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Abstract: The focus of this short review is directed towards investigations of the dynamics of nanos-
tructured metallic heterogeneous catalysts and the evolution of interfaces during reaction—namely, the
metal–gas, metal–liquid, and metal–support interfaces. Indeed, it is of considerable interest to know
how a metal catalyst surface responds to gas or liquid adsorption under reaction conditions, and how its
structure and catalytic properties evolve as a function of its interaction with the support. This short review
aims to offer the reader a birds-eye view of state-of-the-art methods that enable more realistic simulation
of dynamical phenomena at nanostructured interfaces by exploiting resource-efficient methods and/or
the development of computational hardware and software.

Keywords: interfaces; nanochemistry; heterogeneous catalysis; theoretical chemistry; materials modelling

1. Introduction

In heterogeneous catalysis, atomic and electronic structures of surface atoms and
their specific interactions with the local environment (gas, liquid solvent, support) govern
the binding and the release of reactant molecules, thus controlling the catalytic reaction
mechanisms [1]. In this context, computational models have a long-standing tradition
in the study of phenomena at solid–gas and solid–liquid interfaces, which determine
the activity, selectivity, and lifetime of a catalyst [2,3]. In fact, numerical simulations
can provide a full atomistic and electronic structural insight into the process of interest.
Furthermore, numerical simulations are of great aid in the deconvolution and control of
input parameters, such as temperature, pressure, chemical composition, and the nature
of the species in the system—i.e., the manifold variables that strongly contribute to the
complexity of dynamical processes at the interfaces. This is rarely accessible to current
characterization measurements—especially for the case of in situ and in operando studies,
where the interface structure may undergo frequent changes [4,5], notwithstanding the
recent advancements in the field, which have been reviewed in great detail elsewhere [6–8].
The purpose of this short review is to survey some significant milestones in the mod-
elling of dynamic phenomena occurring at the interfaces in the heterogeneous catalysts,
with an emphasis on works related to metallic or oxide nanoparticle (NP) catalysts. Ad-
vancements in the theory-guided understandings of the dynamical organization of three
relevant interfaces in heterogeneous catalysis—namely, the catalyst–solvent, catalyst–gas,
and catalyst–support interfaces—will be discussed.

2. Catalyst-Solvent Interface

An understanding of the solvent–metal structures is key to rationalizing catalytic
processes. Indeed, depending on the reaction of interest, the solvent may act as a relatively
innocent spectator, influence activity and selectivity by interacting with adsorbates—e.g.,
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by hydrogen bonding with key intermediates—or serve as a proton donor. Because of
the ubiquitous relevance of water in catalytic reactions, water–metal and water–metal
oxide interfaces have drawn great interest from the heterogeneous catalysis commu-
nity. Ab initio density functional theory (DFT) modelling has been adopted, together
with molecular-dynamics-based sampling, to probe the structure, dynamics, and acid-
ity of water monolayers, double-layers, and over the surfaces of many late transition
metals—Cu [9,10], Ag [10,11], Au [9,11,12], Pt [10,12–14], Pd [12,13,15], Rh [13], Ru [16],
Ni [17], and their alloys [9]—under a number of different conditions. Similarly, the in-
terface between oxides and water was assessed for systems of different natures—namely,
silica [18,19], ZnO [20–22], goethite [23], and alumina [24,25]. In the field of electrocatalysis,
the dynamics at electrified metal surface–water [26–31] and oxide surface–water [32,33]
interfaces have also been recently modelled and characterized in detail.

When moving from studies on pristine, flat surfaces to those on nanostructured
catalysts, we find that they are lesser in number and more recent. We could rationalize
this trend in terms of the computational cost required to achieve accurate and realistic
simulations of these systems. While works on pristine surfaces can provide information
transferable to surface science experiments or to studies involving large and pristine
nanocrystals, we believe that it is only by explicitly considering nanoscale features in the
catalyst—e.g., curvature effects, edges, vertices, and step sites unique to nanocatalysts—that
insightful and non-trivial inferences on nanostructured water–metal interface properties
can be obtained.

