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Eigenvalue inequalities for positive block matrices
with the inradius of the numerical range.

Jean-Christophe Bourin*and Eun-Young Lee�

Abstract. We prove the operator norm inequality, for a positive matrix partitioned into four
blocks in Mn, ∥∥∥∥[ A X

X∗ B

]∥∥∥∥
∞

≤ ∥A+B∥∞ + δ(X),

where δ(X) is the diameter of the largest possible disc in the numerical range of X. This
shows that the inradius ε(X) := δ(X)/2 satisfies ε(X) ≥ ∥X∥∞ − ∥(|X∗|+ |X|)/2∥∞. Several
eigenvalue inequalities are derived. In particular, if X is a normal matrix whose spectrum lies
in a disc of radius r, the third eigenvalue of the full matrix is bounded by the second eigenvalue
of the sum of the diagonal block,

λ3

([
A X
X∗ B

])
≤ λ2(A+B) + r.

We think that r is optimal and we propose a conjecture related to a norm inequality of Hayashi.

Keywords. Numerical range, Partitioned matrices, eigenvalue inequalities.
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1 Introduction

Positive matrices partitioned into four blocks play a central role in Matrix Analysis, and
in applications, for instance quantum information theory. A lot of important theorems
deal with these matrices. Some of these results give comparison between the full matrix
and its diagonal blocks, in particular the sum of the diagonal blocks (the partial trace
in the quantum terminology). This note focuses on a recent result of Bourin and Mhana
[4], involving the numerical range of the offdiagonal block. Recall that a symmetric
norm ∥ · ∥ on M2n means a unitarily invariant norm. It induces a symmetric norm on
Mn in an obvious way. The Schatten p-norms ∥ · ∥p, 1 ≤ p ≤ ∞, and the operator norm
(p = ∞) are classical examples of symmetric norms. The main result of [4] reads as
follows.
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program, project ISITE-BFC (contract ANR-15-IDEX-03).

�This research was supported by Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1D1A3B07043682)

1



Theorem 1.1. Let

[
A X
X∗ B

]
be a positive matrix partitioned into four blocks in Mn.

Suppose that W (X) has the width ω. Then, for all symmetric norms,∥∥∥∥[ A X
X∗ B

]∥∥∥∥ ≤ ∥A+B + ωI∥.

Here I stands for the identity matrix, W (X) denotes the numerical range of X, and
the width of W (X) is the smallest distance between two parallel straight lines such that
the strip between these two lines contains W (X). If ω = 0, that is W (X) is a line
segment, Theorem 1.1 was first proved by Mhanna [9]. Recently [3], Theorem 1.1 has
been completed with the reversed inequality∥∥∥∥[ A X

X∗ B

]∥∥∥∥ ≥
∥∥∥∥[A+B

2
+ dI 0
0 A+B

2
− dI

]∥∥∥∥ .
where d := min{|z| : z ∈ W (X)} is the distance from 0 to W (X). Several applications
were derived.

Some equality cases in Theorem 1.1 occur for the operator norm ∥ · ∥∞ with the
following block matrices, where a, b are two arbitrary nonnegative real numbers.

(
a 0
0 b

) (
0 a
b 0

)
(
0 b
a 0

) (
b 0
0 a

)
 .

This follows from the fact that W

((
0 b
a 0

))
has the width 2 ||a| − |b||, a consequence

of the classical elliptical range theorem (see [8] for a short proof).
Though Theorem 1.1 is sharp for the operator norm, a subtle improvement is possible.

This is our concern in the next section. Once again, a geometric feature of W (X)
will contribute: its inradius. Our approach leads to a remarkable list of eigenvalue
inequalities that cannot be derived from the norm inequalities of Theorem 1.1. The
last section is devoted to some related operator norm inequalities, in particular we will
discuss a recent property due to Hayashi [6] and propose a conjecture.

2 Eigenvalue inequalities

We define the indiameter δ(Λ) of a compact convex set Λ ⊂ C as the diameter of the
largest possible disc in Λ. For matrices X ∈ Mn, we shorten δ(W (X)) =: δ(X). Recall
that the numerical range of a two-by-two matrix is an elliptical disc (or a line segment,
or a single point), see Li’s short paper [8] or the famous book [7].

A matrix X ∈ Mn is identified as an operator on Cn. If S is a subspace of Cn, we
denote by XS the compression of X onto S. We then define the elliptical width of X as

δ2(X) := sup
dimS=2

δ(XS).
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Of course δ2(X) ≤ δ(X) ≤ ω where ω still denotes the width of W (X). If X is a
contraction, then δ2(X) ≤ 1, while δ(X) may be arbitrarily close to 2 (letting n be large
enough). We state our main result.

