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A Pythagorean theorem for partitioned matrices

Jean-Christophe Bourin∗and Eun-Young Lee†

Abstract. We establish a Pythagorean theorem for the absolute values of the blocks of a
partitioned matrix. This leads to a series of remarkable operator inequalities. For instance, if
the matrix A is partitioned into three blocks A,B,C, then

|A|3 ≥ U |A|3U∗ + V |B|3V ∗ +W |C|3W ∗,
√

3|A| ≥ U |A|U∗ + V |B|V ∗ +W |C|W ∗,

for some isometries U, V,W , and

µ24(A) ≤ µ23(A) + µ22(B) + µ21(C)

where µj stands for the j-th singular value. Our theorem may be used to extend a result by
Bhatia and Kittaneh for the Schatten p-noms and to give a singular value version of Cauchy’s
Interlacing Theorem.

Keywords. Partitioned matrices, functional calculus, matrix inequalities.

2010 mathematics subject classification. 15A18, 15A60, 47A30.

1 Introduction

Let Md denote the space of d-by-d matrices. If A ∈Md, the polar decomposition holds,

A = U |A| (1.1)

where |A| ∈ Md is positive semi-definite and U ∈ Md is a unitary matrix. The matrix
|A| is called the absolute value of A, and its eigenvalues are the singular values of A.
The absolute value can be defined for d × d′ matrices A ∈ Md,d′ as a positive matrix
|A| ∈Md′ , and the factor U in (1.1) is an isometry (d ≥ d′) or a coisometry (d < d′).

If A is partitioned in some number of rectangular blocks, say four blocks A,B,C,D,
it is of interest to have a relation between the absolute value |A| and the absolute values
of the blocks. By using the standard inner product of Md,d′ , we immediately have the
trace relation

Tr |A|2 = Tr |A|2 + Tr |B|2 + Tr |C|2 + Tr |D|2.
∗Funded by the ANR Projet (No. ANR-19-CE40-0002) and by the French Investissements d’Avenir

program, project ISITE-BFC (contract ANR-15-IDEX-03).
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This note aims to point out a much stronger Pythagorean theorem, Theorem 2.1, and
several consequences. This result holds for many partitionings of A, not only when A is
a block matrix partitioned into p× q blocks. For instance, one may consider the matrix

A =


a1 a2 b1 b2 b3
a3 a4 b4 b5 b6
a5 a6 c1 c2 d1
a7 a8 c3 c4 d2
a9 a10 c5 c6 d3


partitioned into four obvious blocks A,B,C,D.

If A is partitioned into r blocks Ak ∈Mnk,mk
, we write

A =
r⋃

k=1

Ak = A1 ∪ · · · ∪ Ar (1.2)

where we can use the = sign if one considers Ak not only as an element of Mnk,mk
but

also as a submatrix of A with its position in A.
We say that the partitioning (1.2) is column compatible, or that A is partitioned into

column compatible blocks if for all pairs of indexes k, l, either Ak and Al lie on the same
set of columns of A, or Ak and Al lie on two disjoint sets of columns of A. Similarly,
(1.2) is row compatible, if for all pairs of indexes k, l, either Ak and Al lie on the same
set of rows of A, orAk and Al lie on two disjoint sets of rows of A.

Our Pythagorean Theorem 2.1 will be stated for row or column compatible blocks.
An application is a Theorem of Bhatia and Kittaneh for the Schatten p-norms (Corollary
2.5). Another application is an inequality for the singular values of compression onto
hyperplanes. A matrix A ∈ Md is an operator on Cd. Given a hyperplane S of Cd, we
have a unit vector h such that S = h⊥, that is x ∈ S ⇐⇒ 〈h, x〉 = h∗x = 0. The
compression AS of A onto S is the operator acting on S defined as the restriction of
EA to S where E stands for the (orthogonal) projection onto S. Theorem 2.1 entails
a bound for the singular values of AS in terms of those of A. These results are given
in Section 3; we state a special case in the following corollary. Let µj denote the j-th
singular value arranged in nonincreasing order.

Corollary 1.1. Let A ∈ Md be a normal matrix and let S be a hyperplane of Cd

orthogonal to the unit vector h. Set β = ‖Ah‖2− |〈h,Ah〉|2. Then, for j = 1, . . . , d− 1,

µ2
j(A) ≥ µ2

j(AS) ≥ µ2
j+1(A)− β.

