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Abstract. By leveraging recent progress of stochastic gradient descent
methods, several works have shown that graphs could be efficiently laid
out through the optimization of a tailored objective function. In the
meantime, Deep Learning (DL) techniques achieved great performances
in many applications. We demonstrate that it is possible to use DL
techniques to learn a graph-to-layout sequence of operations thanks to a
graph-related objective function. In this paper, we present a novel graph
drawing framework called (DNN)2: Deep Neural Network for DrawiNg
Networks. Our method uses Graph Convolution Networks to learn a
model. Learning is achieved by optimizing a graph topology related loss
function that evaluates (DNN)2 generated layouts during training. Once
trained, the (DNN)2 model is able to quickly lay any input graph out. We
experiment (DNN)2 and statistically compare it to optimization-based
and regular graph layout algorithms. The results show that (DNN)2

performs well and are encouraging as the Deep Learning approach to
Graph Drawing is novel and many leads for future works are identified.

Keywords: Graph Drawing · Deep Learning · Graph Convolutions

1 Introduction

Optimization-based (OPT) and Deep Learning (DL) methods are gaining in-
creasing interest in the information visualization field [30, 34]. From the very
design of visualizations to their evaluations, such techniques have shown to
perform well and present benefits over standard methods. These advances mo-
tivated the exploration of these techniques adaptation to graph drawing. Some
studies [1,17,35] used OPT approaches to optimize an objective function for a
single graph with Stochastic Gradient Descent (SGD) and obtained good results;
Zheng et al. [35] even outperformed some state-of-the-art layout algorithms.
On the other hand, if DL techniques have been applied on graph and graph
drawing related problems (e.g., evaluate aesthetic metrics) [9, 11, 20], to the best
of our knowledge, only one study made use of this technique to draw graphs,
DeepDrawing [31]. Their framework leverages DL techniques to learn a model
to reproduce layouts (i.e., ground truths) by optimizing a Procrustes-based cost



function that compares the produced layout to the ground truth one. A major
flaw of optimizing such a cost function by opposition to a graph topology related
function is that the model is trained to optimize a similarity to a ground truth
graph layout (that can be suboptimal) rather than the emphasis of the topology.
This paper presents Deep Neural Networks for DrawiNg Networks, (DNN)2, a
graph layout framework relying on unsupervised Deep Learning. It proposes to
adapt well-proven Convolutional Neural Network architecture to graph context
using Graph Convolutions [5, 16]. To the best of our knowledge, it is the first
Deep Neural Network (DNN) architecture trained to lay generic graphs out by
optimizing a graph-drawing related cost function. We propose an experimentation
of (DNN)2 where we use ResNet [14] architecture as a basis to optimize the
Kruiger et al. [17] adaptation of the Kullback-Leibler divergence. In DL, as a
model performance and its capability to generalize to unseen data are often
incompatible, we also study the benefits of pre-training (DNN)2. Finally, we
statistically compare (DNN)2 with state-of-the-art methods on aesthetic metrics
and find that it competes with them. By efficiently learning a bounded sequence
of operations that lays generic graphs out, (DNN)2 experimentation suggests
that graph drawing can be modeled as a mathematical function.

The remainder of the paper is organized as follows. Section 2 presents related
works on OPT and DL methods in graphs context. Section 3 introduces (DNN)2

and its key concepts while Section 4 presents the results of its experimental
evaluation. Section 5 discusses the visual aspect of (DNN)2 layouts and its
limitations. Conclusions and leads for future works are presented in Section 6.

2 Related Works

First, we define the conventional notations used in this paper. Let G(V,E) be
a graph: V is its set of nodes {vi}, i ∈ [1, N ], N = |V | and E ⊆ V × V its set
of edges. Graphs are considered simple and connected. Let nodes positions be
encoded in a vector X ∈ RN×2 where Xi is the 2D position of node vi, ||Xi −Xj | |
relates to the Euclidean distance between points Xi and Xj .

Optimization-based (OPT) and Deep Learning (DL) techniques applications
to Graph Drawing are gaining popularity and have been applied to a variety of
graph and graph drawing related problems. For instance, Kwon et al. [19] used
Machine Learning techniques to approximate a graph layout and its aesthetic
metrics at the same time. Haleem et al. [11] also proposed to predict aesthetic
metrics using a DL model. Several studies [10,22,27] used OPT to compute a
feature vector embedding of a graph nodes. Kwon and Ma [20] proposed a Deep
encoder-decoder to learn smooth transitions between different layouts of a graph.

