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Clarkson-McCarthy inequalities with unitary and
isometry orbits

Jean-Christophe Bourin* and Eun-Young Lee�

Abstract. A refinement of a trace inequality of McCarthy establishing the uniform convexity
of the Schatten p-classes for p > 2 is proved: if A,B are two n-by-n matrices, then there exists
some pair of n-by-n unitary matrices U, V such that

U

∣∣∣∣A+B

2

∣∣∣∣p U∗ + V

∣∣∣∣A−B

2

∣∣∣∣p V ∗ ≤ |A|p + |B|p

2
.

A similar statement holds for compact Hilbert space operators. Another improvement of
McCarthy’s inequality is given via the new operator parallelogramm law,

|A+B|2 ⊕ |A−B|2 = U0(|A|2 + |B|2)U∗
0 + V0(|A|2 + |B|2)V ∗

0

for some pair of 2n-by-n isometry matrices U0, V0.

Keywords. Matrix inequalities, Unitary orbits, Clarkson-McCarthy inequalities.

2010 mathematics subject classification. 47A30, 15A60.

1 Introduction

Let Mn denote the space of complex n × n matrices and let M+
n stand for the positive

(semi-definite) cone. In [8] McCarthy established a Clarkson type inequality for the
Schatten p-norms ∥ · ∥p and A,B ∈ Mn,

2
(
∥A∥pp + ∥B∥pp

)
≤ ∥A+B∥pp + ∥A−B∥pp ≤ 2p−1

(
∥A∥pp + ∥B∥pp

)
, p ≥ 2. (1.1)

For 0 < p ≤ 2, these inequalities are reversed. In the commutative (or scalar) case,
these inequalities are almost trivial. Note that the left hand side inequality is equivalent
to the right hand side one by A = X + Y , B = X − Y . Those inequalities for p ≥ 2
show that the unit ball for the Schatten p-norm is uniformly convex, this is more readily
apparent when written as∥∥∥∥A+B

2

∥∥∥∥p

p

+

∥∥∥∥A−B

2

∥∥∥∥p

p

≤
∥A∥pp + ∥B∥pp

2
, p ≥ 2, (1.2)
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i.e.,

Tr

∣∣∣∣A+B

2

∣∣∣∣p + Tr

∣∣∣∣A−B

2

∣∣∣∣p ≤ Tr |A|p + Tr |B|p

2
, p ≥ 2. (1.3)

Thus, if ∥A∥p = ∥B∥p = 1 and ∥A−B∥p = ε,∥∥∥∥A+B

2

∥∥∥∥
p

≤ (1− (ε/2)p)1/p , p ≥ 2,

which estimates the uniform convexity modulus of the Schatten p-classes for p ≥ 2.
There also exists a Clarkson type inequality showing the uniform convexity of the Schat-
ten p-classes in case of 1 < p < 2. This case is not as simple as the case p > 2 and
a Three Lines Theorem argument is required. It seems that no real analytic proof are
known (the original proof given by McCarthy collapses, see [6], p. 297)

The Clarkson-McCarthy inequalties (1.1) have been nicely extended to a large class
of unitarily invariant norms by Bhatia and Holbrook [1]. Recall that a unitarily invariant
norm on Mn, also called a symmetric norm, satifies ∥UAV ∥ = ∥A∥ for all A ∈ Mn and
all unitary matrices U, V ∈ Mn. Another remarkable generalization due to Hirzallah
and Kittaneh [7] states that

2 ∥|A|p + |B|p∥ ≤ ∥|A+B|p + |A−B|p∥ ≤ 2p−1 ∥|A|p + |B|p∥ , p ≥ 2,

for all symmetric norms, and these inequalities are reversed for 0 < p ≤ 2. This double
inequality can be rewritten in a similar form as (1.2) and, thanks to Fan’s dominance
principle, this can be subsumed as the weak majorization

k∑
j=1

λ↓
j

(∣∣∣∣A+B

2

∣∣∣∣p + ∣∣∣∣A−B

2

∣∣∣∣p) ≤
k∑

j=1

λ↓
j

(
|A|p + |B|p

2

)
, k = 1, 2, . . . (1.4)

where λ↓
1(X) ≥ λ↓

2(X) ≥ · · · ≥ λ↓
n(X) stand for the eigenvalues of X ∈ M+

n . For k = n,
we recapture (1.3), hence (1.4) is a considerable improvement of (1.2).

We will show in the next two sections some refinements of (1.2). These results yields
some eigenvalue estimates which complete (1.4). The last section show how to modify
the statements of Section 2 when dealing with operators on an infinite dimensional
Hilbert space.