We discuss the case of four and five blocks in Section 4. For four blocks, our
Pythagorean theorem entails an interesting inequality stated in the next corollary.

Corollary 1.2. Let A ∈ Md,d′ be partitioned into four blocks A,B,C,D. Then, there
exist some isometries U, V,W,X of suitable sizes such that

2|A| ≥ U |A|U∗ + V |B|V ∗ +W |C|W ∗ +X|D|X∗.

The last section is devoted to several other operator inequalities such as the first
inequality in the abstract.
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2 A Pythagorean theorem

Theorem 2.1. Let A ∈ Md,d′ be partitioned into r row or column compatible blocks
Ak ∈Mnk,mk

. Then, there exist some isometries Uk ∈Md′,mk
such that

|A|2 =
r∑

k=1

Uk|Ak|2U∗k .

Recall that U ∈ Md′,m, m ≤ d′, is an isometry if U∗U = 1m, the identity on Cm. If
A ∈Md,1, then the theorem reads as Pythagoras’ Theorem.

Proof. Consider a positive matrix in Mn+m partitioned as[
A X
X∗ B

]
with diagonal blocks A ∈ Mn and B ∈ Mm. By [5, Lemma 3.4] we have two unitary
matrices U, V ∈Mn+m such that[

A X
X∗ B

]
= U

[
A 0
0 0

]
U∗ + V

[
0 0
0 B

]
V ∗, (2.1)

equivalently, [
A X
X∗ B

]
= U1AU

∗
1 + U2BU

∗
2

for two isometry matrices U1 ∈Mn+m,n and U2 ∈Mn+m,m. An obvious iteration of (2.1)
shows that, given a positive block matrix in Mm partitioned into p× p blocks,

B = (Bi,j)1≤i,j≤p ,

with square diagonal blocks Bi,i ∈Mni
and n1+· · ·+np = m, we have the decomposition

B =

p∑
i=1

UiBi,iU
∗
i (2.2)

for some isometries Ui ∈Mm,ni
.

We use (2.2) to prove the theorem. Consider first the column compatible case. Thus
we have a partitioning into p block columns,

A = C1 ∪ · · · ∪Cp, (2.3)

and each block Ak belongs to one block column Cq. By relabelling the Ak’s if necessary,
we may assume that we have p integers 1 = α1 < α2 < · · · < αp < r such that

Cq = Aαq ∪ · · · ∪ Aαq+1−1, 1 ≤ q < p, and Cp = Aαp ∪ · · · ∪ Aαr .
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We also have a partitioning into p block rows,

A∗ = C∗1 ∪ · · · ∪C∗p, (2.4)

and multiplying (2.4) and (2.3) we then obtain a block matrix for A∗A = |A|2 ∈Md′ ,

|A|2 = (C∗iCj)1≤i,j≤p .

By the decomposition (2.2) we have

|A|2 =

p∑
i=1

UiC
∗
iCiU

∗
i

for some isometries Ui ∈ Md′,ni
, where ni is the number of columns of Ci. Hence, with

the convention αp+1 := r + 1,

|A|2 =

p∑
i=1

αi+1−1∑
k=αi

UiA
∗
kAkU

∗
i

establishing the theorem for a column compatible partitioning.
Now, we turn to the row compatible case. Thus we have a partitioning into p block

rows,
A = R1 ∪ · · · ∪Rp, (2.5)

and each block Ak belongs to one block row Rq and, as in the column compatible case,
we may assume that we have p integers 1 = α1 < α2 < · · · < αp < r such that

Rq = Aαq ∪ · · · ∪ Aαq+1−1, 1 ≤ q < p, and Rp = Aαp ∪ · · · ∪ Aαr .

We also have a partitioning into p block columns,

A∗ = R∗1 ∪ · · · ∪R∗p (2.6)

Mutiply (2.6) and (2.5) and note that

|A|2 =

p∑
l=1

R∗lRl. (2.7)

with p block matrices in Md′ , (l = 1, . . . , p),

R∗lRl = (A∗iAj)αl≤i,j<αl+1
(2.8)

where we still use αp+1 := r+1. Applying the decomposition (2.2) to the block matrices
(2.8) yields

R∗lRl =

αl+1−1∑
i=αl

Ui|Ai|2U∗i

for some isometries Ui of suitable sizes, and combining with (2.7) completes the proof.
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Denote by µ1(S) ≥ µ2(S) ≥ · · · the singular values of a matrix S ∈Mn,m. This list is
often limited to min{n,m} elements, however we can naturally define µk(S) = 0 for any
index k larger than min{n,m}. Given two matrices of same size, a classical inequality
of Weyl asserts that

µj+k+1(S + T ) ≤ µj+1(S) + µk+1(T )

for all nonnegative integers j and k. This inequality and Theorem 2.1 entail the next
corollary.