Recently, OPT and DL techniques were proposed to lay graphs out and
did compete with state-of-the-art layout algorithms. Kruiger et al. [17] pro-
posed to optimize the Kullback-Leibler divergence by gradient descent. Kullback-
Leibler divergence is a measure of dissimilarity between two probabilities dis-
tribution P and Q which was used to visualize data [13, 28] and is defined as:

DKL =
∑
i

P (i) log P (i)
Q(i) . The proposed optimization framework, tsNET , showed



to perform well, although its execution time is extremely high (i.e., several
seconds for graphs with N < 100). The authors proposed an improved variant
of their method for which nodes positions are initialized with PivotMDS rather
than randomly. This variant showed to be more efficient in terms of aesthetic
metrics and converged faster on larger graphs. S GD2 [35] relies on the opti-
mization of stress by stochastic gradient descent (SGD). Stress is modeled by a
set of constraints between nodes that are relaxed by iteratively moving pairs of
nodes. GD2 [1] also leveraged SGD to optimize a set of aesthetic metrics whose
combination can be tuned by associating a weight to each metric.

On the other hand, GraphTSNE [21] learned a shallow Neural Network made
of Graph Convolutions to predict a graph layout. The key idea of their work
is to train a model for each graph to draw, the train dataset being the graph
nodes themselves. Even if their model cannot be described as deep, their work
confirms that a t-SNE based loss can be optimized by Graph Convolutions
networks. DeepDrawing [31] is the first method to train a DNN to compute graph
layouts. It aims to mimic a target algorithm given as ground truth and can be
seen as a fast approximation of its target. This was also studied by Espadoto
et al. [7] and both studies raised several limitations to this approach. First, it
requires to run the target algorithm thousands of times to generate labeled
training data. Due to model convergence issue, the labeled data generation
should be manually supervised and the model cannot reproduce results of a
non-deterministic algorithm either. Second, as the model learns to mimic an
algorithm, it cannot produce better results than its target baseline and it also
learns its defects. Finally, as the function optimized by the model is not related
only to its input data, it does not learn features from its input but rather
from its combination input–target algorithm. Hence, it is unclear how well it
can generalize to unseen data for which no target result was ever provided. As
opposed to DeepDrawing, (DNN)2 training is unsupervised (i.e., no groundtruth
layout is provided) and generated graph layouts are evaluated according to a
graph topology related cost function based on t-SNE.

3 (DNN)2 Framework Design

3.1 (DNN)2 Architecture

A ResNet-like Basis. The design of (DNN)2 architecture leverages Convolu-
tional Neural Networks (CNNs) by adapting them to a graph context with Graph
Convolutions [5, 16]. The architecture reproduces ResNet [14], a CNN designed
to classify images and reaching a high accuracy on the ImageNet challenge [6]. It
is composed of residual blocks that contain shortcuts which enable the model to
work on several levels of abstraction. It is made of 52 spectral Graph Convolutions
(see Section 3.1) organized in 16 residual blocks as in the ResNet architecture (see
Figure 1). In addition, three node-wise fully connected layers with shared weights
are added after the last convolution, the final layer being the model output.
To handle graphs of varying sizes, the model inputs are fixed to an arbitrary
size Nmax and are padded with fictive nodes to fit this size. After each residual
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Fig. 1. (DNN)2 architecture based on ResNet50 [14]. Some details have been
omitted: (i) Chebyshev filters input is provided up to order 4 to all Graph
Convolution layers except the 9 last layers (up to order 2); (ii) features vectors
(i.e., convolutions outputs) are normalized after every convolution; (iii) normalized
features vectors are applied a mask encoding the real-fictive nodes information;
and (iv) only the first two residual blocks are emphasized out of the 16 blocks.

block, its resulting features tensor is multiplied with a mask of real-fictive nodes
Mask ∈ 1Nmax where Maski = 0 if vi is a fictive node, 1 otherwise. Padding
the model inputs to match the expected shape could create a bias during the
training: if fictive nodes are always padded at the same position in the tensors,
some trainable weights will mostly see irrelevant features of fictive nodes and be
underfitted. To avoid this bias, the padded model inputs are randomly permuted.