Theorem 2.1. Let

[
A X
X∗ B

]
be a positive matrix partitioned into four blocks in Mn.

Then, for all j ∈ {0, 1, . . . , n− 1},

λ1+2j

([
A X
X∗ B

])
≤ λ1+j(A+B) + δ2(X).

Here λ1(S) ≥ · · · ≥ λd(S) stand for the eigenvalue of any Hermitian matrix S ∈ Md.
If we denote by λ↑

1(S) ≤ · · · ≤ λ↑
d(S) these eigenvalues arranged in the increasing order,

then Theorem 2.1 reads as

λ↑
2k

([
A X
X∗ B

])
≤ λ↑

k(A+B) + δ2(X).

for all k ∈ {1, 2, . . . , n}.
The case j = 0 in Theorem 2.1 improves Theorem 1.1 for the operator norm. We

may consider that Theorem 2.1 is trivial for j = n− 1. Indeed, using the decomposition
[2, Lemma 3.4], [

A X
X∗ B

]
= U

[
A 0
0 0

]
U∗ + V

[
0 0
0 B

]
V ∗,

for some unitary matrices U, V ∈ M2n, we obtain from Weyl’s inequality [1, p. 62],

λ2n−1

([
A X
X∗ B

])
≤ λn

([
A 0
0 0

])
+ λn

([
0 0
0 B

])
= λn(A) + λn(B)

≤ λn(A+B).

We turn to the proof of the theorem.

Proof. We first consider the case j = 0. We may assume that the norm of the block
matrix is strictly greater than the norms of its two diagonal blocks A and B, otherwise
the statement is trivial. Hence we have two nonzero (column) vectors h1, h2 ∈ Cn such
that ∥h1∥2 + ∥h2∥2 = 1 and

λ1

([
A X
X∗ B

])
=

∥∥∥∥[ A X
X∗ B

]∥∥∥∥
∞

=
(
h∗
1 h∗

2

) [ A X
X∗ B

](
h1

h2

)
.

Therefore, denoting by E1 and E2 the rank one projections corresponding to the one
dimensional subspaces spanned by h1 and by h2, we have∥∥∥∥[ A X

X∗ B

]∥∥∥∥
∞

=

∥∥∥∥[E1 0
0 E2

] [
A X
X∗ B

] [
E1 0
0 E2

]∥∥∥∥
∞

3



Hence, denoting by F a rank two projection such that E1 ≤ F and E2 ≤ F , we have∥∥∥∥[ A X
X∗ B

]∥∥∥∥
∞

=

∥∥∥∥[F 0
0 F

] [
A X
X∗ B

] [
F 0
0 F

]∥∥∥∥
∞

=

∥∥∥∥[ FAF FXF
FX∗F FBF

]∥∥∥∥
∞
.

So, letting S denote the range of F , we have∥∥∥∥[ A X
X∗ B

]∥∥∥∥
∞

=

∥∥∥∥[AS XS
X∗

S BS

]∥∥∥∥
∞
.

Hence applying Theorem 1.1 for the operator norm, we obtain∥∥∥∥[ A X
X∗ B

]∥∥∥∥
∞

≤ ∥AS +BS∥∞ + ε

where ε is the width of W (XS). Since W (XS) is an elliptical disc (as XS acts on a
two-dimensional space), its width equals to its indiameter, hence ε ≤ δ2(X), and since

∥AS +BS∥∞ = ∥(A+B)S∥∞ ≤ ∥A+B∥∞ = λ1(A+B),

the proof for j = 0 is complete.
We turn to the general case, j = 1, . . . , n− 1. By the min-max principle,

λ1+2j

([
A X
X∗ B

])
≤ inf

dimS=n−j
λ1

([
A X
X∗ B

]
S⊕S

)
= inf

dimS=n−j
λ1

([
AS XS
X∗

S BS

])
,

hence, from the first part of the proof,

λ1+2j

([
A X
X∗ B

])
≤ inf

dimS=n−j
λ1 (AS +BS) + δ2(X)

= λ1+j(A+B) + δ2(X)

which is the desired claim.

If X ∈ Mn, we denote by dist(X,CI) the ∥ · ∥∞-distance from X to CI. Thus, for
a scalar perturbation of a contraction, X = λI + C for some contraction C ∈ Mn and
some λ ∈ C, we have dist(X,CI) ≤ 1.

Corollary 2.2. Let

[
A X
X∗ B

]
be a positive matrix partitioned into four blocks in Mn.

Then, for all j ∈ {0, 1, . . . , n− 1},

λ1+2j

([
A X
X∗ B

])
≤ λ1+j(A+B) + dist(X,CI).
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Proof. For any subspace S ⊂ Cn, we have

dist(X,CI) ≥ dist(XS ,CIS).

