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ARTICLE

Vortex clustering, polarisation and circulation
intermittency in classical and quantum turbulence
Juan Ignacio Polanco 1,2✉, Nicolás P. Müller 1✉ & Giorgio Krstulovic 1✉

The understanding of turbulent flows is one of the biggest current challenges in physics, as no

first-principles theory exists to explain their observed spatio-temporal intermittency. Tur-

bulent flows may be regarded as an intricate collection of mutually-interacting vortices. This

picture becomes accurate in quantum turbulence, which is built on tangles of discrete vortex

filaments. Here, we study the statistics of velocity circulation in quantum and classical tur-

bulence. We show that, in quantum flows, Kolmogorov turbulence emerges from the cor-

relation of vortex orientations, while deviations—associated with intermittency—originate

from their non-trivial spatial arrangement. We then link the spatial distribution of vortices in

quantum turbulence to the coarse-grained energy dissipation in classical turbulence, enabling

the application of existent models of classical turbulence intermittency to the quantum case.

Our results provide a connection between the intermittency of quantum and classical tur-

bulence and initiate a promising path to a better understanding of the latter.
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Vortices are manifestly the most attractive feature of fluid
flows occurring in the Nature. They are highly rotating
zones of the fluid that often take the form of elongated

filaments, of which tornadoes are one prominent example in
atmospheric flows. Such structures can travel and interact with
other vortex filaments, as well as with the surrounding fluid. In
fact, the dynamics of vortex filaments in fluid flows is highly non-
trivial, as they can reconnect changing the topology of the flow1.
Their non-trivial arrangements may lead to very complex con-
figurations and in particular to turbulence, an out-of-equilibrium
state characterised by a large-scale separation between the scales
at which energy is injected and the one at which it is dissipated. In
three-dimensional flows, because of the inherently non-linear
character of turbulence, energy initially injected at large scales is
transferred towards the small scales through a cascade-like
process.

In turbulent flows, the typical thickness of a vortex filament is
comparable to the smallest active scale of turbulence2, itself
usually much smaller than the eddies carrying most of the energy
content of the flow. Vortex filaments may thus be seen as the
fundamental structure of turbulence, whose collective dynamics
leads to the multi-scale complexity of such flows. Indeed,
depending on their individual intensities and orientations, a set of
vortex filaments located within a given spatial region may con-
tribute constructively or destructively to the fluid rotation rate. In
fluid dynamics, the rotation rate of a two-dimensional fluid patch
is commonly quantified by the velocity circulation around the
closed loop C surrounding the patch,

ΓðC; vÞ ¼
I

C
v � dr; ð1Þ

where v is the fluid velocity field. Note that, by virtue of Stokes’
theorem, the circulation is equal to the flux of vorticity, ω=∇ × v,
through the fluid patch.

The above view of vortex filaments as the fundamental unit of
fluid flows is particularly appropriate in superfluids, such as low-
temperature liquid helium and Bose–Einstein condensates
(BECs). Indeed, in such fluids, vortices are well-defined discrete
objects about which the circulation is quantised, taking values
multiple of κ= h/m. Here h is Planck’s constant and m is the
mass of the bosons constituting the superfluid3. Such property
arises from their quantum nature, as vortices are topological
defects of the macroscopic wave function describing the system.
For this reason, vortex filaments in superfluids are called quan-
tum vortices.

One of the most striking properties of low-temperature
superfluids is their total absence of viscosity. Despite this fact,
quantum vortex reconnections are possible, since Helmholtz’
theorem that forbids reconnections in classical inviscid fluids1

breaks down due to the vanishing fluid density at the vortex core.
This picture was first suggested by Feynman in 19554 and later
confirmed numerically in the framework of the Gross–Pitaevskii
(GP) equation5. Since then, quantum vortex reconnections have
been observed experimentally in superfluid helium6 and in
BECs7. They are characterised by universal scaling laws8,9 and
have been linked to irreversibility, both in experiments10 and in
numerical simulations11. In the early vortex filament simulations
by Schwarz12, it was noticed that quantum vortex reconnections
are a key physical process for the development of quantum tur-
bulence, a state described by the complex interaction of a tangle
of quantum vortices. Such a state is illustrated by the vortex
filaments (in green and yellow) visualised in Fig. 1, obtained from
the GP simulations performed in Ref. 13.

Quantum turbulence is characterised by a rich multi-scale
physics. At small scales, between the vortex core size (about 1 Å
in superfluid 4He) and the mean inter-vortex distance ℓ (~1 μm),

the physics is governed by the dynamics of individual quantised
vortices14. At such scales, Kelvin waves (waves propagating along
vortices) and vortex reconnections are the main physical pro-
cesses carrying energy along scales15,16. In contrast, at scales
larger than ℓ, the quantum nature of the superfluid becomes less
important and a regime comparable to classical turbulence
emerges. Indeed, at such scales, a Kolmogorov turbulent cascade
is observed, provided that a large-scale separation exists between ℓ

and the largest scale of the system. In particular, the scaling law
predicted by Kolmogorov’s celebrated K41 theory17 for the
kinetic energy spectrum has been observed in superfluid helium
experiments18,19 and in numerical simulations of quantum
turbulence20–22.

Previous studies have suggested that, in quantum turbulence,
the emergence of K41 scaling laws is associated to a local polar-
isation of the vortex tangle14,23–27. In other words, within a given
spatial region, the orientations of nearby vortices are not inde-
pendent, but instead have some degree of correlation. This phe-
nomenon is visible in Fig. 1, where vortex bundles—regions of
same-coloured vortex filaments—can be clearly identified. This
local polarisation is present even in ideally isotropic flows, and
should not be confused with the preferential large-scale orienta-
tion of vortices, which typically occurs in anisotropic flows. A
classic example of the latter is a rotating cylindrical vessel filled
with superfluid helium4.

