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Positive linear maps on Hilbert space operators and
noncommutative Lp spaces

Jean-Christophe Bourin∗and Jingjing Shao†

Abstract. We extend some inequalities for normal matrices and positive linear maps related
to the Russo-Dye theorem. The results cover the case of some positive linear maps Φ on a von
Neumann algebra M such that Φ(X) is unbounded for all nonzero X ∈M.
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1 Some matrix inequalities

We aim to study positive linear maps taking values in some spaces of not necessarily
bounded Hilbert space operators. This study is driven by some recent matrix inequalities
established in [3] and [4]. The space of n × n complex matrices is denoted by Mn and
its positive semi-definite cone by M+

n . The identity, in any algebra through the text, is
denoted by I. A linear map Φ : Mn → Mm is positive if Φ(M+

n ) ⊂ M+
m.

Let Φ : Mn → Mm be a positive linear map and let N ∈ Mn be normal. Then there
exists a unitary V ∈ Mm such that

|Φ(N)| ≤ Φ(|N |) + V Φ(|N |)V ∗

2
.

and

|Φ(N)| ≤ Φ(|N |) +
1

4
V Φ(|N |)V ∗.

These two inequalities and several consequences are proved in [3], [4]. As an application
for the Schur product of two normal matrices A,B ∈ Mn, one may infer that

|A ◦B| ≤ |A| ◦ |B|+ 1

4
V (|A| ◦ |B|)V ∗

for some unitary V ∈ Mn, where the constant 1/4 is optimal. Another interesting
consequence is the following improvement of the Russo-Dye theorem stating that every
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positive linear map attains its norm at the identity: if Z ∈Mn is a contraction, then

|Φ(Z)| ≤ Φ(I) + V Φ(I)V ∗

2
.

Applying this to the Schur product with S ∈M+
n yields some exotic eigenvalue inequal-

ities such as
λ3(|S ◦ Z|) ≤ δ2(S)

where λ3(·) stands for the third largest eigenvalue, and δ2(·) for the second largest
diagonal entry.

In the next section we shall extend these inequalities to the setting of Hilbert space
operators, with a special emphasis on notions that do not exist on the matrix case, such
as hyponormal or semi-hyponormal operators, and the Calkin theory of operator ideals.

Sections 3 and 4 are devoted to unbounded operators and unbounded positive linear
maps. The correct setup is that of τ -measurable operators affiliated to semi-finite von
Neumann algebras and positive linear maps, continuous with respect to the measure
topologies. We recall these notions in Section 3, with some natural examples of positive
linear maps, some of which can be regarded are purely unbounded. The proofs for mea-
surable operators are rather different than those for matrices. In particular, contrarily
to the matrix case, we will not use the geometric mean.

2 Positive maps taking values in B(H)
Denote by A a unital C∗-algebra acting on an infinite dimensional separable Hilbert
space H, and let B(H) stand for the set of all bounded linear operators on H. Let
A,B ∈ B(H) be positive and invertible. Their geometric mean is defined as

A#B := A1/2(A−1/2BA−1/2)1/2A1/2

As in the matrix case, the geometric mean cannot be extended by continuity (in norm,
or even in the strong operator topology) to positive, noninvertible operators, however,
the natural definition for positive, not necessarily invertible operators, is the strong limit

A#B := sot lim
r→0+

(A+ rI)#(B + rI).

We then have the arithmetic-geometric mean inequality

A#B ≤ A+B

2

and, replacing A by 2A, B by (1/2)B,

A#B ≤ A+
1

4
B.

Hence, the next theorem contains several arithmetic means inequalities.
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Theorem 2.1. Let A be a unital C∗-algebra and R be a von Neumann algebra. Let
Φ : A → R be a positive linear map and let N ∈ A be normal. Then, there exists a
partial isometry V ∈ R such that

|Φ(N)| ≤ Φ(|N |)#V Φ(|N |)V ∗.

Proof. The proof is the same as in the matrix case, see the proof of [4, Eq. (2.1)].

