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Abstract: The monitoring of the Land Surface Temperature (LST) by remote sensing in urban areas is
of great interest to study the Surface Urban Heat Island (SUHI) effect. Thus, it is one of the goals of
the future spaceborne mission TRISHNA, which will carry a thermal radiometer onboard with four
bands at a 60-m spatial resolution, acquiring daytime and nighttime. In this study, TRISHNA-like
data are simulated from Airborne Hyperspectral Scanner (AHS) data over the Madrid urban area
at 4-m resolution. To retrieve the LST, the Temperature and Emissivity Separation (TES) algorithm
is applied with four spectral bands considering two main original approaches compared with the
classical TES algorithm. First, calibration and validation datasets with a large number of artificial
materials are considered (called urban-oriented database), contrary to most of the previous studies
that do not use a large number of artificial material spectra during the calibration step, thus impacting
the LST retrieval over these materials. This approach produces one TES algorithm with one empirical
relationship, called 1MMD TES. Second, two empirical relationships are used, one for the artificial
materials and the other for the natural ones. These relationships are defined thanks to two calibration
datasets (artificial-surface-oriented database and natural-surface-oriented database, respectively), one
containing mainly artificial materials and the other mainly natural ones. Finally, in order to use two
empirical relationships, a ground cover classification map is given to the TES algorithm to separate
artificial pixels from natural ones. This approach produces one material-oriented TES algorithm
with two empirical relationships, called 2MMD TES. In order to perform a complete comparison
of these two addenda in the TES algorithm and their impact on the LST retrieval, both AHS and
TRISHNA spatial resolutions are studied, i.e., 4-m and 60-m resolutions, respectively. Relative
to the calibration of the TES algorithm, we conclude that (1) the urban-oriented database is more
representative of the urban areas than previous databases from the state-of-the-art, and (2) using
two databases (artificial-surface-oriented and natural-surface-oriented) instead of one prevents the
overestimation of the LST over natural materials and the underestimation over artificial ones. Thus,
for both studied spatial resolutions (AHS and TRISHNA), we find that the 2MMD TES outperforms
the 1MMD TES. This difference is especially important for artificial materials, corroborating the
above conclusion. Furthermore, the comparison with ground measurements shows that, on 4-m
spatial resolution images, the 2MMD TES outperforms both the 1MMD TES and the TES from the
state-of-the-art used in this study. Finally, we conclude that the 2MMD TES method, with only
four spectral bands, better retrieves the LST over artificial and natural materials and that the future
TRISHNA sensor is suited for the monitoring of the LST over urban areas and the SUHI effect.
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1. Introduction

In total, 54% of the world’s population lives in urban areas, and an increase to 66% is
expected by 2050 [1]. Moreover, a recent study highlighted that the mean air temperature
rising over urban areas could reach 4.4 K by 2100 [2]. As such, one-third of the world
population will be possibly subject to a higher risk of mortality due to the heat waves, and
this amount can increase from 48% to 74% by 2100 [3]. Actually, this temperature rising
is generally due to global warming and is accentuated in cities by the Urban Heat Island
(UHI) effect, defined as the difference between the urban and rural (urban surroundings)
mean air temperatures. The UHI effect has an impact on air pollution and can lead to sleep
disorders or heat stresses for inhabitants, and the air temperature can be used to derive
their thermal comfort [4–6]. Remote sensing data from the Thermal InfraRed (TIR) spectral
domain allows to retrieve the Land Surface Temperatures (LSTs) leading to Surface Urban
Heat Island (SUHI) quantifications, considered to be the difference between the mean
LST of the central urban area and the mean LST from the surrounding rural area [7–9].
SUHI and UHI effects are linked by different thermodynamic phenomena but the LST
and the air temperature were found to be coupled during the night, although they are
decoupled during the day [10,11]. Thus, UHIs can be analyzed with remote sensing data
via the quantification of SUHIs because variations of LST and air temperature are correlated
together [10,12–17]. The monitoring of SUHIs is also of primary interest in order to enhance
the understanding of urban climate and the impact of global warming and urbanization
and to help public policies to support climate change mitigation and urban planning
activities [18–20]. Satellite remote sensing data in the TIR domain provides spatial and
temporal variations of the LST at different scales worldwide. Furthermore, LST is also a
key parameter to help in the understanding of physical processes other than the UHI effect,
such as evapotranspiration, vegetation stress or water cycles [21–24].

For these purposes, new generation sensors/satellites such as Thermal infraRed
Imaging Satellite for High-resolution Natural resource Assessment (TRISHNA), ESA-LSTM
(Land Surface Temperature Monitoring), SBG (Surface Biology and Geology) from NASA
or Gaofen-5 in China, all of them carrying onboard multispectral sensors with spatial
resolutions under 100-m in the TIR domain, have been conceived. In particular, TRISHNA
is an Indo-French joint-mission between CNES and ISRO that will be launched in 2025,
following other aborted missions such as Mistigri or Thirsty [25–28]. Thus, this mission
will be mainly dedicated to the monitoring of agricultural areas, coastal waters and urban
areas. A radiometer onboard will cover Visible and Near InfraRed (VNIR), ShortWave
InfraRed (SWIR) and TIR ranges with 5 bands in the VNIR-SWIR spectral domain and 4
bands in the TIR one. Moreover, the TRISHNA mission will have daytime and nighttime
overpasses with a 3-day repeat cycle and a 60-m spatial resolution, which is better suited for
urban studies [29]. Therefore, TRISHNA and the aforementioned future missions with high
spatial resolutions in the TIR domain require the development of adapted LST retrieval
methods [30–35].

Currently, the Temperature and Emissivity Separation (TES) algorithm is among the
most commonly used methods for LST retrieval from remote multispectral data. It presents
the advantage of estimating both LST and Land Surface Emissivity (LSE) [9,36–39]. It can
be applied with a minimum of three thermal bands so it is adapted to process TRISHNA
images. However, TES needs a prior atmospheric correction, and so inaccuracies result
in a larger spectral contrast with important effects over gray-body surfaces that have a
weak spectral contrast [40–44]. Moreover, this algorithm has already been applied to
retrieve the LST over urban areas [45–47]. Regardless of the aforementioned limitations,
the LST retrieval over urban areas is not trivial because of several factors: (i) the strong 3D
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structure of the urban landscape leads to errors because the geometric effect is not taken
into account [48,49], (ii) the mean size of urban objects is about ten meters, so the observed
pixels from spaceborne sensors are not composed of only one material (mixed pixels),
leading to some uncertainties in the retrieved LST [50–52], (iii) the adjacency effect [53],
(iv) the anisotropy effect that can appear according to the solar position and the viewing
angle [54], and (v) urban materials exhibit a strong heterogeneity, spectrally, spatially
and even temporally, especially artificial materials [55–58]. In order to be applied, the
TES algorithm needs a prior phase of calibration, achieved with a database of emissivity
spectra. Most of the time, the amount of artificial materials in the database is very low,
even for urban image processing [47,59,60]. Indeed, the first version of the TES algorithm
considered 86 laboratory emissivity spectra of rocks, soils, vegetation, snow and water [36].
They also tested with other spectra, finding similar results, thus they concluded on the
validity of the calibration method. Two main reasons explain why natural surfaces are
more commonly used: (i) at the time of the development of the TES algorithm, urban
studies were not as developed as nowadays, especially because high-spatial-resolution
missions had not been launched yet, and (ii) the artificial materials exhibit a strong spectral
heterogeneity, the LSE variability is higher than for natural materials, so the calibration
phase can be challenging. Nevertheless, the TES algorithm has been applied over urban
areas with knowledge of these limitations. For instance, a 7-band TES used to retrieve
the LST over the Madrid urban area was calibrated with 108 natural materials [10]. Thus,
changing the database could avoid inaccuracies of the TES algorithm when dealing with
artificial materials.

This article proposes two new versions of the TES algorithm based on two new
approaches for the study of urban LST. The calibration of the TES algorithm is based
on a non-linear regression of an empirical relationship. The first approach considers the
calibration with an urban-oriented database in order to retrieve the parameters of the
regression. We call this database urban-oriented because it contains similar amounts of
both artificial and natural materials compared with the classical databases based on natural
materials only. A unique empirical relationship is defined by this database and we call this
approach 1MMD TES. The second approach considers two empirical relationships, one for
the artificial materials and the other for the natural ones. The urban-oriented database is
split in two for calibration. We call this approach 2MMD TES. An a priori under the form
of a ground cover classification map is used to associate one observed pixel to the right
empirical relationship.

This article uses airborne images over Madrid (Spain) obtained during the ESA-
DESIREX (Dual-use European Security IR Experiment) campaign in 2008. Then, from
these airborne acquisitions, TRISHNA images at a lower resolution are simulated. The
ESA-DESIREX campaign took place in Madrid during the 2008 summer period, with
daytime and nighttime radiance images acquired at a 4-m spatial resolution by the AHS
(Airborne Hyperspectral Scanner) sensor and ground measurements. These images have
been processed to study the SUHI effect over Madrid city using the TES algorithm with
seven bands [10,47,61]. These previous works, the configuration of the AHS sensor (10
spectral bands in the TIR range) and the characteristics of the ESA-DESIREX campaign
make the dataset a good candidate to prepare the future TRISHNA mission and the
development of adapted LST retrieval methods over urban areas by simulating TRISHNA-
like images from AHS data.