2 Unitary orbits

The operator parallelogramm law does hold, for every pair A,B ∈ Mn,

|A+B|2 + |A−B|2 = 2
(
|A|2 + |B|2

)
, (2.1)

equivalently, ∣∣∣∣A+B

2

∣∣∣∣2 + ∣∣∣∣A−B

2

∣∣∣∣2 = |A|2 + |B|2

2
.

We will state two theorems which show for p ̸= 2 how this equality is modified as
operator inequalities involving unitary orbits. Taking traces we recapture (1.1)-(1.2).
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Theorem 2.1. Let A,B ∈ Mn and p > 2. Then there exists two unitarie U, V ∈ Mn

such that

U

∣∣∣∣A+B

2

∣∣∣∣p U∗ + V

∣∣∣∣A−B

2

∣∣∣∣p V ∗ ≤ |A|p + |B|p

2
.

Proof. Note that ∣∣∣∣A+B

2

∣∣∣∣p = (
|A|2 + |B|2 + A∗B +B∗A

4

)p/2

and ∣∣∣∣A−B

2

∣∣∣∣p = (
|A|2 + |B|2 − (A∗B +B∗A)

4

)p/2

.

Now, recall [5, Corollary 3.2]: Given two positive matrices X, Y and a monotone convex
function g(t) defined on [0,∞) such that g(0) ≤ 0, we have

g(X + Y ) ≥ U0g(X)U0 ∗+V0g(Y )V0∗ (2.2)

for some pair of unitary matrices U0 and V0. Applying this to g(t) = tp/2,

X =
|A|2 + |B|2 + A∗B +B∗A

4

and

Y =
|A|2 + |B|2 − (A∗B +B∗A)

4
,

we obtain (
|A|2 + |B|2

2

)p/2

≥ U0

∣∣∣∣A+B

2

∣∣∣∣p U∗
0 + V0

∣∣∣∣A−B

2

∣∣∣∣p V ∗
0 . (2.3)

Next, recall [5, Corollary 2.2]: Given two positive matrices X, Y and a monotone convex
function g(t) defined on [0,∞) , we have

g(X) + g(Y )

2
≥ Wg

(
X + Y

2

)
W ∗ (2.4)

for some unitary matrix W . Applying this to g(t) = tp/2, X = |A|2 and Y = |B|2, we
get

|A|p + |B|p

2
≥ W

(
|A|2 + |B|2

2

)p/2

W ∗. (2.5)

Combining (2.3) and (2.5) completes the proof with U = WU0 and V = WV0.

Corollary 2.2. Let A,B ∈ Mn and p > 2. Then, for all k = 1, 2, . . . , n,

k∑
j=1

λ↑
j

(
|A|p + |B|p

2

)
≥

k∑
j=1

λ↑
j

(∣∣∣∣A+B

2

∣∣∣∣p)+
k∑

j=1

λ↑
j

(∣∣∣∣A−B

2

∣∣∣∣p) .
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Corollary 2.3. Let A,B ∈ Mn and p > 2. Then, for all k = 1, 2, . . . , n,{
k∏

j=1

λ↑
j

(
|A|p + |B|p

2

)}1/k

≥

{
k∏

j=1

λ↑
j

(∣∣∣∣A+B

2

∣∣∣∣p)
}1/k

+

{
k∏

j=1

λ↑
j

(∣∣∣∣A−B

2

∣∣∣∣p)
}1/k

.

Here λ↑
1(X) ≤ λ↑

2(X) ≤ · · · ≤ λ↑
n(X) stand for the eigenvalues of X ∈ M+

n arranged
in the nondecresaing order. These two corollaries follow from the theorem and the fact
that the functionals on M+

n

X 7→
k∑

j=1

λ↑
j(X)

and

X 7→

{
k∏

j=1

λ↑
j(X)

}1/k

are two basic examples of symmetric anti-norms, see [3].
The next corollary follows from Theorem 2.1 combined with a classical inequality of

Weyl for the eigenvalues of the sum of two Hermitian matrices.

Corollary 2.4. Let A,B ∈ Mn and p > 2. Then, for all j, k ∈ {0, . . . , n− 1} such that
j + k + 1 ≤ n,

λ↓
j+1

(
|A|p + |B|p

2

)
≥ λ↓

j+k+1

(∣∣∣∣A+B

2

∣∣∣∣p)+ λ↑
k+1

(∣∣∣∣A−B

2

∣∣∣∣p) .

For a monotone concave function g(t) defined on [0,∞) such that g(0) ≥ 0, the
inequalities (2.2) and (2.4) are reversed. Applying this to g(t) = tq/2, 2 > q > 0, the
same proof than that of Theorem 2.1 gives the following statement.

Theorem 2.5. Let A,B ∈ Mn and 2 > q > 0. Then, for some unitaries U, V ∈ Mn,

U

∣∣∣∣A+B

2

∣∣∣∣q U∗ + V

∣∣∣∣A−B

2

∣∣∣∣q V ∗ ≥ |A|q + |B|q

2
.