Corollary 2.2. Let Φ : A → R be a positive linear map, and let N ∈ A be normal. If
Φ(|N |) belongs to an ideal I ⊂ R, then so does Φ(N).

Proof. From the arithmetic-geometric mean inequality

|Φ(N)| ≤ Φ(|N |)#V Φ(|N |)V ∗ ≤ Φ(|N |) + V Φ(|N |)V ∗

2

we infer that |Φ(N)|, and so Φ(N), belong to I.

To delete the normality asssumption on N in Corollary 2.2, we first give one more
consequence of Theorem 2.1.

Corollary 2.3. Let Φ : A → B(H) be a positive linear map and let X ∈ A. Then, there
exists a partial isometry V ∈ B(H) such that

|Φ(X ±X∗)| ≤ Φ(|X|+ |X∗|) + V Φ(|X|+ |X∗|)V ∗

2
.

Proof. Let Ψ : M2(A)→ B(H) be defined as

Ψ

((
A B
C D

))
= Φ(A+B + C +D).

Since

A+B + C +D =
(
I I

)(A B
C D

)(
I
I

)
,

Ψ is a positive map. Applying Theorem 2.1 to this map and AM-GM inequality with
the normal (Hermitian) operator in M2(A)(

0 X
X∗ 0

)
yields the result with the + sign. Replacing X by iX yields the − sign case.

We are now in a position to delete the normality assumption in Corollary 2.2.

Corollary 2.4. Let Φ : A → B(H) be a positive linear map, and let A ∈ A be invertible.
If Φ(|A|) belongs to an ideal I ⊂ B(H), then so does Φ(A).
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Before giving the proof, we show that the invertibility assumption on A is crucial,
even for completely positive linear maps. Let A = B(H) and pick the infinite direct
sum copies

A :=
∞⊕(

0 0
1 0

)
so that

|A| =
∞⊕(

1 0
0 0

)
.

Consider the Schur multiplier Φ(X) = S ◦X with

S =
∞⊕
n=1

(
1/n2 1/n
1/n 1

)
.

Hence,

S ◦ |A| =
∞⊕
n=1

(
1/n2 0

0 0

)
belongs to the Trace-class ideal, while

S ◦ A =
∞⊕
n=1

(
0 0

1/n 0

)
does not belong to the Trace-class ideal. Let I be the ideal of trace-class operator in
B(H). This example also exhibits that Φ(|X|) ∈ I does not necessarily imply that
Φ(|X∗|) ∈ I.

We turn to the proof of Corollary 2.4.

Proof. Since A is invertible, so is A∗. Let

‖A∗A−1‖∞ = ν.

Then,
A−1∗AA∗A−1 ≤ ν2I,

equivalently,
AA∗ ≤ ν2A∗A,

and so,
|A∗| ≤ ν|A|. (2.1)

Now, observe that

Φ(A) =
Φ(A+ A∗)

2
+

Φ(A− A)∗

2

Now, from Corollary 2.3 and (2.1) we have a partial isometry V1 ∈ B(H) such that

|Φ(A+ A∗)| ≤ Φ(|A|+ |A∗|) + V1Φ(|A|+ |A∗|)V ∗1
2

≤ (1 + ν)
Φ(|A|) + V1Φ(|A|)V ∗1

2
.

Hence, Φ(A+ A∗) ∈ I. Similarly Φ(A− A∗) ∈ I, and so Φ(A) ∈ I.
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We wish to extend Theorem 2.1 for normal operators to a larger class of operators.
Recall the following classical extensions of normal operators:

Normal ⊂ Quasinormal ⊂ Subnormal ⊂ Hyponormal ⊂ Semi-hyponormal

where the inclusions are strict and the larger class of semi-hyponormal operators S is
defined by the condition |S∗| ≤ |S|. To this end we first need the following consequence
of Theorem 2.1.

Corollary 2.5. Let Φ : A → R be a positive linear map and let Z ∈ A be a contraction.
Then, there exists a partial isometry V ∈ B(H) such that

|Φ(Z)| ≤ Φ(I)#V Φ(I)V ∗.