In a recent work13, we have shown that the quantitative
similarities between classical and quantum turbulence go far
beyond the Kolmogorov energy spectrum. Indeed, both systems
display the emergence of extreme events that result in the break-
down of Kolmogorov’s K41 theory—a phenomenon known as
intermittency. Our work was motivated by the recent study of
Iyer et al.28, which suggested that intermittency has a relatively
simple signature on the statistics of circulation in classical tur-
bulence. In particular, the moments of the circulation measured
over fluid patches of area A ~ r2 follow a power law of the form

hjΓjpiA � rλp � Aλp=2; ð2Þ

with scaling exponents λp that increasingly deviate from the K41
prediction λK41

p ¼ 4p=3 as the moment order p increases. By
performing simulations of a generalised GP equation, we have
shown that the anomalous scaling exponents λp in the inertial
scales of quantum turbulence closely match those observed in
classical turbulence13. Note that, up until now, most of the
advances in the understanding of intermittency have been made
in terms of velocity increments. However, despite many theore-
tical efforts17,29–31, there is still no first-principles theory able to
explain this phenomenon. The above-cited findings suggest that
circulation may provide an alternative path towards a better
understanding of turbulence (as first hinted the by pioneering
theoretical work of Migdal32), and eventually, to novel
circulation-based theories of intermittency33,34.

The strong similarity between the statistics of circulation in
classical and quantum turbulence is particularly striking given the
very different nature of vortices in both types of fluids. This
statistical equivalence opens the way for an interpretation of the
intermittency of classical turbulent flows in terms of the collective
dynamics of discrete vortex filaments carrying a fixed circulation.
With this idea in mind, we relate in this work the intermittent
statistics of velocity circulation in classical and quantum turbu-
lence. We start by investigating in quantum turbulence how local
vortex polarisation, as well as the non-trivial spatial distribution
of vortex filaments, affect circulation statistics. We address the
following questions: Is it possible to study both effects separately?
Do they contribute in the same way to the flow intermittency? We
then provide a relation between the spatial distribution of discrete

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27382-6

2 NATURE COMMUNICATIONS |         (2021) 12:7090 | https://doi.org/10.1038/s41467-021-27382-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


vortices, and the coarse-grained energy dissipation rate in clas-
sical turbulence, a quantity at the core of existent intermittency
models.

In this work, quantum and classical turbulent systems are,
respectively, studied using high-resolution direct numerical
simulations of a generalised GP and the incompressible
Navier–Stokes (NS) equations. Discrete vortices and their signs
are extracted from the GP fields and then analysed. To disen-
tangle the effects of polarisation and spatial vortex distribution,
we additionally study a disordered turbulence state. Such state is
generated from the discrete vortex data by randomly resetting the
sign of each individual vortex while keeping its position fixed. To
illustrate the differences between the turbulent (non-disordered)
and the disordered turbulence states, we plot in Fig. 2 the kinetic
energy spectrum associated to each vortex configuration (see
“Methods” for details on the computation of the spectra from
discrete vortices). First, we see that the turbulent case displays
a clear k−5/3 range, in agreement with the energy spectra
obtained from the full GP and NS fields. Note that, in the case
of GP fields, we show the incompressible kinetic energy
spectrum, which contains 86% of the total energy of the system—
the other components being the compressible, internal and
quantum energy20,22. Secondly, the K41 scaling disappears once
polarisation is artificially suppressed from the tangle, leading to a
trivial k−1 scaling range for the disordered state (see “Methods”
for a brief derivation). Note that this same scaling has already
been observed in vortex filament simulations, once the vortex
tangle has been decomposed into polarised and random
components26.

Fig. 1 Visualisation of a quantum turbulent vortex tangle. Instantaneous state obtained from GP simulations using 20483 collocation points. Green and
yellow colours correspond to opposite orientations of the vortex lines with respect to the vertical direction. The inset shows a horizontal two-dimensional
cut of the system. See “Methods” for the vortex identification algorithm.

Fig. 2 Kinetic energy spectrum in quantum and classical turbulence.
Spectra are obtained from simulations of the generalised Gross–Pitaevskii
(GP) model and the incompressible Navier–Stokes (NS) equations. Wave
numbers k are, respectively, normalised by the mean inter-vortex distance
ℓ and by the Taylor micro-scale λ, while the vertical axis is in arbitrary units.
In the GP case, the incompressible part of the kinetic energy is plotted63.
Also shown are the energy spectra obtained after applying the vortex
detection procedure to the GP fields (see “Methods” for details), both
before and after the randomisation of the vortex orientations (turbulent and
disordered cases, respectively). Dashed and dash-dotted lines, respectively,
represent the Kolmogorov scaling k−5/3 and the disordered scaling k−1.
Source data are provided as a Source Data file.
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Results
A simple discrete model of circulation. Let us first consider a set
of n discrete vortices, each of them carrying a circulation κsi,
where si= ±1 is the sign of each vortex. From now on we set the
quantum of circulation to κ= 1 for simplicity. We propose to
model the total circulation of the n-vortex collection,
Γn ¼ ∑n

i¼1 si, as a biased one-dimensional random walk. Polar-
isation is naturally introduced by letting each random step si be
positively correlated with the instantaneous position Γi−1, i.e. the
total circulation of all previous vortices.