The few reports appearing in the literature support this statement. Ferreira de Morais
et al. [34] utilized MD with a DFT potential energy landscape (ab initio MD) to characterize
the interface between a Pt nanoparticle of 201 atoms and 689 explicitly considered water
molecules. They observed a re-organization of water molecules at the water–Pt201 interface.
This interface consists of an average of two physisorbed water molecules on terraces, which
is twice the number of chemisorbed water molecules on edges and corners. The unique
adsorption properties of low-coordinated atoms were also highlighted by Soria et al. [35].
These authors adopted a ReaxFF interaction modelling scheme and molecular dynamics to
characterize the hydration shells of spherical TiO2 nanoparticles. Their simulations showed
that water molecules adsorb in both molecular and dissociative states on the surface.
Depending on water concentration, single water molecules’ dissociation mechanisms (low
coverage) or Grotthuss-like mechanisms (high coverage) are observed. Several water
molecules can bind to the nanoparticle surface simultaneously, with adsorption being
enhanced at low-coordinated Ti atoms that do not find a counterpart in low-energy TiO2
surface terminations. Previously, Fazio et al. [36] focused on the same system, and adopted
a multiscale multistep integration scheme to prove that the nanoparticle–water interface
affects the water molecules’ dipolar orientation in a solvation shell with a thickness of 5 Å,
while water structuring was observed up to a distance of 8 Å from the nanoparticle surface.
The hydration shell structures around oxide nanoparticles have been also discussed by
Liu et al. [37], who used multiscale quantum mechanics/molecular mechanics (QM/MM)
simulations exploiting force fields and tight-binding methods to unravel the short-range
and long-range arrangement of water molecules around a spherical Fe3O4 nanoparticle.
Almost half of the water molecules in the first hydration shell dissociate and hydroxylate
the nanoparticle. Clear signatures in the radial distribution function of water around
the nanoparticle enable the detection of a well-structured second and third hydration
shell, while water molecules at distances ≥5 Å from the nanoparticle organize in bulk-
like arrangements. The immersion of Fe3O4 nanoparticles in water was further found to
improve their magnetic properties.

Solvent–catalyst interaction may also induce significant restructuring of the catalyst
itself. Thermodynamic models indeed predict rich adsorbate coverage–temperature-phase
diagrams, growth increasingly complex when further including eventual external elec-
trochemical potential [38,39]. Zhu et al. [40] developed an environmental model based
on the density functional theory, the Wulff construction, and the Langmuir adsorption



Catalysts 2022, 12, 52 3 of 10

isotherm to explore the shape evolutions of several transition metal NPs exposed to water
vapor pressure at different temperatures. The predicted results show that despite the weak
metal–water interactions, the evolution of water coverage on different facets could induce
dramatic shape changes, depending on the temperature and the water vapor pressure. More
recently, Chan et al. [41] adopted a first-principles approach and a micro-solvation model
(one water layer) to draw insight on the stability of different closed-shell Au nanoparticles
and determine the nature of the rearrangement mechanisms, which stabilize icosahedral
shapes with respect to Ino decahedra. These authors found that the adsorption strength
per water molecule following a rearrangement is independent of the nanoparticle size
and shape, while the water molecule networks around the nanoparticles consist of H2O
molecules linked, by and average of two hydrogen bonds. To sample longer time scales,
Delgado et al. [42] utilized an implicit potential to model the attractive interaction between
metal atoms and solvent molecules. They showed that such metal–adsorbate interactions
diminish the nanoparticles’ thermal stability against solid–solid and solid–liquid transi-
tions. Similarly, Braunwarth et al. [43] observed the long-term stability of Pt cubes solvated
in water by means of a ReaxFF potential. The cubes underwent a strong restructuring into
concave disordered cuboids after a few ns of simulation.

3. Catalyst-Gas Interface

In gas-phase reactions, the dynamic interaction takes place between the surface of
the nanostructured catalyst and the gas molecules, adsorbed intermediates, and products
form the catalyst−gas interface, which directly impact the available reaction pathways. In
addition, the catalyst−gas interactions are expected to modify the catalyst structure by
changing its shape and surface organization [44–46], as well as the atomic ordering in the
case of alloy catalysts [47–52]. As these dynamic structural changes modulate the activity,
selectivity, and stability of NP catalysts, probing the dynamic evolution of surface structure
and chemical ordering at the atomic scale under reaction conditions is crucial to providing
a fundamental understanding of reaction mechanisms.