Corollary 2.2. Let A ∈ Md,d′ be partitioned into r row or column compatible blocks
Ak ∈Mnk,mk

. Then, for all nonnegative integers j1, j2, . . . , jr,

µ2
j1+j2+···+jr+1(A) ≤

r∑
k=1

µ2
jk+1(Ak).

A special case of this inequality is given in the abstract for three blocks and j1 = 2,
j2 = 1, j3 = 0.

Since any partitioning into three blocks is row or column compatible we have the
next corollary.

Corollary 2.3. Let A ∈Md,d′ be partitioned into three blocks A,B,C. Then, there exist
some isometries U, V,W of suitable sizes such that

|A|2 = U |A|2U∗ + V |B|2V ∗ +W |C|2W ∗.

By using the triangle inequality for the Schatten p-norms we have the trace inequality{
Tr |A|2p

}1/p ≤ {Tr |A|2p
}1/p

+
{

Tr |B|2p
}1/p

+
{

Tr |C|2p
}1/p

, p ≥ 1, (2.9)

equivalently
‖A‖2q ≤ ‖A‖2q + ‖B‖2q + ‖C‖2q (2.10)

for all Schatten q-norms, q ≥ 2.
Theorem 2.1 entails another interesting relation between the blocks of a partitioned

matrix and the full matrix.

Corollary 2.4. Let A ∈ Md,d′ be partitioned into r row or column compatible blocks
Ak ∈Mnk,mk

. Then, for some isometries Vj ∈Mm,d′, with m =
∑r

k=1mk,

r⊕
k=1

|Ak|2 =
1

r

r∑
j=1

Vj|A|2V ∗j .

Proof. From Theorem 2.1 and the main result of [6] we have

r⊕
k=1

Uk|Ak|2Uk =
1

r

r∑
j=1

Wj|A|2W ∗
j
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for some isometries Uk ∈Md′,mk
and some isometries Wj ∈Mrd′,d′ . Since

r⊕
k=1

|Ak|2 = C

{
r⊕

k=1

Uk|Ak|2Uk

}
C∗

for some contraction C ∈Mm,rd′ , we infer

r⊕
k=1

|Ak|2 =
1

r

r∑
j=1

CWj|A|2W ∗
j C
∗.

If |A| is invertible, then, taking trace, the above equality ensures that contractions CWj

satisfy W ∗
j C
∗CWj = 1d′ for all j. Hence the result is proved with Vj = CWj. The

general case follows by a limit argument.

We are in a position to estimate the Schatten norms of the blocks with the full
matrix. The following corollary was first obtained by Bhatia and Kittaneh [4] in case of
a matrix partitioned into n× n blocks.

Corollary 2.5. Let A ∈ Md,d′ be partitioned into r row or column compatible blocks
Ak ∈Mnk,mk

. Then, for all Schatten q-norms, q ≥ 2,

r
2
q
−1

r∑
k=1

‖Ak‖2q ≤ ‖A‖2q ≤
r∑

k=1

‖Ak‖2q

These two inequalities are reversed for 2 > q > 0.

Proof. For p := q/2 ≥ 1, the second inequality contains (2.10) and immediately follows
from Theorem 2.1 and the triangle inequality for the Schatten p-norms. Corollary 2.4
gives

‖|A|2‖p ≥
∥∥|A1|2 ⊕ · · · ⊕ |Ar|2

∥∥
p

and since the concavity of t 7→ t1/p entails∥∥|A1|2 ⊕ · · · ⊕ |Ar|2
∥∥
p

=
(
‖|A1|2‖pp + · · · ‖|Ar|2‖pp

)1/p ≥ r
1
p
−1 (‖|A1|2‖p + · · ·+ ‖|Ar|2‖p

)
we get the first inequality. These inequalities are reversed for 0 < p < 1.