Spectral Graph Convolutions. Abbreviated Graph Convolutions, they were
defined by Kipf and Welling [16] to operate on a graph signal encoded as a features
vector for every node. The convolution kernel size K is defined to convolve a
node with its K-hop neighborhood. The graph topology is provided through the
graph spectrum (i.e., eigendecomposition of the normalized Laplacian matrix) [3],
approximated with Chebyshev polynomials [12]. Graph Convolutions are formally
defined as a function of a signal x:

gθ ? x = UgθU
Tx (1)
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Fig. 2. Graph Convolutional layer diagram. It takes two tensors as input: (i) a
feature vector to convolve (X); and (ii) a data structure that encodes the graph
topology (T ). X can refer to a node features vector at any step of the training.

where U is the matrix of eigenvectors of the symmetric normalized Laplacian
matrix L so that L = UΛUT where Λ are the eigenvalues of L. As the evaluation
of Equation 1 and the eigendecomposition of L are expensive, the operation can
be approximated [12] using the Chebyshev polynomials Tk(x) up to order K:

gθ′ ? x ≈
K∑
k=0

θ′kTk

(
L̃
)
x (2)

where L̃ is the rescaled symmetric normalized Laplacian L̃ = 2
λmax

L− IN , λmax
being the highest eigenvalue in Λ and IN the identity matrix of size N . θ′ ∈ RK
is a vector of Chebyshev coefficients and Tk(x) is the Chebyshev polynomial
defined as T0(x) = 1, T1(x) = x and Tk(x) = 2xTk−1(x)− Tk−2(x),∀k ≥ 2 and
that costs O(K|E|) to be computed up to order K [12]. The Graph Convolution
computation in this paper (illustrated in Figure 2) can be formally defined as:

Z =

Kn

k=0

Tk

(
L̃
)
·X ·Θ (3)



where X ∈ RN×F is the nodes features vectors (i.e., graph signal) where each
node has F features, and Θ ∈ R(F∗(K+1))×F ′

is the learned graph convolution
kernel where F ′ is the size of the desired output feature vector for every node.
The symbol

f
is used as a concatenate operator on all the Tk(L̃) ·X tensors.

Finally, (DNN)2 is fed with three tensors: the graph signal (nodes feature vec-
tors, defined later in Section 3.3), a mask of real-fictive nodes and the Chebyshev
polynomials (also referred to as Chebyshev filters). Its output is set to a Nmax
×2 tensor of nodes positions in the plane. The time complexity of a forward pass
in the model is O(Nmax) as this constant bounds the tensors size.

3.2 Loss function

Unlike DeepDrawing [31], (DNN)2 is trained to optimize a loss function that
captures the graph layout quality based on its topology. As optimizing a function
for a whole dataset is fundamentally different from optimizing it for specific
graphs, the loss function should have already been used with standard and
OPT methods to lay graphs out so that we can compare their performances.
This mainly let us with two possible functions: stress and Kullback-Leibler(KL)
minimization (see Section 2). If we believe both can be optimized by (DNN)2,
we selected the KL minimization from Kruiger et al. [17] as it adapted better to
the framework throughout experimentations. The loss is then defined as:

C = λKLCKL +
λc
2N

∑
i

||Xi||2 −
λr

2N2

∑
i,j∈V,i6=j

log (||Xi −Xj ||+ εr) (4)

where CKL is the main topology-related cost term based on the Kullback-Leibler
divergence proposed by Kruiger et al. [17]. The second and third terms are
respectively a compression that minimizes the scale of the drawing and a repulsion
that counter-balances the compression. (λKL, λc, λr) are weights used to tune
the loss function during the optimization. εr = 1

20 is a regularization constant.
Kruiger et al. [17] defined two stages for their tsNET algorithm. In the

first stage, the three λ factors are set to (λKL = 1, λc = 1.2, λr = 0) while
in the second stage, they are switched to (1, 0.01, 0.6). They also proposed a
variant called tsNET ∗ with two differences: nodes positions are initialized with
PivotMDS [2] and the first stage lambda factors are (1, 0.1, 0). In this paper,
(DNN)2 extends both tsNET variants and is compared to their implementation1.

3.3 Graph signal: Initial Nodes Features

The graph signal is defined as a features vector for every node. Some methods
already exist to extract a graph signal [10, 22, 27]. As standard layout algorithms
achieved to lay graphs out only using their topology [8, 15, 35], we assume it can

1 https://github.com/HanKruiger/tsNET, consulted on February 2021

https://github.com/HanKruiger/tsNET


Table 1. Random and Rome graphs datasets properties.

