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Numerical range and positive block matrices

Jean-Christophe Bourin*and Eun-Young Lee�

Abstract. We obtain several norm and eigenvalue inequalities for positive matrices parti-
tioned into four blocks. The results involve the numerical range W (X) of the off-diagonal
block X, especially the distance d from 0 to W (X). A special consequence is an estimate,

diamW

([
A X
X∗ B

])
− diamW

(
A+B

2

)
≥ 2d,

between the diameters of the numerical ranges for the full matrix and its partial trace.
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1 The width of the numerical range

Let Mn denote the space of n-by-n complex matrices, and let ⟨u, v⟩ = u∗v be the
canonical inner product of Cn, linear in the second variable. The numerical range of
X ∈ Mn is defined as

W (X) = {⟨h,Xh⟩ : ∥h∥ = 1}.

The Hausdorff-Toeplitz theorem states that W (X) is a compact convex set containing
the spectrum of X. In case of a normal matrix, the numerical range is precisely the
convex hull of the spectrum. The symbol ∥ · ∥ will also denote any symmetric norm
on M2n. Such a norm is also called a unitarily invariant norm. It satisfies the unitary
invariance property ∥UTV ∥ = ∥T∥ for all T ∈ M2n and all unitary matrices U, V ∈ M2n,
and it induces a symmetric norm on Mn in an obvious way, by considering Mn as the
upper left corner of M2n completed with some zero entries.

A positive matrix means a Hermitian positive semi-definite matrix. It has been
pointed out [7] that the width of W (X) contributes to an estimate of the norm of a

partitioned positive matrix

[
A X
X∗ B

]
. In Matrix Analysis, positive matrices partitioned

into four blocks are a fundamental tool and these matrices are also of basic importance
in applications, especially in Quantum Information Theory. The main theorem of [7]
reads as follows.
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Theorem 1.1. Let

[
A X
X∗ B

]
be a positive matrix partitioned into four blocks in Mn.

Suppose that W (X) has the width ω. Then, for all symmetric norms,∥∥∥∥[ A X
X∗ B

]∥∥∥∥ ≤ ∥A+B + ωI∥.

Here I stands for the identity matrix and the width of W (X) is the smallest distance
between two parallel straight lines such that the strip between these two lines contains
W (X). Hence the partial trace A + B may be used to give an upper bound for the
norms of the full block-matrix. This note will provide a lower bound, stated in Section
2, and several consequences.

Theorem 1.1 is the first inequality involving the width of the numerical range; classical
results rather deal with the numerical radius, w(X) = max{|z| : z ∈ W (X)}. Our new
lower bound will also have an unusual feature as it involves the distance from 0 to the
numerical range, dist(0,W (X)) = min{|z| : z ∈ W (X)}. For a background on the
numerical range we refer to [12], where the term of Field of values is used. Some very
interesting inequalities for the numerical radius can be found in [11], [13], and in the
recent article [8].

In case of Hermitian off-diagonal blocks, Theorem 1.1 holds with w = 0. More
generally, if X = aI + bH for some a, b ∈ C and some Hermitian matrix H, we have
ω = 0 as W (X) is a line segment. This special case of the theorem was first shown by
Mhanna [14]. In particular, if the off-diagonal blocks are normal two-by-two matrices,
then we can take ω = 0. This does not hold any longer for three-by-three normal
matrices, a detailed study of this phenomenon is given in [10] and [9].

For Hermitian off-diagonal blocks, a stronger statement than Theorem 1.1 with w = 0
holds. The following decomposition was shown in [6, Theorem 2.2].

Theorem 1.2. Let

[
A X
X B

]
be a positive matrix partitioned into four Hermitian blocks

in Mn. Then, for some pair of unitary matrices U, V ∈ M2n,[
A X
X B

]
=

1

2

{
U

[
A+B 0

0 0

]
U∗ + V

[
0 0
0 A+B

]
V ∗

}
.

For decompositions of positive matrices partitioned into a larger number of blocks,
see [5]. We close this section by recalling some facts on symmetric norms, classical text
books such as [2], [12] and [15] are good references.

A symmetric norm on Mn, can be defined by its restriction to the positive cone M+
n .

Symmetric norms on M+
n are characterized by three properties:

(i) ∥λA∥ = λ∥A∥ for all A ∈ M+
n and all λ ≥ 0,

(ii) ∥UAU∗∥ for all A ∈ M+
n and all unitaries U ∈ Mn,

(iii) ∥A∥ ≤ ∥A+B∥ ≤ ∥A∥+ ∥B∥ for all A, B ∈ M+
n .