This study is among the first ones using TRISHNA-like data over urban areas and
aims to obtain preliminary performances of this future mission for LST retrieval. It will
help the development of algorithms for the future TRISHNA mission, when a maximum of
four spectral thermal bands are used with a 60-m spatial resolution. Thus, the performance
of two new versions of the TES algorithm, 1MMD TES calibrated with an urban-oriented
database and 2MMD TES, is studied in order to highlight their advantages, their limitations
and their possible improvements to enhance the accuracy of the retrieved LST.
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The following study is divided into six different sections: Section 2 presents the
materials: the ESA-DESIREX campaign with both airborne and ground data in Section 2.1,
the simulation of TRISHNA-like data in Section 2.2 and the spectral databases to calibrate
the TES algorithm in Section 2.3. Then, the TES algorithm is presented in Section 3, focusing
on the classical approach in Section 3.1 and our approach in Section 3.2. Section 4 deals
with the results, and further discussion is provided in Section 5. Finally, conclusions and
future works are highlighted in Section 6.

2. Materials and Methods
2.1. The ESA-DESIREX Campaign: Airborne, Ground and Classification Data

The ESA-DESIREX campaign was an urban experimental campaign that took place
in Madrid during the summer period, from the 23 of June to the 6 of July 2008. During
this campaign, airborne data were acquired with the AHS sensor operated by the Spanish
Institute of Aeronautics (INTA for Instituto Nacional de Técnica Aeroespacial). The AHS
sensor is a 80-band radiometer covering the VNIR, SWIR, and TIR spectral ranges. This
article focuses on the last ten bands from 71 to 80 in the TIR range. The effective wavelengths
in micrometers and the FWHM (Full Width at Half Maximum) for the ten bands of AHS in
the TIR range are given in Table 1.

Table 1. Effective wavelength and FWHM of the different AHS spectral thermal bands.

AHS Band 71 72 73 74 75 76 77 78 79 80

Effective wavelength (µm) 8.18 8.66 9.15 9.6 10.07 10.59 11.18 11.78 12.35 12.93

FWHM (nm) 370 390 410 430 420 550 560 560 480 490

In this work, daytime (around 11 A.M UTC) and nighttime (around 10 P.M UTC)
radiance AHS images of the flight line going from north to south for the 28 of June, the 1 of
July, and the 4 of July were processed and analyzed (i.e., 6 different images). The spatial
resolution is 4 m and all the images were georeferenced [62]. Figure 1 illustrates a RGB
image of the flight line going from north to south that was acquired on the 4 of July of 2008.
Two areas were chosen for visual analysis: the Retiro Park in the center of Madrid and the
Universidad Autónoma de Madrid (UAM) in the peri-urban northern area of the city. The
numbers on the Figure 1 are those of the locations of the ground LST measurements, that
are described below.

Radiosoundings were made through free or captive balloons that were launched twice
a day (daytime and nighttime) recording physical parameters such as pressure, air temper-
ature, relative humidity, wind velocity and wind direction up to 25 km in altitude [62]. The
knowledge of these parameters allows retrieving the atmospheric transmittance as well
as improving the atmospheric correction of the remote sensing images, which is of high
relevance for the TES algorithm [61].

For the ground measurements, calibration and validation sites were selected because
of: (i) the stable atmospheric conditions during the ESA-DESIREX campaign, (ii) the
low water vapor content, (iii) the homogeneity of both LST and LSE, (iv) absence of
shadows and (v) the flat grounds avoiding the impact of the 3D structure on the measured
radiance [62]. The sites over the processed flight line were on the one hand: green grass
as a cold target in a rugby field (1) and bare soil as a hot target in a soccer field (2), both
located at the “Universidad Autonoma de Madrid” (UAM). On the other hand, water at the
“Retiro lake” (Estanque Grande del Retiro) (3) as a cold target in the center of the city was
used. Surface radiometric temperature, emissivity and downwelling atmospheric radiance
were measured on these sites with radiometers such as Heitroniks or a 5-band CIMEL [62].
Ground radiances were measured with a 5-band CIMEL instrument, and during the
campaign, the TES algorithm was applied to obtain LST and emissivity measurements for
bare soil and green grass. For water, a 1-band radiometer (Heitroniks) was used with an
emissivity value of 0.99 [62]. In addition, fixed masts were located along different sites: in a



Remote Sens. 2021, 13, 5139 5 of 35

rural/sub-urban zone at UAM (rugby field) (1), in an urban-dense zone at “CSIC” (4) and
“Printing” (5) and in an urban-medium zone at “Urbanism Building” (6). These fixed masts
measured air temperature, relative humidity and ground radiometric temperature with
1-band radiometers. The radiometric temperature from fixed masts was obtained with
1-band radiometers using the sky irradiance and an emissivity value of 0.9 for artificial
surfaces to derive the LST. Table 2 gives the longitude and latitude coordinates of the
calibration/validation sites and fixed masts. Four car transects were defined to drive
throughout the city of Madrid and its surroundings to measure the LST and they are all
covered by the AHS flightlines. The car transect 1 is along the north–south axis, the car
transect 2 is in the old center of Madrid, the car transect 3 is in wide space and vegetated
areas and the car transect 4 is in wide streets with new buildings and also the highway.
The areas crossed by the car transects are not homogeneous in order to better observe the
thermal variations. The different car transects are useful for retrieving the SUHI values
over different parts of the city.

Figure 1. RGB AHS image for the 4 of July of 2008. Yellow squares highlight the two areas used for visual analysis: the
Retiro Park in the center of Madrid and the Universidad Autonoma de Madrid (UAM) in the peri-urban northern area of
the city. North is marked by the arrow. The green square highlights the rural area, and the purple square highlights the
urban area; both areas were chosen to compute the SUHI. Green stars point out the locations of ground measurements from
calibration/validation sites or from fixed masts, with numbers in correspondence with Table 2.

Table 2. Names and locations of the calibration/validation sites and fixed masts.

Site Coordinates: Latitude, Longitude

1/ Fixed Mast and Calibration/Validation: rugby field
UAM (natural material) 40◦32′50.58′′N, 3◦41′53.57′′W

2/ Calibration/Validation: soccer field UAM (natural
material) 40◦32′52.37′′ N, 3◦41′48.08′′ W

3/ Calibration/Validation: water lake Retiro Park
(natural material) 40◦25′1.70′′ N, 3◦41′2.27′′ W

4/ Fixed mast: CSIC (artificial material) 40◦26′28.06′′ N, 3◦41′15.54′′ W

5/ Fixed mast: Printing (artificial material) 40◦24′49.96′′ N, 3◦42′19.87′′ W

6/ Fixed mast: Urbanism Building (artificial material) 40◦27′36.31′′ N, 3◦40′19.86′′ W

Figure 2 illustrates the two areas used for visual analysis that are the Retiro Park and
the UAM with stars pointing out the locations for calibration and validation. These areas
were chosen because they include both natural and artificial materials and some validation
points. The Retiro Park is an urban dense zone, and the UAM is a rural sub-urban zone.
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Figure 2. RGB AHS image for the 4 of July 2008 over the two areas shown for visual analysis: the Retiro Park (left) and
the UAM (right). Stars point out the calibration and validation surfaces used during the ESA-DESIREX campaign, with
numbers in correspondence with Table 2. The water lake is at the center of the Retiro Park, highlighted by the number three.
The big gray roofs under the Retiro Park are part of the Atocha train station.

Lastly, a supervised classification-based approach was applied during ESA-DESIREX
on daytime AHS images for the 4 of July, with ground measurements to define the end-
members spectra and the Maximum Likelihood used as the decision rule. Twelve classes
were selected with a 73% kappa coefficient: water (lakes and swimming pools), trees, green
grass, bright and dark bare soils, roads with asphalt, other roads and pavements, roofs
with red bricks/tiles, roofs with asphalt, roofs with concrete and roofs with metal. The
details for this classification can be found in [63]. Figure 3 shows the classification map
obtained at a 4-m resolution over the Retiro Park and the UAM with the legend for every
classified type of material. Further information about the ESA-DESIREX campaign and its
results over the city of Madrid can be found in the ESA-DESIREX 2008 final report [62].
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Figure 3. The 4-m classification map derived from AHS and in-situ data, over the Retiro Park (top
left), over the UAM (top right), with the legend and the density of each class in percentage (bottom).