Corollary 2.4 is relevant to Majorisation Theory. We take this opportunity to point
out an interesting fact about majorisation in the next proposition. Though this result
might be well-known to some experts, it does not seem to be in the literature. Let
A,B ∈M+

n , the positive semi-definite cone of Mn. The majorisation A ≺ B means that

k∑
j=1

µj(A) ≤
k∑
j=1

µj(B)
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for all k = 1, 2, . . . n, with equality for k = n. The majorisation A ≺ B is equivalent to

A =
n∑
i=1

αiUiBU
∗
i

for some unitary matrices Ui ∈ Mn and weights αi ≥ 0 with
∑n

i=1 αi = 1. This can be
easily derived from Caratheodory’s theorem [8]. A more accurate statement holds.

Proposition 2.6. Let A,B ∈M+
n , A ≺ B.Then, for some unitary matrices Ui ∈Mn,

A =
1

n

n∑
i=1

UiBU
∗
i .

Proof. By the Schur-Horn Theorem, we may assume that A is the diagonal part of B.
Then we use the simple idea of Equation (2) in the nice paper of Bhatia [3].

Note that Corollary 2.4 may be restated as

r⊕
k=1

|Ak|2 =
1

r

r∑
j=1

Uj(|A|2 ⊕O)U∗j .

for some unitary matrices Uj and some fixed zero matrix O. Hence we have an average
of r matrices in the unitary orbit of |A|2⊕O, this number r being (much) smaller than
the one given by Proposition 2.6, d = m1 + · · ·+mr.

3 Compression onto a hyperplane

By a hyperplane of Cd we mean a vector subspace of dimension d−1. The next corollary
is a singular value version of Cauchy’s Interlacing Theorem [2, p. 59].

Corollary 3.1. Let A ∈ Md and let S be a hyperplane of Cd orthogonal to the unit
vector h. Set β = min{‖Ah‖2, ‖A∗h‖2} − |〈h,Ah〉|2. Then, for all j = 1, . . . , d− 1,

µ2
j(A) ≥ µ2

j(AS) ≥ µ2
j+1(A)− β.

This double inequality is stronger than µj(A) ≥ µj(AS) ≥ µj+1(A) −
√
β. If A is a

normal matrix, then ‖Ah‖ = ‖A∗h‖ and we have Corollary 1.1. If A = V is a unitary
matrix, µj(V ) = 1 for all j and ‖V h‖ = ‖V ∗h‖ = 1 for all unit vectors, so we deduce
from Corollary 3.1 that µj(VS) ≥ |〈h, V h〉|. In fact one can easily check that µj(VS) = 1
for j ≤ d− 2 and µd−1(VS) = |〈h, V h〉|. Hence Corollary 3.1 is sharp.

Proof. (Corollary 3.1) The inequality µj(A) ≥ µj(AS) is trivial. To deal with the other
inequality we may assume that h is the last vector of the canonical basis and that AS is
the submatrix of A obtained by deleting the last column and the last line. We partition
A as

A = AS ∪B ∪ C
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where B contains the d − 1 entries below AS and C is the last column of A. We then
apply to this partitioning Corollary 2.2 with j1 = j − 1, j2 = 0, and j3 = 1 to get

µ2
j+1(A) ≤ µ2

j(AS) + µ2
1(B) + µ2

2(C).

Since µ2(C) = 0, we have

µ2
j+1(A)− µ2

1(B) ≤ µ2
j(AS)

Observe that µ2
1(B) = ‖A∗h‖2 − |〈h,Ah〉|2, hence

µ2
j(AS) ≥ µ2

j+1(A)− ‖A∗h‖2 + |〈h,Ah〉|2. (3.1)

We may also partition A as
A = AS ∪R ∪ L

where R contains the d − 1 entries on the right of AS and L stands for the last line of
A. Arguing as above with R and L in place of B and C yields

µ2
j+1(A)− µ2

j(AS) ≤ µ2
1(R) = ‖Ah‖2 − |〈h,Ah〉|2 (3.2)

Combining (3.1) and (3.2) completes the proof.

Corollary 3.2. Let A ∈ Md,d′ be partitioned into r row or column compatible blocks
Ak ∈Mnk,mk

. Then, for each block Ak and all j ≥ 1,

µ2
j(A)− µ2

j(Ak) ≤
∑
l 6=k

µ2
1(Al).