This result is a far extension of the famous Russo-Dye Theorem asserting that every
positive linear map Φ on a unital C∗-algebra attains its norm at the identity,

‖Φ(Z)‖∞ ≤ ‖Φ(I)‖∞

for all contractions Z. In the matrix setting, we refer to [4] for more general results than
Corollary 2.5 and several applications. The proof for operators is exactly the same and
is given here for sake of convenience.

Proof. We may dilate Z into a unitary U ∈M2(A), for instance with Halmos,

U =

(
Z −

√
I − ZZ∗√

I − Z∗Z Z∗

)
Now, let Ψ : M2(A)→ B(H) be defined as

Ψ

((
A B
C D

))
= Φ(A).

Applying Theorem 2.1 to Ψ and U , we have

|Φ(Z)| = |Ψ(U)| ≤ Ψ(|U |)#VΨ(|U |)V ∗ = Φ(I)#V Φ(I)V ∗

for some partial isometry V ∈ B(H).

Theorem 2.6. Let Φ : A → B(H) be a positive linear map and let S1, S2, . . . , Sm ∈ A
be semi-hyponormal. Then, there exists a partial isometry V ∈ B(H) such that∣∣∣∣∣Φ

(
m∑
k=1

Sk

)∣∣∣∣∣ ≤ Φ

(
m∑
k=1

|Sk|

)
#V Φ

(
m∑
k=1

|Sk|

)
V ∗.
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Proof. By considering the semi-hyponormal operator

S := S1 ⊕ · · · ⊕ Sm ∈ ⊕mA

and the positive linear map Ψ : ⊕mA → B(H) defined as

Ψ (X1 ⊕ · · · ⊕Xm) = Φ

(
m∑
i=1

Xi

)
it suffices to prove the theorem for m = 1, i.e, for the single semi-hyponormal operator
S and the map Ψ.

Consider the map Λ : ⊕mA → B(H),

Λ(X) = Ψ
(
|S|1/2X(S|1/2

)
.

Observe that
Λ(I) = Ψ(|S|), and Λ(Y ) = Ψ(S) (2.2)

where
Y = |S|−)1/2S|S|−)1/2

and |S|−1 stands for the generalized inverse. Thanks to the polar decomposition S =
|S∗|U = U |S|, we have

Y = (|S|−)1/2|S∗|1/2U |S|1/2(|S|−)1/2

and the semi-hyponormality assumption on S entails that |S|−)1/2|S∗|1/2 and, of course,
|S|1/2|S|−)1/2, the support projection of |S|, are two contractions. Therefore Y is a
contraction too. Applying Corollary 2.5 to Y and Λ yields

|Λ(Y )| ≤ Λ(I)#V Λ(I)V ∗

for some partial isometry V ∈ B(H). Coming back to (2.2) we get

|Ψ(S)| ≤ Ψ(|S|)#VΨ(|S|)V ∗

which completes the proof.

We close this section by some application to Cartesian decomposition, following [4,
Corollary 3.5].

Corollary 2.7. Let Φ : A → R be a positive linear map and let Z ∈ A with Cartesian
decomposition Z = X + iY . Then, there exists a partial isometry V ∈ B(H) such that

|Φ(Z)| ≤ Φ(|X|+ |Y |)#V Φ(|X|+ |Y |)V ∗.

A special case of this corollary with the identity map Φ(Z) = Z combined with the
arithmetic-geometric mean inequality reads as

|Z| ≤ |X|+ |Y |+ V (|X|+ |Y |)V ∗

2
.

Corollary 2.7 also yields an inequality for the essential norm,

‖Φ(Z)‖ess ≤ ‖Φ(|X|+ |Y |)‖ess.
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3 Positive linear maps on τ-measurable operators

In Section 4, we will extend the results of Section 2 to unbounded operators. The cor-
rect framework consists in measurable operators affiliated to a semifinite von Neumann
algebra M, acting on a separable Hilbert space, with a faithful normal semifinite trace
τ . In this short section we provide an example of a positive linear map which maps
every nonzero positive operator in M to an unbounded operator. Such a map cannot
be norm continuous; for measurable operators, the notion of convergence in measure
confers the good topology. We refer the reader to the Fack-Kosaki survey [6] for a nice
detailed survey on this theory.