2.2. Simulation of TRISHNA-like Data
2.2.1. Radiance Images

In the TIR range (8–14 µm), the radiance at the sensor-level in a specific spectral band
and close to nadir is expressed as:

Lλ,sensor = τλatm,sensorLλ,BOA + Lλatm↑,sensor Wm−2µm−1sr−1 (1)

where λ is the considered wavelength, τatm,sensor the atmospheric direct transmissivity
between ground and sensor (the diffuse transmissivity is negligible in the thermal do-
main), Lλatm↑,sensor the upwelling path radiance and Lλ,BOA the radiance at the Bottom Of
Atmosphere (BOA). The Lλ,BOA can be expressed as:

Lλ,BOA = Lλ,sur f ace + [1− ελ]Lλatm↓ W m−2µm−1sr−1 (2)

Furthermore,

Lλ,sur f ace = ελLBB(Ts) W m−2µm−1sr−1 (3)

where Lλatm↓ is the downwelling atmospheric radiance, Lλ,sur f ace is the radiance at the
surface, ελ is the equivalent surface emissivity and LBB(Ts) is the radiance defined by the
Planck’s law for a black body at the temperature Ts. Thus, the LST (Ts) is obtained by
inverting the Planck’s law:
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Ts =
c2

λ ln( c1

λ5
Lλ,sur f ace

ελ

+ 1)
K (4)

With c1 and c2 being the constants in the Planck’s law, c1 = 1.19104 Wµ4 m−2 sr−1 and
c2 = 14387.7 µm K. All the quantities in Equations (1)–(4) depending on the wavelength
are mentioned as equivalent: they are integrated according to the spectral response of the
considered sensor and normalized by it.

As the number, position and bandwidths of the four thermal spectral bands for
TRISHNA were not determined yet when the study was made, AHS bands were used
to simulate TRISHNA ones. Four AHS bands were chosen according to the closeness of
the central wavelength compared with the known central wavelengths for the TRISHNA
sensor: AHS band 72 at 8.18 µm, 73 at 9.15 µm, 76 at 10.59 µm and 78 at 11.78 µm [26].
Figure 4 summarizes the simulation methodology.

Figure 4. Processing scheme from AHS data to TRISHNA data in the TIR.

• Step 1: From airborne level to TOA (Top of Atmosphere) level:
To model the attenuation through the atmosphere, Equation (1) can be expressed for
both the airborne level and satellite level, leading to a linear relationship between
the AHS radiance and the TOA radiance. Both the slope and the intercept of this
relationship depend only on the atmospheric conditions and the observation angle
(nadir is considered in this study). Details of the calculation for both the slope
and the intercept can be found in [64]. Simulations are performed with the radiative
transfer code COMANCHE using the ESA-DESIREX atmospheric profiles, 75 synthetic
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emissivity spectra and 6 temperatures for each spectrum [65,66]. The temperature
range is 273–335 K and the emissivity range is 0–1 to have a dense representation of
the earth surface spectra. The slope and intercept parameters of the linear relationship
are retrieved with the least squares fitting and then can be applied to the AHS images
to obtain the radiances at the TOA level.

• Step 2: Spatial aggregation (undersampling) and noise:
The undersampling is made with a Function Transfer Model (FTM) and SNRs (Signal
to Noise Ratios) that were defined according to the first TRISHNA sensor characteris-
tics. The FTM is considered exponential in this spatial aggregation procedure.

• Step 3: Atmospheric correction to obtain the BOA radiance:
The atmospheric coefficients integrated into the four selected spectral bands are kept
in order to perform the atmospheric correction allowing to pass from TOA to BOA
radiances before applying the TES algorithm (see Equation (1). These coefficients
are retrieved with the radiative code COMANCHE thanks to the ESA-DESIREX
atmospheric profiles.

In the end of this processing, daytime and nighttime BOA radiance maps at 4 and
60 m spatial resolutions are obtained. Figure 5 shows AHS radiance and TOA radiance at
4 m resolution together with TOA radiance at 60 m resolution for band 72 of AHS (band
1 of TRISHNA). Thus, it allows illustrating the different steps of the methodology. LST
retrieval through the TES algorithm is described in Section 3.

Figure 5. Illustration of the methodology applied on one thermal band (72) over the Retiro Park (up)
and the UAM (bottom): before Step 1 (left), after Step 1 (middle), after Step 2 (right).

2.2.2. Ground Cover Classification Map

The 4-m ground cover classification map was aggregated at 60 m by using the nearest
neighbor approach with k = 15 neighbors and keeping the most prevalent class. Figure 6
shows the obtained 60-m classification map from the 4-m one. It is worth noting that this
approach considers 60-m pixels as pure. This consideration is later discussed in Section 5.
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Figure 6. The 60-m classification map obtained from the 4-m one over the Retiro Park (top left) and
the UAM (top right), with the legend and the density of each class in percentage (bottom).

2.3. Urban-Oriented Database for TES Calibration

This article focuses on the future TRISHNA sensor and proposes an urban-oriented
database to calibrate the TES algorithm. Indeed, a database containing both natural and
artificial surface emissivities is needed to perform a representative calibration for urban
environments. In this study, emissivities were recovered from those spectral databases:
ECOSTRESS (formerly ASTER, [67,68]) for artificial surfaces and bare soils, CAPITOUL [69]
(laboratory measurements over artificial surfaces taken in Toulouse, France), SLUM [70]
(ground measurements over artificial surfaces in London, UK), MODIS [71] and IPGP [72]
databases. Whether the considered surfaces are artificial or natural, the data processing
was slightly different. For natural surfaces, a similar approach to [73–75] was adopted:

1. All spectra that did not cover the spectrum from the VNIR to the TIR ranges were
rejected.

2. To avoid any redundancies, the SAM (Spectral Angle Mapper) distance between each
pair of spectra was computed [76]. To define any redundancy or not, the threshold
was set to 1◦ according to the study made by [75].

3. The PRO-SAIL (Scattering by Arbitrarily Inclined Leaves combined with PROSPECT)
model was used to simulate mixed spectra of soil and vegetation at the top of the
canopy with different values of Leaf Area Index (LAI) and Average Leaf Angle [77].
More than 60,000 spectra result from the process. This simulation of natural surfaces
was chosen because: (i) it is more representative of the pixel that is observed at the



Remote Sens. 2021, 13, 5139 11 of 35

sensor level, (ii) it takes into account the canopy effect and iii) the TES algorithm was
applied on this database with experimental satisfactory results [74]. Natural surfaces
in our spectral databases are thus composed of pure and linearly mixed spectra of bare
soil and vegetation. The PROSPECT model has been parametrized following [73–75].

4. The SAM distance with a threshold of 1◦ is computed in order to avoid any redun-
dancies.

5. All spectra with an equivalent emissivity lower than 0.7 between 10 and 12 µm were
rejected.

For artificial surfaces, the following methodology was retained:

1. All spectra that did not cover the spectrum from the VNIR to the TIR ranges were
rejected.

2. For the CAPITOUL database, the tiles were rejected as the laboratory measurements
showed some errors.

3. The SAM distance with a threshold of 1◦ is computed to avoid any high redundancies.
4. All spectra with an equivalent emissivity lower than 0.7 between 10 and 12 µm are

rejected.

Note that no low emissivity materials (lower than 0.7) have been used because of the
known poor performance of the TES algorithm for these materials [40,78].

In the end, our spectral database consists of 266 emissivities of natural materials and
236 emissivities of artificial materials. In detail, artificial materials account for 47% and
natural ones for 53%, which makes the spectral database representative of the urban areas
and the rural surroundings. Next, this database is split into calibration and validation
datasets. For natural surfaces, a random sampling is made among the 266 emissivities,
while for artificial surfaces, a random sampling is made among the different spectral
databases of artificial materials in order to avoid any kind of prevalence of a field instrument
compared to another one. Finally, two independent databases with 251 emissivities each
were used for calibration and validation, respectively. More precisely, each dataset contains
133 spectra of natural surfaces and 118 of artificial ones.

Instead of looking for a heterogeneous TES calibration spectral dataset able to rep-
resent all the different surfaces appearing in an urban satellite image, two sub-datasets
characterizing, respectively, artificial and natural surfaces can be built. We call these
databases artificial-surface-oriented and natural-surface-oriented, respectively. Thus, the
above urban-oriented spectral database can be divided into the artificial-surface-oriented
one with 236 emissivities and the natural-surface-oriented one with 266 emissivities. Newly,
these databases can be split into two independent calibration and validation datasets. This
original approach leads to material-specific calibration of TES.

3. LST Retrieval with the TES Algorithm

For a number of N spectral bands, there are N observed radiances and N + 1 unknowns:
N emissivities + 1 LST, consequently, the system is undetermined. Different methods use
approximations or a priori information to derive the system unknowns. These methods can
be divided into different categories whether they use one single band, two bands or more,
a combination of daytime/nighttime observations or multi-angle observations. A review
of the LST retrieval methodologies can be found in [79–82]. In this work, we focus on the
TES algorithm that uses an empirical relationship in order to solve the system because this
algorithm is commonly used and it can be applied with more than three bands.

3.1. The Classical Approach: TES with One MMD Relationship or 1MMD TES

The TES algorithm has first been introduced in [36] for ASTER data processing and is
based on three modules: NEM for Normalized Emissivity Method, RATIO and MMD for
Maximum-Minimum Difference. Thus, TES jointly retrieves LSE and LST [83]. This algo-
rithm can be applied to any sensor with more than three thermal bands. The first module,
NEM, uses an initial emissivity value (here 0.99) and iteratively corrects it. The RATIO
module normalizes the new emissivities by the average of all found emissivities in all the
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thermal bands. This preserves the shape of the spectrum and minimizes the sensitivity to
errors in temperature estimation. The third module converts normalized emissivities into
actual emissivities using the empirical relationship called MMD relationship. The MMD
relationship is expressed as:

εmin = a + b ∗MMDc (5)

With εmin the minimum equivalent emissivity and MMD the maximum difference
between equivalent emissivities in the considered spectral thermal bands (in this study,
bands 72, 73, 76 and 78 of AHS). The values of the coefficients a, b and c needed for the TES
algorithm are retrieved with the spectral databases presented in Section 2.3. The system is
non-linear and non-convex so a Levenberg–Marquard minimization was used to retrieve
the coefficients. TES is applied directly on BOA radiance Lλ,BOA, and so an atmospheric
correction is needed, see Section 2.2.