2



Let λ↓
1(A) ≥ · · · ≥ λ↓

n(A) stand for the eigenvalues of A ∈ M+
n arranged in non-increasing

order. Then, the Ky Fan k-norms,

∥A∥(k) =
k∑

j=1

λ↓
j(A)

are symmetric norms, k = 1, . . . , n. Thus ∥A∥(1) is the operator norm, usually denoted
by ∥A∥∞ while ∥A∥(n) is the trace norm, usually written ∥A∥1. For A,B ∈ M+

n , the
following conditions are equivalent:

(a) ∥A∥(k) ≤ ∥B∥(k) for all k = 1, . . . , n,

(b) ∥A∥ ≤ ∥B∥ for all symmetric norms,

(c) The vector of the eigenvalues of A is dominated by a convex combination of per-
mutations of the vector of the eigenvalues of B, equivalently,

A ≤
n+1∑
i=1

αiUiBU∗
i

for some unitary matrices Ui and some scalars αi ≥ 0 such that
∑n+1

i=1 αi = 1.

When these conditions hold (especially when explicitly stated as (a)) one says that A
is weakly majorized by B and one writes A ≺w B. If furthemore in (a) one has the
equality ∥A∥(n) = ∥B∥(n), that it is A and B have the same trace, then A is majorized
by B, written A ≺ B. Thus A ≺ B means that (c) holds with the equality sign: A is in
the convex hull of the unitary orbit of B. Theorem 1.2 is a special majorization.

A linear map Φ : Mn → Mn is called doubly stochastic if Φ preserves positivity,
identity, and trace. For all A ∈ M+

n , we then have Φ(A) ≺ A, see the last section of
Ando’s survey [1].

2 The distance from 0 to the numerical range

We state our main result and infer several corollaries. The proof of the theorem is
postponed to Section 3.

Theorem 2.1. Let

[
A X
X∗ B

]
be a positive matrix partitioned into four blocks in Mn

and let d = dist(0,W (X)). Then, for all symmetric norms,∥∥∥∥[ A X
X∗ B

]∥∥∥∥ ≥
∥∥∥∥(A+B

2
+ dI

)
⊕
(
A+B

2
− dI

)∥∥∥∥ .
Here, the direct sum is a standard notation for block-diagonal matrices

X ⊕ Y =

[
X 0
0 Y

]
.
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Since we have equality for the trace, Theorem 2.1 is a majorization relation. We
have (A+ B)/2 ≥ dI, otherwise, the trace norm of the left-hand side would be strictly
smaller than the right-hand side one, a contradiction with the theorem.

By a basic principle of majorization, Theorem 2.1 is equivalent to some trace in-
equalities.

Corollary 2.2. Let

[
A X
X∗ B

]
be a positive matrix partitioned into four blocks in Mn

and let d = dist(0,W (X)). Then, for every convex function g : [0,∞) → (−∞,∞),

Tr g

(
A+B

2
+ dI

)
+ Tr g

(
A+B

2
− dI

)
≤ Tr g

([
A X
X∗ B

])
.

Symmetric norms ∥ · ∥ on M+
n are the homogeneous, unitarily invariant, convex func-

tionals. The concave counterpart, the symmetric anti-norms ∥ ·∥!, have been introduced
and studied in papers [3] and [4, Section 4]. We recall their basic properties, parallel to
those of symmetric norms given at the end of Section 1. Symmetric anti-norms on M+

n

are continuous functionals characterized by three properties:

(i) ∥λA∥! = λ∥A∥! for all A ∈ M+
n and all λ ≥ 0,

(ii) ∥UAU∗∥! for all A ∈ M+
n and all unitaries U ∈ Mn,

(iii) ∥A+B∥! ≥ ∥A∥! + ∥B∥! for all A, B ∈ M+
n .