We recall the notion of convergence in measure. LetM denote the set of τ -measurable
operators affiliated with M and M+

the positive cone of M. The spectral scale of
A ∈M+

is defined as

λt(A) := inf{s ∈ R : τ(1(s,∞)(A)) ≤ t}, t ∈ (0, τ(I)), (3.1)

where 1(s,∞)(A) is the spectral projection of A corresponding to (s,∞). The generalized
s-numbers of X ∈ M is µt(X) := λt(|X|), t ∈ (0, τ(I)). A sequence {Xn} in M
converges in measure to X ∈M if for all t > 0, µt(Xn)→ µt(X).

Hence, in case of M = B(H) we merely have M = M, and the convergence in
measure coincides with the norm convergence. For a diffuse von Neumann algebra, the
situation is more interesting, and it makes sense to consider unbounded positive linear
maps which are continuous with respect to the measure topologies.

Example 3.1. Let {Zi}mi=1 ⊆M and define the map Φ :M→M by

Φ(x) =
m∑
i=1

Z∗iXZi.

SinceM is a complete topological (metrizable) algebra, Φ is the most basic and natural
example of positive map, continuous with respect to the measure topology. If some of
the weights Zi are not bounded, then this map is not norm continuous.

The spaceM is often denoted by L0(M) to recall the continuous embeddings of the
noncommutative Lp(M) spaces, 0 < p < ∞, into M. However, some natural positive
linear maps cannot be defined on the whole space M, for instance, the conditional
expectation onto a subalgebra cannot be defined on Lq(M), 0 ≤ q < 1.

Example 3.2. Let M⊂ N be two type II1 factors, and let E :M→ N be the (trace
preserving) conditional expectation fromM to its subfactor N . This map is continuous
for both the norm topologies and the L1-norm topologies, in fact E is a contractive
map from Lp(M) to Lp(M), 1 ≤ p ≤ ∞, as in the standard commutative case. Let
{Zi}mi=1 ⊆M and define the map Φ : L1(M)→M by

Φ(x) =
m∑
i=1

Z∗i E(X)Zi.

The map Φ is continuous (for the L1 norm and the measure topology).
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Example 3.3. Let M be a type II1 factor acting on the Hilbert space H, let {hn}∞n=1

be a sequence of vectors dense in the unit sphere of H, and define a positive linear map
on Φ :M→M by

Φ(X) =
∞∑
n=1

〈hn, Xhn〉Yn

where Yn ∈ M
+ \M+ satisfy YnYk = 0 for n 6= k. Then Φ is continuous (for the norm

on M and the measure topology on M) and Φ(X) ∈M \M for all nonzero X ∈M.

Example 3.4. Let M be a type II1 factor acting on the Hilbert space H, let {Hn}∞n=1

be a sequence in the unit ball of M dense for the ∗-weak topology σ(M, L1(M)) and
define a positive linear map on Φ : L1(M)→M by

Φ(X) =
∞∑
n=1

τ(|Hn|X)Yn

where Yn ∈M
+ \L1(M)+ satisfy YnYk = 0 for n 6= k. Then Φ is continuous (for the L1

norm and the measure topology) and Φ(X) ∈M \ L1(M) for all nonzero X ∈ L1(M).

4 Maps taking values in a type II factor

There is no suitable definition of the geometric mean for positive τ -measurable operators
in a diffuse semifinite von Neumann algebra, and though some candidates might be
considered, their basic properties are still not understood. We thanks Fumio Hiai for
interesting discussions [7] on the current state of art and for showing us his forthcoming
work on this topic. It is worth mentioning that Hiai is able to define the geometric mean
in the noncommutative Lp spaces, and one may expect that this could be extended to
the set of all measurable operators. For two positive τ -measurable operators A and B
in a diffuse algebra M, there is no obvious characterization of their geometric mean as
the largest positive operator X ∈M such that(

A X
X B

)
is positive. Hence some matrix techniques are not available.