Concretely, we construct inductively the following toy model
for the circulation. The sign of the first vortex, s1, has equal
probability of being positive or negative. Then, the sign of vortex
n+ 1 is positive with a probability pn+1, which we set to depend
on the total circulation at step n as pn+1= [1+ f(Γn/n)]/2. Here,
f(z) is a suitable function (odd, non-decreasing, taking values in
[−1, 1]), such that pn∈ [0, 1] at each step n. For the sake of
simplicity, we choose here f(z)= βz (see the Supplementary
information for the general case), where β∈ [0, 1] is an adjustable
parameter that sets the polarisation of the system. When β= 0,
one retrieves a standard random walk with scaling hjΓj2in � n.
Conversely, for β= 1, one recovers a fully polarised set of vortices
behaving as hjΓj2in � n2.

The resulting model is a discrete Markov process, since the
probability distribution of Γn+1 only depends on the state {n, Γn}
via the probability pn+1. Concretely, the probability PnðΓÞ of
having Γn= Γ obeys the master equation

Pnþ1ðΓÞ ¼
1
2
þ β

Γ� 1
2n

� �
PnðΓ� 1Þ

þ 1
2
� β

Γþ 1
2n

� �
PnðΓþ 1Þ:

ð3Þ

Multiplying this equation by Γ2, summing over all Γ and, for the
sake of simplicity, taking the limit of continuous n, one gets a
closed equation for the circulation variance,

dhΓ2in
dn

¼ 1þ 2β
n
hΓ2in; ð4Þ

where averages are over all realisations after n steps. For large n,
this equation predicts the scaling hΓ2in � n for β < 1/2 (corre-
sponding to a set of vortices with negligible polarisation), and
hΓ2in � n2β otherwise. In particular, choosing β= 2/3, one
recovers the Kolmogorov scaling by replacing n∝ A. This relation
between the number of vortices n and the loop area A containing
them is expected to hold on average under spatial homogeneity
conditions, but neglects potentially important inhomogeneities in
the spatial vortex distribution that may affect high-order
moments of n. Besides, for the pth order moment, the model
predicts the self-similar scaling hjΓjpin � nγp with γp= βp. More
generally, for any suitable function f(z) defining the probability pn
of the model, one obtains the linear scaling γp ¼
pminfmaxf1=2; f 0ð0Þg; 1g (see the Supplementary information
for more details on the calculations).

The toy model introduced above shows in a very simple
manner how a specific correlation (or polarisation) is responsible
for the emergence of non-trivial scaling laws, as already suggested
by previous works on quantum turbulence24–26. In addition, the
model yields self-similar statistics, suggesting that polarisation is
not sufficient to reproduce the observed intermittency of
circulation in classical28 and quantum13 turbulent flows. At this
point, we may speculate that the lack of intermittency in the
model is likely associated with the missing notion of space.
Indeed, on average one expects to have a number of vortices
〈n〉 ~ A/ℓ2 crossing a loop of area A, where ℓ is the mean inter-

Fig. 3 Circulation statistics in quantum turbulence. a Circulation variance as a function of the area A of each loop and of the number n of neighbouring
vortices. The dotted line represents the scaling A1 observed at small scales of quantum turbulence13. b, c Moments and local slopes of hjΓjpin as a function
of hΓ2in according to the ESS approach, for p∈ [2, 8]. Dashed green lines represent the K41 scaling γp= 2p/3. d, e PDFs of the circulation for different (d)
numbers of vortices and (e) loop areas. All PDFs are normalised by the respective standard deviations. Dashed red lines represent a unit Gaussian
distribution.
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vortex distance. Yet, fluctuations in their spatial distribution—
associated to the appearance of vortex clusters and voids—may
strongly influence high-order moments. As seen in Fig. 1, such
effects clearly take place in turbulent flows, where they are linked
to the formation of coherent structures.

Comparison with quantum turbulence data. The ideas hinted at
by our toy model can be verified using actual quantum turbulence
data. With this aim, we identify all vortex filaments present in our
GP simulations (see “Methods” for details), and compute circu-
lation statistics as a function of the number n of considered
vortices. Crucially, groups of vortices are chosen based on their
spatial proximity, which is required to preserve the correlation
between vortices. On the other hand, with such a conditioning,
one may expect the effect of strong spatial fluctuations of the
vortex distribution to be somewhat relaxed. In practice, for each
two-dimensional cut of the simulation, we consider sets of n
neighbouring vortices in order to compute the circulation
moments hjΓjpin. Then, to improve the statistics, we repeat such
measurement for each cut and along the three Cartesian
directions.

The resulting second-order moment hΓ2in is shown in Fig. 3a,
along with the moment hΓ2iA measured for different loop areas A
(data from Müller et al.13). At small scales, hΓ2iA � A1 due to the
discrete nature of vortices13. In contrast, within the inertial range,
both moments clearly exhibit the expected Kolmogorov scaling.
In particular, hΓ2in � nγ2 with γ2= 4/3. This result allows us to
use the extended self-similarity (ESS) framework35 to determine
the scaling properties of higher-order moments via the relation

hjΓjpin � nγp � hΓ2iγp=γ2n . Remarkably, as shown in Fig. 3b–c, the
moments display a clear self-similar behaviour with γp= 2p/3,
thus obeying Kolmogorov scaling for all orders. The self-
similarity is also observed in the normalised probability density
functions (PDFs) of Γ for different values of n (Fig. 3d), which
nearly collapse and are close to Gaussian. This behaviour should
be contrasted with the non-collapsing PDFs of Γ for different loop
areas A (Fig. 3e). Note that, in both cases, the chosen values of A
and n lay within the inertial range, represented by a grey
background in Fig. 3a–c.