3.2. The TES Algorithm with 2MMD Relationships or 2MMD TES

Two independent TES algorithms are calibrated on different specific material sub-
datasets, leading to a artificial-surface-oriented TES and a natural-surface-oriented TES, see
Section 2.3. Each calibration is performed independently following the scheme described
in Section 3.1. Combining this approach with a ground classification map at the resolution
of the TIR bands of the satellite, we can locally apply an adapted TES to each pixel. We call
this approach the 2MMD relationship’s TES algorithm, i.e., 2MMD TES.

The last step requires to chose how to associate the ground classification map to
the appropriate MMD relationship. It can appear trivial to separate artificial and natural
materials, but it is worth noting that spectrally, both groups can overlap, and some artificial
materials can exhibit a spectrum close to natural ones and vice versa. Thus, each class
of the ground classification map was analyzed regarding the ground LSEs that allowed
the classification process, the results from the 7-band TES used for AHS data and the
results from the 1MMD TES. All these observations showed that the “bright bare soil”
class had a higher LSE variability and a lower minimum emissivity than the other natural
classes. Consequently, this peculiar class was considered as an outlier for the natural MMD
relationship. The natural MMD relationship is then applied for the classes 1, 2, 3, 4 and 6,
and the artificial MMD relationship for the other classes, see Figures 3 and 6.

3.3. Calibration and Validation of the 1MMD TES and the 2MMD TES

Figure 7 shows the statistical fits of the MMD relationship (Equation (5)) for the
calibration dataset and the validation dataset that were used for the 1MMD TES with the
urban-oriented-database. The MMD relationship obtained is illustrated with a red line. For
the calibration dataset, the MMD relationship provides an RMSE value of 0.014, a standard
deviation of 0.014, and a correlation coefficient R of around 0.96. For the validation dataset,
the RMSE is 0.013, the standard deviation is 0.013 and the correlation coefficient R is 0.96.
These values lead to an error on the LST of about 1 K. Similar performances were found
in the literature. Thus, the study from [61] with 299 natural materials gives a standard
deviation value of 0.019 and a correlation coefficient R of 0.96. The study from [10] on
AHS images over urban areas with a database using 108 natural materials gives a standard
deviation of 0.005 and a higher correlation coefficient R of 0.997. The study of [78] using 54
artificial materials gives an RMSE value of 0.024, which is higher than our RMSE value of
0.013. Therefore, mixing artificial and natural materials does not degrade the performances
of the MMD relationship for the 1MMD TES compared with other studies that used only
natural or only artificial materials in the calibration phase. It is worth noting as well that the
aforementioned studies used more than four spectral bands. With these observations, the
urban-oriented developed database including both natural and artificial materials appears
thus to be suitable to retrieve LSTs over urban areas.
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Figure 7. MMD relationship statistical fits for the 1MMD TES with the urban-oriented database: calibration (left) and
validation (right). The obtained MMD relationship is highlighted with a red line.

Figure 8 shows the two MMD relationships statistical fits of (1) the artificial-surface-
oriented and (2) the natural-surface-oriented databases and both for their corresponding
calibration and validation dataset. For both cases, the MMD relationship is illustrated with
a red line. For artificial materials, the calibration dataset gives an RMSE value of 0.015, the
standard deviation is 0.015, and the correlation coefficient R is almost 0.96, similarly to
the results obtained on the urban-oriented database. For the validation dataset, the RMSE
is 0.014, the standard deviation is 0.014 and the correlation coefficient R is around 0.97.
For natural materials, the calibration phase gives an RMSE value of 0.004, the standard
deviation has nearly the same value and the correlation coefficient is slightly higher than
0.99. The validation phase gives an RMSE value of 0.005, a standard deviation of 0.005
and a correlation coefficient of 0.99, which is similar to the results found in [10] that used
seven bands. Thus, it can be highlighted that with only four bands, the performances
of our 2MMD relationships become similar to those of a single MMD relationship with
seven bands. Moreover, comparing Figures 7 and 8, the minimum emissivity can be
underestimated for the natural materials when only one MMD relationship is used, which
can lead to an overestimation of the retrieved LST. In addition, it is seen that the artificial
materials used in our urban-oriented database tend to have a lower minimum emissivity
than the natural materials, as well as a larger spectral contrast, in accordance with their
high spectral variability. Separating both kinds of materials allows providing a more suited
MMD relationship to retrieve the LST. From now on, to highlight the number of spectral
bands, the 2MMD TES is called 2MMD-4-band TES, the 1MMD TES is called 1MMD-4-band
TES and the 7-band TES used for comparison is called 1MMD-7-band TES. Table 3 provides
the coefficients of the MMD relationship according to the database and the number of
bands.
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Figure 8. MMD relationship statistical fits for the 2MMD TES: artificial-surface-oriented database (up), natural-surface-
oriented database (bottom) calibration (left), validation (right). The obtained MMD relationship is higlighted with a
red line.

Table 3. Coefficients a, b and c for the MMD relationship according to the database and the number
of bands.

TES Algorithm a b c

1MMD-4-band TES and urban-oriented database 0.975 −0.906 0.953

1MMD-7-band TES and classical database [10] 0.999 −0.777 0.815

2MMD-4-band TES and natural-surface-oriented database 0.982 −0.795 0.915

2MMD-4-band TES and artificial-surface-oriented database 0.960 −1.028 1.055

3.4. Performance Assessment of the LST Retrieved by the 1MMD-4-Band TES and the
2MMD-4-Band TES

LST maps obtained at a 4-m resolution from the 1MMD-7-band TES by [10,59,78] were
used as references to evaluate and compare the performance of both 1MMD-4-band and
2MMD-4-band TES algorithms from AHS data at a 4-m spatial resolution. While [10,59,78]
used a classical calibration-validation database, the two versions of the TES algorithm,
1MMD-4-band and 2-MMD-4-band, use the aforementioned urban-oriented database, and
thus, this comparison will allow to better understand the advantages and limitations of such
a database. At the satellite level, a temperature upscaling based on the Stefan–Boltzmann’s
law and applied on each 4-m LST map is considered as reference. Consequently, the 4-m
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LST maps of this study are spatially aggregated to 60 m to compare with TRISHNA-like
LST maps obtained at a 60-m spatial resolution. The comparison of the TRISHNA-like LST
with the aggregated one for each method is used to better understand how the decrease in
spatial resolution impacts each method’s performances.

To quantitatively compare the images, the Root Mean Square Error (RMSE), the Mean
Bias Error (MBE) and the Structural Similarity Index (SSIM) were chosen (all formulas for
theses indexes can be found in [64]). First-order statistics of the LST maps were computed
to help in the analysis, i.e., the mean and the standard deviation. Lastly, the local/pixel per
pixel difference was used to highlight the largest differences between both 1MMD-4-band
and 2MMD-4-band TES algorithms. In addition, as ground measurements are available
(Section 2.1), local comparisons can be made by computing the RMSE and MBE between
ground measurements and the corresponding pixel in the 4-m LST images.

4. Results

The 4 of July 2008 was chosen to show the LST maps provided in this section. Similar
visual and quantitative results were found for the other acquisitions. However, the statis-
tical analysis for the comparison of TES LSTs with ground measurements as well as the
SUHI values are performed on all the acquisitions.

4.1. LST Map Reference

Figure 9 shows the daytime and nighttime LST reference map in K at 4 m for the 4 of
July over the two studied areas (the Retiro Park and the UAM). During the daytime, for
both the Retiro Park and the UAM, spatial variations of LST are easily noticeable. For the
Retiro Park, the Retiro lake presents the lowest temperature around 300 K, the vegetated
area around 310 K, the left part of the Retiro Park is between 300 and 320 K and the right
part of the Retiro Park is between 310 and 320 K. For the UAM, the rugby field is between
300 and 310 K, the soccer field around 315 K and some building roofs have high LSTs
around 335 K. The surroundings of the UAM have an LST ranging from 300 to 325 K, with
the highest LSTs over bare soil waste ground (classified as “dark bare soil”), and the coolest
LSTs over vegetated areas (classified as “trees” or “green grass”). The roads have a LST
value of around 315 K.

During the nighttime, for the Retiro Park, the water lake does not present LST vari-
ations between day and night with LST ≈ 300 K in agreement with the heat capacity of
water. The streets have the highest LSTs around 305 K, and some other roads have a LST
value of around 302 K. The vegetated area of the Retiro Park is around 298 K. However, for
both daytime and nighttime, some unusual patterns can be seen with low LSTs, especially
on one roof of the Atocha train station. For the UAM, unusual patterns can be seen in the
center of the image within the campus with low LSTs under 285 K. Otherwise, the streets
have the highest LSTs around 302 K and surroundings have an LST value ranging from 285
to 297 K. It is worth noting that the observed unusual patterns are seen during daytime
and during nighttime. This observation is discussed in Section 5.1.