Another difficulty for unbounded positive linear maps defined on a commutative
domain is the lack of a Stinespring’s lemma ensuring that the map is completely positive.

Therefore the main proof in this section is rather different from that in the matrix
or bounded operator case.

To extend the results of Section 2 to the setting of τ -measurable operators, we cannot
use the geometric mean but we are still able to establish interesting inequalities involving
means in unitary (or partial isometry) orbits.

LetM denote a semifinite von Neumann algebra and let F1 be a type II1 factor with
a normalized trace, i.e., taking the value 1 on the identity.
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The spectral scale of a self-adjoint operator A ∈ F1 is defined as

λt(A) := inf{s ∈ R : τ(1(s,∞)(A)) ≤ t}, t ∈ (0, 1), (4.1)

where 1(s,∞)(A) is the spectral projection of A corresponding to (s,∞). The function
t 7→ λt(A) is non-increasing and right-continuous. We may write λ0(A) and λ1(A)
for limt↘0 λt(A) and limt↗1 λt(A), respectively, (which are the maximal and minimal
spectra of A when A is bounded). Note that the generalized s-numbers of X ∈ F is
µt(X) = λt(|X|), t ∈ (0, 1).

The following two lemmas belong to the folklore.

Lemma 4.1. (see [2, Lemma 3.3]) For two self-adjoint operators A,B ∈ F1, the spectral
dominance relation λt(A) ≤ λt(B) for all t ∈ (0, 1) holds if and only if for every ε > 0
there exists a unitary U ∈ F such that UAU∗ ≤ B + εI.

Lemma 4.2. (see [9, Remark 1.5.5]) Let {An} ⊂ F1 be a sequence of self-adjoint
operators converging in measure to A. Then, for all points of continuity t of s 7→ λs(A),
hence almost everywhere,

lim
n→∞

λt(An) = λt(A).

For positive linear maps taking value into the space of measurable operators affiliated
to a type II1 factor, the following theorem holds.

Theorem 4.3. Let Φ : Lp(M) → F1 be a continuous positive linear map, let N ∈
Lp(M) be normal, β > 0 and ε > 0. Then, there exists a unitary V ∈ F1 such that

|Φ(N)| ≤ βΦ(|N |) +
1

4β
V Φ(|N |)V ∗ + εI.

The continuity assumption refers to the natural topology on Lp(M) and F1. The
most important cases are p = 0, 1,∞, i.e, when Φ is defined on M, L1(M), or M.

Proof. For the von Neumann algebra case, one may refer to Theorem 2.1 for specific
proof.

We turn to the the general case. Let

Φ(I) =

∫ ∞
0

λ dE(λ)

and define

Kn =

∫ ∞
0

gn(λ) dE(λ)

with gn(λ) = 1 for λ ≤ n and gn(λ) = λ−1 for λ > n. Thus Kn ∈ F+ with ‖Kn‖∞ = 1.
Then define the positive linear maps

Φn(T ) := K1/2
n Φ(T )K1/2

n
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and observe that these maps are bounded on M as ‖Φn(I)‖∞ ≤ n. Since {Kn}
is a (bounded) sequence converging in measure (denoted by →) to I, we infer that

K
1/2
n YnK

1/2
n → Y for any sequence {Yn} inM such that Yn → Y . Hence Φn(Tn)→ Φ(T )

for any sequence {Tn} in M such that Tn → T .
Now, let N ∈ M be normal and pick a normal sequence {Nn} ⊂ M such that

Nn → N . By the first step of the proof, we have

|Φn(Nn)| − βΦn(|Nn|) ≤
1

4β
VnΦn(|N |)V ∗n

where V ∗n is the unitary part in the polar decomposition Φn(Nn) = V ∗n |Φn(Nn)|. This
entails that, for all t ∈ [0, 1],