Disentangling polarisation and spatial vortex distribution. The
fitted scaling exponents for the turbulent case 2γturbp , discussed
above, are plotted in Fig. 4 (blue-filled stars) as a function of the
moment order p. These exponents are compared to the measured
values of λturbp (blue-filled circles) obtained according to Eq. (2),
where averages are performed for different loop areas A. The
latter are the same as in Ref. 13. The factor 2 in front of γturbp

comes from considering the relation 〈n〉 ~ A ~ r2. As discussed
earlier, the moments averaged for different n closely follow the
self-similar K41 scaling 2γturbp � 4p=3 (blue solid line), while the

λturbp exponents—affected by the spatial vortex distribution—show
signs of intermittency13.

To further distinguish the effects of polarisation and spatial
vortex distribution on circulation statistics, we perform the
following numerical experiment. We recompute the circulation in
the quantum turbulent flow, but before doing this, we randomise
the sign of each vortex on each analysed two-dimensional cut
while keeping its position fixed. By doing this, we get rid of the
system polarisation, while maintaining the non-trivial spatial
distribution of vortices. We refer to this system as disordered
turbulence. In our non-intermittent toy model, this setting would
correspond to the unpolarised value β= 0, yielding the self-
similar circulation scaling hjΓjpin � np=2. In Fig. 4, we display the

corresponding measured exponents of the disordered state λdisop

and 2γdisop (red unfilled markers). Remarkably, even after

suppressing vortex polarisation, λdisop also presents intermittency

deviations. In contrast, the scaling exponents γdisop satisfy the

expected self-similar behaviour 2γdisop � p (red solid line).
The previous results suggest that the non-trivial polarisation of

vortices, while being responsible for Kolmogorov scalings, has no
major influence on the intermittency of the system. Furthermore,
they indicate that the latter originates from fluctuations of the
spatial distributions of vortices. From our above observations, one
may therefore expect the scaling exponents of the circulation to
be given by a composition of the polarisation and spatial
distribution effects. That is, we may conjecture that the scaling
exponents λp and γp are related by

λp ¼ gðγpÞ ð5Þ
where g is some yet unknown function.

In order to check this idea, we can try to relate the scaling
exponents of the turbulent and disordered turbulent systems. If
relationship (5) were to hold true, one should have that
λdisop ¼ λturb3p=4. Using this relation with the measured exponents
of the turbulent case, one indeed recovers the intermittency
exponents λdisop of the disordered case, as shown by the green
squared markers in Fig. 4. This result strongly highlights the
importance of the fluctuations of vortex concentration on the
intermittency of circulation.

Spatial vortex distribution and OK62 theory. As a first step
towards relating the intermittency of classical and quantum tur-
bulence, we now quantify the spatial distribution of vortices in the
latter system. If vortices were homogeneously distributed in space,
then the number n of vortices within loops of area A would be
expected to follow a Poisson distribution with mean value
〈n〉A∝A. In that case, the moments of n would scale as hnpiA �

Fig. 4 Velocity circulation scaling exponents. Exponents of the turbulent
(in blue) and the disordered turbulence (in red) cases. For each case, the
scaling exponents are defined as hjΓjpiA � rλp (circles) and hjΓjpin � nγp

(stars). Error bars indicate 95% confidence intervals. Self-similar
predictions for each case are shown as solid lines. Green squares show the
relation between the turbulent and disordered systems given by Eq. (5).
The blue and red dashed lines show the OK62 prediction combined with
the She–Lévêque model (8) with D∞= 2.2 (termed “mOK62”) for
turbulence and disordered turbulence, respectively. Source data are
provided as a Source Data file.
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Ap for sufficiently large A. Equivalently, the number of vortices per
unit area ZA= n/A would follow the trivial scalings hZp

AiA � 1 for
all p > 0. As shown in Fig. 5a, this is clearly not the case, indicating
that the spatial distribution of vortices is non-trivial in quantum
turbulence (as may be inferred from the visualisation of Fig. 1).
Indeed, while the first-order moment recovers a constant (con-
sistently with the relation 〈n〉A ~A), higher-order moments of ZA
follow a different scaling with a negative exponent—a sign of
anomalous behaviour. This is confirmed by the PDFs of n dis-
played in Fig. 5b, which are long-tailed and strongly differ from a
Poisson distribution (dashed line).

In classical turbulence, it is today well accepted that the
intermittency of velocity fluctuations is linked to the emergence
of violent events, characterised by strong spatial fluctuations of
the kinetic energy dissipation rate ε(x). Such idea led Obukhov
and Kolmogorov in 1962 to develop a refined similarity theory of
turbulence, commonly referred to as OK62 theory, where such
fluctuations are taken into account17,36,37, unlike K41 theory
which only deals with the mean value of ε(x). This refined theory
considers the scale-averaged (or coarse-grained) energy dissipa-
tion rate εrðxÞ ¼ 3

4πr3
R
Bðx;rÞεðx0Þ d3x0, where B(x, r) is a ball of

radius r centred at x. When applied to the spatial velocity
increments δvr over a distance r, OK62 theory states that the
statistics of δvr=ðεrrÞ1=3 is self-similar and universal. Most
intermittency models use εr to predict the anomalous scaling of
velocity increment statistics17. Some early experiments in classical
turbulence showed that, when velocity increments are condi-
tioned on the coarse-grained dissipation, their statistics becomes
Gaussian38,39, proving that the intermittency of velocity fluctua-
tions is hidden behind the distribution of energy dissipation. This
observation was later confirmed by numerical simulations40.