Proof. Apply Corollary 2.2 with jk = j − 1 and jl = 0 for all l 6= k.

Corollary 3.3. Let A ∈ Md and let S be a hyperplane of Cd orthogonal to the unit
vector h. Then for all j = 1, . . . , d− 1,

µ2
j(A)− µ2

j(AS) ≤ ‖Ah‖2 + ‖A∗h‖2 − |〈h,Ah〉|2.

Proof. We may suppose that h is the last vector of the canonical basis and we partition
A into three blocks : AS , the last column of A, and the d−1 entries below AS . We then
apply the previous corollary.
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4 Four and five blocks

Partitionings into four blocks are not necessarily row or column compatible. However,
for such partitionings, Theorem 2.1 still holds.

Corollary 4.1. Let A ∈ Md,d′ be partitioned into four blocks A,B,C,D. Then, there
exist some isometries U, V,W,X of suitable sizes such that

|A|2 = U |A|2U∗ + V |B|2V ∗ +W |C|2W ∗ +X|D|2X∗.

Proof. We assume that A is the block in the upper left corner and we distinguish three
cases.

(1) A has the same number d of lines as A. In such a case, letting A′ = B ∪ C ∪D,
the partitioning A = A ∪ A′ is column compatible, and we have two isometry matrices
U,U ′ such that

|A|2 = U |A|2U∗ + U ′|A′|2U ′∗. (4.1)

Since A′ is partitioned into three blocks, necessarily a row or column partitioning, we
can apply the theorem to obtain the decomposition

|A′|2 = V ′|B|2V ′∗ +W ′|B|2W ′∗ +X ′|B|2X ′∗ (4.2)

for some isometry matrices V ′,W ′, X ′ of suitable sizes. Combining (4.1) and (4.2) we
get the conclusion of the corollary with the isometry matrices V = U ′V ′, W = U ′W ′,
and X = U ′X ′.

(2) A has the same number d′ of columns as A. Letting again A′ = B ∪ C ∪D, the
partitioning A = A ∪ A′ is row compatible, and we may argue as in case (1).

(3) A has l < d lines and c < d′ columns. There exist then a block, say B, on the
top position, and just on the right of A, and another block, say C just below A and on
the left side. We consider three subcases (a), (b), (c).

(a) B has fewer than l lines. Then, the last block D is necessarily below B with the
same number of columns as B, and so C has either the same number of columns as A
or C has d′ columns as A. In the first case, A = A∪C ∪B ∪D is a column compatible
partitioning and we can apply the theorem. In the second case, the situation is the same
as in (2).

(b) B has exactly l lines, like A. We denote by γ the number of columns of B and
we consider three situations.

(i) C has more than c+ γ columns. Then necessarily C has d′ columns and D is the
upper right block with l lines, hence A = A∪B∪D∪C is a line compatible partitioning
and we may apply the theorem.

(ii) C has exactly c+γ columns. Then, letting A′′ = A∪B∪C with have a partitioning
into three blocks, and A = A′′ ∪ D. Thus applying the theorem twice as in case (1)
yields the conclusion.

(iii) C has fewer than c + γ columns. Then D is the lower right block, with the
same number of lines as B, and A is partitioned into line compatible blocks. Thus the
theorem can be applied.
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(c) B has more lines than A. Let λ be the number of line of B. Hence λ > l. There
exist two situations

(iv) λ < d. Then D is the lower right block, with the same number of columns as B,
and A is partitioned into line compatible blocks. Thus we may apply the theorem.

(v) λ = d. Then A′′′ = A∪C∪D is a partitioning into three blocks and A = A′′′∪B,
thus applying twice the theorem completes the proof.

We do not know whether Corollary 4.1 can be extended or not to any partitioning
in five blocks. For instance we are not able to prove or disprove a version of Corollary
4.1 for the matrices

A =

a1 a2 b1
d1 x b2
d2 c1 c2

 or A =


a1 a2 a3 b1 b2
a4 a5 a6 b3 b4
d1 d2 x b5 b6
d3 d4 c1 c2 c3
d5 d6 c4 c5 c6


partitioned into five obvious blocks A,B,C,D,X. Hence, that Theorem 2.1 holds or
not for any partitioning into five blocks is an open problem. More generally, we may
consider the following two questions.