Graphs distribution Dataset size
|V| |E| Degree Train Validation Test

Random Graphs [2, 128] [1, 6502] [1, 118] 127 000 25 400 –

Rome Graphs [10, 107] [9, 158] [1, 13] 8000 1600 1931

be sufficient to feed the model with this information encoded through Chebyshev
filters. Nodes features are then represented by a tensor F ∈ RN×2 with nodes id
to help the model differentiate them and a random metric to reduce overfitting.

With this nodes features tensor, it can be expected that adding meaningful
features should help the model achieving better layouts. We experimented addi-
tional features by adding PivotMDS 2D positions such as in tsNET ∗ variant [17],
raising its size to F ∈ RN×4. This tensor is then transformed throughout the
model successive Graph Convolution and Dense layers as presented in Figure 1.

As all the nodes features are not necessarily of the same order of magnitude,
they are normalized to give them the same importance.

4 Experimentation and Statistical Comparison

4.1 Datasets

Two datasets were considered for this experimentation (see Table 1), both being
split for Deep Learning validation purposes (i.e., hold out validation). In our
terminology, train and validation sets are used during training to feed the model
and evaluate it. Test set is used to benchmark models on unseen data.

Random Graphs. Used to pretrain (DNN)2, its train set was generated to
sample 1000 random graphs for each graph size between 2 and Nmax. It is
noteworthy that by generating 1000 instances of each graph size, the model will
see many isomorphic graphs (mainly of small size). It means the model could
overfit on small graphs, but this kind of overfitting could be beneficial for it. Since
graphs can be decomposed into subgraphs of smaller size, the model capability
to layout a small graph g can help it laying out a larger graph G having g as a
subgraph. The validation set was generated with 200 instances per graph size.

Rome Graphs. Rome is a dataset of undirected graphs provided by the Graph
Drawing symposium2 made of 11 534 graphs, 3 of them being excluded as they
are disconnected. The set was randomly split as presented in Table 1 and the
layout methods of this experiment will be evaluated on the Rome test set.
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Fig. 3. (DNN)2 training and evaluation pipeline. Six models are initially trained
and compared. Then, the best selected models for the two loss variants are
compared to tsNET , tsNET ∗ and state-of-the-art layout methods.

4.2 Training

In this experiment, Nmax was set to 128 to be slightly larger than the biggest
graph in the Rome dataset. Transformed features tensors sizes were defined
experimentally and are described in Figure 1. Chebyshev filters were computed
up to order 4 for all the Graph Convolution layers except the nine last ones
which were only provided up to order 2. Therefore, more weight is given to direct
neighborhood which minimizes overdraws that are critical for the drawing quality.

Since we want to compare our DL approach to the original tsNET and
tsNET ∗ algorithms, an instance of (DNN)2 is trained for each of them. We refer
to these two variants as (DNN)2 and (DNN)2*. Similarly to tsNET , the models
were trained in two stages. First, to optimize the loss C (see Equation 4) with
their respective tsNET lambda weights (see Section 3.2). Second, the optimizer
is reset and models are trained to optimize C with second stage lambda weights.

(DNN)2 variants were trained with three methods to be evaluated on Rome
graphs: (i) pretraining on Random graphs, (ii) finetuning (after the pretraining)
on Rome graphs, (iii) training from scratch on Rome graphs. The goal is to
verify if pretraining the model on a large set of random graphs improves its
performances, and whether training on a specific dataset leads to better results
than on random graphs. There are six (DNN)2 instances in total (see Figure 3).

2 http://www.graphdrawing.org/data.html, consulted on February 2021

http://www.graphdrawing.org/data.html


Table 2. Quality metrics used in our benchmark and references to their definition.
* represents metrics inverted to allow a lower is better reading for all of them.

Metric Reference

Aspect ratio* As defined in [1].
Angular resolution* As defined in [1].
Edge crossings number Well-known aesthetic metric [1, 24].
Cluster overlap Autocorrelation metric in [32] with MCL clustering [29].
Neighborhood preservation* As defined in [17].
Stress Well-known aesthetic metric [1], normalized by N .

The nodes features are rescaled in [0; 1] based on the train set. The random
permutation of the model inputs (see Section 3.1) is fixed for the test set graphs
so that every model is evaluated on the same permuted graphs.

