as done in the original min/max LPV MPC design algorithms [START_REF] Cao | Min-max MPC algorithm for LPV systems subject to input saturation[END_REF] ) is given by:

while the uncertainty set computed taking the rates of variations of the scheduling parameters ( ) into account, as done in [START_REF] Li | The feedback robust MPC for LPV systems with bounded rates of parameter changes[END_REF] , for a control horizon of = 30 steps, is given by:

Evidently, these two sets are much wider than the one with the proposed method. This means that the online computational effort to solve the maximisation CP is smaller with the proposed method. This is tested and demonstrated in the following Section.

SIMULATION RESULTS AND ANALYSIS OF THE MPC SCHEME

Now, the proposed dissipative fast robust MPC method for nonlinear systems is applied to the ST collector system. The following simulations are performed in Matlab, with the aid of Yalmip software, Gurobi and fmincon solvers, on a 2.4 GHz, 8 GB RAM Macintosh computer.The considered process is emulated through the nonlinear high-fidelity phenomenological partial-differential model given in Eqs. (59)-(60), with parameters given by Table 1.

The proposed method is implemented with the uncertainties defined by the set  in Eq. ( 76). The solutions of the CPs are obtained with fmincon (maximisation CP, through an interior-point mechanism) and Gurobi (minimisation QP) solvers.

Through the sequel, the proposed control scheme is denoted "Proposed qLPV MPC". For comparison purposes, it is compared to the following key methods from the literature:

• A full-blown NMPC algorithm 2 , which embeds the complete nonlinear model predictions. To solve the resulting NP, fmincon solver is used; this method is referred to as "Full-Blown NMPC".

• The original min/max LPV MPC algorithm [START_REF] Cao | Min-max MPC algorithm for LPV systems subject to input saturation[END_REF] , defined with respect to the uncertainty set given in Eq. (77). Its solution comprises a CP (maximisation, via fmincon) and a QP (minimisation, via Gurobi); it is henceforth denoted "min-max (Cao et. al, 2005)".

• The min/max LPV MPC scheme considering bounded rates of parameter variations [START_REF] Li | The feedback robust MPC for LPV systems with bounded rates of parameter changes[END_REF] , defined with respect to the uncertainty set given in Eq. ( 78). This approach is also resolved via fmincon and Gurobi; it is denoted "min-max (Li et. al, 2010)".

• The qLPV-embedding NMPC method [START_REF] Cisneros | Nonlinear model predictive control for models in quasi-linear parameter varying form[END_REF] , which uses a scheduling sequence estimation and solves sequential QPs, solved via through iterated uses of Gurobi. This last method is henceforth marked as "qLPV MPC (Cisneros & Werner, 2020)".

All these controllers are synthesised with the same cost function and prediction horizon = 30 samples. The cost function is set to further force the regulation of the fluid temperature variable, with the following weights:

We proceed by depicting the obtained results in terms of reference tracking, i.e. regulation of the system states to the origin. These results comprise 950 s of simulation of the considered solar-thermal unit. The load disturbances (solar irradiance and environment temperature) are shows in Figure 6. Once again, we remark that the reference tracking goals are taken as constant values, this is:

(80)

Analysis of the Region of Attraction

Firstly, we aim to demonstrate that the proposed method is indeed recursively feasible, yielding an ISS region of attraction  .

According to the steps detailed in Sec. 5, the LMI in Lemma 2 yields a positive definite matrix and a constant that verify the dissipativity conditions of the proposed min-max algorithm. This is, indeed there exist and such that the cost function of the minimisation QP decays over the simulation run; they are numerically given: = 0.18746 0.00011 0.87199 24.00050 10 -4 , = 1.67939 10 -7 . (81)

Thus, for whichever starting condition 0 found inside the ellipsoidal set  ∶= 0 ∈ ℝ | 0 0 ≤ 0 , input-to-state stability is ensured. Accordingly, this is shown in Figure 7, where the elipsoid  is depicted altogether with the evolution of the systems states ( ) (obtained with the Proposed qLPV MPC method).