Table 4 gives the mean and the standard deviation of the LST. Between the Retiro Park
and the UAM, the mean LST difference is 1.6 K and the std difference is 2.3 K for daytime.
The mean LST difference is 4.4 K for nighttime and the std values are the same. Between
daytime and nighttime, the mean LST difference is 17.3 K for the Retiro Park and 20.1 K for
the UAM. The std difference is 5.5 K for the Retiro Park and 3.2 K for the UAM.
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Figure 9. LST in K retrieved from the 1MMD-7-band TES of [59] over the Retiro park daytime (top
left) and nighttime (bottom left) and over the UAM area daytime (top right) and nighttime (bottom
right).

Table 4. First-order statistics of the 1MMD-7-band TES over the Retiro park and the UAM areas for
the 4 of July 2008.

Area Mean (K) Std (K)

daytime
Retiro park 315.8 8.7

UAM 314.2 6.4

nighttime
Retiro park 298.5 3.2

UAM 294.1 3.2

4.2. LST Retrieval with the 1MMD-4-Band TES and the 2MMD-4-Band TES with TRISHNA-like
Spectral Configuration at 4 m

Figures 10 and 11 show the daytime and nighttime LST in K for both studied areas
as retrieved with the 1MMD-4-band TES and 2MMD-4-band TES, respectively. For a
statistical analysis of performances, Table 5 shows the RMSE, MBE and SSIM between the
1MMD-7-band TES from [10,59,78] and the 1MMD-4-band TES and the 2MMD-4-band TES
of this study. This table also shows the mean and standard deviation of the LSTs obtained
with the 1MMD-4-band TES and the 2MMD-4-band TES.

During both daytime and nighttime and for both the Retiro Park and the UAM, the
obtained LST maps are similar to the LST map reference, see Figures 9–11. Thus, the same
observations can be made.
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Figure 10. LST in K retrieved from the hlm1MMD-4-band TES over the Retiro Park (left) and the
UAM (right) during the daytime (top) and nighttime (bottom).

Figure 11. LST in K retrieved from the 2MMD-4-band TES over the Retiro Park (left) and the UAM
(right) during the daytime (top) and nighttime (bottom).
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Table 5. RMSE, MBE and SSIM between 7-band TES from [59] and 1MMD-TES and 2MMD-TES,
respectively. First-order statistics of the 1MMD-TES and 2MMD-TES over the Retiro park and the
UAM areas are also shown. Date: 4 of July 2008.

Area RMSE
(K)

MBE
(K) SSIM Mean

(K) Std (K)

1MMD-TES

daytime
Retiro park 1.13 −0.77 0.98 316.6 8.7

UAM 0.68 −0.56 0.98 314.9 6.2

nighttime
Retiro park 1.12 −0.39 0.92 298.9 3.7

UAM 0.80 −0.24 0.83 294.4 3.3

2MMD-TES

daytime
Retiro park 0.91 −0.93 0.98 316.8 8.7

UAM 0.62 −0.72 0.98 315.0 6.3

nighttime
Retiro park 0.95 −0.57 0.93 299.1 3.6

UAM 1.07 −0.38 0.85 294.5 3.5

Looking at the mean and standard deviation of the LST in Table 5, for the 1MMD-4-
band TES, the mean LST difference is 1.8 K and the std difference is 2.5 K for the daytime
between the Retiro Park and the UAM. The mean LST difference is 4.5 K and the std
difference is 0.4 K for nighttime. For the 2MMD-4-band TES, the mean LST difference is
also 1.8 K and the std difference is 2.4 K for daytime between the Retiro Park and the UAM.
The mean LST difference is 4.6 K for nighttime, and the std difference is 0.1 K.

Between daytime and nighttime, for the 1MMD-4-band TES, the mean LST difference
is 17.7 K for the Retiro Park and 20.5 K for the UAM. The std difference is 5 K for the
Retiro Park and 2.9 K for the UAM. For the 2MMD-4-band TES and between daytime and
nighttime, the mean LST difference is 17.7 K for the Retiro Park and 20.5 K for the UAM,
just like the 1MMD-4-band TES. The std difference is 5.1 K for the Retiro Park and 2.8 K for
the UAM.

These differences are similar for all TES algorithms, meaning that there is a physical
coherence between the three versions. Considering the comparison with the LST map
reference, during the daytime, the RMSE values are lower for the 2MMD-4-band TES than
for the 1MMD-4-band TES of 0.22 K for the Retiro Park and 0.06 K for the UAM, meaning
that there are larger discrepancies between the 1MMD-4-band TES and the LST reference.
However, the MBE values are lower for the 1MMD-4-band TES than for the 2MMD-4-band
TES. Both methods tend to retrieve a higher LST than with the 1MMD-7-band TES because
the MBE is negative and the 2MMD-4-band TES over the studied areas provides higher
mean LSTs than the 1MMD-4-band TES. It is important to remark that the MBE is a signed
metric and so underestimations and overestimations of LST can compensate, leading to an
MBE closer to zero. This can be the explanation of the better results for the 1MMD-4-band
TES. The SSIM index is high as the value is 0.98 for both areas and methods.

During the nighttime, the 2MMD-4-band TES provides a higher RMSE value higher
of 0.27 K than the 1MMD-4-band TES for the UAM, but the RMSE value is lower, 0.17 K,
for the Retiro Park. Looking at the MBE, values are lower for the 1MMD-4-band TES than
for the 2MMD-4-band TES. The MBE values are lower than during the daytime, which can
be explained by the absence of solar irradiance, i.e., the smaller variances in LST during
the night. The SSIM values are very similar between daytime and nighttime, with little
difference between the 1MMD-4-band TES and the 2MMD-4-band TES.

Lastly, Figure 12 shows the pixel per pixel difference between the 2MMD-4-band TES
and the 1MMD-4-band TES to highlight the pixels where the difference is high. It can
be observed that during the daytime and nighttime, the difference is larger for artificial
surfaces, especially the streets and the dense area at the left of the Retiro Park, and the
classes “other roads and pavements” and “roofs with metal” for the UAM, with a difference
of around 1 K for daytime and between 0.5 and 1 K during the nighttime. For the natural
surfaces, such as the vegetated area of the Retiro Park, the water lake and the bare soils or
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trees, the difference is around −0.5 K for both daytime and nighttime, in agreement with
the observations in Figures 7 and 8. Indeed, the 1MMD-4-band TES can overestimate the
LST for natural materials. Thus, the 2MMD-4-band TES tends to be the optimal method
to retrieve the LST for both kinds of materials. To go in deep with this observation, the
comparison with ground LSTs is useful. It will allow assessing which TES algorithm is the
most optimal.

Figure 12. Pixel per pixel difference of the LST in K between the 2MMD-4-band TES and the 1MMD-
4-band TES over the Retiro Park (left) and the UAM (right) during the daytime (top) and nighttime
(bottom).

4.3. Comparison with LST Ground Measurements

In order to validate the retrieved LSTs at 4 m, a comparison with ground measurements
is performed. Two cold targets and four hot targets are chosen: green grass, water, bare soil
and three different roofs located in different zones, see Figure 1. Ground LST measurements
are selected according to the closeness in time with the daytime and nighttime flights. It
gives a total of 30 measurements to compare ground LSTs and retrieved ones for all the
acquisitions.

Tables 6 and 7 show the comparison between ground LSTs and the three versions
of the TES algorithm (1MMD-4-band TES, 2MMD-4-band TES and 1MMD-7-band TES
from [78]), for the 4 of July, daytime and nighttime, respectively. A star points out the
closest retrieved LST to the ground LST. During the daytime, the 1MMD-7-band TES
provides the closest LST for the cold target “green grass” and the hot target “bare soil”.
On the other hand, for the three artificial materials located at the roofs as well as for the
water lake at the Retiro Park, the 2MMD-4-band TES has the best performance. Thus for
artificial materials, the 2MMD-4-band TES is the optimal method in this study. During
the nighttime, the 2MMD-4-band TES outperforms the other methods for four out of five
targets, because the cold target “water” was not measured this night. Again for the hot
target “bare soil”, the 1MMD-7-band TES provides the closest LST.
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Table 6. LST values for each method and the ground LSTs for the 4 of July 2008 during the daytime.
* indicates the retrieved LST closest to the ground measurement.

Location Ground LST
(K)

1MMD-7-Band
TES LST (K)

1MMD-4-Band
TES LST (K)

2MMD-4-Band
TES LST (K)

4/ CSIC (roof) 336.4 329.6 331.8 332.6 *

5/ Printing (roof) 339.2 323.7 325.2 325.8 *

6/ Urbanism (roof) 340.4 321.1 322.6 323.1 *

1/ Rugby field
(green grass) 302.9 307.6 * 308.9 308.4

2/ Soccer field (bare
soil) 313.7 314.4 * 314.7 315.4

3/ Retiro lake
(water) 300.5 300.0 301.1 300.7 *

Table 7. LST values for each method and the ground LSTs the 4 of July 2008 during the nighttime.
* indicates the retrieved LST closest to the ground measurement.