4.3 Metrics and comparison procedure

Designing quality metrics for assessing a graph drawing quality that corrobo-
rates how well human subjects understand the drawing is a challenging ques-
tion [23,24,26,33]. We use a set of common metrics to assess (DNN)2 efficiency
and statistically compare it to state-of-the-art methods. Following the recommen-
dations of Purchase [25], some metrics (marked with * ) were inverted so that
all metrics can be read as lower is better (see table Table 2). In addition, we
measured Execution times of each algorithm in milliseconds (ms).

In the next, the efficiency of different graph drawing techniques are statis-
tically compared on the presented metrics. To assess which method performs
significantly better, a Kruskal-Wallis test [18] first verifies whether the differences
of performances between all the compared methods on a given metric are signifi-
cant or not. If so, a post-hoc Conover test [4] is applied to verify which pairs of
methods are performing significantly different on that metric. For both tests, the
acceptance threshold is set to α = 0.05 and all Kruskal-Wallis tests passed.

4.4 Training Methods Evaluation

This section compares the 6 variants of (DNN)2 to determine which training
method is the most beneficial for the model. Execution times are not studied here
and Figure 4 presents other metrics averages and standard deviations on the Rome
test set for each (DNN)2 instance. A red bar indicates that the corresponding
model performance is significantly different to all others. An arc between two blue
bars indicates that the difference of their performance is statistically significant.

Pretrained instances perform significantly worse than others on all metrics
but aspect ratio where they lead by a fair margin. From scratch instances never
perform the best on any metric. Overall, finetuned (DNN)2 lead to better scores
with most metrics. It could be expected as it is well known in the Image Processing
community that initialize weights to pretrained values tends to speed up the



training process and to lead to better performances including generalization to
unseen data. The idea is that it is easier for the model to learn to solve a specific
task if it already knows high-level features. As finetuned models results are best,
pretraining effectively learned the model such features that helped it to finetune.

In the next, only finetuned instances of (DNN)2 are compared to state-of-the-
art methods since they perform better on the graph drawing task.
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Fig. 4. Comparison of (DNN)2 instances on the Rome test set. A red bar indicates
that the corresponding model performance is significantly different to all others.
An arc between two blue bars indicates pairwise significance.

4.5 Comparison with tsNET

In this section, we study how the (DNN)2 adaptation of tsNET loss performs
compared to the original Optimization-based implementation of tsNET as both
use the same cost function. The results are presented in Table 3.

(DNN)2 has significantly lower scores than tsNET on all metrics but Stress
and Execution time. Though it is significant, the difference on Edge Crossings
Number is small. The Execution time difference is heavily in favor of (DNN)2:
20.4ms as opposed to 6541ms for tsNET . The trends are about the same between
(DNN)2* and tsNET ∗, but their scores are closer and the differences in Angular
Resolution and Edge Crossings Number are not significantly different anymore.
(DNN)2* is also better on Stress and strongly better on Execution time.



Table 3. (DNN)2 and (DNN)2* pair comparison with their respective tsNET
algorithm on the Rome test set. o (resp. +) indicates a significant difference with
(DNN)2 (resp. (DNN)2*). The best significant results are bold (i.e., no bold value
when the difference is not significant).

Aspect ratio Angular res. Cross. number Cluster overlap Neighb. preserv. Stress Exec. time

(DNN)2 o 0.3± 0.136 0.963± 0.101 34.9± 40.5 0.55± 0.207 0.451± 0.159 0.117± 0.041 20.4± 10.4

tsNET 0.191± 0.091 o 0.885± 0.155 o 27.7± 31.8 o 0.489± 0.229 o 0.407± 0.1o 0.144± 0.155 o 6541± 5068 o

(DNN)2* + 0.229± 0.104 0.905± 0.15 30.0± 35.7 0.507± 0.214 0.397± 0.14 0.111± 0.042 24.8± 8.61

tsNET∗ 0.206± 0.10 0.872± 0.181 + 27.1± 32.0 0.49± 0.218 + 0.386± 0.115 + 0.124± 0.049 + 5836± 5933 +

Table 4. (DNN)2 and (DNN)2* pair comparisons with selected state-of-the-
art algorithms. o (resp. +) indicates a significant difference with (DNN)2 (resp.
(DNN)2*). The best significant result(s) for each metric is(are) bold (i.e., several
bold values when the differences between the best algorithms is not significant).