In the case of low-temperature quantum turbulence, such as
the one studied here, energy is taken away from the inertial range
and transferred towards small scales by the Kelvin wave cascade
and vortex reconnections9,41. Furthermore, the velocity field
diverges at the vortex core, and thus the definition of the
dissipation field is delicate. Nevertheless, we can give a
phenomenological interpretation of the dissipation by assuming
that the system is well represented as a dilute point-vortex gas.
Such a picture was recently used by Apolinário et al.33 to model
the velocity circulation in classical turbulence, and becomes
particularly pertinent in quantum fluids. Although the superfluid
is inviscid, one can model small-scale physics by some effective
viscosity νeff23,42, whose value is not important here. This
approach allows us to directly estimate the coarse-grained

dissipation field by using its classical definition in terms of
velocity gradients and a Dirac-like supported vorticity field (see
Supplementary information). Given a disk of radius r crossed by
n vortices, a straightforward calculation gives the estimate

εr �
νeffκ

2

ξ2
n
A
¼ νeffκ

2

ξ2
ZA; ð6Þ

where εr is the average of the local dissipation rate ε(x) over the
disk, A= πr2 is the disk area, ξ the typical vortex thickness and κ
the quantum of circulation. The number of vortices per unit area
ZA= n/A would then be the quantum analogous of the coarse-
grained dissipation εr. Remarkably, and similarly to εr—which is
known to exhibit log-normal statistics in classical turbulence43—
the normalised PDFs of log ðZAÞ almost collapse and are close to
Gaussian in the bulk (Fig. 5c), reinforcing the pertinence of
relation (6).

To make a stronger connection between classical and quantum
turbulence, we recall that the classical coarse-grained energy
dissipation rate is a highly fluctuating quantity that presents
anomalous scaling laws traditionally denoted by hεpr i � rτðpÞ. It
follows from Eq. (6) that the number of vortices should satisfy

hnpiA � rαðpÞ � AαðpÞ=2; with αðpÞ ¼ 2pþ τðpÞ: ð7Þ
Note that, because of homogeneity, τ(1)= 0, which translates as
〈n〉A ~A for the mean number of vortices. In the classical
turbulence literature, there are several multifractal models for the
anomalous exponents τ(p) that are able to reproduce experi-
mental and numerical measurements17. Among those, the
She–Lévêque model44

τSLðpÞ ¼ �2p=3þ ð3� D1Þ 1� 7=3� D1
3� D1

� �p� �
ð8Þ

has one adjustable parameter D∞ corresponding to the fractal
dimension of the most singular structures of the system. In the
original model, which closely matches existent turbulence
measurements35,44–46, these structures are assumed to be vortex
filaments, hence D∞= 1. The combination of prediction (7) with
the original She–Lévêque model, represented by the blue dashed
lines in Fig. 5a, is in good agreement with our quantum
turbulence data for sufficiently large A, although some deviations
due to the limited scaling range may be present.

Classical turbulence and conditioned circulation. We now
apply some of the previous ideas to classical turbulence. We
perform a direct numerical simulation of the NS equations in a

Fig. 5 Statistics of spatial vortex distribution in quantum turbulence. a Moments of the number of vortices normalised by the area that contains them,
ZA= n/A. Dashed lines correspond to the scaling of Eq. (7), using the She–Lévêque prediction44 for the anomalous exponents τ(p) with D∞= 1. b PDFs of
the number of vortices contained in loops of varying area A/ℓ2. The dashed line corresponds to a Poisson distribution of mean equal to 〈n〉A at
A= 140ℓ2. c Centred reduced PDFs of log ðZAÞ for different values of A/ℓ2. A log-normal distribution is shown as reference (red dashed line).
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statistically steady state at a Taylor-based Reynolds number of
Reλ= 510. The simulation is performed using 20483 collocation
points. We then compute the velocity circulation over planar
square loops of area A= r2, and, following the framework of the
OK62 refined similarity hypothesis, we condition its statistics on
the coarse-grained dissipation field εr. The latter is obtained by
averaging the local dissipation ε over the interior of each loop. See
“Methods” for details on the numerical simulations and the data
analysis.

We first consider the unconditioned velocity circulation PDFs,
shown in Fig. 6a. The PDFs display heavy tails (associated with
intermittency) which depend on the considered scale r/λ, with λ
the Taylor micro-scale. This is consistent with the classical
turbulence simulations of Iyer et al.28,47. The PDF tails are
strongly suppressed when the statistics is conditioned on low
values of the local coarse-grained dissipation, εr/〈ε〉∈ [0.5, 1], as
seen in Fig. 6b. The suppression of intermittency is also manifest
in Fig. 6c, where the scaling exponents of circulation are displayed
after conditioning on different intervals of εr. With no
conditioning (black crosses), the scaling exponents match those
of Iyer et al.28, whereas when conditioning on low values of εr the
K41 self-similar scaling is recovered.

Note that the above conditioning is slightly different from the
one presented in Fig. 3, as here we are conditioning both on the
loop area A and on the value of εr within such loops. In the case of
quantum turbulence, the equivalent would be to study hΓpjniA, i.e.
to consider only loops of area A having n vortices. Such a double

conditioning is very restrictive, as it requires a very large amount
of statistics. Nevertheless, we perform a similar analysis,
considering loops having a low, average and high number of
vortices relative to the mean. The respective scaling exponents are
displayed in Fig. 6d. We find that, for loops with low and average
number of vortices, the self-similar K41 scaling is recovered,
whereas for loops having large vortex concentrations the statistics
is still intermittent. The lack of self-similarity in regions of high
dissipation (in classical flows) or high vortex concentration (in
quantum flows) hints at the idea that not all such events
contribute equally to circulation statistics.