By using Weyl’s inequality, this theorem yields an interesting eigenvalue estimate.

Corollary 2.6. Let A,B ∈ Mn and 2 > q > 0. Then, for all j, k ∈ {0, . . . , n− 1} such
that j + k + 1 ≤ n,

λ↓
j+k+1

(
|A|q + |B|q

2

)
≤ λ↓

j+1

(∣∣∣∣A+B

2

∣∣∣∣q)+ λ↓
k+1

(∣∣∣∣A−B

2

∣∣∣∣q) .
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3 Another parallelogram law

We shall point out a new operator parallelogram law where the usual sum in (2.1) is
replaced by a direct sum. A matrix V ∈ Mm,n, the space of m × n matrices, is called
an isometry whenever V ∗V is the identity of Mn.

Theorem 3.1. Let A,B ∈ Mn. Then, for some isometries U, V ∈ M2n,n,

|A+B|2 ⊕ |A−B|2 = U(|A|2 + |B|2)U∗ + V (|A|2 + |B|2)V ∗

Proof. Note that (
A B
B A

)
is unitarily equivalent to (

A+B 0
0 A−B

)
via the unitary congruence implemented by

W =
1√
2

(
I I
I −I

)
.

Thus |A+B|2 ⊕ |A−B|2 is unitarily equivalent to∣∣∣∣(A B
B A

)∣∣∣∣2 = (
|A|2 + |B|2 A∗B +B∗A
A∗B +B∗A |A|2 + |B|2

)
. (3.1)

Now, recall [5, Lemma 3.4]: Given any positive matrix partitionned in four n-by-n
blocks, we can find two unitary matrices U, V ∈ M2n such that(

X Y
Y ∗ Z

)
= U

(
X 0
0 0

)
U∗ + V0

(
0 0
0 Z

)
V ∗.

Applying this to (3.1) we then have two unitary matrices U, V ∈ M2n such that

|A+B|2 ⊕ |A−B|2 = U

(
|A|2 + |B|2 0

0 0

)
U∗ + V

(
0 0
0 |A|2 + |B|2

)
V ∗

which is a statement equivalent to our theorem.

The next corollary is a matrix version of the identity |z|2 = x2 + y2 for complex
numbers z = x+ iy. It follows from Theorem 3.1 applied to A = X and B = iY .

Corollary 3.2. Let Z ∈ Mn with Cartesian decomposition Z = X + iY . Then, for
some isometries U, V ∈ M2n,n,

|Z|2 ⊕ |Z|2 = U(X2 + Y 2)U∗ + V (X2 + Y 2)V ∗.
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From this and the reverse form of (2.2) for g(t) =
√
t we see that the scalar identity

|z| =
√

x2 + y2 is transformed in the matrix setting as an operator inequality.

Corollary 3.3. Let Z ∈ Mn with Cartesian decomposition Z = X + iY . Then, for
some isometries U, V ∈ M2n,n,

|Z| ⊕ |Z| ≤ U
√
X2 + Y 2 U∗ + V

√
X2 + Y 2 V ∗.

By applying twice the inequality (2.2) to the convex function g(t) = tp/2, our paral-
lelogramm law yields the next corollary.

Corollary 3.4. Let A,B ∈ Mn and p > 2. Then, for some isometries U0, V0, U1, V1 ∈
M2n,n,

|A+B|p ⊕ |A−B|p ≥ U0|A|pU∗
0 + V0|B|pV ∗

0 + U1|A|pU∗
1 + V1|B|pV ∗

1 .

If one uses the concave function g(t) = tq/2, we obtain a reversed inequality.

Corollary 3.5. Let A,B ∈ Mn and 2 > q > 0. Then, for some isometries U0, V0, U1, V1 ∈
M2n,n,

|A+B|q ⊕ |A−B|q ≤ U0|A|qU∗
0 + V0|B|qV ∗

0 + U1|A|qU∗
1 + V1|B|qV ∗

1 .

Our parallelogram law yields another extension of the Clarkson-McCarthy trace in-
equality (1.2).

Theorem 3.6. Let A,B ∈ Mn and p > 2. Then, for some isometries U, V ∈ M2n,n,∣∣∣∣A+B

2

∣∣∣∣p ⊕ ∣∣∣∣A−B

2

∣∣∣∣p ≤ 1

2

{
U
|A|p + |B|p

2
U∗ + V

|A|p + |B|p

2
V ∗

}
.

Proof. Theorem 3.1 says that∣∣∣∣A+B

2

∣∣∣∣2 ⊕ ∣∣∣∣A−B

2

∣∣∣∣2 = 1

2

{
U
|A|2 + |B|2

2
U∗ + V

|A|2 + |B|2

2
V ∗

}
and applying twice inequality (2.4) with the convex function g(t) = tp/2 completes the
proof.