Aspect ratio Angular res. Cross. number Cluster overlap Neighb. preserv. Stress Exec. time

(DNN)2 o 0.294± 0.134 + 0.969± 0.092 + 36.3± 39.9 + 0.58± 0.197 + 0.468± 0.154 + 0.128± 0.06 + 21.0± 10.3 +

(DNN)2* + 0.229± 0.105 o 0.917± 0.138 o 30.6± 34.8 o 0.541± 0.206 o 0.409± 0.136 o 0.115± 0.046 o 25.1± 8.36 o

t-SNE 0.276± 0.158 o+ 0.97± 0.038 o+ 69.1± 48.9 o+ 0.598± 0.252 o+ 0.584± 0.097 o+ 0.56± 0.771 o+ 166± 71.7 o+

PivotMDS 0.298± 0.125 + 0.978± 0.088 o+ 38.7± 43.6 + 0.623± 0.202 o+ 0.49± 0.17 o+ 0.104± 0.035 o+ 0.546± 0.478 o+

GEM 0.573± 0.197 o+ 0.972± 0.034 o+ 54.4± 61.2 o+ 0.722± 0.162 o+ 0.617± 0.123 o+ 0.24± 0.062 o+ 5.22± 3.83 o+

S GD2 0.263± 0.123 o+ 0.812± 0.208 o+ 32.2± 36.6 o 0.583± 0.204 + 0.439± 0.181 o+ 0.066± 0.027 o+ 1.13± 0.91 o+

It is noteworthy that tsNET and tsNET ∗ suffers from a significantly high
Execution time standard deviation, meaning that the methods hardly converge
on some graphs. In addition, 450 out of 1931 (i.e., 23%) graphs were excluded
from the test set as the tsNET ∗ implementation would not complete on these.

We can conclude that the (DNN)2 implementation that adapts tsNET to a
Deep Learning approach is faster but does not lead to better drawings according
to most of the metrics. Although quality metrics differences are significant, they
remain small and should undeniably be alleviated by future works.

tsNET is designed to optimize a specific input graph at a time whereas,
with the Deep Learning approach, we aim at optimizing the model and not
the drawing of a single graph. If the DL training process is computationally
expensive, the resulting model should be capable of computing the layout without
any further need for optimization. In fact, if a DL model learns well to lay graphs
out by optimizing a generic cost function, it suggests that there exists a bounded
sequence of operations that efficiently projects a graph in a 2D space.

4.6 Comparison with State-of-the-art Layout Algorithms

This section studies how (DNN)2 performs compared to selected layout algorithms
from the literature: t-SNE [28], since we leverage the Kullback-Leibler divergence,
PivotMDS [2], a deterministic Multidimensional Scaling used by (DNN)2* and
tsNET ∗, GEM [8], a well-established force-directed technique and S GD2 [35], a
stress Optimization-based approach with SGD. The methods are compared on



the Rome test set and the results are reported in Table 4. (DNN)2 scores are
slightly different from Table 3 since all test graphs are taken into account here.

(DNN)2* performs better than (DNN)2 as all aesthetic metrics are significantly
in its favor. (DNN)2* is slower due to the extra processing of PivotMDS it requires.
This outcome was expected in view of tsNET variants comparisons in [17].

(DNN)2 is better than GEM on all quality metrics; and is significantly better
than t-SNE on all metrics but Aspect ratio. It performs better than PivotMDS
on Angular resolution, Cluster overlap and Neighborhood preservation, but is
outperformed on Aspect ratio and Stress, while the difference is not significant
on Edge Crossings Number. Finally, S GD2 performs significantly better than
(DNN)2 on all metrics but Cluster overlap.

Overall, (DNN)2* is significantly better on Aspect ratio, Cluster overlap and
Neighborhood preservation than all the other considered methods. It is also the
best in Edge Crossings Number with S GD2. While it was observed to be better
than tsNET ∗ on Stress, it is here outperformed by PivotMDS and S GD2.

As for Execution time, we can see that both (DNN)2 variants are slower
than other methods except t-SNE. However, they are less sensible to graph size
variations: (DNN)2 variants execution time standard deviations are 33% and
47% of their average, while they range between 43% and 87% for other methods.
It is important to note that a forward pass time in (DNN)2 is almost constant
and only takes 1.4ms (i.e., 6% of its total execution time), the remaining time
being used to pre-process data for the model inputs.