In spite of the huge number of studies in the literature devoted to metal or metal
oxide catalyst–gas interactions, few theoretical studies have been dedicated to the in-
vestigation of the dynamics of nanostructured catalysts under reactive conditions. In
general, to predict the effects of gas adsorption on metallic nanocatalysts, DFT-based
geometric optimization methods are used to calculate and compare the stability of differ-
ent conformations of small metal clusters interacting with adsorbed gas molecules [53];
however, this method is limited to systems of a few dozen atoms. The prediction of equi-
librium shape evolution of larger metallic nanoparticles interacting with gas molecules
has been generally resolved by means of Wulff constructions based on DFT calculations
instead. This approach, however, does not account for dynamical contributions. In ad-
dition, Wulff’s construction theorem is only reliable for NP size > 5 nm, and disregards
the possibilities of disordered surfaces and twinning.

In the last few years, thanks to the strong progress in computational resources, it has
been feasible to sample DFT potential energy surfaces via ab initio molecular dynamics
(AIMD), exploiting the Born–Oppenheimer (BOMD) or Car–Parrinello (CPMD) formalism.
These approaches have emerged as powerful tools to explore the conformational changes of
metal NPs when exposed to different pressures of molecules. Very recently, Nassereddine
et al. [54] employed BOMD simulations to provide insights on the atomic-scale mechanisms
that underpin the experimentally observed size-dependent structural dynamics of Au NPs
exposed to atmospheric hydrogen pressure. These authors monitored the structural evolu-
tion of hydrogen-covered Au NPs of 2 nm in size for more than 60 ps of simulation time,
in order to demonstrate that the strong Au–H interactions may induce a high mobility of
gold atoms, which drastically change the shape and the symmetry of the whole NP at room
temperature (Figure 1). Similarly, by performing AIMD simulations, He et al. [55] revealed
size-dependent order-to-disorder transformation of ultrasmall gold clusters supported on
ceria upon exposure to carbon monoxide and oxygen. This transformation was found to
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lead to the generation of dynamic low-coordinated atoms, which may boost the oxidation
reaction of carbon monoxide. Thermodynamic models of gas–catalyst interaction inducing
dynamical changes become even more complex when it comes to the case of nanoalloys.
Restructuring, reshaping, segregation, and many other processes may occur, and must be
taken in account [56].
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Figure 1. Illustration of the drastic changes in Au NPs exposed to hydrogen. Configurations
extracted from AIMD simulation at 300 K, at simulation times of 0 ps (Configuration-0) where
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of adsorbed hydrogen Hads is indicated in red.

In addition to the well-known solid-state nanosized alloy catalysts, new emerging
classes of materials—namely, single-atom alloy catalysts (SAACs) [50,51] and supported
catalytically active liquid metal solutions (SCALMSs)—have been shown to undergo signifi-
cant changes during reactions. In a recent work, Wang et al. [52] reported the stability phase
diagram of single-atom Pt anchored in various metal host NPs as a function of hydrogen
pressures and temperatures. This work shows non-intuitive segregation behavior of SAACs
where the stability of diluted single atoms is found to depend on either the electronic and
geometric ensembles or the affinity of both alloy elements to the reactive gas. Humphrey
et al. [57] performed picosecond-long AIMD to show that the diffusion properties of single
Pt atoms on a rutile TiO2 (110) support are dictated by the interaction strength with adsor-
bates and supports, where strong metal–adsorbate interactions determine higher diffusion
coefficients. Bauer et al. [58] have recently reported in operando DRIFT and DFT results
of GaxPty catalyst systems, showing interesting dynamical behavior of isolated Pt atoms.
Running AIMD simulations of Pt atoms evolving in Ga matrixes as a function of time and
temperature, these authors showed that the rate of appearance at the surface of a single
Pt atom depends on several factors, such as the size of the NP and the mobility of the
atoms which, in turn, depend on the temperature and the composition of the catalyst. At
temperatures higher than 350 ◦C, a homogeneous and liquid Ga/Pt metal phase appears,
leading to a higher mobility of atoms; thus, the ability of Pt to reach the surface and to
interact with the reactant becomes stronger. In addition, the residence time of Pt at the
surface is found to be strongly influenced.