Location Ground LST
(K)

1MMD-7-Band
TES LST (K)

1MMD-4-Band
TES LST (K)

2MMD-4-Band
TES LST (K)

CSIC (roof) 302.8 297.8 298.7 299.3 *

Printing (roof) 302.8 297.1 297.5 298.0 *

Urbanism (roof) 298.5 298.2 298.1 298.6 *

Rugby field UAM
(green grass) 288.7 288.3 289.1 288.7 *

Soccer field UAM
(bare soil) 295.8 295.7 * 294.4 295.2

Retiro Park lake
(water) — 299.9 301.1 300.7

For both daytime and nighttime, the 1MMD-4-band TES never performs better. How-
ever, the differences are not very large and it can be seen that for artificial materials, the
1MMD-4-band TES is closest to the ground LSTs than the 1MMD-7-band TES except for
the “Urbanism” site during the nighttime, with only 0.1 K between the 1MMD-7-band TES
and the 1MMD-4-band TES.

It is worth noting that some significant errors remain over the artificial materials
for the three different versions of the TES algorithm. This observation is discussed in
Section 5.1.

In Table 8, we decided to compare retrieved and ground LSTs by combining all the
six available remote sensing acquisitions and focusing on daytime, nighttime, artificial
and natural surfaces separately. Thus, Table 8 gives the RMSE and MBE values in K for all
the acquisitions, between ground LSTs and retrieved LSTs from each method, separating
daytime, nighttime, artificial and natural materials. The same observations can be made:
the 2MMD-4-band TES provides the best performances except for the natural materials
where the 1MMD-7-band TES is better. However, for artificial materials and globally, the
2MMD-4-band TES provides better results because the RMSE decreases by 1.6 K over
artificial materials and 1 K globally compared with the 1MMD-7-band TES and decreases
by 0.5 and 0.4 K compared with the 1MMD-4-band TES.



Remote Sens. 2021, 13, 5139 21 of 35

Table 8. RMSE, MBE between the retrieved LSTs for each method and the ground LSTs combining all
the six available flightlines. * indicates the lowest RMSE value.

Method RMSE (K) MBE (K)

1MMD-4-band TES daytime 8.3 −3.0

2MMD-4-band TES daytime 7.9 * −2.9 *

1MMD-7-band TES daytime 9.0 −4.1

1MMD-4-band TES nighttime 3.5 −2.6

2MMD-4-band TES nighttime 3.2 * −2.2 *

1MMD-7-band TES nighttime 4.0 −2.9

1MMD-4-band TES artificial 9.5 −7.7

2MMD-4-band TES artificial 9.0 * −7.1 *

1MMD-7-band TES artificial 10.6 −8.8

1MMD-4-band TES natural 3.0 1.0

2MMD-4-band TES natural 2.8 1.0

1MMD-7-band TES natural 2.6 * 0.5 *

1MMD-4-band TES global 6.7 −2.8

2MMD-4-band TES global 6.3 * −2.6 *

1MMD-7-band TES global 7.3 −3.6

4.4. LST Retrieval in the TRISHNA Framework: 60 m

Figures 13 and 14 show the 60-m LST maps obtained by aggregating with the Stefan–
Boltzman’s law, the retrieved LSTs from the 1MMD-4-band TES and the 2MMD-4-band
TES at 4 m. In both figures, LST maps of the Retiro and the UAM during the daytime and
nighttime are shown. Visually, the aggregation of both methods provides similar LST maps.
The same observations as at 4 m about the spatial patterns can be made. In the Retiro Park
area, the water lake and the park are well discernible, as well as roads during the nighttime.
For the UAM, the university structures are less visible due to aggregation. However,
natural landscapes and some hot points (such as the parking lot) can be visible as well as
roads. Table 9 shows the mean LSTs and the standard deviations for each aggregated map.

The first-order statistics are pretty similar, with a difference of 0.4 K between the mean
1MMD-4-band TES LST and the mean 2MMD-4-band TES LST during the daytime and 0.3 K
during the nighttime, both for the Retiro area. The differences of the averaged values on
the UAM are, respectively, 0.2 and 0.1 K during the night and day. The standard deviation
is slightly higher for the 2MMD-4-band TES than the 1MMD-4-band TES, indicating the
ability of 2MMD-4-band TES to estimate a higher variability of LSTs than 1MMD-4-band
TES. During the nighttime, LST variations are less important, thus the standard deviation
is lower during the nighttime. In addition, the mean LSTs are very similar with those at a
4-m spatial resolution and the standard deviation values are lower, due to the aggregation,
which tends to smooth the LST variations.
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Figure 13. The 60-m aggregated LST from the 1MMD-4-band TES over the Retiro park (left) and the
UAM (right) during the daytime (top) and nighttime (bottom).

Figure 14. The 60-m aggregated LST from the 2MMD-4-band TES over the Retiro park (left) and the
UAM (right) during the daytime (top) and nighttime (bottom).
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Table 9. First-order statistics for the aggregated LST maps according to each method.

Mean (K) Std (K) Mean (K) Std (K)

Area 2MMD-4-Band
TES

2MMD-4-Band
TES

1MMD-4-Band
TES

1MMD-4-Band
TES

daytime
Retiro park 317.2 6.0 316.8 5.7

UAM 315.1 3.8 314.9 3.6

nighttime
Retiro park 299.3 1.8 299.0 1.8

UAM 294.5 2.4 294.4 2.2

Figure 15 shows the retrieved LST over the Retiro and the UAM with the 1MMD-4-
band TES at the satellite level and Table 10 shows their mean LST and standard deviations
as well as the RMSE, MBE values between this LST and the aggregated LST from the same
TES. This comparison allows highlighting the error due to the spatial resolution.

Figure 15. LST in K retrieved from the 1MMD-4-band TES over the Retiro Park (left) and the UAM
(right) during the daytime (top) and nighttime (bottom).

Visually, the Retiro park and its lake are discernible, as well as the denser historic
neighborhood at the west of the park and the newer one at the north-east. In addition,
during the nighttime, the main roads/streets are also distinguished. For the UAM, the
same visual results as for Figure 13 are obtained: natural landscapes and roads can be
observed. However, it is worth noting that the LST values overs roads or in the UAM
campus cannot be seen due to the spatial resolution.

The RMSE values are 1.1 and 2.3 K for both areas during the daytime and nighttime.
The MBE values are low during the daytime, with a value of −0.62 K for the Retiro Park
and −0.34 K for the UAM. During the nighttime, the MBE values are higher, with −1.3 K
for both study areas. The SSIM values are not high, 0.58 for the Retiro Park and 0.56 for the
UAM, respectively, during the daytime, and −0.03 and −0.76 for the Retiro Park and the
UAM, respectively, during the nighttime. The MBE values are negative, so the 60-m LST is
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lower than the aggregated one. In addition, the SSIM values are lower for the Retiro Park,
due to the aggregation and the very dense spatial structure of the area. The first-order
statistics are lower between the 1MMD-4-band TES and the aggregated LST map, the mean
LST decreases by 0.5 and 1.3 K for the Retiro Park for daytime and nighttime, respectively.
For the UAM, the mean decreases by 0.3 and 1.3 K for daytime and nighttime, respectively.
The spatial variability of the LST is lower for the 1MMD-4-band TES than the aggregated
map, meaning that the impact of the spatial resolution is noticeable on spatially averaged
values, and the LST is smoothed.

Table 10. RMSE, MBE and SSIM between the 60-m LST from the 1MMD-4-band TES and the
aggregated 4-m to 60-m LST from the 1MMD-4-band TES and 1st-order statistics of the former.

Area RMSE (K) MBE (K) SSIM Mean (K) Std (K)

daytime
Retiro park 2.32 −0.54 0.58 316.3 5.2

UAM 2.33 −0.32 0.56 314.6 2.7

nighttime
Retiro park 2.04 −1.30 −0.03 297.7 1.2

UAM 1.13 −1.34 0.76 293.1 1.8

Figure 16 shows the LST retrieved from the 2MMD-4-band TES at the satellite level
for both Retiro and UAM areas and Table 8 provides their means and standard deviations,
the RMSE, MBE and SSIM. Visually, the same observations as for the 1MMD-4-band TES
can be made.

Figure 16. LST in K retrieved from the 2MMD-4-band TES over the Retiro Park (left) and the UAM
(right) during the daytime (top) and nighttime (bottom).

The RMSE values are between 1.25 and 2.5 K for both areas during the daytime and
nighttime. The MBE values are −0.62 K for the Retiro Park and −0.42 K for the UAM for
daytime. During the nighttime, the MBE values are higher, with −1.51 K for the Retiro
Park and −1.61 K for the UAM. The SSIM values are not high, 0.59 for the Retiro Park and
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0.56 for the UAM, respectively, during the daytime, −0.01 and 0.795 for the Retiro Park
and the UAM, respectively, during the nighttime. The first-order statistics are lower for
the 2MMD-4-band TES than the aggregated LST map. The mean LST decreases by 0.6
and 1.6 K for the Retiro Park for daytime and nighttime, respectively. For the UAM, the
mean decreases by 0.4 and 1.4 K for daytime and nighttime, respectively. The LST spatial
variability is not as high as with the aggregated map because of the lower values of the
standard deviations. The impact of the spatial resolution is noticeable, the LST is smoothed
(Table 11).