Can OK62 theory describe circulation intermittency? Con-
sidering the relation introduced in Eq. (6) and the fact that the
number of vortices per unit area follows the same intermittent
behaviour as εr, one could try to apply OK62 theory to relate scaling
exponents of circulation λp with those of dissipation τ(p), as tra-
ditionally done for velocity increments. Within this reasoning,
Γ � ε1=3r r4=3, yielding a OK62-based relation λp= 4p/3+ τ(p/3).
However, such a relation is in strong disagreement with our data
(classical and quantum turbulence, see Supplementary information)
and with early NS studies48. Nevertheless, this disagreement is not
in contradiction with the fact that the anomalous scaling of the
number of vortices is well described by standard multifractal dis-
sipation models (see Fig. 5). Indeed, if one considers a vortex dipole
(two vortices of same magnitude and opposite sign), their

Fig. 6 Circulation intermittency and OK62 theory in classical and quantum turbulence. Top panels: PDFs of the circulation in classical turbulence as a
function of the loop size r. a Unconditioned PDFs. b PDFs conditioned on low values of the local coarse-grained dissipation, εr/〈ε〉∈ [0.5, 1]. The different
colours correspond to different loop sizes within the inertial range. c, d Scaling exponents of the circulation moments in (c) classical and (d) quantum
turbulence. Different colours indicate a conditioning (c) on the local dissipation and (d) on the number of vortices within each loop. The unconditioned
exponents are shown with black crosses. The Kolmogorov self-similar scaling is shown as reference (red dashed line). Error bars indicate 95% confidence
intervals.
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contribution to large fluctuations of the local dissipation field and to
velocity increments may be very important. On the other hand, for
the circulation, the dipole contribution is exactly zero due to vortex
cancellation. This fact suggests that not all extreme dissipation
events result in extreme circulation values. In particular, intense
circulation events would be correlated to those highly dissipative
structures in turbulence which carry a strong vortex polarisation,
such as vortex sheets or bundles (at scales r≫ ℓ). Note that, in
classical fluids, the idea of vortex filaments organising into groups
forming vortex sheets is consistent with the recently proposed
sublayers’ vortex picture of dissipation49.

The previous observations motivate us to introduce a modified
OK62 theory for the circulation (“mOK62” in the following),
where the most relevant singular structures are not vortex
filaments but structures of higher fractal dimension. To check this
idea, we adapt the She–Lévêque model τSL(p) (Eq. (8)) by setting
D∞= 2.2 instead of 1. The chosen dimensionality exactly
corresponds to the monofractal fit obtained by Iyer et al.28 and
Müller et al.13 for the high-order circulation moments (p > 3) in
classical and quantum turbulence, and, as suggested in the former
work, it may be linked to the effect of wrinkled vortex sheets.
Note that, for large p, our mOK62 model simplifies to
λp � 10

9 pþ ð3� D1Þ, which is equivalent to the monofractal fit
by Iyer et al.28. In Fig. 4, it is shown that the adapted model
matches strikingly well the anomalous exponents of circulation
both in the turbulent and in the disordered cases for p > 3 (dashed
lines), while for p < 3 there are some deviations.

Our mOK62 model can be generalised to an arbitrary degree of
polarisation, which is fully determined by the exponent γ1∈ [1/2, 1].
Using dimensional analysis and reintroducing the fundamental

quantum of circulation κ, we have Γ � ε
γ1=2
r r2γ1κ1�3γ1=2, leading to

λp= 2pγ1+ τ(pγ1/2). Accordingly, the conjecture stated in Eq. (5)
would be fulfilled with g(x)= 2x+ τ(x/2). We recall that K41
turbulence corresponds to γ1= 2/3, in which case the dependence on
κ consistently disappears. This model also accurately reproduces
disordered turbulence data (see Fig. 4), which corresponds to γ1= 1/
2. In this case, λp= p+ τ(p/4), and intermittency corrections thus
vanish at p= 4 (instead of p= 3 in the turbulent case).

The previous results provide a possible interpretation for the
difference between the intermittency of velocity fluctuations and
of circulation, based on the different topologies of the dissipative
structures contributing to extreme events. We shall notice that an
alternative interpretation is also possible, based on the recent
works by Apolinário et al.33 and Moriconi34. In this framework,
the circulation should scale as ε1=2r , instead of ε1=3r , namely
Γ � ε1=2r ν�1=2

r r2, where νr is Kraichnan’s eddy viscosity50. The
latter is found by assuming that the energy spectrum takes the
form E(k) ~ ε2/3k−5/3+α (where α is an intermittency correction),
yielding νr ~ r4/3+α. Note that this phenomenological approach
mixes a mean-field approximation for determining νr with the
fluctuations arising from ε1=2r . Moreover, in its present form, it
does not directly account for vortex cancellations. Nevertheless,
when combined with the standard She–Lévêque model (with
D∞= 1), this model provides an expression for the exponents λp
as accurate as our mOK62 model in the turbulent case. There is
certainly a need to pursuit further investigations to understand
how both models differ and complement each other.

Discussion
In this work, we have attempted at providing an interpretation for
the intermittent statistics of velocity circulation in turbulent
flows. We have done so by viewing turbulent flows as a polarised
tangle of discrete and thin vortex filaments, each carrying a

constant circulation. While this view is a priori only appropriate
in low-temperature quantum fluids, we expect it to be a very
pertinent model of classical turbulence, considering the strong
similarities recently unveiled between both systems13.

By introducing and solving a simple toy model and by analysing
data of GP quantum turbulence simulations, we have shown that, in
discrete-vortex systems, the Kolmogorov self-similar scalings result
from a partial polarisation of the vortices (in agreement with previous
quantum turbulence studies), while the intermittency of circulation
statistics is linked to the non-trivial (non-Poissonian) spatial dis-
tribution of vortices. In fact, within fluid patches of varying area A in
the inertial range of scales, the number of vortices n is found to be the
quantum equivalent of the coarse-grained dissipation εr in classical
turbulence, as they both follow the approximately log-normal dis-
tribution first hypothesised by the celebrated Obukhov–Kolmogorov
OK62 theory for εr43. Quantitatively, we show that the intermittency
of n is well described by the She–Lévêque model for εr, confirming
the strong equivalence between both observables.