Complementary, Figure 8 displays the decrease of the cost function (⋅) over the simulation run. We note that it has an asymptotic behaviour towards zero; the instantaneous increasing moments stand for those where the appear harsh variations of solar irradiance (refer to Fig. 6) and, thus, the scheduling sequence extrapolation does not get such accurate gets and the maximisation CP computes larger uncertainties Σ . We note that the cost function is compared to that obtained with the Full Blown NMPC method, which is obviously smoother since it accounts for the complete NP.
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APPENDIX A NOMENCLATURE AND SYMBOLOGY

B PROOF OF PROPOSITION 2

The convergence property can be demonstrated with the aid of the residual term ( + ), which should turn null. We demonstrate this for = 1; the proof for the following steps is equivalent. Considering that the system is regulated by an MPC controller, and since it is robustly stable despite the residual term, it holds that lim →∞ ( + 1) = ( ). Then, take ( ) = ( ( + 1)) -( ( ))-Δ ( ). Due to the stabilisation implied by the MPC, it directly follows that lim →∞ ( ( +1)) = lim →∞ ( ( )) and lim →∞ Δ ( ) = 0. Then, lim →∞ ( ) = -lim →∞ Δ ( ) → 0. This concludes the proof.

C PROOF OF PROPOSITION 3

Firstly, note that at any given moment ahead of , the scheduling parameters can be given as:

whereas the "extrapolated" value is:

where ̂ (⋅) represents the Taylor expansion. The residual is given by the difference between Eqs. (C1) and (C2), as follows:

( + + 1) = ( ( + + 1)) -̂ ( ( + + 1)) , (C3)

Computing the ultimate bounds on the estimation error:

Due to the Triangular inequality:

Due to the local Lipschitz property of (⋅) (Assumption 7), it follows:

Since is ultimately bounded (Assumption 13), i.e. ‖ ‖ ≤ , it holds that:

Note that the ultimate bound on the state deviation is computed with respect to Assumption 10. Moreover, since bound < ,  ⊂ . This concludes the proof.

D PROOF OF LEMMA 1

The compactness of ,  and  imply that any predicted evolution of the system states and sequence of control actions are bounded. This fact guarantees that the optimal (maximised) cost bound is upper bounded, i.e. there exists a finite real value s.t. bound ≤ for all ∈  Max CP . In the virtue of the previous discussion and by optimality, it is implied that the sequence of control inputs is feasible (note that the min. QP is assumably feasible). Thence, we denote Δ bound as the boundbound -1

, i.e. the difference between the worst-case cost functions at two consecutive instants. For all ∈  Max CP , we consider that the MPC is formulated under a feasible time-varying state-feedback ( ) = ( ) ( ), as gives Assumption 4 and Eq. ( 29), and, thus:

Assume that Δ bound ≤ ( ) for all ∈  Max CP . Consider that the control action is well defined (resulting from the min QP). Then, it follows that:

and, thus, we arrive at:

Therefore, by induction, it is inferred that the decay of the worst-case cost function is upper bounded for all ≥ 0, considering that the evolution of belongs to the feasibility set  Max CP . Consider that the system state ( ) is measured and the min-max algorithm computes a control action ( ) = ( ) ( ). Then, the system is driven to ( + 1). Since we consider that ( ) ∈  Max CP and the model-process uncertainties are upper-bounded (by ), it is clear that the ( + 1) ∈  Max CP . This is valid for a feasible min. QP (which is demonstrated in the sequel). By the monotonicity results, it also follows that:

E PROOF OF LEMMA 2

Firstly, we define the quadratic Lyapunov function = . Then, we pre-multiply and post-multiply the LMI (54) by and , respectively. This yields the following inequality:

Then, we can substitute ( ) ∶= Θ ( ) which yields:

Due to inequality (52) the term is implied as negative. Equivalently,

is implied as positive due to the structure of Θ . Therefore, for any > 0, it holds that:

which means that the propose storage function is a Lyapunov function for the system and, thus, for any starting condition 0 ∈  , local asymptotical stabilisation to origin of the state-space is ensured by the MPC policy. 
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