λt {|Φn(Nn)| − βΦn(|Nn|)} ≤
1

4β
λt{Φn(|Nn|)}. (4.2)

Since Φn(Nn) → Φn(N), we also have |Φn(Nn)| → |Φn(N)| thanks to Tykhonov’s
theorem [10] (see also [5, Theorem 1.1]), and |Nn| → |N |. Therefore

|Φn(Nn)| − βΦn(|Nn|)→ |Φn(N)| − βΦn(|N |) and Φn(|Nn|)→ Φn(|N |) (4.3)

Combining (4.2), (4.3), and Lemma 4.2, we obtain that for almost every t ∈ (0, 1),

λt {|Φn(N)| − βΦn(|N |)} ≤ 1

4β
λt{Φn(|N |)}.

Since the function t 7→ λt(A) is right-continuous, this relation actually holds for all
t ∈ (0, 1) and Lemma 4.1 completes the proof.

Recall thatM denotes a semifinite von Neumann algebra and let F∞ be a type II∞
factor.

Theorem 4.4. Let Φ : Lp(M) → F∞ be a continuous positive linear map, let N ∈
Lp(M) be normal, β > 0 and ε > 0. Then, there exists a partial isometry V ∈ F∞ such
that

|Φ(N)| ≤ βΦ(|N |) +
1

4β
V Φ(|N |)V ∗ + εI.

The proof is similar to the type II1 case, except that we use the following lemma (a
variation of Lemma 4.1) instead of Lemma 4.1 (Lemma 4.2 still holds in the type II∞
case with t ∈ (0,∞)).

Lemma 4.5. For two self-adjoint operators A,B ∈ F∞, the spectral dominance relation
λt(A) ≤ λt(B) for all t ∈ (0,∞) holds if and only if for every ε > 0 there exists a partial
isometry U ∈ F∞ such that A ≤ UBU∗ + εI.

Recall that the Russo-Dye theorem says that positive linear maps on a unital C∗-
algebras attain their norms at the identity. A generalization of this theorem was given
in Corollary 2.5. This can also be generalized to possibly unbounded positive linear
maps as in our next two corollaries. We state the corollaries for type II1 factors and for
a map defined on M, of course similar statements hold for type II∞ and/or for maps
defined on Lp(M), p > 0.
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Corollary 4.6. Let Z ∈M be a contraction, let Φ :M→ F1 be a positive linear map
continuous with respect to the measure topologies, and let ε > 0. Then, for some unitary
V ∈ F1,

|Φ(Z)| ≤ Φ(I) + V Φ(I)V ∗

2
+ εI.

Proof. We repeat the proof of Corollary 2.5: Dilate Z into a unitary U ∈M2(M),

U =

(
Z −

√
I − ZZ∗√

I − Z∗Z Z∗

)
,

and define Ψ : M2(M)→ F1 by

Ψ

((
A B
C D

))
= Φ(A).

Applying Theorem 4.3 to Ψ and U , we have

|Φ(Z)| = |Ψ(U)| ≤ Ψ(|U |) + VΨ(|U |)V ∗

2
=

Φ(I) + V Φ(I)V ∗

2
+ εI

for some unitary V ∈ F1.

An immediate consequence of Corolloray 4.6 is the following generalized s-number
estimate.

Corollary 4.7. Let Z ∈ M be a contraction and let Φ : M→ F1 be a positive linear
map continuous with respect to the measure topologies. Then, for all t ∈ (0, 1/2),

µ2t(Φ(Z)) ≤ µt(Φ(I)).

We close the paper by the following version of Corollary 2.3 whose proof is quite
similar.

Corollary 4.8. Let X ∈M, let Φ :M→ F1 be a positive linear map continuous with
respect to the measure topologies, and let ε > 0. Then, for some unitary V ∈ F1,

|Φ(X +X∗)| ≤ Φ(|X|+ |X∗|) +
1

4
V Φ(|X|+ |X∗|)V ∗ + εI.
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