The simplest form of Weyl’s inequality, λ↓
2j+1(S+T ) ≤ λ↓

j+1(S)+λ↓
j+1(T ) for S, T ∈

M+
n , and Theorem 3.6 provide one more Clarkson-McCarthy type eigenvalue estimate.

Corollary 3.7. Let A,B ∈ Mn and p > 2. Then, for all j,∈ {0, . . . , n− 1},

λ↓
2j+1

(∣∣∣∣A+B

2

∣∣∣∣p ⊕ ∣∣∣∣A−B

2

∣∣∣∣p) ≤ λ↓
j+1

(
|A|p + |B|p

2

)
.

The reverse form of Theorem 3.6 occurs for 2 > q > 0.

Theorem 3.8. Let A,B ∈ Mn and 2 > q > 0. Then, for some isometries U, V ∈ M2n,n,∣∣∣∣A+B

2

∣∣∣∣q ⊕ ∣∣∣∣A−B

2

∣∣∣∣q ≥ 1

2

{
U
|A|q + |B|q

2
U∗ + V

|A|q + |B|q

2
V ∗

}
.
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4 Infinite dimension

The Schatten classes are usually defined as classes of compact operators on an infinite
dimensional, separable Hilbert space. In this setting, a slight modification of the previous
theorems is necessary. The correct statements for compact operators require to use
partial isometries rather than unitary operators.

Let g(t) be an increasing continuous function defined on [0,∞) such that g(0). Then
the functional calculus g : K+ → K+, X 7→ g(X) is norm continuous. Thus, if Xn,
n ≥ 1, is a sequence of finite rank operators in K+ converging to X, then we have

λ↓
j(Xn) → λ↓

j(X), j = 1, 2, . . .

and
λ↓
j(g(Xn)) → λ↓

j(g(X)), j = 1, 2, . . .

as n → ∞. Now let X, Y ∈ K+ and pick two sequences of finite rank positive operators
Xn and Yn such that Xn → X and Yn → Y . Since we deal with finite rank operators, if
g(t) is convex, (2.4) yields

g(Xn) + g(Yn)

2
≥ Wg

(
Xn + Yn

2

)
W ∗

for some unitary operator W . This says that

λ↓
j

(
g(Xn) + g(Yn)

2

)
≥ λ↓

j

(
g

(
Xn + Yn

2

))
, j = 1, 2, . . . ,

and, letting n → ∞, we get

λ↓
j

(
g(X) + g(Y )

2

)
≥ λ↓

j

(
g

(
X + Y

2

))
, j = 1, 2, . . . ,

which exactly says that

g(X) + g(Y )

2
≥ Wg

(
X + Y

2

)
W ∗

for some partial isometry W such that supp(W ) = supp(X + Y ).
Therefore, for compact operators, Equation (2.4) of the proof of Theorem 2.1 still

holds with a partial isometryW such that supp(W ) = supp(X+Y ). A similar statement
holds for Equation (2.2): Given X, Y ∈ K+ and an increasing, strictly convex function
g(t) such that g(0), it is shown in [2, Theorem 2.1(i)] that

g(X + Y ) ≥ U0g(X)U∗
0 + V0g(Y )V ∗

0

for some partial isometries U0, V0 such that supp(U0) = supp(X) and supp(V0) =
supp(Y ). Hence, we may brought the proof of Theorem 2.1 to the setting of compact
operators and we obtain the following refinement of the Clarkson-McCarthy inequalities
for Schatten p-classes, p > 2.
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Theorem 4.1. Let A,B ∈ K and p > 2. Then there exist two partial isometries
U, V ∈ B such that supp(U) = supp(A+B), supp(V ) = supp(A−B), and

U

∣∣∣∣A+B

2

∣∣∣∣p U∗ + V

∣∣∣∣A−B

2

∣∣∣∣p V ∗ ≤ |A|p + |B|p

2
.

We may also give some versions of Theorems 2.1 and 2.5 for measurable operators
affiliated to a semi-finite von Neumann algebra (we refer to [6] for a background on
measurable operators). We close the paper by stating such a result for a type II1 factor.
We do not give details, we just mention that the result follows from [4, Lemma 3.3] and
[4, Theorem 3.2].

We denote by N the space of measurable operators affiliated to a type II1 factor N .

Theorem 4.2. Let A,B ∈ N and 2 > q > 0. Then, for every ε > 0, there exist two
unitaries U, V ∈ N such that

U

∣∣∣∣A+B

2

∣∣∣∣q U∗ + V

∣∣∣∣A−B

2

∣∣∣∣q V ∗ ≥ |A|q + |B|q

2
− εI.

For q > 2, the reverse inequality holds, with an εI term instead of −εI.
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