It is important to remark that the quantum turbulence simu-
lations presented in this work have been performed on periodic
domains, and are based on the GP equation describing an ideal
superfluid at very low temperature. In contrast, most superfluid
turbulence experiments using liquid helium are performed in
confined systems and at finite temperatures18,19, in a regime that
may be described by a two-fluid model51. Early experimental
studies showed that the signature of intermittency on velocity
increments is nearly independent of the temperature, matching
observations in classical fluids52–54. These observations were later
contradicted by a recent experimental investigation, which
showed an enhancement of velocity intermittency in the two-fluid
regime compared to classical turbulence55, in agreement with
previous numerical simulations of related models56,57. Compared
to velocity increments, we expect the circulation to be a much
more robust observable in quantum fluids, as it does not display
singular behaviour in the vicinity of vortices13. For this reason,
measuring the scaling properties of circulation in future experi-
ments may help disambiguate existent contradictions, and pro-
vide a clearer answer on the intermittency of finite-temperature
quantum turbulence. Recent experiments have made initial
attempts at reconstructing Eulerian velocity fields from Lagran-
gian particle tracking measurements in turbulent superfluid
helium55. Such a technique could be used in principle to measure
the velocity circulation in superfluid helium, although addressing
high-order statistics might still be challenging. However, note that
such an approach is delicate because, due to the two-fluid nature
of finite-temperature superfluid helium, particles may fail to
capture important Eulerian flow features58,59, and further work is
needed to determine its suitability.

Finally, using data from NS and GP simulations, we have
confirmed that the classical OK62 theory does not fully account
for the intermittency of the circulation in classical and quantum
turbulence. We have provided an explanation based on the pre-
sumed topology of the turbulent structures that most contribute
to extreme circulation events. We have then proposed a modified
OK62 description of circulation, where relevant singular struc-
tures have a fractal dimension D∞ ≈ 2.2 associated to vortex
sheets28. This value differs from the dimensionality D∞= 1 of
isolated vortex filaments, used in the modelling of velocity
increment statistics44. Using this idea, we have shown that the
intermittency of circulation is well reproduced by a modified
version of the She–Lévêque model, bringing support to the vortex
sheet interpretation first proposed by Iyer et al.28. All the previous
ideas were additionally tested by introducing a disordered tur-
bulence state, obtained by artificially suppressing vortex polar-
isation from a GP numerical simulation.
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There are still some questions that remain open for future
works. In particular, further investigation on the topology of
relevant structures for the intermittency of circulation is required.
We have argued that the smallest structures significant for cir-
culation are vortex sheets, as simpler structures are irrelevant due
to vortex cancellation. One way of approaching this topic is by
use of cancellation exponents60–62, method that exploits the fact
that circulation can take either negative or positive values. An
alternative approach, based on recent works by Apolinário et al.33

and Moriconi34, suggests that the most relevant singular struc-
tures for velocity circulation should still be vortex filaments.
Further investigations on the fractal dimension of circulation
would help develop more accurate models of intermittency.

Our findings hint at the existence of a coarse-grained quantity
different from εr, which may better encapsulate the intermittency
of circulation in classical turbulence in the spirit of an OK62-like
theory. Furthermore, it may be appropriate to investigate the
relevance of quantities, such as the local vorticity magnitude (or
enstrophy) or the local strain. Such coarse-grained quantity
would be expected to display intermittent statistics with extreme
values associated to the presence of quasi-two-dimensional
structures such as vortex sheets.

More generally, our present results reinforce the strong
equivalence between classical and quantum turbulence, and
constitute an attempt at providing an explicit connection between
the intermittency of both systems. We expect such a connection
to provide a possible path to a simplified description of the
intermittency of classical turbulence, a highly challenging topic
from a modelling standpoint, yet extremely relevant to the
understanding of fluid flows occurring in the Nature.

Methods
Numerical simulations. We study the dynamics of quantum turbulence in the
framework of a generalised GP model

i_
∂ψ

∂t
¼ � _

2m
∇2ψ � μð1þ χÞψ

þ g
Z

V Iðx � yÞ jψðyÞj2 d3y

� �
ψ þ gχ

jψj2ð1þγÞ

nγ0
ψ;

ð9Þ

where ψ is the condensate wave function describing the dynamics of a compressible
superfluid at zero temperature. Here, m is the mass of the bosons, μ is the chemical
potential, n0 the particle density and g= 4πℏ2as/m is the coupling constant pro-
portional to the s-wave scattering length. The dimensionless parameters χ and γ
correspond to the amplitude and order of beyond mean field corrections. The non-
local interaction between bosons is given by the potential VI(x− y) which is
chosen, together with χ and γ, to reproduce the roton minimum in the excitation
spectrum and the equation of state of superfluid helium. Details on the chosen
parameters can be found in Ref. 22. The use of a standard or a generalised GP
model does not affect the statistics of velocity circulation13.

The hydrodynamic interpretation of Eq. (9) stems from the Madelung
transformation ψ ¼

ffiffiffiffiffiffiffiffiffi
ρ=m

p
eimϕ=_ , where ρ is the local density and ϕ the phase of

the complex wave function. The velocity field is then given by v=∇ϕ. Note that ϕ
is not defined at the locations where ψ vanishes, which implies that the velocity
field is singular along quantum vortices63.