If S has dimension 2, then

dist(XS ,CIS) ≥ δ (W (XS)) .

Therefore dist(X,CI) ≥ δ2(X) and Theorem 2.1 completes the proof.

Corollary 2.3. Let A,B ∈ Mn. Then, for every j ≥ 0 such that 1 + 2j ≤ n,

λ1+2j (A
∗A+B∗B) ≤ λ1+j (AA

∗ +BB∗) + δ2(AB
∗)

Proof. Note that

λ1+2j (A
∗A+B∗B) = λ1+2j (T

∗T ) = λ1+2j (TT
∗)

with T =

[
A
B

]
and TT ∗ =

[
AA∗ AB∗

BA∗ BB∗

]
so that Theorem 2.1 yields the desired claim.

Corollary 2.4. Let

[
A N
N∗ B

]
be a positive matrix partitioned into four blocks in Mn.

If N is normal and its spectrum is contained in a disc of radius r, then,

λ1+2j

([
A N
N∗ B

])
≤ λ1+j(A+B) + r.

for all j = 0, 1, . . . , n− 1.

Proof. Corollary 2.4 is a special case of corollary 2.2, as N = λI + R, where λ is the
center of the disc of radius r containing the spectrum of N , and ∥R∥∞ ≤ r.

Question 2.5. Fix r > 0 and ε > 0. Can we find (with n large enough) a normal

matrix N with spectrum in a disc of radius r and a positive block matrix

[
A N
N∗ B

]
such

that

λ1+2j

([
A N
N∗ B

])
≥ λ1+j(A+B) + r − ε

for some j ∈ {0, . . . , n− 1} ? Is it true for for j = 0 ?
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3 Norm inequalities

Corollary 2.4 with j = 0 reads as follows.

Corollary 3.1. Let

[
A N
N∗ B

]
be a positive matrix partitioned into four blocks in Mn.

If N is normal and its spectrum is contained in a disc of radius r, then,∥∥∥∥[ A N
N∗ B

]∥∥∥∥
∞

≤ ∥A+B∥∞ + r.

We do not know wether the constant r is sharp or not (Question 2.5). If n = 2, we
can replace r by 0 as the numerical range of N is then a line segment. If n = 3 there
are some simple examples with N = U unitary such that∥∥∥∥[A U

U∗ B

]∥∥∥∥
∞

> ∥A+B∥∞.

See Hayashi’s example in the discussion of [6, Problem 3] and the interesting study and
examples in [5] where we further have A + B = kI for some scalars k. The next result
is due to Hayashi [6, Theorem 2.5].

Theorem 3.2. Suppose that X ∈ Mn is invertible with n distinct singular values. If
the inequality ∥∥∥∥[ A X

X∗ B

]∥∥∥∥
∞

≤ ∥A+B∥∞

holds for all positive block-matrix with X as off-diagonal block, then X is normal.

Theorem 3.2 and Theorem 1.1 suggest a natural conjecture. If W (T ) is line segment,
then T is a so-called essentially Hermitian matrix.

Conjecture 3.3. Let X ∈ Mn. If the inequality∥∥∥∥[ A X
X∗ B

]∥∥∥∥
∞

≤ ∥A+B∥∞

holds for all positive block-matrix with X as off-diagonal block, then X is essentially
Hermitian.

If we replace the operator norm by the Frobenius (or Hilbert-Schmidt) norm ∥ · ∥2
then the following characterization holds.

Proposition 3.4. Let X ∈ Mn. Then, the inequality∥∥∥∥[ A X
X∗ B

]∥∥∥∥
2

≤ ∥A+B∥2

holds for all positive block-matrix with X as off-diagonal block if and only if X is normal.
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Proof. Suppose that X is normal. To prove the inequality, squaring both side, it suffices
to establish the trace inequality

TrX∗X ≤ TrAB. (3.1)

Note that X = A1/2KB1/2, for some contraction K. Recall that, for all symmetric
norms on Mn, and any normal matrix N ∈ Mn, decomposed as N = ST , we have
∥N∥ ≤ ∥TS∥ ([1, p. 253]). Therefore

∥X∥ = ∥A1/2KB1/2∥ ≤ ∥KB1/2A1/2∥.

Squaring this inequality with the Frobenius norm yields the desired inequality (3.1).

Suppose that X is nonnormal, and note that

[
|X∗| X
X∗ |X|

]
is positive semidefinite and

satisfies ∥∥∥∥[|X∗| X
X∗ |X|

]∥∥∥∥2

2

= 4∥|X|∥22

while
∥|X∗|+ |X|∥22 = 2∥|X|∥22 + 2Tr |X||X∗|

In the Hilbert space (Mn, ∥ · ∥2), the assumption

∥|X|∥2 = ∥|X∗|∥2, |X| ≠ |X∗|

ensures strict inequality in the Cauchy-Schwarz inequality

Tr |X||X∗| < ∥X∥22.