Finally, in the case of oxides, one can observe similar behavior, Modelling complex in-
terfaces involving both surfaces and gas-phase molecules is of crucial interest for improving
the catalytic activity and selectivity [59,60].

4. Catalyst-Support Interface

It is well documented that the arrangements of the catalyst–support interface can
have a tremendous impact on the reactivity of the catalyst’s adsorption sites which, in
turn, may cause an increase in the catalyst’s activity and/or selectivity due to geometric
and/or electronic effects. By the same token, support–catalyst interaction can dramati-
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cally affect the stability of the latter with respect to the gas phase. Conversely, the effects
of electronic [61], reactive [62], and strong metal–support interactions [63,64] have been
strong drivers in the study and analysis of the dynamics of supported nanostructured
metal catalysts.

To investigate the dynamics at the support–catalyst interface, ab initio simulations
stand as one of the most promising tools. These are key tools to monitor the time- and
condition-dependent evolution of the structure of a supported nanocluster. Vila et al. [65]
utilized DFT modelling and molecular dynamics to characterize the peculiar negative
thermal expansion and large structural disorder of Pt nanoparticles supported on a gamma-
Al2O3 surface in terms of a combination of thermal vibrations and low-frequency disorder.
Vila et al. [66] previously fitted a hybrid version of the classical Sutton–Chen force field
to predict diffusion coefficients and bond-breaking rates as a function of the nanocluster
size. By looking at sizes between 10 and 20 atoms, they identified size-dependent dy-
namical changes in the thermally driven phase change and diffusion of the nanoparticles.
Xu et al. [67] adopted AIMD to demonstrate the complexity of the structural evolution of
Au–Pd nanoalloys deposited on rutile TiO2, as a function of different in operando condi-
tions. These authors ran simulations for 40–50 ps of the Au–Pd cluster of 38 atoms deposited
on a four-layer (7 × 3) rutile TiO2 (110) support. The results show that when simulating
reducing conditions (the adsorption of one hydrogen atom), Pt atoms are more likely to
lie at the metal–oxide interface. Conversely, under oxidizing conditions (interactions with
oxygen), Pd atoms are more likely to be located at the surface of the nanocluster.

Structural properties and catalytic activity are intimately interlinked. In turn, simula-
tions of the dynamical evolution of the system can capture and reveal non-trivial catalytic
reaction pathways. Li et al. [68] utilized ab initio molecular dynamics to monitor the time-
dependent evolution of the geometric and electronic structure in a Pt nanocluster supported
on CeO2. They identified the dynamic nature of the Pt0−O vacancy, with Ce3+ sites as the
key to rationalizing activity trends for water gas shift catalyzed by this system. Similarly,
Wang et al. [69] considered Au nanoclusters on ceria, and utilized AIMD to unravel a
previously unreported single-atom mechanism through which the system can drive the
oxidation of CO. A gold cation can momentarily break away from the gold nanoparticle to
catalyze CO oxidation by moving adjacent to the metal–oxide interface (Figure 2), and then
re-insert into the nanocluster after the reaction is completed. Additionally, in relation to the
dynamical nature of active sites in supported catalysts, Daelman et al. exploited AIMD to
show that metal charge of single Pt atoms on CeO2 (100) surfaces evolves over time; they
thus rationalized these strong metal–support interactions in terms of the relative position
of the Ce 4f levels relative to the ones in Pt, allowing for electron injection and withdrawal
between the two [70]. The dynamical modification of the metallic charge further enabled
the rationalization of the high reactivity of single Pt atoms for CO oxidation.
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Moving from nanoclusters (a few tens of atoms at maximum) to nanoparticles (i.e.,
systems with at least a few hundred of atoms), several works have focused on the develop-
ment of accurate interatomic potential parameters to reproduce and predict the effect of
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the support on the stability of the nanostructured catalyst. Ngajdong et al. [71] fitted an
explicit analytical potential to DFT in order to model dynamics at the Ag–SiO2 interface;
they demonstrated that the likelihood of observing Ag nanoparticles with twin boundaries
decreases when a SiO2 support is considered; furthermore, they observed that melting
initiates at the interface between the nanoparticle and the substrate. In the same year,
Rossi et al. [72] showed that the support induces a wetting of the nanoparticle, crystalline
rather than polycrystalline morphologies, and plays a strong role in stabilizing the nanopar-
ticles against solid–liquid transition. This conclusion was achieved from the analysis of
simulations adopting an implicit metal oxide force field parametrized on DFT data.