Let λ↑
1(A) ≤ · · · ≤ λ↑

n(A) stand for the eigenvalues ofA ∈ M+
n arranged in non-decreasing

order. Then, the Ky Fan k-anti-norms,

∥A∥(k)! =
k∑

j=1

λ↑
j(A)

are symmetric anti-norms, k = 1, . . . , n. The following conditions are equivalent:

(a) ∥A∥(k)! ≥ ∥B∥(k)! for all k = 1, . . . , n,

(b) ∥A∥! ≥ ∥B∥! for all symmetric anti-norms,

(c) The vector of the eigenvalues of A dominates some convex combination of permu-
tations of the vector of the eigenvalues of B, equivalently,

A ≥
n+1∑
i=1

αiUiBU∗
i

for some unitary matrices Ui and some scalars αi ≥ 0 such that
∑n+1

i=1 αi = 1.
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The continuity assumption is not essential, but deleting it would lead to rather strange
functionals which are not continuous on the boundary of M+

n , such as ∥A∥! := TrA if A
is invertible and ∥A∥! := 0 if A is not invertible.

Note that the trace norm is both a symmetric norm and a symmetric anti-norm and
that the majorization A ≺ B in M+

n also entails that ∥A∥! ≥ ∥B∥! for all symmetric
anti-norms. Thus Theorem 2.1 is equivalent to the following statement:

Corollary 2.3. Let

[
A X
X∗ B

]
be a positive matrix partitioned into four blocks in Mn,

let d = dist(0,W (X)). Then, for all symmetric anti-norms,∥∥∥∥(A+B

2
+ dI

)
⊕

(
A+B

2
− dI

)∥∥∥∥
!

≥
∥∥∥∥[ A X

X∗ B

]∥∥∥∥
!

.

Corollary 2.4. Let

[
A X
X∗ B

]
be a positive matrix partitioned into four blocks in Mn

and let d = dist(0,W (X)). Then,

λ↓
1

([
A X
X∗ B

])
− λ↓

1

(
A+B

2

)
≥ d

and

λ↑
1

(
A+B

2

)
− λ↑

1

([
A X
X∗ B

])
≥ d.

Proof. The first inequality follows from Therorem 2.1 applied to the symmetric norm
A 7→ λ↓

1(A) (the operator norm on the positive cone), while the second inequality follows
from Corollary 2.3 applied to the anti-norm A 7→ λ↑

1(A)

By adding these two inequalities we get an estimate for the spread of the matrices,
i.e., for the diameter of the numerical ranges.

Corollary 2.5. For every positive matrix partitioned into four blocks of same size,

diamW

([
A X
X∗ B

])
− diamW

(
A+B

2

)
≥ 2d,

where d is the distance from 0 to W (X).

Of course

diamW

([
A X
X∗ B

])
≥ diamW

([
A 0
0 B

])
≥ diamW

(
A+B

2

)
,

however the ratio

ρ =
1

2d

{
diamW

([
A X
X∗ B

])
− diamW

([
A 0
0 B

])}
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can be arbitrarily small as shown by the following example where the blocks are in M2,

[
A X
X∗ B

]
=


(
α 0
0 α−1

) (
1 0
0 1

)
(
1 0
0 1

) (
α−1 0
0 α

)
 ,

and by noting that ρ then takes the value α−1 which tends to 0 as α → ∞.
The Minkowki inequality for positive m-by-m matrices,

det1/m(A+B) ≥ det1/m(A) + det1/m(B),

shows that the functional A 7→ det1/m(A) is a symmetric anti-norm on M+
m. For this

anti-norm Theorem 2.1 reads as:

Corollary 2.6. Let

[
A X
X∗ B

]
be a positive matrix partitioned into four blocks in Mn

and let d = dist(0,W (X)). Then,

det

{(
A+B

2

)2

− d2I

}
≥ det

([
A X
X∗ B

])
.

Letting X = 0, we recapture a basic property: the determinant is a log-concave map
on the positive cone of Mn. Hence Corollary 2.6 refines this property.

By a basic principle of majorization, Corollary 2.3 is equivalent to the following
seemingly more general statement.

Corollary 2.7. Let

[
A X
X∗ B

]
be a positive matrix partitioned into four blocks in Mn,

let d = dist(0,W (X)), and let f(t) be a nonnegative concave function on [0,∞). Then,∥∥∥∥f (
A+B

2
+ dI

)
⊕ f

(
A+B

2
− dI

)∥∥∥∥
!

≥
∥∥∥∥f ([

A X
X∗ B

])∥∥∥∥
!

for all symmetric anti-norms.

3 Proof of Theorem 2.1

We want to show the majorization in M+
2n[

A+B
2

+ dI 0
0 A+B

2
− dI

]
≺

[
A X
X∗ B

]
(3.1)

where d = dist(0,W (X). We use two lemmas, the first one might belong to folklore.