Although (DNN)2 is not the best performing variant, its results indicate that
a Deep Learning framework, without any knowledge of what is a graph layout,
can learn a sequence of operations that lays graphs out. (DNN)2* leveraged its
PivotMDS input and drawn better layouts according to the quality metrics. Its
performances make it a good trade-off between tsNET ∗ and S GD2. The latter
performed surprisingly well, while GEM underperformed in this evaluation.

5 Discussion

5.1 Visual evaluation

Graph layout examples of (DNN)2 are presented in Figure 5 alongside tsNET ∗

and S GD2 ones. S GD2 drawings being all pleasing and only a few defects away
from being perfect, we can use them to see how the layouts should look like. For
(DNN)2, the dodecahedron and the grid graph structures can be observed but are
severely distorted. It seems that topologically equivalent nodes (i.e., nodes that
can be mapped to each other by an automorphism) are grouped together. Both
drawings are therefore folded, which also emphasizes their symmetry. From what
we experienced, this behavior might be caused by the compression of the first
stage training (see Section 3.2) and too similar nodes features and Chebyshev
filters. Another explanation might be that the model had seen such small patterns
more often during the training stage and somehow overfitted on them. On the
two Rome graphs, the model has successfully laid the graphs structures out, but
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Fig. 5. Layout examples for (DNN)2, (DNN)2*, tsNET ∗ and S GD2.

its tendency to group topologically equivalent nodes leads to unbalanced edge
lengths, edge crossings and overplots. On the other hand, (DNN)2* layouts are
visually more pleasing. The dodecahedron structure can clearly be identified.
Despite a lack of regularity, the grid layout is also acceptable. The two Rome
graph layouts demonstrate (DNN)2* good performances. The model was able to
separate topologically equivalent nodes, though they could have been repulsed
a little more. tsNET ∗ also produces nodes overlaps where neighborhoods are
similar, as it can be observed in the top right of its Rome graph 1 layout and on
the right side of Rome graph 2.

Overall (DNN)2 and in particular (DNN)2* performed well even compared
to OPT methods. The latter optimizing their cost function for a specific graph
at a time, we could expect them to provide better results than a DL approach.



Nevertheless, (DNN)2 results acts as a proof-of-concept showing that we can
learn unsupervised DL models to lay graphs out. It is therefore encouraging as
we believe there is still a large room for improvement.

5.2 Limitations

The main limitation of (DNN)2 is the technical need to set a maximum graph size
Nmax so that the architecture tensors size is static. Setting Nmax to an arbitrarily
high number might not be an option either since it would significantly increase
the data pre-processing cost which is the most expensive step in (DNN)2. It is
also not certain such model would learn if it is only fed with small graphs (i.e.,
with N � Nmax), as each graph convolution kernel weight would be underfitted.

Another limitation is the resources required to obtain a well-trained model.
First, if the use of the trained model is straightforward, the model training relies on
many design choices that can only be efficiently made through a trials and errors
process by an informed expert. Second, the computational resources required to
train the model can be prohibitive. If Deep Learning-designed computers can
easily handle small to mid-scale training (e.g., finetuning), heavier training (e.g.,
pretraining) can require to generate hundreds of thousands of graphs, which
required the use of a Big Data platform in this experiment.

Finally, (DNN)2 has not been tested on disconnected, weighted or directed
graphs. Though the handling of these graph properties is straightforward with
this framework, it is not part of the scope of this study.

6 Conclusion

We introduced (DNN)2, a Deep Learning based framework for graph drawing.
(DNN)2 proposes to adapt well-established Deep Neural Network architectures
in image classification to compute the layout of an input graph by using Graph
Convolutions. To the best of our knowledge, it is the first DL model trained to
lay graphs out by directly optimizing a graph topology related cost function.

We provided an experimentation of the framework and compared its perfor-
mances to graph drawing algorithms from the literature. The experiment showed
that (DNN)2 performs well compared to these algorithms despite some Deep
Learning related limitations. The results highly suggest that Deep Learning is a
promising approach for the future of graph drawing. It also implies that there
exists a mathematical function that efficiently projects any graph structure into
a drawing, and that can be learned by Deep Learning models.

Future work leads include trying out other (DNN)2 implementations, meaning
other Deep Neural Network architectures, loss functions (e.g., stress) and input
node features (e.g., node2vec, DeepWalk). Another interesting direction is to
train and evaluate (DNN)2 on other graph datasets or on specific graph families.
Expanding the scale of the graphs size (DNN)2 can handle, or apply it to other
specific graph drawing applications are also promising leads for future work.
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