The generalised GP equation (9) is solved in a three-dimensional periodic cube
by direct numerical simulations using the Fourier pseudospectral code FROST,
with an explicit fourth-order Runge–Kutta method for the time integration22. The
quantum turbulent regime is studied in a freely decaying
Arnold–Beltrami–Childress (ABC) flow13,21 with 20483 collocation points. To
reduce acoustic emissions, the initial condition is prepared using a minimisation
process20. The box has a size L= 1365ξ and the inter-vortex distance is ℓ ≈ 28ξ,
with ξ the healing length.

We also perform direct numerical simulations of the incompressible NS
equations

∂v
∂t

þ v � ∇v ¼ �∇pþ ν∇2v þ f; ð10Þ

∇ � v ¼ 0; ð11Þ
using the Fourier pseudospectral code LaTu64 in a periodic cubic domain. The
temporal advancement is performed with a third-order Runge-Kutta scheme.

Above, p is the pressure field, ν the fluid kinematic viscosity and f an external
forcing stirring the fluid. The latter acts at large scales within a spherical shell of
radius ∣k∣ ≤ 2 in Fourier space. The turbulent regime is studied once the simulation
reaches a statistically steady state. The simulation is performed using 20483

collocation points at a Taylor-based Reynolds number of Reλ= 510.

Evaluation of circulation and coarse-grained dissipation. To obtain the circu-
lation from GP and NS simulation data, we take advantage of the spectral nature of
both solvers, and compute the circulation from the Fourier coefficients of the
velocity fields. Namely, over a given L-periodic 2D cut of the physical domain, we
write the circulation over a square loop of side r, centred at a point x= (x, y), as the
convolution

ΓrðxÞ ¼
Z

Br ðxÞ
ωðx0Þ d2x0 ¼

Z Z
½0;L�2

Hrðx � x0Þ ωðx0Þ d2x0; ð12Þ

where ω ¼ ð∇2D ´ vÞ � ẑ is the out-of-plane vorticity field and Br(x) is a square of
side r centred at x. The convolution kernel can be written as the product of two
rectangular functions, Hr(x)=Π(x/r)Π(y/r), where Π(x)= 1 for jxj< 1

2 and 0
otherwise. Note that we have used Stokes’ theorem to recast the contour integral
(1) as a surface integral of vorticity. The convolution in Eq. (12) can be efficiently
computed in Fourier space using the Fourier transform of the rectangular kernel,
which may be written in terms of the normalised sinc function asbHrðkx; kyÞ ¼ ðr=LÞ2sinc ðkxr=2πÞ sinc ðkyr=2πÞ.

As mentioned earlier, the GP velocity field diverges at vortex locations. To
minimise the numerical errors resulting from such singularities, we first resample
each two-dimensional cut of the GP wave function field ψ(x) into a very fine grid of
resolution 327682, using Fourier interpolation. The velocity field is then evaluated
in physical space using the Madelung transformation. This resampling procedure is
described in more detail in Ref. 13.

In NS simulations, the above algorithm is also applied to compute the coarse-
grained dissipation εr(x) over squares of side r. Instead of the vorticity, the
convoluted quantity is in this case the dissipation field ε(x)= 2νsijsij, where
s(x)= [∇v+ (∇v)T]/2 is the three-dimensional strain-rate tensor.

Vortex detection from GP simulations. For a given two-dimensional cut of a GP
velocity field, we identify the signs and locations of the quantum vortices crossing
the cut as follows. First, the circulation is computed on a discrete grid following the
procedure described above, taking small square loops of side r ~ ξ≪ ℓ. The result is
a discrete circulation field, where each circulation value is either zero if no vortex
crosses the small loop centred at that position, or ±κ if a single vortex crosses it. For
very small loop sizes, the former case is much more likely than the latter. As a
result, the vortex distribution can be sparsely described by storing the locations and
signs of the non-zero circulation values. By repeating this procedure over different
cuts of the simulation, one can reconstruct the three-dimensional vortex structure,
as visualised in Fig. 1.

Energy spectrum computation from discrete vortices. For each two-
dimensional cut, once the positions ri and the signs si of each vortex crossing the
plane are determined, we first compute a regularised two-dimensional vorticity
field ωðrÞ ¼ κ∑N

i¼1 siδηðr� riÞ, where N is the number of vortices on the 2D cut.

Here, δηðrÞ ¼ expð�jrj2=2η2Þ=2πη2, and η is the scale of the regularisation (we
have used η= ξ in Fig. 2). Then, the energy spectra are computed by noting that
jbvðkÞj2 ¼ jbωðkÞj2=jkj2, where bv and bω are the Fourier transforms at the wavevector
k of the velocity field and of ω, respectively. Finally, by averaging over all 2D cuts
and integrating over a shell ∣k∣= k, the energy spectrum reads

EðkÞ ¼ κ2jbδηðkÞj2
2k

Z
∑
i;j
sisje

ik�ðri�rjÞ
� �

dΩ; ð13Þ

where the integral is performed over all angles Ω. Note that the large-wavenumber
range in Fig. 2 is determined by the regularised Dirac function δη and has no
physical meaning.

For disordered turbulence, as there is no correlation between the signs and the

vortex positions, it is easy to show that ∑i;jsisje
ik�ðri�rjÞ

D E
¼ hNi, from where it

follows E(k) ~ k−1.

Data availability
Processed data used in the other figures are available from the corresponding authors
upon request. Source data are provided with this paper.

Code availability
Code used to process solution fields from GP and NS simulations is openly available at
https://github.com/jipolanco/Circulation.jl and on Zenodo65, along with detailed
installation instructions and a complete set of examples. The software is licensed under
the open-source Mozilla Public License 2.0.
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