Lemma 3.1. Let {Ak}mk=1 and {Bk}mk=1 be two families of r-by-r positive matrices such
that Ak ≺ Bk for each k. Then,

⊕m
k=1Ak ≺ ⊕m

k=1Bk.
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Proof. Let pk denote any integer such that 0 ≤ pk ≤ m, k = 1, . . . ,m. With this
notation, we then have, for each integer p = 1, . . . ,mr,

p∑
j=1

λ↓
j (⊕m

k=1Ak) = max
p1+p2+···+pm=p

m∑
k=1

pk∑
j=1

λ↓
j(Ak)

≤ max
p1+p2+···+pm=p

m∑
k=1

pk∑
j=1

λ↓
j(Bk)

=

p∑
j=1

λ↓
j (⊕m

k=1Bk)

with equality for p = mr.

Lemma 3.2. Let X, Y ∈ M+
n and let δ > 0 be such that X ≥ Y ≥ δI. Then,[

X + δI 0
0 X − δI

]
≺

[
X + Y 0

0 X − Y

]
.

Proof. Let {ek}nk=1 be an orthonormal basis of Cn and define two n-by-n diagonal posi-
tive matrices

D+ = diag(⟨e1, (X + Y )e1⟩, . . . , ⟨en, (X + Y )en⟩)

and
D− = diag(⟨e1, (X − Y )e1⟩, . . . , ⟨en, (X − Y )en⟩).

Since extracting a diagonal is a doubly stochastic map (a pinching), we have[
D+ 0
0 D−

]
≺

[
X + Y 0

0 X − Y

]
. (3.2)

Now, choose the basis {ek}nk=1 as a basis of eigenvectors for X, λ↓
k(X) = ⟨ek, Xek⟩, and

observe that the majorization in M+
2 ,(

λ↓
k(X) + δ 0

0 λ↓
k(X)− δ

)
≺

(
⟨ek, (X + Y )ek⟩ 0

0 ⟨ek, (X − Y )ek⟩

)
,

holds for every k. Applying Lemma 3.1 then shows that

n⊕
k=1

(
λ↓
k(X) + δ 0

0 λ↓
k(X)− δ

)
≺

n⊕
k=1

(
⟨ek, (X + Y )ek⟩ 0

0 ⟨ek, (X − Y )ek⟩

)
.

This means that [
X + δI 0

0 X − δI

]
≺

[
D+ 0
0 D−

]
and we may combine this majorization with (3.2) to complete the proof.
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We turn to the proof of (3.1).

Proof. Suppose first that d = 0, that is 0 ∈ W (X). Note that[
A 0
0 B

]
≺

[
A X
X∗ B

]
(3.3)

as the operation of taking the block diagonal is doubly stochastic.
Using the unitary congruence with

J =
1√
2

[
I −I
I I

]
(3.4)

we observe that

J

[
A 0
0 B

]
J∗ =

[
A+B
2

A−B
2

A−B
2

A+B
2

]
Hence we have [

A+B
2

0
0 A+B

2

]
≺

[
A 0
0 B

]
and combining with (3.3) establishes (3.1) for the case d = 0.

Now assume that d > 0, that is 0 /∈ W (X). Using the unitary congruence imple-
mented by [

I 0
0 e−iθI

]
we may replace the right hand side of (3.1) with[

A eiθX
e−iθX∗ B

]
Thanks to the rotation property W (eiθX) = eiθW (X), by choosing the adequate θ,
we may then and do assume that W (X) lies the half-plane of C consiting of complex
numbers with real parts greater or equal than d,

W (X) ⊂ {z = x+ iy : x ≥ d }.

The projection property for the real part of the numerical range, ReW (X) = W (ReX)
with ReX = (X +X∗)/2, then ensures that

ReX ≥ dI.

Now, using again a unitary congruence with (3.4), wet get

J

[
A X
X∗ B

]
J∗ =

[
A+B
2

− ReX ∗
∗ A+B

2
+ReX

]
where ∗ stands for unspecified entries. Hence[

A+B
2

− ReX 0
0 A+B

2
+ReX

]
≺

[
A X
X∗ B

]
,

equivalently, [
A+B
2

+ReX 0
0 A+B

2
− ReX

]
≺

[
A X
X∗ B

]
and applying Lemma 3.2 then yields (3.1).
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