Table 11. RMSE, MBE and SSIM between the the 60-m LST from the 2MMD-4-band TES and the
60-m aggregated LST from the 2MMD-4-band TES and 1st-order statistics of the former.

Area RMSE (K) MBE (K) SSIM Mean (K) Std (K)

daytime
Retiro park 2.41 −0.62 0.59 316.6 5.5

UAM 2.46 −0.42 0.56 314.7 2.95

nighttime
Retiro park 2.08 −1.51 −0.01 297.8 1.3

UAM 1.25 −1.61 0.75 292.9 2.05

Lastly, Figure 17 shows the pixel per pixel difference between the 2MMD-4-band TES
and the 1MMD-4-band TES. The same observations as in Figure 12 can be made. Indeed,
during the daytime over the Retiro Park area, the pixel per pixel difference is positive over
artificial surfaces between 0.5 and 1 K for daytime and almost 0.5 K for nighttime. The
difference is negative over natural ones, between−0.5 and−1 K for daytime and nighttime,
in agreement with the comparison at four meters for both airborne images and ground
measurements. The difference is lower at nighttime than daytime for artificial materials,
which is in agreement with their thermal inertia.

Figure 17. Pixel per pixel difference of the LST in K between the 2MMD-4-band TES and the 1MMD-
4-band TES over the Retiro Park (left) and the UAM (right) during the daytime (top) and nighttime
(bottom).
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4.5. The SUHI Effect at 4 and 60 m

The SUHI is usually computed with mean LSTs at night [8,47]. Then, two areas are
defined to compute the SUHI of Madrid from TRISHNA-like images, just like in [84]: an
area around the Retiro park as the central urban zone and an area above the UAM area as
the rural surroundings (see also Figure 2). Thus, Table 12 shows the SUHI values obtained
both at 60-m and 4-m spatial resolutions, for the three dates (28 of June, 1 and 4 of July)
and with the three TES methods studied in this work. The SUHI values of the 1MMD-
4-band TES and 2MMD-4-band TES are very similar. The 1MMD-4-band TES and the
2MMD-4-band TES provide higher SUHI values than the 1MMD-7-band TES and at a 60-m
spatial resolution, SUHI values are slightly higher than at a 4-m resolution, except for the
2MMD-4-band TES for two dates out of three. Moreover, some ground LST measurements
made with four car transects at nighttime (22h just like the flight lines) give SUHI values
shown in Table 12 [62]. The LST difference between urban and rural was measured at 22h00
for the four transects until the 3 of July. Then, Table 12 only shows the results of the LST
difference for the 28 of June and the 1 of July. These values were collected in Appendix 1 of
the ESA-DESIREX 2008 final report. It is worth noting that the areas of the four transects
are not exactly the same as the ones used to compute the SUHI from remote data. However,
the ground values are in good agreement with the SUHI remote values. The absolute value
of difference between 4 and 60 m values is around 0.2 K for both 1MMD-4-band TES and
2MMD-4-band TES.

Figure 18 shows the SUHI map for the Retiro Park and the 4 of July at a 4-m spatial
resolution and at a 60-m spatial resolution. For both spatial resolutions, the roads have
the highest SUHI value. The average SUHI value for both spatial resolutions is between
6 and 7 K, in agreement with the results from Table 12. Both maps are very similar, but
it can be observed at 60 m that the 2MMD-4-band TES has larger SUHI values than the
1MMD-4-band TES, especially for roads and the vegetated area of the Retiro Park due to
the fact that the 2MMD-4-band TES is able to describe the high variability of LST, which
strongly depends on the nature of the surfaces.

Table 12. Estimated SUHI from 60-m and 4-m LST with the 1MMD-7-band TES, 1MMD-4-band TES
and 2MMD-4-band TES, and from ground measurements of LST. Results for the three studied dates
are shown.

Spatial Resolution LST Retrieval
Methodology 28 June 1 July 4 July

60 m
1MMD-4-band TES (K) 9.57 9.56 7.02

2MMD-4-band TES (K) 9.58 9.58 7.45

4 m

1MMD-7-band TES (K) 9.21 9.15 6.59

1MMD-4-band TES (K) 9.35 9.30 6.79

2MMD-4-band TES (K) 9.80 9.77 7.21

In situ

Car transect 1 (K) 9.10 9.7 x

Car transect 2 (K) 9.5 7.7 x

Car transect 3 (K) 7.9 8.8 x

Car transect 4 (K) 9.3 11.4 x
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Figure 18. SUHI in K retrieved over the Retiro Park with the 1MMD-4-band TES (left) and the
2MMD-4-band TES (right) at a 4-m spatial resolution (top), at a 60-m spatial resolution (bottom).

5. Discussion
5.1. Comparison between the 1-MMD-4-Band TES and the 2MMD-4-Band TES for LST and
SUHI Retrieval

For LST retrieval, at four meters, the LST maps show that visually, there is a good
agreement between the three versions of the TES algorithm and that there are physical
patterns that can be explained. For instance, the left area of the Retiro Park is denser than
the right one, leading to higher LSTs. It can also be due to the used building materials, as the
left area is a historic neighborhood and the right one was built more recently. In addition,
high LSTs are mainly found in streets, bare soil waste grounds and some buildings, with
cooler areas prevailing in the vegetated areas around and some roofs. The same conclusions
are obtained from the UAM area, buildings and bare soils, which present higher LSTs.
During the day, the LST spatial variability is higher for the Retiro Park, which is explained
by the larger amount of different materials in this area, whereas UAM is covered by a large
part of natural surfaces that are similar (Figures 2 and 3). Lastly, the spatial variability of
the LST is lower at nighttime than daytime, explained by the absence of solar irradiance
leading to the homogenization of the LST. Interestingly, some unusual physical patterns
can be seen, especially over the Atocha train station where high and low LSTs are observed.
It is mostly related to metals. Metallic materials are known to be poorly processed by the
TES algorithm as the emissivity is very low and is considered as an outlier for the MMD
relationship. Thus, the Atocha train station roof (south of the Retiro Park, see Figure 2) has
a very low LST for both daytime and nighttime. This roof is classified as “roofs with metal”
and “roofs with concrete”. It is possible to check visually on “Google Earth” images that
this roof is an open car park with metal square-roofs. Thus, there is a strong cavity effect
coupled with metal materials, which explains the unusual physical pattern. In addition, the
center of the UAM area presents high LSTs and low LSTs. These patterns are not physical
and can be due to errors in the LSE retrieval, the cavity effect or the no-exact-nadir-view
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of the AHS sensor. Newly, the roofs of the university are classified as “roofs with metal”.
These roofs had a very low assigned emissivity in [63].

When comparing with ground LSTs, (Tables 6–8), the 2MMD-4-band TES outperforms
the 1MMD-4-band TES over both natural and artificial materials. These results show the
capacity of the double MMD relationship to recover a large variability of LST values, which
become very important in urban environments where both natural and artificial materials
are present. As expected, the largest discrepancies are seen for the artificial materials
during the daytime. The ground LSTs are significantly higher than the retrieved LSTs,
especially for the “CSIC” and “Urbanism” sites with a difference that can range from 14 to
17 K during the 4th of July, see Table 6. In addition, the RMSE value on daytime measures
exceeds 7 K and it reaches 9 K for artificial materials. Even if the new 2MMD-4-band TES
proposed in this study recovers a higher LST variability, it is still necessary to study it
further in order to provide better results for very hot targets.

Other than the intrinsic limitations of TES to account for extreme LST values, these
differences in LST when observing very hot targets can be due to several factors. First, at a
very fine scale, the LST can be influenced by turbulences. Thus, if the measurements are
not perfectly synchronized, temperature differences can appear and discrepancies increase
as the ground sample distance is finer [85]. Looking at the ground measurements, the LST
around the flight hour (10 min before and 10 min after) can vary from 1 to 3 K and even 10 K
for the “CSIC” site during the daytime and from 0.5 to 1 K during the nighttime. Second,
the pixels at the 4-m spatial resolution can be mixed. The retrieved LST is integrated over
the pixel, which is of very different size than the punctual ground measurements. However,
in this study, ground measurements have been performed on large enough homogeneous
surfaces to neglect this effect.

Relatively to the LST maps, at a 4-m spatial resolution, the comparison with the
1MMD-7-band TES (used as a reference) gives a better RMSE value for the 2MMD-4-band
TES but the MBE values are lower with the 1MMD-4-band TES, which can be explained
by the fact that both the 1MMD-4-band TES and the 1MMD-7-band TES account for a
lower LST variability than the 2MMD-4-band TES. In addition, the RMSE value difference
between the 1MMD-4-band TES and the 1MMD-7-band TES can be due to the new urban-
oriented MMD relationship that is better adapted to estimate LST on artificial materials but
can overestimate the LST for natural materials, whereas the 1MMD-7-band TES tends to be
optimal for the latter. Furthermore, MBE is a signed metric and so negative and positive
errors can compensate leading to better values that are not exactly related to better local
estimations. Figure 12 shows that the larger differences are seen over the artificial materials,
which is in agreement with the ground LSTs.