Question 4.2. For which partitionings does Theorem 2.1 hold ? For which partitionings
does Corollary 2.2 hold ?

Matrices partitioned into four blocks (usually of same size) are comon examples of
partitionings. A nontrivial inequality follows from the previous corollary.

Corollary 4.3. Let A ∈Md,d′ be partitioned into four blocks A,B,C,D, and let p > 2.
Then, there exist some isometries U, V,W,X of suitable sizes such that

22−p|A|p ≤ U |A|pU∗ + V |B|pV ∗ +W |C|pW ∗ +X|D|pX∗.

The inequality reverses for 2 > p > 0.

Letting p = 1 we have Corollary 1.2 with the constant 2 which is sharp, even for a
positive block matrix, as shown by the simple example

A =

[
A A
A A

]
.

Proof. For any monotone convex function f(t) on the nonnegative axis, we have thanks
to [5, Corollary 2.4] and Corollary 4.1,

f

(
|A|2

4

)
= f

(
U |A|2U∗ + V |B|2V ∗ +W |C|2W ∗ +X|D|2X∗

4

)
≤ Λ

f(U |A|2U∗) + V (f |B|2V ∗) + f(W |C|2W ∗) + f(X|D|2X∗)
4

Λ∗

for some unitary matrix Λ ∈ M′d. Picking f(t) = tp/2 with p > 2 yields the result. The
reverse inequalities hold for monotone concave functions f(t) and 0 < p < 2.
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Remark 4.4. The version of Corollary 4.3 for three blocks A,B,C, and p = 1 reads as
the inequality of the abstract,

√
3|A| ≥ U |A|U∗ + V |B|V ∗ +W |C|W ∗.

The constant
√

3 is the best one: we cannot take a smaller constant for

A =

x y z
x y z
x y z


partitioned into its three lines. For two blocks, a similar sharp inequality holds with the
constant

√
2.

5 Concave or convex functions

For sake of simplicity we state our results for a square matrix A partitioned into blocks.
By adding some zero rows or zero columns to a rectangular matrix, we could obtain
statements for rectangular matrices (Remark 5.9).

Suppose that A ∈ Md is partitioned into blocks Ak ∈ Mnk,mk
, k = 1, . . . , r. From

Thompson’s triangle inequality ([7] or [2, p. 74] we have

|A| ≤
r∑

k=1

Uk|Ak|U∗k (5.1)

for some isometry matrices Uk ∈Md,mk
. The equality of Theorem 2.1 and (5.1) suggest

several other inequalities, in particular, if A is partioned in row or column compatible
blocks,

|A|3 ≥
r∑

k=1

Vk|Ak|3V ∗k (5.2)

for some isometries Vk ∈Md,mk
. This is indeed true as shown in the following theorem.

We do not know if (5.2) can be extended to any partitioning. Corollary 4.1 and the
proof of Theorem 5.1 show that (5.2) holds for four blocks. The case of five blocks is
open.

Theorem 5.1. Let A ∈ Md be partitioned into r row or column compatible blocks
Ak ∈Mnk,mk

, and let ψ(t) be a monotone function on [0,∞) such that ψ(
√
t) is convex

and ψ(0) = 0. Then there exist some isometries Vk ∈Md,mk
such that

ψ(|A|) ≥
r∑

k=1

Vkψ(|Ak|)V ∗k .

Theorem 5.1 considerably improves (2.9). A special case with ψ(t) = t3 is given in
the abstract.
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Proof. Let g(t) be a monotone convex function on [0,∞) such that g(0) ≤ 0, and let
A,B ∈Mn be positive (semidefinite). By [1] or [5, Corollary 3.2] we have

g(A+B) ≥ Ug(A)U∗ + V g(B)V ∗

for some unitary matrices U, V ∈Mn. Using this inequality and Theorem 2.1 we infer

g(|A|2) ≥
r∑

k=1

Wkg(Uk|Ak|2U∗k )W ∗
k

for some unitary matrices Wk and some isometry matrices Uk ∈ Md,mk
. If g(0) = 0, we

have g(Uk|Ak|2U∗k ) = Ukg(|Ak|2)U∗k . Hence

g(|A|2) ≥
r∑

k=1

Vkg(|Ak|2)V ∗k

with the isometry matrices Vk = WkUk. Applying this to g(t) = ψ(
√
t) completes the

proof.