In addition to oxide supports, carbon also finds an application in devices—often
as a substrate where metallic nanocatalysts are deposited. This motivation, together
with the accuracy with which carbon–carbon and carbon–metal interactions can be
modelled while utilizing efficient approaches, has stimulated a number of investigations
on carbon–metal interfaces. Foster et al. [73] utilized an implicit approach where
atoms were fixed in contact with the implicit carbon support, in order to show that
the substrate tends to increase the stability of the nanocatalysts against solid–liquid
transitions. Previously, Morrow et al. [74] and Qiu et al. [75] fitted a semi-empirical
force field to DFT data in order to study the stability of metal nanoparticles on carbon
nanostructures, which are modelled explicitly. The carbon support nanostructure was
identified as a tunable parameter to control nanoparticle size and chemical composition.
Later, Cheng et al. [76] also adopted a reactive force field to present an additional proof
that the carbon support structure is a free parameter to modify the coordination number
distribution of surface sites in a Pt nanoparticle. These changes, in turn, affected the
catalytic properties of the system, where the abundance of highly coordinated sites was
found to correlate with the activity for CO oxidation.

5. Outlook: Reactive Events at Support/Catalyst/Gas-Liquid Interfaces

The accurate modelling of dynamical processes at the catalyst–solvent, catalyst–gas,
and catalyst–support interfaces has thus far benefited greatly not only from the improve-
ment in the hardware performance—which enables faster computations—but also from the
advancement in the methods and algorithms with which interatomic interactions are pre-
dicted. The investigations we have reported in this short review, in our opinion, represent
significant and paradigmatic examples of these trends.

In the future, we believe that the explicit simulation of reactive events—while adopting
a non-idealized description of the catalyst, its support, the solvent or the gas environment,
and the applied potential for electrified interfaces—is likely to become the state of the art.
To date, the investigations have mostly been devoted to pristine surfaces. Example studies
of the reconstruction of pristine surfaces in the presence of a solvent have been recently
reported by Natarajan et al. [77] and Michalka et al. [78]. The former developed a neural
network force field for Cu, H, and O interaction, and utilized it to sample the self-diffusion
of adatoms at the interface between a Cu surface and bulk water; they concluded that
hopping mechanisms are more favorable than exchange mechanisms, and that Cu–water
interaction lowers the barrier associated with self-diffusion. The latter utilized an analytical
force field fitted to DFT data to simulate CO-induced restructuring on stepped Pt surfaces,
and identified a stochastic edge-doubling nucleation followed by zippering as the most
likely reconstruction mechanism.

Notable examples for the case of chemical reactions on pristine surfaces are rep-
resented by the studies of Goddard III et al. [79,80]—who utilized ab initio MD and
enhanced sampling methods to pinpoint critical intermediates in electrochemical CO2
reduction—and by Vandermause et al. [81], who fitted a Gaussian process of many-body
potential to probe reactive events at the H2–Pt interface, and predicted an activation
energy for H2 splitting and recombination in striking agreement with the experimen-
tal value. Machine learning has also been instrumental in the simulation of reactions
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in solutions, such as urea decomposition in water [82], proton transfer in Na/water
mixtures [83], and CH3SO3H deprotonation in phenol and phenol/H2O2 solvents [84].
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