At a 60-m spatial resolution, the pixel per pixel difference in Figure 17 shows that
the larger differences are positive and are seen over the artificial materials, and they are
negative over natural ones. Actually, the 60-m pixels are most of the time mixed pixels with
a large number of materials inside. This reduces the performance of TES (independently
of the number of MMD relationships) when recovering LST. However, the mixed nature
of 60-m pixels does not strongly impact the classification step of the 2MMD-4-band TES
since this classification only considers natural and artificial pixels. Nowadays, in the
Madrid city center, the amount of natural surfaces in the urbanized area (out of parks)
is negligible, and so to consider that pixels in the Retiro park are natural and pixels in
urbanized neighborhoods are artificial is close to reality. Moreover, the size of the Retiro
Park is greater than the pixel size, so a lot of pure natural-surface pixels are considered. The
1MMD-4-band TES tends to overestimate the natural materials, whereas the 2MMD-4-band
TES is more adapted. Furthermore, the emissivity of a mixed pixel is not trivial to estimate
so both methods tend to be less performant.

For SUHI retrieval, Figure 18, both methods provide similar patterns where the roads
have the largest values. Compared with ground SUHI values, the 2MMD-4-band TES
provides higher values than the 1MMD-4-band TES but both the methods provide close
values. However, the 2MMD-4-band TES tends to provide the closest SUHI values to
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the 4-m maps than the 1MMD-4-band TES because the spatial LST variability is better
retrieved, which is confirmed by the higher std values at 60 m for the 2MMD-4-band TES
than with the 1MMD-4-band TES.

Given these observations, the 2MMD-4-band TES can be considered as a more optimal
method to retrieve the SUHI value. Indeed, the use of other urban campaigns with
airborne images and ground measurements will help to highlight the 2MMD-4-band TES
contribution.

5.2. About the Use of a Ground Cover Classification Map

Considering the prevalence of the artificial materials in the urban areas and the
comparison with ground LSTs showing better retrieval for these materials, the 2MMD-
4-band TES is the most optimal method in this study by using an a priori about the
land cover to help the TES algorithm to better process artificial and natural surfaces.
However, the 2MMD-4-band TES requires a ground classification map with a satisfactory
performance. Land cover retrieval still needs investigation and is not always available
and the computation cost is higher, which can be prohibitory for a real-time process.
TRISHNA will have concomitant reflective and thermal data so a near-similar classification
process will be possible. However, TRISHNA will have only five multispectral bands in
the reflective domain so the accuracy of the derived ground cover map can be lower than
the ground cover used in this study, based on the 80 bands of AHS. This can be considered
as a limitation but also shows the possibility of using no-sensor-related ground cover
maps. It is worth noting that no optimal classification methods exist and are dependent
on the available data. The ground classification map used in this study was also made
thanks to ground measurements, and these latter observations are not always available.
In addition, the comparison with ground LSTs showed that the 2MMD-4-band TES was
not the optimal method for the bare soil site, whereas the 1MMD-7-band TES provides
better results. This can be due to the higher number of bands used in the 1MMD-7-band
TES. However, during the daytime, the difference is only 1 K between the 2MMD-4-band
TES and the 1MMD-7-band TES, and during the nighttime, the difference is only 0.5 K.
Moreover, this class contains only 3% of the pixels so this does not significantly impact the
global results.

Lastly, a ground classification map can be less performant over mixed pixels according
to the spatial structure and the spatial resolution because it considers pixels as pure. The
results of this study show that the mixed pixels can be poorly processed by the TES
algorithm independently of the number of MMD relationships.

Other land-cover-related products, such as the imperviousness, can be analyzed to
replace the ground cover map.

5.3. TRISHNA Framework: Impact of the Spatial Resolution

The comparison of TRISHNA-like LST data with aggregated LST maps shows that the
physical patterns are similar but that the spatial resolution impacts the performance of the
TES for spatially averaged values. Some artificial structures are still discernible at a 60-m
spatial resolution, especially roofs for the most part but also roads. The mean statistics of
the LST show a satisfactory agreement between the 4-m spatial resolution and the 60-m
one with a maximum difference of 2 K, due to the spatial smoothing. In addition, the
observations show that the LST spatial variability decreases when the spatial resolution
increases.

For the SUHI retrieval, the estimated values at the 60-m spatial resolution are in good
agreement with the values at the 4-m spatial resolution with a difference of around 0.2 K.
Figure 18 shows that for pure pixels, such as the vegetated area of the Retiro Park and its
water lake, the spatial resolution does not strongly impact the SUHI values. On the contrary,
the mixed pixels at 60 m have lower SUHI values, such as the roads with a difference of
around 2 K between both spatial resolutions. Furthermore, the artificial materials provide
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higher SUHI values than natural ones, which is in agreement with the thermal inertia of
the materials so a reliable analysis can be made.

6. Conclusions and Future Works

A new material-oriented TES algorithm has been developed through two new ap-
proaches: (i) the use of a more representative spectral database we called the urban-oriented
database., which contains similar amounts of artificial materials and natural materials from
laboratory or field spectra, (ii) the use of two MMD relationships instead of one by differen-
tiating a MMD relationship for artificial materials (artificial-surface-oriented) and a MMD
relationship for natural materials (natural-surface-oriented). An a priori under the form of
a ground cover classification map is provided to the TES algorithm in order to choose the
appropriate MMD relationship according to the land cover type.

The observations show: (1) the urban-oriented database is representative of the ur-
ban areas and allows to take into account artificial materials contrary to former classical
databases. Using two databases instead of one allows preventing the overestimation of
the LST over natural materials. (2) The 2MMD-4-band TES outperforms the two other
versions of the TES made for comparison and validation when compared with ground
LST measurements. (3) At a 4-m spatial resolution, in agreement with the ground LST
measurements, the 2MMD-4-band TES outperforms the other TES algorithms over the
artificial materials. (4) At a 60-m spatial resolution within the TRISHNA framework, ob-
servations show that the impact of the spatial resolution is observed by smoothing the
LST, thus decreasing the LST spatial variability, especially for mixed pixels. Due to the
spatial resolution, pure natural-surface-oriented pixels are more precisely processed by the
2MMD-4-band TES. (5) For the SUHI retrieval, the 2MMD-4-band TES is more optimal to
retrieve the LST variability. As a conclusion, the 2MMD-4-band TES is the best algorithm
for this study, considering only four bands instead of seven, which is a great result for
multispectral sensors. The future TRISHNA sensor will provide observations allowing the
monitoring of the LST and the SUHI effect.

Several ways of enhancement are identified: (1) Some studies about coupling TES
and Split-Window (SW) algorithms have been conducted [86–88]. It can allow avoiding
the emissivity a priori knowledge in the SW algorithm and the poor performance of the
TES algorithm for low-spectral-contrast materials or metallic ones. The better knowledge
of the impact of the 3D structure can lead to better LST retrievals especially for urban
canyons [49], or the better knowledge of the adjacency effect [87]. Future works include
the development of a hybridized TES algorithm to correct for both the spectral variability
and the adjacency effect. (2) A ground cover classification map is not always available so
other land-cover-related products should be investigated, such as the imperviousness. (3)
Regarding the LSE retrieval to constrain the TES algorithm, multi-temporal acquisitions
close in time or the link between visible indexes and thermal bands could improve the
accuracy of this parameter [89]. (4) As the mean size of urban objects is less than the
spatial resolution of the thermal satellite sensors, sharpening and unmixing procedures are
necessary to be able to study the LST and the SUHI at finer scales [51,64,84,90–92]. (5) The
use of other airborne campaigns such as ESA-THERMOPOLIS 2009 over Athens, Greece or
AI4GEO/CAMCATT 2021 over Toulouse, France, with ground measurements is of great
interest to pursue the study over urban areas [93]. Furthermore, the processing is only for
a Mediterranean city in the south of Europe with low humidity profiles. Applications for
other cities with different climates that include tropical zones would be of great interest as
TRISHNA will also be dedicated to tropical regions.
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Abbreviations
The following abbreviations are used in this manuscript:

AHS Airborne Hyperspectral Scanner
APR Appel à Projets Recherches (Call for Research Proposal)
BOA Bottom of Atmosphere
CNES Centre National d’Etudes Spatiales (French Space Agency)
ESA European Space Agency
FWHM Full Width at Half Maximum
INTA Instituto Nacional de Técnica Aeroespacial (Spanish Aerospace Institute)
ISRO Indian Space Research Organization
LAI Leaf Area Index
LSE Land Surface Emissivity
LST Land Surface Temperature
LSTM Land Surface Temperature Monitoring
MBE Mean Bias Error
MMD Maximum Minimum Difference
NEM Normalized Emissivity Method
RMSE Root Mean Square Error
SAM Spectral Angle Mapper
SBG Surface Biology and Geology
SSIM Structural Similarity Index Measure
SUHI Surface Urban Heat Island
SW Split-Window
SWIR ShortWave InfraRed
TES Temperature and Emissivity Separation
TIR Thermal InfraRed
TOA Top of Atmosphere
TRISHNA Thermal infraRed Imaging Satellite for High-resolution Natural resource Assessment
UAM Universidad Autónoma de Madrid
UHI Urban Heat Island
VNIR Visible and Near InfraRed
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