Corollary 5.2. Let A ∈ Md be partitioned into r row or column compatible blocks
Ak ∈ Mnk,mk

, and let ϕ(t) be a nonnegative function on [0,∞) such that ϕ(
√
t) is

concave. Then there exist some isometries Uk ∈Md,nk
such that

ϕ(|A|) ≤
r∑

k=1

Ukϕ(|Ak|)U∗k .

Proof. Since ϕ(
√
t) is nonnegative and concave, it is necessarily a monotone function

(nondecreasing), hence continuous on (0,∞). Since we are dealing with matrices we
may further suppose that ϕ(t) is also continuous at t = 0.

(1) Assume that ϕ(0) = 0. Theorem 5.1 applied to ψ(t) = −ϕ(t) proves the corollary.
(2) Assume that ϕ(0) > 0. Since the continuous functional calculus is continuous on

the positive semidefinite cone of any Mm, by a limit argument, we may assume that |A|
is invertible. So, suppose that the spectrum of |A|2 lies in an interval [r2, s2] with r > 0.
Define a convex function φ(

√
t) by φ(

√
t) = ϕ(

√
t) for t ≥ r2, φ(0) = 0, and the graph

of φ(
√
t) on [0, r2] is a line segment. Hence φ(t) ≤ ϕ(t) and φ(|A|) = ϕ(|A|). Applying

case (1) to φ yields

ϕ(|A|) = φ(|A|) ≤
r∑

k=1

Ukφ(|Ak|)U∗k ≤
r∑

k=1

Ukϕ(|Ak|)U∗k

for some isometry matrices Uk.

The next three corollaries follow from Corollary 5.2.
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Corollary 5.3. Let A ∈Mmn be partitioned into an m×m family of blocks Ai,j ∈Mn,
and let 0 < q ≤ 2. Then there exist some isometries Ui,j ∈Mmn,n such that

|A|q ≤
m∑

i,j=1

Ui,j|Ai,j|qU∗i,j.

Corollary 5.4. Let A ∈Mmn be partitioned into an m×m family of blocks Ai,j ∈Mn,
let s ≥ 1 and 0 < q ≤ 2. Then,

{Tr |A|qs}1/s ≤
m∑

i,j=1

{Tr |Ai,j|qs}1/s .

Corollary 5.5. Let A ∈ Mn, let ck be the norm of the k-th column of A and let
0 < q ≤ 2. Then there exist some rank one projections Ek ∈Mn such that

|A|q ≤
n∑
k=1

cqkEk

The last corollaries follow from Theorem 5.1.

Corollary 5.6. Let A ∈Mmn be partitioned into an m×m family of blocks Ai,j ∈Mn,
and let p ≥ 2. Then there exist some isometries Ui,j ∈Mmn,n such that

|A|p ≥
m∑

i,j=1

Ui,j|Ai,j|pU∗i,j.

Corollary 5.7. Let A ∈Mmn be partitioned into an m×m family of blocks Ai,j ∈Mn,
let 0 ≤ s ≤ 1 and p ≥ 2. Then,

{Tr |A|ps}1/s ≥
m∑

i,j=1

{Tr |Ai,j|ps}1/s .

Corollary 5.8. Let A ∈ Mn, let rk be the norm of the k-th row of A and let p ≥ 2.
Then there exist some rank one projections Ek ∈Mn such that

|A|p ≥
n∑
k=1

cpkEk.

Remark 5.9. The proof of Theorem 5.1 is the same for a d× d′ matrix A. So Corollary
5.2 also holds for A ∈ Md,d′ if ϕ(0) = 0. In case of d ≥ d′, we may again use a limit
argument and assume that |A| is invertible. In case of d′ > d we may argue as follows.
Add some zero lines to A in order to obtain a square matrix A0 ∈ M′d. Let B1 . . . , Bp

13



be the blocks at the bottom of A, and R1, . . . , Rq be the remaining blocks of A. Add
some zeros to the blocks Bi in order to obtain blocks B0

i of A0 in such a way that

A0 =

(⋃
i

B0
i

)
∪

(⋃
j

Rj

)

is a row or column compatible partitioning of A0. Since it is a square matrix, we may
apply Corollary 5.2 and since |A0| = |A| and |B0

i | = |Bi|, we see that Corollary 5.2 holds
for d× d′ matrices.
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