Therefore

∥|X∗|+ |X|∥22 <
∥∥∥∥[|X∗| X

X∗ |X|

]∥∥∥∥2

2

and this completes the proof.

Proposition 3.4 suggests a question: for which p ∈ [1,∞], the schatten p-norm in-
equality ∥∥∥∥[ A N

N∗ B

]∥∥∥∥
p

≤ ∥A+B∥p

holds for any positive partitioned matrices with a normal off-diagonal block N ?

Corollary 3.5. Let H,K,X ∈ Mn be Hermitian. If X is invertible and HK is a scalar
perturbation of a contraction, then,∥∥XH2X +X−1K2X−1

∥∥
∞ ≤

∥∥HX2H +KX−2K
∥∥
∞ + 1.
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Proof. We apply Corollary 2.3 with j = 0 and A = HX, B = KX−1, to get∥∥XH2X +X−1K2X−1
∥∥
∞ ≤

∥∥HX2H +KX−2K
∥∥
∞ + δ2(HK)

Since (HK)S is a scalar perturbation of a contraction acting on a space of dimension 2,
necessarily δ2(HK) ≤ 1.

For a normal operator, the numerical range is the convex hull of the spectrum. For
a non normal operator X, several lower bounds for the indiameter of W (X) can be
obtained from the left and right modulus |X∗| and |X|.

Corollary 3.6. Let X ∈ Mn and let f(t) and g(t) are two nonnegative functions defined
on [0,∞) such that f(t)g(t) = t2 and f(0) = g(0) = 0. Then,

δ2(X) ≥ ∥f(|X|) + g(|X|)∥∞ − ∥f(|X∗|) + g(|X|)∥∞ .

Proof. First, observe that we have a function h(t) defined on [0,∞) such that

f(t) = th2(t1/2), g(t) = th−2(t1/2), (3.2)

and h(t) > 0 for all t ≥ 0 (we may, for instance, set h(0) = 1). Hence h(T ) is invertible
for any positive T , and from the polar decomposition

X = |X∗|1/2U |X|1/2

with a unitary factor U , we infer the factorization

X = |X∗|1/2h(|X∗|1/2)U |X|1/2h−1(|X|1/2).

Thus X = AB∗ where A = |X∗|1/2h(|X∗|1/2) and B∗ = U |X|1/2h−1(|X|1/2). Therefore
Corollary 2.3 yields∥∥|X∗|h2(|X∗|1/2) + U |X|h−2(|X|1/2)U∗∥∥

∞ ≤
∥∥|X∗|h2(|X∗|1/2) + |X|h−2(|X|1/2)

∥∥
∞+δ2(X)

Using (3.2) and the fact that φ(|X∗|) = Uφ(|X|)U∗ for any function φ(t) defined on
[0,∞), the proof is complete.

The following special case shows that Corollary 3.6 is rather optimal.

Corollary 3.7. If X ∈ Mn has a numerical range of inradius ε(X), then, for all a ∈ C,

ε(X) ≥ ∥X − aI∥∞ −
∥∥∥∥ |X − aI|+ |X∗ − aI|

2

∥∥∥∥
∞
.

If X ∈ M2 and a = τ is the normalized trace of X, then this inequality is an equality.
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Proof. Applying Corollary 3.6 with X − aI and f(t) = g(t) = t yields the inequality. If
X ∈ M2, then X is unitarily equivalent to(

τ y
x τ

)
.

So

∥X − τI∥∞ −
∥∥∥∥ |X − τI|+ |X∗ − τI|

2

∥∥∥∥
∞

=

∥∥∥∥(|x| 0
0 |y|

)∥∥∥∥
∞
− 1

2

∥∥∥∥(|x|+ |y| 0
0 |x|+ |y|

)∥∥∥∥
∞

=
1

2
||x| − |y||

= ε(X)

establishing the desired equality.

The special case f(t) = g(t) = t in Corollary 3.6 seems important, we record it as a
proposition:

Proposition 3.8. The elliptical width of the numerical range of X ∈ Mn satisfies

δ2(X) ≥ 2∥X∥∞ − ∥|X|+ |X∗|∥∞.

In particular, the inradius ε(X) of the numerical range of X satisfies

ε(X) ≥ ∥X∥∞ − ∥(|X|+ |X∗|)/2∥∞.

Remark 3.9. Our results still hold for operators on infinite dimensional separable Hilbert
space (assuming in Corollary 3.6 that f(t) and g(t) are Borel functions).
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